Attention-Based Scene Text Detection on Dual Feature Fusion

The segmentation-based scene text detection algorithm has advantages in scene text detection scenarios with arbitrary shape and extreme aspect ratio, depending on its pixel-level description and fine post-processing. However, the insufficient use of semantic and spatial information in the network li...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 23; p. 9072
Main Authors Li, Yuze, Silamu, Wushour, Wang, Zhenchao, Xu, Miaomiao
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.11.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The segmentation-based scene text detection algorithm has advantages in scene text detection scenarios with arbitrary shape and extreme aspect ratio, depending on its pixel-level description and fine post-processing. However, the insufficient use of semantic and spatial information in the network limits the classification and positioning capabilities of the network. Existing scene text detection methods have the problem of losing important feature information in the process of extracting features from each network layer. To solve this problem, the Attention-based Dual Feature Fusion Model (ADFM) is proposed. The Bi-directional Feature Fusion Pyramid Module (BFM) first adds stronger semantic information to the higher-resolution feature maps through a top-down process and then reduces the aliasing effects generated by the previous process through a bottom-up process to enhance the representation of multi-scale text semantic information. Meanwhile, a position-sensitive Spatial Attention Module (SAM) is introduced in the intermediate process of two-stage feature fusion. It focuses on the one feature map with the highest resolution and strongest semantic features generated in the top-down process and weighs the spatial position weight by the relevance of text features, thus improving the sensitivity of the text detection network to text regions. The effectiveness of each module of ADFM was verified by ablation experiments and the model was compared with recent scene text detection methods on several publicly available datasets.
AbstractList The segmentation-based scene text detection algorithm has advantages in scene text detection scenarios with arbitrary shape and extreme aspect ratio, depending on its pixel-level description and fine post-processing. However, the insufficient use of semantic and spatial information in the network limits the classification and positioning capabilities of the network. Existing scene text detection methods have the problem of losing important feature information in the process of extracting features from each network layer. To solve this problem, the Attention-based Dual Feature Fusion Model (ADFM) is proposed. The Bi-directional Feature Fusion Pyramid Module (BFM) first adds stronger semantic information to the higher-resolution feature maps through a top-down process and then reduces the aliasing effects generated by the previous process through a bottom-up process to enhance the representation of multi-scale text semantic information. Meanwhile, a position-sensitive Spatial Attention Module (SAM) is introduced in the intermediate process of two-stage feature fusion. It focuses on the one feature map with the highest resolution and strongest semantic features generated in the top-down process and weighs the spatial position weight by the relevance of text features, thus improving the sensitivity of the text detection network to text regions. The effectiveness of each module of ADFM was verified by ablation experiments and the model was compared with recent scene text detection methods on several publicly available datasets.
The segmentation-based scene text detection algorithm has advantages in scene text detection scenarios with arbitrary shape and extreme aspect ratio, depending on its pixel-level description and fine post-processing. However, the insufficient use of semantic and spatial information in the network limits the classification and positioning capabilities of the network. Existing scene text detection methods have the problem of losing important feature information in the process of extracting features from each network layer. To solve this problem, the Attention-based Dual Feature Fusion Model (ADFM) is proposed. The Bi-directional Feature Fusion Pyramid Module (BFM) first adds stronger semantic information to the higher-resolution feature maps through a top-down process and then reduces the aliasing effects generated by the previous process through a bottom-up process to enhance the representation of multi-scale text semantic information. Meanwhile, a position-sensitive Spatial Attention Module (SAM) is introduced in the intermediate process of two-stage feature fusion. It focuses on the one feature map with the highest resolution and strongest semantic features generated in the top-down process and weighs the spatial position weight by the relevance of text features, thus improving the sensitivity of the text detection network to text regions. The effectiveness of each module of ADFM was verified by ablation experiments and the model was compared with recent scene text detection methods on several publicly available datasets.The segmentation-based scene text detection algorithm has advantages in scene text detection scenarios with arbitrary shape and extreme aspect ratio, depending on its pixel-level description and fine post-processing. However, the insufficient use of semantic and spatial information in the network limits the classification and positioning capabilities of the network. Existing scene text detection methods have the problem of losing important feature information in the process of extracting features from each network layer. To solve this problem, the Attention-based Dual Feature Fusion Model (ADFM) is proposed. The Bi-directional Feature Fusion Pyramid Module (BFM) first adds stronger semantic information to the higher-resolution feature maps through a top-down process and then reduces the aliasing effects generated by the previous process through a bottom-up process to enhance the representation of multi-scale text semantic information. Meanwhile, a position-sensitive Spatial Attention Module (SAM) is introduced in the intermediate process of two-stage feature fusion. It focuses on the one feature map with the highest resolution and strongest semantic features generated in the top-down process and weighs the spatial position weight by the relevance of text features, thus improving the sensitivity of the text detection network to text regions. The effectiveness of each module of ADFM was verified by ablation experiments and the model was compared with recent scene text detection methods on several publicly available datasets.
Audience Academic
Author Li, Yuze
Wang, Zhenchao
Silamu, Wushour
Xu, Miaomiao
AuthorAffiliation Xinjiang Multilingual Information Technology Laboratory, Xinjiang Multilingual Information Technology Research Center, College of Information Science and Engineering, Xinjiang University, Urumqi 830017, China
AuthorAffiliation_xml – name: Xinjiang Multilingual Information Technology Laboratory, Xinjiang Multilingual Information Technology Research Center, College of Information Science and Engineering, Xinjiang University, Urumqi 830017, China
Author_xml – sequence: 1
  givenname: Yuze
  surname: Li
  fullname: Li, Yuze
– sequence: 2
  givenname: Wushour
  surname: Silamu
  fullname: Silamu, Wushour
– sequence: 3
  givenname: Zhenchao
  surname: Wang
  fullname: Wang, Zhenchao
– sequence: 4
  givenname: Miaomiao
  surname: Xu
  fullname: Xu, Miaomiao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36501774$$D View this record in MEDLINE/PubMed
BookMark eNplUltrFDEUDlKxF33wD8iAL_owbW4zSRAKa-tqoeCD9TlkkjNrltlJnWTE_vueddvSVhI44Zzv-3Juh2RvTCMQ8pbRYyEMPcmcc7SKvyAHTHJZa87p3qP3PjnMeU0pF0LoV2RftA1lSskD8mlRCowlprH-7DKE6oeHEaor-Fuqcyjgt6EK7_nshmoJrswTVMs5o_s1edm7IcObO3tEfi6_XJ19qy-_f704W1zWvqG61JKZTsjOmz6wzrSh15Q6J10bur5pqWDKQAfCBa4E9zr0hnHKlQxCBiooE0fkYqcbklvb6ylu3HRjk4v2nyNNK-umEv0A1mwpupNCMie54J3R4Dn1BpMA3WrUOt1pXc_dBgIWWyY3PBF9GhnjL7tKf6xRwijaosCHO4Ep_Z4hF7uJ2cMwuBHSnC1XjRAMx6EQ-v4ZdJ3macRWIUpqrJ0JjqjjHWrlsIA49gn_9XgCbKLHQfcR_Qsl20ZI7BYS3j0u4SH3-6Ei4GQH8FPKeYLe-ljcdpCoHAfLqN2ujX1YG2R8fMa4F_0fewu_BL36
CitedBy_id crossref_primary_10_1080_13682199_2022_2160861
crossref_primary_10_21833_ijaas_2023_06_006
Cites_doi 10.1007/978-3-319-46448-0_2
10.1109/ICDAR.2015.7333942
10.1007/978-3-030-01264-9_5
10.1109/CVPR42600.2020.01177
10.1109/CVPR.2017.660
10.1109/ICCV.2019.00069
10.1109/CVPR.2017.106
10.1007/978-3-030-01216-8_2
10.1109/CVPR.2019.00956
10.1109/CVPR.2018.00619
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2015.7298965
10.1109/ICCV.2017.322
10.1007/978-3-030-01234-2_1
10.1007/s11042-022-12693-7
10.1109/CVPR.2017.371
10.1109/CVPR.2016.254
10.1109/CVPR.2019.00959
10.1109/CVPR.2019.00326
10.1109/TPAMI.2022.3155612
10.1109/TIP.2018.2825107
10.1109/ICCV.2017.331
10.1016/j.ins.2022.11.019
10.1609/aaai.v32i1.12269
10.1109/ICIP.2019.8803392
10.1016/j.ins.2022.08.115
10.1109/JSTARS.2021.3059451
10.1609/aaai.v31i1.11196
10.1609/aaai.v34i07.6812
10.3390/s22166262
10.1109/CVPR.2017.283
10.1007/978-3-319-46484-8_4
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s22239072
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE

CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_94d038b4341a4232b98ec20c9419e868
PMC9739706
A746534031
36501774
10_3390_s22239072
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61433012
– fundername: National 973 Key R&D Program
  grantid: 2014CB340506
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c508t-419b34bc9fd1b96df800aa4a6dbf5603179ebe3ad2732c8df9120274d34d03013
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:27:13 EDT 2025
Thu Aug 21 18:38:55 EDT 2025
Tue Aug 05 09:59:24 EDT 2025
Fri Jul 25 20:28:50 EDT 2025
Tue Jul 01 05:43:26 EDT 2025
Wed Feb 19 02:26:20 EST 2025
Tue Jul 01 01:19:33 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords multi-scale feature fusion
spatial attention
differentiable binarization
feature pyramid network
scene text detection
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-419b34bc9fd1b96df800aa4a6dbf5603179ebe3ad2732c8df9120274d34d03013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/94d038b4341a4232b98ec20c9419e868
PMID 36501774
PQID 2748560132
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_94d038b4341a4232b98ec20c9419e868
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9739706
proquest_miscellaneous_2753312397
proquest_journals_2748560132
gale_infotracacademiconefile_A746534031
pubmed_primary_36501774
crossref_citationtrail_10_3390_s22239072
crossref_primary_10_3390_s22239072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221123
PublicationDateYYYYMMDD 2022-11-23
PublicationDate_xml – month: 11
  year: 2022
  text: 20221123
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
ref_36
ref_13
ref_35
Chen (ref_27) 2021; 14
ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
ref_19
ref_18
Yu (ref_28) 2023; 2
ref_17
ref_39
ref_16
ref_38
ref_15
ref_37
Huang (ref_30) 2022; 619
Deng (ref_29) 2022; 612
ref_25
ref_24
ref_23
ref_22
ref_21
Naiemi (ref_1) 2022; 81
ref_20
ref_41
ref_40
ref_3
ref_2
Ren (ref_7) 2015; 28
ref_26
ref_9
ref_8
Liao (ref_12) 2018; 27
ref_5
ref_4
ref_6
References_xml – ident: ref_9
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_4
  doi: 10.1109/ICDAR.2015.7333942
– ident: ref_15
  doi: 10.1007/978-3-030-01264-9_5
– ident: ref_5
– ident: ref_39
  doi: 10.1109/CVPR42600.2020.01177
– ident: ref_25
  doi: 10.1109/CVPR.2017.660
– ident: ref_26
– ident: ref_32
  doi: 10.1109/ICCV.2019.00069
– ident: ref_3
  doi: 10.1109/CVPR.2017.106
– ident: ref_19
  doi: 10.1007/978-3-030-01216-8_2
– ident: ref_20
  doi: 10.1109/CVPR.2019.00956
– ident: ref_13
  doi: 10.1109/CVPR.2018.00619
– ident: ref_24
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_16
– ident: ref_23
  doi: 10.1109/CVPR.2015.7298965
– ident: ref_40
– ident: ref_8
  doi: 10.1109/ICCV.2017.322
– ident: ref_31
  doi: 10.1007/978-3-030-01234-2_1
– volume: 81
  start-page: 1
  year: 2022
  ident: ref_1
  article-title: Scene text detection and recognition: A survey
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12693-7
– volume: 2
  start-page: 1960
  year: 2023
  ident: ref_28
  article-title: Optimal search mapping among sensors in heterogeneous smart homes
  publication-title: Math. Biosci. Eng.
– ident: ref_35
– ident: ref_41
  doi: 10.1109/CVPR.2017.371
– ident: ref_34
  doi: 10.1109/CVPR.2016.254
– ident: ref_21
– ident: ref_38
  doi: 10.1109/CVPR.2019.00959
– ident: ref_33
  doi: 10.1109/CVPR.2019.00326
– ident: ref_6
– ident: ref_36
  doi: 10.1109/TPAMI.2022.3155612
– volume: 27
  start-page: 3676
  year: 2018
  ident: ref_12
  article-title: Textboxes++: A single-shot oriented scene text detector
  publication-title: IEEE Trans. Image Processing
  doi: 10.1109/TIP.2018.2825107
– ident: ref_14
  doi: 10.1109/ICCV.2017.331
– volume: 619
  start-page: 2
  year: 2022
  ident: ref_30
  article-title: Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.11.019
– ident: ref_17
  doi: 10.1609/aaai.v32i1.12269
– ident: ref_10
  doi: 10.1109/ICIP.2019.8803392
– volume: 612
  start-page: 576
  year: 2022
  ident: ref_29
  article-title: Multi-strategy particle swarm and ant colony hybrid optimization for airport taxiway planning problem
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.08.115
– volume: 14
  start-page: 2781
  year: 2021
  ident: ref_27
  article-title: A hyperspectral image classification method using multifeature vectors and optimized KELM
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3059451
– ident: ref_11
  doi: 10.1609/aaai.v31i1.11196
– volume: 28
  start-page: 1137
  year: 2015
  ident: ref_7
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Processing Syst.
– ident: ref_22
  doi: 10.1609/aaai.v34i07.6812
– ident: ref_2
  doi: 10.3390/s22166262
– ident: ref_18
  doi: 10.1109/CVPR.2017.283
– ident: ref_37
  doi: 10.1007/978-3-319-46484-8_4
SSID ssj0023338
Score 2.3841872
Snippet The segmentation-based scene text detection algorithm has advantages in scene text detection scenarios with arbitrary shape and extreme aspect ratio, depending...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9072
SubjectTerms Accuracy
Algorithms
Boxes
Classification
Datasets
Deep learning
differentiable binarization
Experiments
feature pyramid network
Methods
multi-scale feature fusion
Neural networks
scene text detection
Semantics
spatial attention
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLcYvLCHaeOzG5sKQoKXirbJtY32gA7YCU0aL4B0b1G-CpOmHty1___sNleuAiH1qbGixI5jO3F-BjhGkyYSpm1EGQkRL3QeiQLVPRdJaU3sUKPogfOfm-z6nv-ejqb-wG3h0yqXe2K7UduZoTPyM4yeCooeWHr-9BxR1Si6XfUlND7ABkGXUUpXPn0JuBjGXx2aEMPQ_mxBthCDwXRgg1qo_tcb8opFGmZLrpifyWf45P3GcNwJ-gusuWoLPq6gCW7Dz3Fdd8mL0QXaJhveYl8uvMPtN7xydZtzVYX4XTXYE_l-zdyFk4bOy3bgfvLr7vI68rURIoMuVU2Xt5pxbURpEy0yW6LjpxRXmdXliCpH5wLFw5RF9yQ1hS1FQscc3DJuKQpiu7BezSq3D6E2sS1dSdLh3IwypTKHRIbH3NqR5QGcLrkljQcOp_oV_yQGEMRY2TM2gKOe9KlDy3iL6IJY3hMQwHX7YzZ_kF5fpKBhFpqjkVV0l6xF4UwaG4ETd0VWBHBCApOkhjgYo_xrApwSAVrJcU7AcRwZEcDBUqbS6-dCvqymAA77ZtQsui5RlZs1RIOuMBp2kQew1y2BfswMHdsEPecA8sHiGExq2FL9fWzRu0WOPcbZ1_eH9Q02U3pokSRRyg5gvZ437ju6P7X-0a7x_4HoBGc
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB9KffJB_Da1ShRBX6LJ7V6SpRS5Wo8i1Bd70Ldlv6KFktNrAvrf-5skFy7YR-GeLsOyO7Oz85v9-A3RG4Q0lQnrE76RkMjSFokq4e6Fyirv0gCP4gfO51_zs5X8cjm_3KNtjc1BgTe3pnZcT2q1uX7_-9efj3D4Y844kbJ_uOEYhyQPK_EdBKSC_fNcjocJM4E0rCcVmopPQlHH2P_vurwTmKaXJnei0PI-3RvgY7zo7f2A9kL9kO7ukAo-oqNF0_R3GJMThCgff0NbIb7AKhyfhqa7elXH-J22aIkhYLsJ8bLlbbPHtFp-vvh0lgwlEhIHZNXwGa4V0jpV-cyq3FfAf8ZIk3tbzbmAdKFgJWE8UMrMlb5SGe92SC-k52RIPKH9el2HZxRbl_oqVGwkKd08NyYPEHIyld7PvYzo3VZb2g384VzG4lojj2DF6lGxEb0eRX_2pBm3CZ2wykcB5rnu_lhvvuvBbbTibpZWItYaPlK2qgxuljqFgYcyLyN6ywbTPD_QGWeGRwUYEvNa6UXB_HESiojocGtTvZ1lGpooOSUV6M2r8TMcjE9NTB3WLcsAESO-qyKip_0UGPssgG8zAOiIisnkmAxq-qW--tGReKsCLab5wf_QwnPebUgzfiI5E4e032za8AJYqbEvO0_4C5-MEiI
  priority: 102
  providerName: Scholars Portal
Title Attention-Based Scene Text Detection on Dual Feature Fusion
URI https://www.ncbi.nlm.nih.gov/pubmed/36501774
https://www.proquest.com/docview/2748560132
https://www.proquest.com/docview/2753312397
https://pubmed.ncbi.nlm.nih.gov/PMC9739706
https://doaj.org/article/94d038b4341a4232b98ec20c9419e868
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ni9RAEC10vehB_Da6DlEEvYRN0j3pNJ5m3B0XYRfRXZhbk_4ICpKV3eT_-yrJhAkKXoSQQ1I0napU16vu6tdEbxHSdCasT7giIZGlVYku4e5KZ7V3aYBH8Qbns_Pi9FJ-3i63e0d9cU3YQA88KO5IS5-K0kqMthUvKlpdBpenTstMh7Lot_ki5u2SqTHVEsi8Bh4hgaT-6IajINLAfBZ9epL-P4fivVg0r5PcCzybB3R_RIzxaujpQ7oVmkd0b49H8DF9WLXtULaYrBGVfPwNbYX4AgNvfBzavtqqiXEdd2iJUV93HeJNxzNlT-hyc3Lx8TQZT0VIHMBUy8u2VkjrdO0zqwtfA_JVlawKb-slnxmtNAwjKg9gkrvS1zrjCQ7pBWsSiO8pHTRXTXhOsXWpr0PNdpHSLYuqKgKEnEyl90svI3q_05ZxI2U4n1zx0yB1YMWaSbERvZlEfw08GX8TWrPKJwGmtu4fwOBmNLj5l8EjescGM-yA6Iyrxn0E-CSmsjIrxZRxEoqI6HBnUzN65o2BJkrOQgV683p6DZ_ihZKqCVcdywAEI6RrFdGz4ReY-iwAaTNg5ojU7OeYfdT8TfPje8_brRVaTIsX_0MLL-luzhsxsizJxSEdtNddeAV41NoF3VZbhXu5-bSgO-uT8y9fF7134H4my98bMQ_R
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgGB4BI1ib1JLITQlmW1pY8LW2lvrl-hlVC27CZC_Cl-IzN5dSMQt0o5xSPLHs_4m7HHMwCvEdJExLQNKCIh4JlOA5Ghuqciyq0JHWoUPXA-Ok5mJ_zLYrTYgt_dWxgKq-z2xHqjtktDZ-S76D1l5D2w-OPFj4CqRtHtaldCoxGLA_frJ7ps6w_7E1zfN3E8_Tz_NAvaqgKBQWOkpGtPzbg2IreRFonN0WRSiqvE6nxENZdTgRNjyiKwxyazuYjogIBbxi35Dwz7vQbXEXhD0qh0cengMfT3muxFjIlwd03Yi85nPMC8ujTA3wCwgYDD6MwNuJvegdutneqPG8G6C1uuuAe3NrIX3of347JsgiWDPcRC63_Fvpw_x-3en7iyjvEqfPwmFfZEtma1cv60ovO5B3ByJVx7CNvFsnCPwdcmtLnLSRo4N6NEqcQhkeEht3ZkuQfvOm5J0yYqp3oZ3yU6LMRY2TPWg1c96UWTneNfRHvE8p6AEmrXP5arb7LVTylomJnmCOqK7q61yJyJQyNw4i5LMg_e0oJJUnscjFHt6wWcEiXQkuOUEtVxZIQHO92aynY_WMtL6fXgZd-MmkzXM6pwy4po0PRGQ0KkHjxqRKAfM0NDOkJL3YN0IByDSQ1bivOzOlu4SLHHMHny_2G9gBuz-dGhPNw_PngKN2N65BFFQcx2YLtcVe4Zml6lfl7Luw-nV61gfwBr8kDa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBdEH8dto1SiKvoRLspuPRUSunkdrtQi2cG_rfqUVJFfvEsR_zb_OmXz1guJbIU_ZYdmdndnfzO7sDMBzhDQRMW0DikgIeK6zQOSo7pmICmtChxpFD5w_HaZ7x_zDIllswe_-LQyFVfZ7YrNR26WhM_IJek85eQ8snhRdWMTn2fzt2Y-AKkjRTWtfTqMVkQP36ye6b-s3-zNc6xdxPH9_9G4v6CoMBAYNk4quQDXj2ojCRlqktkDzSSmuUquLhOovZwInyZRFkI9NbgsR0WEBt4xb8iUY9nsJLmcsiUjHssW5s8fQ92szGTEmwsmacBgd0XiEf02ZgL_BYAMNx5GaG9A3vwHXO5vVn7ZCdhO2XHkLrm1kMrwNr6dV1QZOBruIi9b_gn05_wj5589c1cR7lT5-sxp7IruzXjl_XtNZ3R04vhCu3YXtclm6--BrE9rCFSQZnJskVSp1SGR4yK1NLPfgVc8tabqk5VQ747tE54UYKwfGevBsID1rM3X8i2iXWD4QUHLt5sdydSI7XZWChplrjgCv6B5bi9yZODQCJ-7yNPfgJS2YpC0AB2NU95IBp0TJtOQ0o6R1HBnhwU6_prLbG9byXJI9eDo0o1bTVY0q3bImGjTD0agQmQf3WhEYxszQqI7QavcgGwnHaFLjlvLbaZM5XGTYY5g--P-wnsAVVC35cf_w4CFcjem9RxQFMduB7WpVu0dohVX6cSPuPny9aP36A1MrRRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-Based+Scene+Text+Detection+on+Dual+Feature+Fusion&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yuze+Li&rft.au=Wushour+Silamu&rft.au=Zhenchao+Wang&rft.au=Miaomiao+Xu&rft.date=2022-11-23&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=23&rft.spage=9072&rft_id=info:doi/10.3390%2Fs22239072&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_94d038b4341a4232b98ec20c9419e868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon