Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii
The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a m...
Saved in:
Published in | Nature communications Vol. 4; no. 1; p. 2742 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.11.2013
Nature Publishing Group Nature Pub. Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga
Chlamydomonas reinhardtii
to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form.
The early steps in the evolution of multicellularity are poorly understood. Here, Ratcliff
et al
. show that multicellularity can rapidly evolve in the green alga
Chlamydomonas reinhardtii
, demonstrating that single-cell developmental bottlenecks may evolve rapidly via co-option of the ancestral phenotype. |
---|---|
AbstractList | The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form.The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form. The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form. The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form. The early steps in the evolution of multicellularity are poorly understood. Here, Ratcliff et al . show that multicellularity can rapidly evolve in the green alga Chlamydomonas reinhardtii , demonstrating that single-cell developmental bottlenecks may evolve rapidly via co-option of the ancestral phenotype. |
ArticleNumber | 2742 |
Author | Ratcliff, William C. Rosenzweig, Frank Travisano, Michael Pentz, Jennifer T. Herron, Matthew D. Howell, Kathryn |
Author_xml | – sequence: 1 givenname: William C. surname: Ratcliff fullname: Ratcliff, William C. email: william.ratcliff@biology.gatech.edu organization: School of Biology, Georgia Institute of Technology, Ecology, Evolution and Behavior, University of Minnesota, The BioTechnology Institute, University of Minnesota – sequence: 2 givenname: Matthew D. surname: Herron fullname: Herron, Matthew D. organization: Division of Biological Sciences, The University of Montana – sequence: 3 givenname: Kathryn surname: Howell fullname: Howell, Kathryn organization: Ecology, Evolution and Behavior, University of Minnesota – sequence: 4 givenname: Jennifer T. surname: Pentz fullname: Pentz, Jennifer T. organization: School of Biology, Georgia Institute of Technology, Ecology, Evolution and Behavior, University of Minnesota – sequence: 5 givenname: Frank surname: Rosenzweig fullname: Rosenzweig, Frank organization: Division of Biological Sciences, The University of Montana – sequence: 6 givenname: Michael surname: Travisano fullname: Travisano, Michael organization: Ecology, Evolution and Behavior, University of Minnesota, The BioTechnology Institute, University of Minnesota |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24193369$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1vFCEAxYmpsXXtxT_AkHgxNVNhYGbg0sRs6kfSpBc9E4aPXRoGVmAa97-X7bZ1reUCgR-P93ivwVGIwQDwFqNzjAj7FFScpkwG2r4AJy2iuMFDS44O1sfgNOcbVAfhmFH6Chy3FHNCen4CVpe_Nya5yYQiPTS30c_FxQCjhTJA6YtJQRYXVnAOrql7Gk6zL04Z72cvE_TOGqi2yhvoAlyuvZy2Ok4xyAyTcWEtky7OvQEvrfTZnN7PC_Dzy-WP5bfm6vrr9-Xnq0Z1iJWGct52elBj29vBUoSs7pSlTFOL24ESi0dGFBuRJtyMXCnea8v7nnVSDr0dyQJc7HU38zgZrWquJL3Y1IgybUWUTvx7EtxarOKtIIzUF3gV-HAvkOKv2eQiJpd3aWUwcc4CU8rbAXXVzAK8f4LexLl-l7-j2MAZ73eC7w4dPVp56KACZ3tApZhzMvYRwUjsOhZ_O64wegIrV-SusprG-eevfNxfyVU3rEw6sPk__Qccu7wV |
CitedBy_id | crossref_primary_10_1126_science_aam5979 crossref_primary_10_1016_j_algal_2018_09_012 crossref_primary_10_1016_j_algal_2023_103220 crossref_primary_10_1073_pnas_1608278113 crossref_primary_10_1093_biomethods_bpab011 crossref_primary_10_3389_fgene_2022_787665 crossref_primary_10_1038_s41559_020_01384_x crossref_primary_10_2216_15_015_1 crossref_primary_10_1016_j_shpsc_2014_10_006 crossref_primary_10_1080_08927014_2017_1319473 crossref_primary_10_1038_ismej_2014_230 crossref_primary_10_1016_j_mib_2022_102141 crossref_primary_10_1111_evo_13727 crossref_primary_10_1016_j_ecolmodel_2018_10_019 crossref_primary_10_7554_eLife_08595 crossref_primary_10_1098_rstb_2015_0490 crossref_primary_10_1146_annurev_biophys_101220_072829 crossref_primary_10_7554_eLife_72707 crossref_primary_10_1016_j_devcel_2017_09_016 crossref_primary_10_1016_j_jtbi_2014_06_026 crossref_primary_10_1016_j_mib_2023_102394 crossref_primary_10_1016_j_biortech_2014_10_120 crossref_primary_10_1098_rstb_2015_0444 crossref_primary_10_1111_mec_13551 crossref_primary_10_1038_ncomms12085 crossref_primary_10_1063_5_0080845 crossref_primary_10_1038_ncomms11435 crossref_primary_10_1073_pnas_2122197119 crossref_primary_10_1016_j_ijhydene_2015_06_041 crossref_primary_10_1016_j_mib_2014_12_007 crossref_primary_10_1007_s13752_018_0298_6 crossref_primary_10_1016_j_gloplacha_2020_103193 crossref_primary_10_1038_s41559_019_0940_0 crossref_primary_10_1242_dev_200279 crossref_primary_10_1186_s13068_015_0391_z crossref_primary_10_1093_plphys_kiac321 crossref_primary_10_1534_g3_114_015032 crossref_primary_10_1038_s41559_016_0027 crossref_primary_10_1038_s41467_021_24503_z crossref_primary_10_3390_cells8111307 crossref_primary_10_1002_jez_b_22727 crossref_primary_10_1016_j_gde_2017_09_003 crossref_primary_10_1073_pnas_1704631114 crossref_primary_10_1016_j_algal_2020_101968 crossref_primary_10_1016_j_biortech_2024_131408 crossref_primary_10_1186_s12915_021_01087_0 crossref_primary_10_1016_j_cub_2023_03_031 crossref_primary_10_3892_ol_2020_11829 crossref_primary_10_1088_1742_5468_aa71d8 crossref_primary_10_1093_plphys_kiac398 crossref_primary_10_1126_science_1262053 crossref_primary_10_1016_j_jtbi_2018_08_038 crossref_primary_10_1093_evlett_qrae024 crossref_primary_10_1111_nph_18478 crossref_primary_10_1098_rstb_2021_0407 crossref_primary_10_1103_PhysRevE_107_014404 crossref_primary_10_1146_annurev_ecolsys_120213_091740 crossref_primary_10_1371_journal_pcbi_1010698 crossref_primary_10_1098_rsfs_2021_0082 crossref_primary_10_1038_s41467_023_39320_9 crossref_primary_10_1098_rspb_2023_1055 crossref_primary_10_1080_09670262_2015_1107759 crossref_primary_10_1002_jez_b_22985 crossref_primary_10_1007_s10539_019_9688_9 crossref_primary_10_1016_j_cej_2024_156802 crossref_primary_10_3390_plants12183342 crossref_primary_10_1093_jxb_erz547 crossref_primary_10_1002_adma_202305505 crossref_primary_10_1038_s41598_018_21832_w crossref_primary_10_1073_pnas_2411692122 crossref_primary_10_3390_genes12040487 crossref_primary_10_3390_genes14040941 crossref_primary_10_1146_annurev_fluid_010313_141426 crossref_primary_10_1111_jse_12824 crossref_primary_10_1016_j_algal_2016_03_035 crossref_primary_10_1017_S0024282921000256 crossref_primary_10_1042_EBC20170010 crossref_primary_10_1111_brv_12418 crossref_primary_10_1038_ncomms15707 crossref_primary_10_1016_j_coisb_2017_11_007 crossref_primary_10_1098_rsos_180912 crossref_primary_10_1007_s11120_021_00866_8 crossref_primary_10_1038_s41559_024_02367_y crossref_primary_10_1038_nrmicro3178 crossref_primary_10_1371_journal_pone_0118987 crossref_primary_10_1111_brv_12412 crossref_primary_10_3390_cimb45050242 crossref_primary_10_1103_PhysRevE_97_050401 crossref_primary_10_1007_s12038_014_9420_5 crossref_primary_10_1007_s10811_023_02944_x crossref_primary_10_1111_1365_2435_13462 crossref_primary_10_1007_s13752_021_00387_6 crossref_primary_10_1038_ncomms7102 crossref_primary_10_3389_fmars_2018_00144 crossref_primary_10_1016_j_cub_2016_05_057 crossref_primary_10_1371_journal_pone_0192184 crossref_primary_10_1016_j_tplants_2016_02_004 crossref_primary_10_1038_s41598_019_39558_8 crossref_primary_10_1086_682588 crossref_primary_10_1038_s41467_024_50625_1 crossref_primary_10_3389_fpls_2014_00737 crossref_primary_10_3390_genes12050661 crossref_primary_10_3390_genes14081635 crossref_primary_10_1111_nph_20249 crossref_primary_10_1002_ece3_3656 crossref_primary_10_1038_s41522_022_00292_1 crossref_primary_10_1371_journal_pcbi_1005042 crossref_primary_10_3390_universe6090130 crossref_primary_10_1038_s41467_017_00243_x crossref_primary_10_1088_1361_6463_aa7097 crossref_primary_10_1111_jeb_12804 crossref_primary_10_1098_rsif_2019_0054 crossref_primary_10_1103_PhysRevE_94_022418 crossref_primary_10_1128_MMBR_00008_18 |
Cites_doi | 10.1111/j.1399-3054.1969.tb07839.x 10.1126/science.1203801 10.1111/brv.12031 10.1126/science.1198914 10.1002/j.1537-2197.1959.tb07025.x 10.1111/j.1558-5646.2007.00304.x 10.1002/bies.20197 10.1126/science.1214449 10.1086/656905 10.1073/pnas.0811205106 10.1051/limn/2006010 10.1073/pnas.0803151105 10.1073/pnas.1115323109 10.1086/286012 10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0.CO;2-6 10.1073/pnas.91.15.6808 10.1023/A:1006527528063 10.1146/annurev.es.21.110190.002105 10.7554/eLife.00367 10.1186/gb-2009-10-5-218 10.1038/nature08480 10.1186/1471-2148-11-45 10.1371/journal.pone.0012759 10.1086/501031 10.1046/j.1529-8817.1999.3510104.x 10.1016/S0169-5347(97)01313-X 10.1111/j.1399-3054.1968.tb07353.x 10.1111/j.1474-919X.1947.tb04155.x 10.1038/nature11514 10.1111/evo.12101 10.1515/9781400858712 10.1016/j.jtbi.2012.11.022 10.1126/science.7809610 10.1073/pnas.97.15.8392 10.1146/annurev.ecolsys.36.102403.114735 10.1098/rspb.2005.3068 10.1002/bies.201000039 |
ContentType | Journal Article |
Copyright | The Author(s) 2013 Copyright Nature Publishing Group Nov 2013 Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2013 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2013 – notice: Copyright Nature Publishing Group Nov 2013 – notice: Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2013 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM |
DOI | 10.1038/ncomms3742 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
ExternalDocumentID | PMC3831279 3118602251 24193369 10_1038_ncomms3742 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 4.4 53G 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABAWZ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 5VS CAG CGR COF CUY CVF ECM EIF KQ8 LGEZI LOTEE NADUK NPM NXXTH 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c508t-49925d7cb26f7f400fd5cf48d4f12743f1b83c8b0d39eb9cc96df96685aa76fb3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Thu Aug 21 18:00:44 EDT 2025 Fri Jul 11 00:23:39 EDT 2025 Wed Aug 13 04:49:36 EDT 2025 Thu Apr 03 06:59:31 EDT 2025 Tue Jul 01 04:28:11 EDT 2025 Thu Apr 24 22:51:05 EDT 2025 Fri Feb 21 02:39:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-49925d7cb26f7f400fd5cf48d4f12743f1b83c8b0d39eb9cc96df96685aa76fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1448798969?pq-origsite=%requestingapplication% |
PMID | 24193369 |
PQID | 1448798969 |
PQPubID | 546298 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3831279 proquest_miscellaneous_1449270574 proquest_journals_1448798969 pubmed_primary_24193369 crossref_primary_10_1038_ncomms3742 crossref_citationtrail_10_1038_ncomms3742 springer_journals_10_1038_ncomms3742 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20131106 |
PublicationDateYYYYMMDD | 2013-11-06 |
PublicationDate_xml | – month: 11 year: 2013 text: 20131106 day: 6 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Pub. Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Pub. Group |
References | OstrowskiEAShaulskyGLearning to get along despite struggling to get byGenome Biol.20091021810.1186/gb-2009-10-5-218 SteinJRThe four-celled species of GoniumAm. J. Bot.19594636637110.1002/j.1537-2197.1959.tb07025.x BarrickJGenome evolution and adaptation in a long-term experiment with Escherichia coliNature2009461124312471:CAS:528:DC%2BD1MXht1OgsrzJ2009Natur.461.1243B10.1038/nature08480 HerronMDMichodREEvolution of complexity in the volvocine algae: transitions in individuality through Darwin's eyeEvolution20086243645110.1111/j.1558-5646.2007.00304.x Bonner, J. T. On Development: the Biology of Form Harvard University Press (1974). Harris, E. H. The Chlamydomonas Sourcebook: Introduction to Chlamydomonas and its Laboratory Use Access online via Elsevier (2009). TarnitaCETaubesCHNowakMAEvolutionary construction by staying together and coming togetherJ. Theor. Biol.20123201022300877710.1016/j.jtbi.2012.11.022 DykhuizenDEExperimental studies of natural selection in bacteriaAnnu. Rev. Ecol. Syst.19902137339810.1146/annurev.es.21.110190.002105 Buss, L. W. The Evolution of Individuality Princeton University Press (1987). BlountZDBorlandCZLenskiREHistorical contingency and the evolution of a key innovation in an experimental population of Escherichia coliProc. Natl Acad. Sci. USA2008105789979061:CAS:528:DC%2BD1cXns1Sqs7c%3D2008PNAS..105.7899B10.1073/pnas.0803151105 BoraasMESealeDBBoxhornJEPhagotrophy by a flagellate selects for colonial prey: a possible origin of multicellularityEvol. Ecol.19981215316410.1023/A:1006527528063 Michod, R. E. Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality Princeton University Press (2000). HerronMDRashidiASheltonDEDriscollWWCellular differentiation and individuality in the ‘minor’ multicellular taxaBiol. Rev.20138884486110.1111/brv.12031 FolseHJRoughgardenJWhat is an individual organism? A multilevel selection perspectiveQ. Rev. Biol.20108544747210.1086/656905 Hughes, R. N. inFunctional Biology of Clonal Animals Springer (1989). RatcliffWCPentzJTTravisanoMTempo and mode of mode of multicellular adaptation in experimentally-evolved Saccharomyces cerevisiaeEvolution2013671573158110.1111/evo.12101 IwasaKMurakamiSPalmelloid formation of ChlamydomonasPhysiol. Plantarum196821122412331:CAS:528:DyaF1MXhslyntA%3D%3D10.1111/j.1399-3054.1968.tb07353.x GrosbergRKStrathmannRRThe evolution of multicellularity: a minor major transition?Annu. Rev. Ecol. Evol. Syst.20073862165410.1146/annurev.ecolsys.36.102403.114735 LenskiRETravisanoMDynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populationsProc. Natl Acad. Sci. USA199491680868141:STN:280:DyaK2czhs1GrtQ%3D%3D1994PNAS...91.6808L10.1073/pnas.91.15.6808 TyermanJHavardNSaxerGTravisanoMDoebeliMUnparallel diversification in bacterial microcosmsProc. R. Soc. B. Biol. Sci.20052721393139810.1098/rspb.2005.3068 RatcliffWCDenisonRFBorrelloMTravisanoMExperimental evolution of multicellularityProc. Natl Acad. Sci. USA2012109159516001:CAS:528:DC%2BC38XitlKlsb8%3D2012PNAS..109.1595R10.1073/pnas.1115323109 Lurling, M. & Beekman, W. Palmelloids formation in Chlamydomonas reinhardtii: defense against rotifer predators? Annales de Limnologie Ser. 42Cambridge Univ Press (2006). RaineyPBKerrBCheats as first propagules: a new hypothesis for the evolution of individuality during the transition from single cells to multicellularityBioessays20103287288010.1002/bies.201000039 Iyengar, M. & Desikachary, T. V. inVolvocales Indian Council of Agricultural Research New Delhi (1981). TravisanoMMongoldJABennettAFLenskiREExperimental tests of the roles of adaptation, chance, and history in evolutionScience199526787901:STN:280:DyaK2M7gvVGmtw%3D%3D1995Sci...267...87T10.1126/science.7809610 WoeseCRInterpreting the universal phylogenetic treeProc. Natl Acad. Sci. USA200097839283961:CAS:528:DC%2BD3cXlt1Ggtbc%3D2000PNAS...97.8392W10.1073/pnas.97.15.8392 BlountZDBarrickJEDavidsonCJLenskiREGenomic analysis of a key innovation in an experimental Escherichia coli populationNature20124895135181:CAS:528:DC%2BC38XhtlKrsrjE2012Natur.489..513B10.1038/nature11514 Maynard Smith, J. & Szathmáry, E. The Major Transitions in Evolution Oxford University Press (1995). IwasaKMurakamiSPalmelloid formation of Chlamydomonas II. Mechanism of palmelloid formation by organic acidsPhysiol. Plantarum19692243501:CAS:528:DyaF1MXmsFGmug%3D%3D10.1111/j.1399-3054.1969.tb07839.x GrosbergRKStrathmannRROne cell, two cell, red cell, blue cell: the persistence of a unicellular stage in multicellular life historiesTrends Ecol. Evol.1998131121161:STN:280:DC%2BC3M7itFymsg%3D%3D10.1016/S0169-5347(97)01313-X MichodRECooperation and conflict in the evolution of individuality. I. Multilevel selection of the organismAm. Nat.199714960764510.1086/286012 KhanAIDinhDMSchneiderDLenskiRECooperTFNegative epistasis between beneficial mutations in an evolving bacterial populationScience2011332119311961:CAS:528:DC%2BC3MXmslyisbs%3D2011Sci...332.1193K10.1126/science.1203801 Strathmann, R. R. Functional design in the evolution of embryos and larvae. Seminars in Cell and Developmental Biology Ser. 11395–402Academic Press (2000). MeyerJRRepeatability and contingency in the evolution of a key innovation in phage lambdaScience20123354284321:CAS:528:DC%2BC38XhtFajtrw%3D2012Sci...335..428M10.1126/science.1214449 WoodsRJSecond-order selection for evolvability in a large Escherichia coli populationScience2011331143314361:CAS:528:DC%2BC3MXjtFSkt7k%3D2011Sci...331.1433W10.1126/science.1198914 KoschwanezJohnHFosterKevinRMurrayAndrewWImproved use of a public good selects for the evolution of undifferentiated multicellularityeLife20132e0036710.7554/eLife.00367 BrownJBSorhannusUThomasMGilbert.PA Molecular genetic timescale for the diversification of autotrophic Stramenopiles (Ochrophyta): substantive underestimation of putative fossil agesPLoS One20105e127592010PLoSO...512759B10.1371/journal.pone.0012759 KirkDLA twelve-step program for evolving multicellularity and a division of labourBioessays20052729931010.1002/bies.20197 Folse, H. J. Evolution and Individuality: Beyond the Genetically Homogeneous Organism Stanford University (2011). LackDThe significance of clutch-sizeIbis19478930235210.1111/j.1474-919X.1947.tb04155.x SchirrmeisterBEAntonelliABagheriHCThe origin of multicellularity in cyanobacteriaBMC Evol. Biol.2011114510.1186/1471-2148-11-45 BonnerJTThe origins of multicellularityIntegr. Biol.19981273610.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0.CO;2-6 NozakiHOhtaNTakanoHWatanabeMMReexamination of phylogenetic relationships within the colonial Volvocales (Chlorophyta): an analysis of atpB and rbcL gene sequencesJ. Phycol.1999351041121:CAS:528:DyaK1MXhvVKrsLw%3D10.1046/j.1529-8817.1999.3510104.x SolariCAKesslerJOMichodREA hydrodynamics approach to the evolution of multicellularity: flagellar motility and germ‐soma differentiation in Volvocalean green algaeAm. Nat.200616753755416670996 HerronMDHackettJDAylwardFOMichodRETriassic origin and early radiation of multicellular volvocine algaeProc. Natl Acad. Sci. USA2009106325432581:CAS:528:DC%2BD1MXivF2js7o%3D2009PNAS..106.3254H10.1073/pnas.0811205106 Dawkins, R. The Selfish Gene Oxford University Press (1976). D Lack (BFncomms3742_CR30) 1947; 89 JT Bonner (BFncomms3742_CR22) 1998; 1 PB Rainey (BFncomms3742_CR42) 2010; 32 AI Khan (BFncomms3742_CR36) 2011; 332 DL Kirk (BFncomms3742_CR33) 2005; 27 RJ Woods (BFncomms3742_CR35) 2011; 331 BFncomms3742_CR19 ZD Blount (BFncomms3742_CR37) 2012; 489 RE Lenski (BFncomms3742_CR8) 1994; 91 JR Meyer (BFncomms3742_CR41) 2012; 335 BFncomms3742_CR17 J Tyerman (BFncomms3742_CR39) 2005; 272 BFncomms3742_CR16 BFncomms3742_CR15 K Iwasa (BFncomms3742_CR28) 1968; 21 BFncomms3742_CR13 ME Boraas (BFncomms3742_CR23) 1998; 12 BFncomms3742_CR11 JohnH Koschwanez (BFncomms3742_CR43) 2013; 2 BFncomms3742_CR32 JB Brown (BFncomms3742_CR5) 2010; 5 DE Dykhuizen (BFncomms3742_CR9) 1990; 21 HJ Folse (BFncomms3742_CR20) 2010; 85 CR Woese (BFncomms3742_CR3) 2000; 97 CA Solari (BFncomms3742_CR45) 2006; 167 M Travisano (BFncomms3742_CR38) 1995; 267 J Barrick (BFncomms3742_CR34) 2009; 461 MD Herron (BFncomms3742_CR14) 2013; 88 H Nozaki (BFncomms3742_CR46) 1999; 35 JR Stein (BFncomms3742_CR31) 1959; 46 BFncomms3742_CR27 BFncomms3742_CR26 ZD Blount (BFncomms3742_CR40) 2008; 105 MD Herron (BFncomms3742_CR6) 2009; 106 EA Ostrowski (BFncomms3742_CR18) 2009; 10 WC Ratcliff (BFncomms3742_CR24) 2012; 109 RE Michod (BFncomms3742_CR2) 1997; 149 BFncomms3742_CR21 K Iwasa (BFncomms3742_CR29) 1969; 22 BFncomms3742_CR1 RK Grosberg (BFncomms3742_CR7) 2007; 38 RK Grosberg (BFncomms3742_CR12) 1998; 13 CE Tarnita (BFncomms3742_CR25) 2012; 320 BE Schirrmeister (BFncomms3742_CR4) 2011; 11 MD Herron (BFncomms3742_CR10) 2008; 62 WC Ratcliff (BFncomms3742_CR44) 2013; 67 21415350 - Science. 2011 Mar 18;331(6023):1433-6 21243964 - Q Rev Biol. 2010 Dec;85(4):447-72 7809610 - Science. 1995 Jan 6;267(5194):87-90 16670996 - Am Nat. 2006 Apr;167(4):537-54 18031303 - Evolution. 2008 Feb;62(2):436-51 18524956 - Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7899-906 23730752 - Evolution. 2013 Jun;67(6):1573-81 15714559 - Bioessays. 2005 Mar;27(3):299-310 22307617 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1595-600 23206384 - J Theor Biol. 2013 Mar 7;320:10-22 11145867 - Semin Cell Dev Biol. 2000 Dec;11(6):395-402 22282803 - Science. 2012 Jan 27;335(6067):428-32 20726010 - Bioessays. 2010 Oct;32(10):872-80 20862282 - PLoS One. 2010;5(9). pii: e12759. doi: 10.1371/journal.pone.0012759 23577233 - Elife. 2013;2:e00367 21320320 - BMC Evol Biol. 2011;11:45 21238226 - Trends Ecol Evol. 1998 Mar;13(3):112-6 19519929 - Genome Biol. 2009;10(5):218 19223580 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3254-8 16006323 - Proc Biol Sci. 2005 Jul 7;272(1570):1393-8 22992527 - Nature. 2012 Sep 27;489(7417):513-8 21636772 - Science. 2011 Jun 3;332(6034):1193-6 10900003 - Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8392-6 8041701 - Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6808-14 23448295 - Biol Rev Camb Philos Soc. 2013 Nov;88(4):844-61 19838166 - Nature. 2009 Oct 29;461(7268):1243-7 |
References_xml | – reference: GrosbergRKStrathmannRRThe evolution of multicellularity: a minor major transition?Annu. Rev. Ecol. Evol. Syst.20073862165410.1146/annurev.ecolsys.36.102403.114735 – reference: Iyengar, M. & Desikachary, T. V. inVolvocales Indian Council of Agricultural Research New Delhi (1981). – reference: SchirrmeisterBEAntonelliABagheriHCThe origin of multicellularity in cyanobacteriaBMC Evol. Biol.2011114510.1186/1471-2148-11-45 – reference: IwasaKMurakamiSPalmelloid formation of Chlamydomonas II. Mechanism of palmelloid formation by organic acidsPhysiol. Plantarum19692243501:CAS:528:DyaF1MXmsFGmug%3D%3D10.1111/j.1399-3054.1969.tb07839.x – reference: LackDThe significance of clutch-sizeIbis19478930235210.1111/j.1474-919X.1947.tb04155.x – reference: Dawkins, R. The Selfish Gene Oxford University Press (1976). – reference: SteinJRThe four-celled species of GoniumAm. J. Bot.19594636637110.1002/j.1537-2197.1959.tb07025.x – reference: BlountZDBorlandCZLenskiREHistorical contingency and the evolution of a key innovation in an experimental population of Escherichia coliProc. Natl Acad. Sci. USA2008105789979061:CAS:528:DC%2BD1cXns1Sqs7c%3D2008PNAS..105.7899B10.1073/pnas.0803151105 – reference: HerronMDRashidiASheltonDEDriscollWWCellular differentiation and individuality in the ‘minor’ multicellular taxaBiol. Rev.20138884486110.1111/brv.12031 – reference: GrosbergRKStrathmannRROne cell, two cell, red cell, blue cell: the persistence of a unicellular stage in multicellular life historiesTrends Ecol. Evol.1998131121161:STN:280:DC%2BC3M7itFymsg%3D%3D10.1016/S0169-5347(97)01313-X – reference: KhanAIDinhDMSchneiderDLenskiRECooperTFNegative epistasis between beneficial mutations in an evolving bacterial populationScience2011332119311961:CAS:528:DC%2BC3MXmslyisbs%3D2011Sci...332.1193K10.1126/science.1203801 – reference: BonnerJTThe origins of multicellularityIntegr. Biol.19981273610.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0.CO;2-6 – reference: LenskiRETravisanoMDynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populationsProc. Natl Acad. Sci. USA199491680868141:STN:280:DyaK2czhs1GrtQ%3D%3D1994PNAS...91.6808L10.1073/pnas.91.15.6808 – reference: TyermanJHavardNSaxerGTravisanoMDoebeliMUnparallel diversification in bacterial microcosmsProc. R. Soc. B. Biol. Sci.20052721393139810.1098/rspb.2005.3068 – reference: RatcliffWCDenisonRFBorrelloMTravisanoMExperimental evolution of multicellularityProc. Natl Acad. Sci. USA2012109159516001:CAS:528:DC%2BC38XitlKlsb8%3D2012PNAS..109.1595R10.1073/pnas.1115323109 – reference: IwasaKMurakamiSPalmelloid formation of ChlamydomonasPhysiol. Plantarum196821122412331:CAS:528:DyaF1MXhslyntA%3D%3D10.1111/j.1399-3054.1968.tb07353.x – reference: WoodsRJSecond-order selection for evolvability in a large Escherichia coli populationScience2011331143314361:CAS:528:DC%2BC3MXjtFSkt7k%3D2011Sci...331.1433W10.1126/science.1198914 – reference: WoeseCRInterpreting the universal phylogenetic treeProc. Natl Acad. Sci. USA200097839283961:CAS:528:DC%2BD3cXlt1Ggtbc%3D2000PNAS...97.8392W10.1073/pnas.97.15.8392 – reference: HerronMDHackettJDAylwardFOMichodRETriassic origin and early radiation of multicellular volvocine algaeProc. Natl Acad. Sci. USA2009106325432581:CAS:528:DC%2BD1MXivF2js7o%3D2009PNAS..106.3254H10.1073/pnas.0811205106 – reference: Hughes, R. N. inFunctional Biology of Clonal Animals Springer (1989). – reference: Harris, E. H. The Chlamydomonas Sourcebook: Introduction to Chlamydomonas and its Laboratory Use Access online via Elsevier (2009). – reference: BoraasMESealeDBBoxhornJEPhagotrophy by a flagellate selects for colonial prey: a possible origin of multicellularityEvol. Ecol.19981215316410.1023/A:1006527528063 – reference: Bonner, J. T. On Development: the Biology of Form Harvard University Press (1974). – reference: TravisanoMMongoldJABennettAFLenskiREExperimental tests of the roles of adaptation, chance, and history in evolutionScience199526787901:STN:280:DyaK2M7gvVGmtw%3D%3D1995Sci...267...87T10.1126/science.7809610 – reference: KirkDLA twelve-step program for evolving multicellularity and a division of labourBioessays20052729931010.1002/bies.20197 – reference: DykhuizenDEExperimental studies of natural selection in bacteriaAnnu. Rev. Ecol. Syst.19902137339810.1146/annurev.es.21.110190.002105 – reference: Buss, L. W. The Evolution of Individuality Princeton University Press (1987). – reference: KoschwanezJohnHFosterKevinRMurrayAndrewWImproved use of a public good selects for the evolution of undifferentiated multicellularityeLife20132e0036710.7554/eLife.00367 – reference: NozakiHOhtaNTakanoHWatanabeMMReexamination of phylogenetic relationships within the colonial Volvocales (Chlorophyta): an analysis of atpB and rbcL gene sequencesJ. Phycol.1999351041121:CAS:528:DyaK1MXhvVKrsLw%3D10.1046/j.1529-8817.1999.3510104.x – reference: MichodRECooperation and conflict in the evolution of individuality. I. Multilevel selection of the organismAm. Nat.199714960764510.1086/286012 – reference: TarnitaCETaubesCHNowakMAEvolutionary construction by staying together and coming togetherJ. Theor. Biol.20123201022300877710.1016/j.jtbi.2012.11.022 – reference: RaineyPBKerrBCheats as first propagules: a new hypothesis for the evolution of individuality during the transition from single cells to multicellularityBioessays20103287288010.1002/bies.201000039 – reference: Maynard Smith, J. & Szathmáry, E. The Major Transitions in Evolution Oxford University Press (1995). – reference: RatcliffWCPentzJTTravisanoMTempo and mode of mode of multicellular adaptation in experimentally-evolved Saccharomyces cerevisiaeEvolution2013671573158110.1111/evo.12101 – reference: Strathmann, R. R. Functional design in the evolution of embryos and larvae. Seminars in Cell and Developmental Biology Ser. 11395–402Academic Press (2000). – reference: Michod, R. E. Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality Princeton University Press (2000). – reference: Lurling, M. & Beekman, W. Palmelloids formation in Chlamydomonas reinhardtii: defense against rotifer predators? Annales de Limnologie Ser. 42Cambridge Univ Press (2006). – reference: Folse, H. J. Evolution and Individuality: Beyond the Genetically Homogeneous Organism Stanford University (2011). – reference: OstrowskiEAShaulskyGLearning to get along despite struggling to get byGenome Biol.20091021810.1186/gb-2009-10-5-218 – reference: BlountZDBarrickJEDavidsonCJLenskiREGenomic analysis of a key innovation in an experimental Escherichia coli populationNature20124895135181:CAS:528:DC%2BC38XhtlKrsrjE2012Natur.489..513B10.1038/nature11514 – reference: FolseHJRoughgardenJWhat is an individual organism? A multilevel selection perspectiveQ. Rev. Biol.20108544747210.1086/656905 – reference: BarrickJGenome evolution and adaptation in a long-term experiment with Escherichia coliNature2009461124312471:CAS:528:DC%2BD1MXht1OgsrzJ2009Natur.461.1243B10.1038/nature08480 – reference: SolariCAKesslerJOMichodREA hydrodynamics approach to the evolution of multicellularity: flagellar motility and germ‐soma differentiation in Volvocalean green algaeAm. Nat.200616753755416670996 – reference: HerronMDMichodREEvolution of complexity in the volvocine algae: transitions in individuality through Darwin's eyeEvolution20086243645110.1111/j.1558-5646.2007.00304.x – reference: MeyerJRRepeatability and contingency in the evolution of a key innovation in phage lambdaScience20123354284321:CAS:528:DC%2BC38XhtFajtrw%3D2012Sci...335..428M10.1126/science.1214449 – reference: BrownJBSorhannusUThomasMGilbert.PA Molecular genetic timescale for the diversification of autotrophic Stramenopiles (Ochrophyta): substantive underestimation of putative fossil agesPLoS One20105e127592010PLoSO...512759B10.1371/journal.pone.0012759 – ident: BFncomms3742_CR16 – volume: 22 start-page: 43 year: 1969 ident: BFncomms3742_CR29 publication-title: Physiol. Plantarum doi: 10.1111/j.1399-3054.1969.tb07839.x – volume: 332 start-page: 1193 year: 2011 ident: BFncomms3742_CR36 publication-title: Science doi: 10.1126/science.1203801 – volume: 88 start-page: 844 year: 2013 ident: BFncomms3742_CR14 publication-title: Biol. Rev. doi: 10.1111/brv.12031 – volume: 331 start-page: 1433 year: 2011 ident: BFncomms3742_CR35 publication-title: Science doi: 10.1126/science.1198914 – volume: 46 start-page: 366 year: 1959 ident: BFncomms3742_CR31 publication-title: Am. J. Bot. doi: 10.1002/j.1537-2197.1959.tb07025.x – volume: 62 start-page: 436 year: 2008 ident: BFncomms3742_CR10 publication-title: Evolution doi: 10.1111/j.1558-5646.2007.00304.x – ident: BFncomms3742_CR26 – volume: 27 start-page: 299 year: 2005 ident: BFncomms3742_CR33 publication-title: Bioessays doi: 10.1002/bies.20197 – volume: 335 start-page: 428 year: 2012 ident: BFncomms3742_CR41 publication-title: Science doi: 10.1126/science.1214449 – volume: 85 start-page: 447 year: 2010 ident: BFncomms3742_CR20 publication-title: Q. Rev. Biol. doi: 10.1086/656905 – volume: 106 start-page: 3254 year: 2009 ident: BFncomms3742_CR6 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0811205106 – ident: BFncomms3742_CR27 doi: 10.1051/limn/2006010 – volume: 105 start-page: 7899 year: 2008 ident: BFncomms3742_CR40 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0803151105 – ident: BFncomms3742_CR1 – volume: 109 start-page: 1595 year: 2012 ident: BFncomms3742_CR24 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1115323109 – volume: 149 start-page: 607 year: 1997 ident: BFncomms3742_CR2 publication-title: Am. Nat. doi: 10.1086/286012 – volume: 1 start-page: 27 year: 1998 ident: BFncomms3742_CR22 publication-title: Integr. Biol. doi: 10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0.CO;2-6 – volume: 91 start-page: 6808 year: 1994 ident: BFncomms3742_CR8 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.91.15.6808 – ident: BFncomms3742_CR13 – ident: BFncomms3742_CR19 – volume: 12 start-page: 153 year: 1998 ident: BFncomms3742_CR23 publication-title: Evol. Ecol. doi: 10.1023/A:1006527528063 – ident: BFncomms3742_CR32 – volume: 21 start-page: 373 year: 1990 ident: BFncomms3742_CR9 publication-title: Annu. Rev. Ecol. Syst. doi: 10.1146/annurev.es.21.110190.002105 – volume: 2 start-page: e00367 year: 2013 ident: BFncomms3742_CR43 publication-title: eLife doi: 10.7554/eLife.00367 – volume: 10 start-page: 218 year: 2009 ident: BFncomms3742_CR18 publication-title: Genome Biol. doi: 10.1186/gb-2009-10-5-218 – ident: BFncomms3742_CR17 – ident: BFncomms3742_CR15 – volume: 461 start-page: 1243 year: 2009 ident: BFncomms3742_CR34 publication-title: Nature doi: 10.1038/nature08480 – volume: 11 start-page: 45 year: 2011 ident: BFncomms3742_CR4 publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-11-45 – ident: BFncomms3742_CR21 – volume: 5 start-page: e12759 year: 2010 ident: BFncomms3742_CR5 publication-title: PLoS One doi: 10.1371/journal.pone.0012759 – volume: 167 start-page: 537 year: 2006 ident: BFncomms3742_CR45 publication-title: Am. Nat. doi: 10.1086/501031 – volume: 35 start-page: 104 year: 1999 ident: BFncomms3742_CR46 publication-title: J. Phycol. doi: 10.1046/j.1529-8817.1999.3510104.x – volume: 13 start-page: 112 year: 1998 ident: BFncomms3742_CR12 publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(97)01313-X – volume: 21 start-page: 1224 year: 1968 ident: BFncomms3742_CR28 publication-title: Physiol. Plantarum doi: 10.1111/j.1399-3054.1968.tb07353.x – volume: 89 start-page: 302 year: 1947 ident: BFncomms3742_CR30 publication-title: Ibis doi: 10.1111/j.1474-919X.1947.tb04155.x – volume: 489 start-page: 513 year: 2012 ident: BFncomms3742_CR37 publication-title: Nature doi: 10.1038/nature11514 – volume: 67 start-page: 1573 year: 2013 ident: BFncomms3742_CR44 publication-title: Evolution doi: 10.1111/evo.12101 – ident: BFncomms3742_CR11 doi: 10.1515/9781400858712 – volume: 320 start-page: 10 year: 2012 ident: BFncomms3742_CR25 publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2012.11.022 – volume: 267 start-page: 87 year: 1995 ident: BFncomms3742_CR38 publication-title: Science doi: 10.1126/science.7809610 – volume: 97 start-page: 8392 year: 2000 ident: BFncomms3742_CR3 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.15.8392 – volume: 38 start-page: 621 year: 2007 ident: BFncomms3742_CR7 publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev.ecolsys.36.102403.114735 – volume: 272 start-page: 1393 year: 2005 ident: BFncomms3742_CR39 publication-title: Proc. R. Soc. B. Biol. Sci. doi: 10.1098/rspb.2005.3068 – volume: 32 start-page: 872 year: 2010 ident: BFncomms3742_CR42 publication-title: Bioessays doi: 10.1002/bies.201000039 – reference: 19838166 - Nature. 2009 Oct 29;461(7268):1243-7 – reference: 21320320 - BMC Evol Biol. 2011;11:45 – reference: 20862282 - PLoS One. 2010;5(9). pii: e12759. doi: 10.1371/journal.pone.0012759 – reference: 16670996 - Am Nat. 2006 Apr;167(4):537-54 – reference: 15714559 - Bioessays. 2005 Mar;27(3):299-310 – reference: 22992527 - Nature. 2012 Sep 27;489(7417):513-8 – reference: 22282803 - Science. 2012 Jan 27;335(6067):428-32 – reference: 16006323 - Proc Biol Sci. 2005 Jul 7;272(1570):1393-8 – reference: 23577233 - Elife. 2013;2:e00367 – reference: 19223580 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3254-8 – reference: 10900003 - Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8392-6 – reference: 21243964 - Q Rev Biol. 2010 Dec;85(4):447-72 – reference: 8041701 - Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6808-14 – reference: 19519929 - Genome Biol. 2009;10(5):218 – reference: 21238226 - Trends Ecol Evol. 1998 Mar;13(3):112-6 – reference: 20726010 - Bioessays. 2010 Oct;32(10):872-80 – reference: 21415350 - Science. 2011 Mar 18;331(6023):1433-6 – reference: 7809610 - Science. 1995 Jan 6;267(5194):87-90 – reference: 21636772 - Science. 2011 Jun 3;332(6034):1193-6 – reference: 23448295 - Biol Rev Camb Philos Soc. 2013 Nov;88(4):844-61 – reference: 23730752 - Evolution. 2013 Jun;67(6):1573-81 – reference: 23206384 - J Theor Biol. 2013 Mar 7;320:10-22 – reference: 11145867 - Semin Cell Dev Biol. 2000 Dec;11(6):395-402 – reference: 18524956 - Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7899-906 – reference: 18031303 - Evolution. 2008 Feb;62(2):436-51 – reference: 22307617 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1595-600 |
SSID | ssj0000391844 |
Score | 2.4882288 |
Snippet | The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2742 |
SubjectTerms | 14/63 38/23 45/29 45/77 631/181/2475 631/181/457 Animals Biological Evolution Chlamydomonas reinhardtii - cytology Chlamydomonas reinhardtii - genetics Chlamydomonas reinhardtii - physiology Fecundity Humanities and Social Sciences Life cycles Molecular Sequence Data multidisciplinary Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFLdGp0lcEIwNOspkBJcdora2G9unaUIghMROIPUWOf4okcAp_UDqf7_30iTQddo1_ojz3rP9vvJ7hFxI55gZspBYGVgi3MAn2gxcooXPNdyPXhr0d9z9Tm8exO14NK4dbvM6rbI5E6uD2pUWfeR9UPyVhNGp_jl9SbBqFEZX6xIaO-QjQpdhSpccy9bHgujnSogGlZSrfoQpn-dcCrZ5D20pl9s5kn8FSqv753qf7NWKI_215vQB-eDjZ_JpXUpydUgmV--g-ql_rSWKloGaSKuYOPr94oRiggk8c7TKJUTHPWai0qcieGpXMDctIr18BElZuRK-2szpzBcR_85aFMUX8nB9dX95k9RFFBILutciAYuGjZy0OUuDDLBjgxvZIJQTYQgWKQ_DXHGr8oHjGthjrU5dABtIjYyRacj5V9KJZfTHhCLSvnaBg8bghQ5MmQHwX1hhJEtNLrvkR0PSzNYI41jo4imrIt1cZW_k75Lztu90javxz169hjNZvbfm2ZskdMlZ2wy7Ailmoi-XVR_NJOiiokuO1oxsXwM6i-YcR8sNFrcdEHF7syUWjxXyNpjzQDQYedEIw7tlba3-2_9Xf0J2GdbWQB912iOdxWzpT0HDWeTfKzH-A1TfAhk priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gCIkL4s1goCB24VCxJVnTHNE0NCHBiUm7TWkeW6WRoj2Q9u9x-mJjHDi2cVrLdhrbcT8j1ORaE9kmNlDckoDplgmEbOlAMBML2B8Nlz7f8foW9gfsZdgZFjA586KsMoe0zD7TZXXYo4OrjzmFQG4X7XnIdm_N3bBb5VM80nnEWIlASqO1KZt7zpYjuV0P-etQNNtrno_QYeEk4qecrWO0Y9wJ2s_bRq5O0bi3BsuPzVdhPTi1WDqcnX_7HJ8bY19MAvc0zuoGfZLeV53iaWINVit4Nk4c7k7AKlY6BYOUczwzifN_Yi2S5AwNnnvv3X5QNEwIFPhZiwCiF9LRXMUktNzC6rS6oyyLNLNtiD6pbccRVVHc0lSAKpQSobYQ70QdKXloY3qOai515hJhj6ovtKXgHRgmLIlkC3TNFJOchDLmdfRQinSkCjRx39RiOspOtWk0-hF_Hd1XtJ85hsafVI1SM6NiHc0hMIGACmwmFHV0Vw3DCvASk86ky4xGEA5-J6uji1yR1WvAPxGU-tl8Q8UVgUfX3hxxySRD2YbQHYQGM5ulMayxtcX91f_IrtEB8f00fF46bKDaYrY0N-DVLOLbzJy_ATcV_hw priority: 102 providerName: Springer Nature |
Title | Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii |
URI | https://link.springer.com/article/10.1038/ncomms3742 https://www.ncbi.nlm.nih.gov/pubmed/24193369 https://www.proquest.com/docview/1448798969 https://www.proquest.com/docview/1449270574 https://pubmed.ncbi.nlm.nih.gov/PMC3831279 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB71oUpcKigUQktkRC8ctmxsZ70-IBSipFWkVggaKbfI60e7UnBKklbk3zPeR9o0PXDZldb2rjXzeWc-P2YAToQxVLWoi7RwNOImtpFUsYkkt5lE-2iFCvMdF5fJ-ZAPRu3RFtT5OysBzp-ldiGf1HA2Of37Z_kNB_zX8sh4-sWjbn7PGZK8bdhFiyTCAL2o3Pzij8wkEpmwwExj3orQZrM6Uula83XbtOFwbu6bfLJ4Wtik_kvYr5xJ0im1_wq2rD-AvTK95PI1XPcehe8n9r5CGZk6ojwp1snDXKC_JmHTCT4zpNhfGCbzw-5UMsmdJXqJ7ya5J90bRM_STBG4ak5mNvfhxNYiz9_AsN-76p5HVWKFSKM_toiQ5dC2ETqjiRMOR7Ezbe14arhrIUtlrpWlTKdZbJhElWktE-OQF6VtpUTiMnYIO37q7TsgIfq-NI6hF2G5dDRVMWKCa64ETVQmGvC5FulYV1HHQ_KLybhY_Wbp-EH8Dfi0qntbxtp4ttZxrZlxDRckMEi8EFuJbMDHVTGOlCAx5e30rqgjqUD_lDfgbanI1WcQNZKx0FqsqXhVIUThXi_x-U0RjRspPgoNW57UYHjUrY3ev_-P7h3BCxqSboTJ6-QYdhazO_sBXZ9F1oRtMRJ4TftnTdjtdAa_Bnj_3rv88ROfdpNus0D-P_4KDkg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkWChhRDhyi7tre2D5UCJUuW_o4tVJvwfGjjVSc0t222j_Fb-xMXu2yiFuv8SPO-HP8eWY8Q8iadI6ZAQuJlYElwvV9ok3fJVr4XMP-6KVBfcfefjo-FD-OhkdL5E97FwbdKtt_YvWjdqVFHfk6EH8loXWqv5z9TjBrFFpX2xQaNSx2_OwKjmyTje1vML-fGBttHWyOkyarQGKBjEwToPhs6KTNWRpkAAgHN7RBKCfCAI5oPAxyxa3K-45rGK-1OnUBDgVqaIxMQ86h33vkvuBc44pSo--dTgejrSsh2iioXK1H-IRfEy4Fm9_3Fsjsok_mX4bZar8bPSGPG6JKv9bIekqWfHxGHtSpK2fPyfHWrdQA1F82CKZloCbSygaPesZ4TNGhBZ45WvkuoqEAPV_paRE8tTPomxaRbp4AMmeuBCmbCT33RcTbYNOieEEO70S8L8lyLKN_RShG9tcucGAoXujAlOkD3oQVRrLU5LJHPrcizWwT0RwTa5xmlWWdq-xG_D3ysat7Vsfx-Get1XZmsmYtT7Ib5PXIh64YViFKzERfXlR1NJPAfUWPrNQT2b0GOJLmHFvLuSnuKmCE7_mSWJxUkb654iA0aLnWguHWsBZG__r_o39PHo4P9naz3e39nTfkEcO8HqgfT1fJ8vT8wr8FdjXN31WQpuTnXa-ha5q9P8k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4lkWChhRDhyi3bWd2D4ghNquWgoVByrtLTh-tJGKU7pb0P41fh0zebXLIm69xnbijL-JP89MZgjZks4xM2YhsTKwRLiRT7QZuUQLX2jYH700aO_4fJjtHYmP03S6Rn53_8JgWGX3Taw_1K6yaCMfAvFXEkZnehjasIgvO5P3Zz8SrCCFntaunEYDkQO_-AXHt9m7_R1Y6zeMTXa_bu8lbYWBxAIxmSdA91nqpC1YFmQAOAeX2iCUE2EMxzUexoXiVhUjxzXM3VqduQAHBJUaI7NQcLjvDXJT8nSMOiansrfvYOZ1JUSXEZWrYYTX-T7jUrDlPXCF2K7GZ_7lpK33vsk9crclrfRDg7L7ZM3HB-RWU8Zy8ZAc714pE0D9zxbNtArURFr749HmGI8pBrfANUfrOEZ0GmAULD0tg6d2AfemZaTbJ4DShatAymZGz30Z8c-weVk-IkfXIt7HZD1W0T8hFLP8axc4sBUvdGDKjAB7wgojWWYKOSBvO5Hmts1ujkU2TvPay85Vfin-AXnd9z1rcnr8s9dmtzJ5q9ez_BKFA_KqbwaNRImZ6KuLuo9mEniwGJCNZiH7xwBf0pzjaLm0xH0HzPa93BLLkzrrN1cchAYjtzowXJnWyuyf_n_2L8lt0J780_7hwTNyh2GJDzSVZ5tkfX5-4Z8D0ZoXL2pEU_LtulXoD925Q_Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+evolution+of+an+alternating+uni-+and+multicellular+life+cycle+in+Chlamydomonas+reinhardtii&rft.jtitle=Nature+communications&rft.au=Ratcliff%2C+William+C&rft.au=Herron%2C+Matthew+D&rft.au=Howell%2C+Kathryn&rft.au=Pentz%2C+Jennifer+T&rft.date=2013-11-06&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=4&rft.spage=2742&rft_id=info:doi/10.1038%2Fncomms3742&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |