Attention-Based Scene Text Detection on Dual Feature Fusion
The segmentation-based scene text detection algorithm has advantages in scene text detection scenarios with arbitrary shape and extreme aspect ratio, depending on its pixel-level description and fine post-processing. However, the insufficient use of semantic and spatial information in the network li...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 23; p. 9072 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.11.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The segmentation-based scene text detection algorithm has advantages in scene text detection scenarios with arbitrary shape and extreme aspect ratio, depending on its pixel-level description and fine post-processing. However, the insufficient use of semantic and spatial information in the network limits the classification and positioning capabilities of the network. Existing scene text detection methods have the problem of losing important feature information in the process of extracting features from each network layer. To solve this problem, the Attention-based Dual Feature Fusion Model (ADFM) is proposed. The Bi-directional Feature Fusion Pyramid Module (BFM) first adds stronger semantic information to the higher-resolution feature maps through a top-down process and then reduces the aliasing effects generated by the previous process through a bottom-up process to enhance the representation of multi-scale text semantic information. Meanwhile, a position-sensitive Spatial Attention Module (SAM) is introduced in the intermediate process of two-stage feature fusion. It focuses on the one feature map with the highest resolution and strongest semantic features generated in the top-down process and weighs the spatial position weight by the relevance of text features, thus improving the sensitivity of the text detection network to text regions. The effectiveness of each module of ADFM was verified by ablation experiments and the model was compared with recent scene text detection methods on several publicly available datasets. |
---|---|
AbstractList | The segmentation-based scene text detection algorithm has advantages in scene text detection scenarios with arbitrary shape and extreme aspect ratio, depending on its pixel-level description and fine post-processing. However, the insufficient use of semantic and spatial information in the network limits the classification and positioning capabilities of the network. Existing scene text detection methods have the problem of losing important feature information in the process of extracting features from each network layer. To solve this problem, the Attention-based Dual Feature Fusion Model (ADFM) is proposed. The Bi-directional Feature Fusion Pyramid Module (BFM) first adds stronger semantic information to the higher-resolution feature maps through a top-down process and then reduces the aliasing effects generated by the previous process through a bottom-up process to enhance the representation of multi-scale text semantic information. Meanwhile, a position-sensitive Spatial Attention Module (SAM) is introduced in the intermediate process of two-stage feature fusion. It focuses on the one feature map with the highest resolution and strongest semantic features generated in the top-down process and weighs the spatial position weight by the relevance of text features, thus improving the sensitivity of the text detection network to text regions. The effectiveness of each module of ADFM was verified by ablation experiments and the model was compared with recent scene text detection methods on several publicly available datasets. The segmentation-based scene text detection algorithm has advantages in scene text detection scenarios with arbitrary shape and extreme aspect ratio, depending on its pixel-level description and fine post-processing. However, the insufficient use of semantic and spatial information in the network limits the classification and positioning capabilities of the network. Existing scene text detection methods have the problem of losing important feature information in the process of extracting features from each network layer. To solve this problem, the Attention-based Dual Feature Fusion Model (ADFM) is proposed. The Bi-directional Feature Fusion Pyramid Module (BFM) first adds stronger semantic information to the higher-resolution feature maps through a top-down process and then reduces the aliasing effects generated by the previous process through a bottom-up process to enhance the representation of multi-scale text semantic information. Meanwhile, a position-sensitive Spatial Attention Module (SAM) is introduced in the intermediate process of two-stage feature fusion. It focuses on the one feature map with the highest resolution and strongest semantic features generated in the top-down process and weighs the spatial position weight by the relevance of text features, thus improving the sensitivity of the text detection network to text regions. The effectiveness of each module of ADFM was verified by ablation experiments and the model was compared with recent scene text detection methods on several publicly available datasets.The segmentation-based scene text detection algorithm has advantages in scene text detection scenarios with arbitrary shape and extreme aspect ratio, depending on its pixel-level description and fine post-processing. However, the insufficient use of semantic and spatial information in the network limits the classification and positioning capabilities of the network. Existing scene text detection methods have the problem of losing important feature information in the process of extracting features from each network layer. To solve this problem, the Attention-based Dual Feature Fusion Model (ADFM) is proposed. The Bi-directional Feature Fusion Pyramid Module (BFM) first adds stronger semantic information to the higher-resolution feature maps through a top-down process and then reduces the aliasing effects generated by the previous process through a bottom-up process to enhance the representation of multi-scale text semantic information. Meanwhile, a position-sensitive Spatial Attention Module (SAM) is introduced in the intermediate process of two-stage feature fusion. It focuses on the one feature map with the highest resolution and strongest semantic features generated in the top-down process and weighs the spatial position weight by the relevance of text features, thus improving the sensitivity of the text detection network to text regions. The effectiveness of each module of ADFM was verified by ablation experiments and the model was compared with recent scene text detection methods on several publicly available datasets. |
Audience | Academic |
Author | Li, Yuze Wang, Zhenchao Silamu, Wushour Xu, Miaomiao |
AuthorAffiliation | Xinjiang Multilingual Information Technology Laboratory, Xinjiang Multilingual Information Technology Research Center, College of Information Science and Engineering, Xinjiang University, Urumqi 830017, China |
AuthorAffiliation_xml | – name: Xinjiang Multilingual Information Technology Laboratory, Xinjiang Multilingual Information Technology Research Center, College of Information Science and Engineering, Xinjiang University, Urumqi 830017, China |
Author_xml | – sequence: 1 givenname: Yuze surname: Li fullname: Li, Yuze – sequence: 2 givenname: Wushour surname: Silamu fullname: Silamu, Wushour – sequence: 3 givenname: Zhenchao surname: Wang fullname: Wang, Zhenchao – sequence: 4 givenname: Miaomiao surname: Xu fullname: Xu, Miaomiao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36501774$$D View this record in MEDLINE/PubMed |
BookMark | eNplUltrFDEUDlKxF33wD8iAL_owbW4zSRAKa-tqoeCD9TlkkjNrltlJnWTE_vueddvSVhI44Zzv-3Juh2RvTCMQ8pbRYyEMPcmcc7SKvyAHTHJZa87p3qP3PjnMeU0pF0LoV2RftA1lSskD8mlRCowlprH-7DKE6oeHEaor-Fuqcyjgt6EK7_nshmoJrswTVMs5o_s1edm7IcObO3tEfi6_XJ19qy-_f704W1zWvqG61JKZTsjOmz6wzrSh15Q6J10bur5pqWDKQAfCBa4E9zr0hnHKlQxCBiooE0fkYqcbklvb6ylu3HRjk4v2nyNNK-umEv0A1mwpupNCMie54J3R4Dn1BpMA3WrUOt1pXc_dBgIWWyY3PBF9GhnjL7tKf6xRwijaosCHO4Ep_Z4hF7uJ2cMwuBHSnC1XjRAMx6EQ-v4ZdJ3macRWIUpqrJ0JjqjjHWrlsIA49gn_9XgCbKLHQfcR_Qsl20ZI7BYS3j0u4SH3-6Ei4GQH8FPKeYLe-ljcdpCoHAfLqN2ujX1YG2R8fMa4F_0fewu_BL36 |
CitedBy_id | crossref_primary_10_1080_13682199_2022_2160861 crossref_primary_10_21833_ijaas_2023_06_006 |
Cites_doi | 10.1007/978-3-319-46448-0_2 10.1109/ICDAR.2015.7333942 10.1007/978-3-030-01264-9_5 10.1109/CVPR42600.2020.01177 10.1109/CVPR.2017.660 10.1109/ICCV.2019.00069 10.1109/CVPR.2017.106 10.1007/978-3-030-01216-8_2 10.1109/CVPR.2019.00956 10.1109/CVPR.2018.00619 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2015.7298965 10.1109/ICCV.2017.322 10.1007/978-3-030-01234-2_1 10.1007/s11042-022-12693-7 10.1109/CVPR.2017.371 10.1109/CVPR.2016.254 10.1109/CVPR.2019.00959 10.1109/CVPR.2019.00326 10.1109/TPAMI.2022.3155612 10.1109/TIP.2018.2825107 10.1109/ICCV.2017.331 10.1016/j.ins.2022.11.019 10.1609/aaai.v32i1.12269 10.1109/ICIP.2019.8803392 10.1016/j.ins.2022.08.115 10.1109/JSTARS.2021.3059451 10.1609/aaai.v31i1.11196 10.1609/aaai.v34i07.6812 10.3390/s22166262 10.1109/CVPR.2017.283 10.1007/978-3-319-46484-8_4 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s22239072 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_94d038b4341a4232b98ec20c9419e868 PMC9739706 A746534031 36501774 10_3390_s22239072 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61433012 – fundername: National 973 Key R&D Program grantid: 2014CB340506 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c508t-419b34bc9fd1b96df800aa4a6dbf5603179ebe3ad2732c8df9120274d34d03013 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:27:13 EDT 2025 Thu Aug 21 18:38:55 EDT 2025 Tue Aug 05 09:59:24 EDT 2025 Fri Jul 25 20:28:50 EDT 2025 Tue Jul 01 05:43:26 EDT 2025 Wed Feb 19 02:26:20 EST 2025 Tue Jul 01 01:19:33 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | multi-scale feature fusion spatial attention differentiable binarization feature pyramid network scene text detection |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-419b34bc9fd1b96df800aa4a6dbf5603179ebe3ad2732c8df9120274d34d03013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/94d038b4341a4232b98ec20c9419e868 |
PMID | 36501774 |
PQID | 2748560132 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_94d038b4341a4232b98ec20c9419e868 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9739706 proquest_miscellaneous_2753312397 proquest_journals_2748560132 gale_infotracacademiconefile_A746534031 pubmed_primary_36501774 crossref_citationtrail_10_3390_s22239072 crossref_primary_10_3390_s22239072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221123 |
PublicationDateYYYYMMDD | 2022-11-23 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221123 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_14 ref_36 ref_13 ref_35 Chen (ref_27) 2021; 14 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 ref_19 ref_18 Yu (ref_28) 2023; 2 ref_17 ref_39 ref_16 ref_38 ref_15 ref_37 Huang (ref_30) 2022; 619 Deng (ref_29) 2022; 612 ref_25 ref_24 ref_23 ref_22 ref_21 Naiemi (ref_1) 2022; 81 ref_20 ref_41 ref_40 ref_3 ref_2 Ren (ref_7) 2015; 28 ref_26 ref_9 ref_8 Liao (ref_12) 2018; 27 ref_5 ref_4 ref_6 |
References_xml | – ident: ref_9 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_4 doi: 10.1109/ICDAR.2015.7333942 – ident: ref_15 doi: 10.1007/978-3-030-01264-9_5 – ident: ref_5 – ident: ref_39 doi: 10.1109/CVPR42600.2020.01177 – ident: ref_25 doi: 10.1109/CVPR.2017.660 – ident: ref_26 – ident: ref_32 doi: 10.1109/ICCV.2019.00069 – ident: ref_3 doi: 10.1109/CVPR.2017.106 – ident: ref_19 doi: 10.1007/978-3-030-01216-8_2 – ident: ref_20 doi: 10.1109/CVPR.2019.00956 – ident: ref_13 doi: 10.1109/CVPR.2018.00619 – ident: ref_24 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_16 – ident: ref_23 doi: 10.1109/CVPR.2015.7298965 – ident: ref_40 – ident: ref_8 doi: 10.1109/ICCV.2017.322 – ident: ref_31 doi: 10.1007/978-3-030-01234-2_1 – volume: 81 start-page: 1 year: 2022 ident: ref_1 article-title: Scene text detection and recognition: A survey publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12693-7 – volume: 2 start-page: 1960 year: 2023 ident: ref_28 article-title: Optimal search mapping among sensors in heterogeneous smart homes publication-title: Math. Biosci. Eng. – ident: ref_35 – ident: ref_41 doi: 10.1109/CVPR.2017.371 – ident: ref_34 doi: 10.1109/CVPR.2016.254 – ident: ref_21 – ident: ref_38 doi: 10.1109/CVPR.2019.00959 – ident: ref_33 doi: 10.1109/CVPR.2019.00326 – ident: ref_6 – ident: ref_36 doi: 10.1109/TPAMI.2022.3155612 – volume: 27 start-page: 3676 year: 2018 ident: ref_12 article-title: Textboxes++: A single-shot oriented scene text detector publication-title: IEEE Trans. Image Processing doi: 10.1109/TIP.2018.2825107 – ident: ref_14 doi: 10.1109/ICCV.2017.331 – volume: 619 start-page: 2 year: 2022 ident: ref_30 article-title: Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.11.019 – ident: ref_17 doi: 10.1609/aaai.v32i1.12269 – ident: ref_10 doi: 10.1109/ICIP.2019.8803392 – volume: 612 start-page: 576 year: 2022 ident: ref_29 article-title: Multi-strategy particle swarm and ant colony hybrid optimization for airport taxiway planning problem publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.08.115 – volume: 14 start-page: 2781 year: 2021 ident: ref_27 article-title: A hyperspectral image classification method using multifeature vectors and optimized KELM publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3059451 – ident: ref_11 doi: 10.1609/aaai.v31i1.11196 – volume: 28 start-page: 1137 year: 2015 ident: ref_7 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Processing Syst. – ident: ref_22 doi: 10.1609/aaai.v34i07.6812 – ident: ref_2 doi: 10.3390/s22166262 – ident: ref_18 doi: 10.1109/CVPR.2017.283 – ident: ref_37 doi: 10.1007/978-3-319-46484-8_4 |
SSID | ssj0023338 |
Score | 2.3841872 |
Snippet | The segmentation-based scene text detection algorithm has advantages in scene text detection scenarios with arbitrary shape and extreme aspect ratio, depending... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 9072 |
SubjectTerms | Accuracy Algorithms Boxes Classification Datasets Deep learning differentiable binarization Experiments feature pyramid network Methods multi-scale feature fusion Neural networks scene text detection Semantics spatial attention |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLcYvLCHaeOzG5sKQoKXirbJtY32gA7YCU0aL4B0b1G-CpOmHty1___sNleuAiH1qbGixI5jO3F-BjhGkyYSpm1EGQkRL3QeiQLVPRdJaU3sUKPogfOfm-z6nv-ejqb-wG3h0yqXe2K7UduZoTPyM4yeCooeWHr-9BxR1Si6XfUlND7ABkGXUUpXPn0JuBjGXx2aEMPQ_mxBthCDwXRgg1qo_tcb8opFGmZLrpifyWf45P3GcNwJ-gusuWoLPq6gCW7Dz3Fdd8mL0QXaJhveYl8uvMPtN7xydZtzVYX4XTXYE_l-zdyFk4bOy3bgfvLr7vI68rURIoMuVU2Xt5pxbURpEy0yW6LjpxRXmdXliCpH5wLFw5RF9yQ1hS1FQscc3DJuKQpiu7BezSq3D6E2sS1dSdLh3IwypTKHRIbH3NqR5QGcLrkljQcOp_oV_yQGEMRY2TM2gKOe9KlDy3iL6IJY3hMQwHX7YzZ_kF5fpKBhFpqjkVV0l6xF4UwaG4ETd0VWBHBCApOkhjgYo_xrApwSAVrJcU7AcRwZEcDBUqbS6-dCvqymAA77ZtQsui5RlZs1RIOuMBp2kQew1y2BfswMHdsEPecA8sHiGExq2FL9fWzRu0WOPcbZ1_eH9Q02U3pokSRRyg5gvZ437ju6P7X-0a7x_4HoBGc priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB9KffJB_Da1ShRBX6LJ7V6SpRS5Wo8i1Bd70Ldlv6KFktNrAvrf-5skFy7YR-GeLsOyO7Oz85v9-A3RG4Q0lQnrE76RkMjSFokq4e6Fyirv0gCP4gfO51_zs5X8cjm_3KNtjc1BgTe3pnZcT2q1uX7_-9efj3D4Y844kbJ_uOEYhyQPK_EdBKSC_fNcjocJM4E0rCcVmopPQlHH2P_vurwTmKaXJnei0PI-3RvgY7zo7f2A9kL9kO7ukAo-oqNF0_R3GJMThCgff0NbIb7AKhyfhqa7elXH-J22aIkhYLsJ8bLlbbPHtFp-vvh0lgwlEhIHZNXwGa4V0jpV-cyq3FfAf8ZIk3tbzbmAdKFgJWE8UMrMlb5SGe92SC-k52RIPKH9el2HZxRbl_oqVGwkKd08NyYPEHIyld7PvYzo3VZb2g384VzG4lojj2DF6lGxEb0eRX_2pBm3CZ2wykcB5rnu_lhvvuvBbbTibpZWItYaPlK2qgxuljqFgYcyLyN6ywbTPD_QGWeGRwUYEvNa6UXB_HESiojocGtTvZ1lGpooOSUV6M2r8TMcjE9NTB3WLcsAESO-qyKip_0UGPssgG8zAOiIisnkmAxq-qW--tGReKsCLab5wf_QwnPebUgzfiI5E4e032za8AJYqbEvO0_4C5-MEiI priority: 102 providerName: Scholars Portal |
Title | Attention-Based Scene Text Detection on Dual Feature Fusion |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36501774 https://www.proquest.com/docview/2748560132 https://www.proquest.com/docview/2753312397 https://pubmed.ncbi.nlm.nih.gov/PMC9739706 https://doaj.org/article/94d038b4341a4232b98ec20c9419e868 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ni9RAEC10vehB_Da6DlEEvYRN0j3pNJ5m3B0XYRfRXZhbk_4ICpKV3eT_-yrJhAkKXoSQQ1I0napU16vu6tdEbxHSdCasT7giIZGlVYku4e5KZ7V3aYBH8Qbns_Pi9FJ-3i63e0d9cU3YQA88KO5IS5-K0kqMthUvKlpdBpenTstMh7Lot_ki5u2SqTHVEsi8Bh4hgaT-6IajINLAfBZ9epL-P4fivVg0r5PcCzybB3R_RIzxaujpQ7oVmkd0b49H8DF9WLXtULaYrBGVfPwNbYX4AgNvfBzavtqqiXEdd2iJUV93HeJNxzNlT-hyc3Lx8TQZT0VIHMBUy8u2VkjrdO0zqwtfA_JVlawKb-slnxmtNAwjKg9gkrvS1zrjCQ7pBWsSiO8pHTRXTXhOsXWpr0PNdpHSLYuqKgKEnEyl90svI3q_05ZxI2U4n1zx0yB1YMWaSbERvZlEfw08GX8TWrPKJwGmtu4fwOBmNLj5l8EjescGM-yA6Iyrxn0E-CSmsjIrxZRxEoqI6HBnUzN65o2BJkrOQgV683p6DZ_ihZKqCVcdywAEI6RrFdGz4ReY-iwAaTNg5ojU7OeYfdT8TfPje8_brRVaTIsX_0MLL-luzhsxsizJxSEdtNddeAV41NoF3VZbhXu5-bSgO-uT8y9fF7134H4my98bMQ_R |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgGB4BI1ib1JLITQlmW1pY8LW2lvrl-hlVC27CZC_Cl-IzN5dSMQt0o5xSPLHs_4m7HHMwCvEdJExLQNKCIh4JlOA5Ghuqciyq0JHWoUPXA-Ok5mJ_zLYrTYgt_dWxgKq-z2xHqjtktDZ-S76D1l5D2w-OPFj4CqRtHtaldCoxGLA_frJ7ps6w_7E1zfN3E8_Tz_NAvaqgKBQWOkpGtPzbg2IreRFonN0WRSiqvE6nxENZdTgRNjyiKwxyazuYjogIBbxi35Dwz7vQbXEXhD0qh0cengMfT3muxFjIlwd03Yi85nPMC8ujTA3wCwgYDD6MwNuJvegdutneqPG8G6C1uuuAe3NrIX3of347JsgiWDPcRC63_Fvpw_x-3en7iyjvEqfPwmFfZEtma1cv60ovO5B3ByJVx7CNvFsnCPwdcmtLnLSRo4N6NEqcQhkeEht3ZkuQfvOm5J0yYqp3oZ3yU6LMRY2TPWg1c96UWTneNfRHvE8p6AEmrXP5arb7LVTylomJnmCOqK7q61yJyJQyNw4i5LMg_e0oJJUnscjFHt6wWcEiXQkuOUEtVxZIQHO92aynY_WMtL6fXgZd-MmkzXM6pwy4po0PRGQ0KkHjxqRKAfM0NDOkJL3YN0IByDSQ1bivOzOlu4SLHHMHny_2G9gBuz-dGhPNw_PngKN2N65BFFQcx2YLtcVe4Zml6lfl7Luw-nV61gfwBr8kDa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBdEH8dto1SiKvoRLspuPRUSunkdrtQi2cG_rfqUVJFfvEsR_zb_OmXz1guJbIU_ZYdmdndnfzO7sDMBzhDQRMW0DikgIeK6zQOSo7pmICmtChxpFD5w_HaZ7x_zDIllswe_-LQyFVfZ7YrNR26WhM_IJek85eQ8snhRdWMTn2fzt2Y-AKkjRTWtfTqMVkQP36ye6b-s3-zNc6xdxPH9_9G4v6CoMBAYNk4quQDXj2ojCRlqktkDzSSmuUquLhOovZwInyZRFkI9NbgsR0WEBt4xb8iUY9nsJLmcsiUjHssW5s8fQ92szGTEmwsmacBgd0XiEf02ZgL_BYAMNx5GaG9A3vwHXO5vVn7ZCdhO2XHkLrm1kMrwNr6dV1QZOBruIi9b_gn05_wj5589c1cR7lT5-sxp7IruzXjl_XtNZ3R04vhCu3YXtclm6--BrE9rCFSQZnJskVSp1SGR4yK1NLPfgVc8tabqk5VQ747tE54UYKwfGevBsID1rM3X8i2iXWD4QUHLt5sdydSI7XZWChplrjgCv6B5bi9yZODQCJ-7yNPfgJS2YpC0AB2NU95IBp0TJtOQ0o6R1HBnhwU6_prLbG9byXJI9eDo0o1bTVY0q3bImGjTD0agQmQf3WhEYxszQqI7QavcgGwnHaFLjlvLbaZM5XGTYY5g--P-wnsAVVC35cf_w4CFcjem9RxQFMduB7WpVu0dohVX6cSPuPny9aP36A1MrRRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-Based+Scene+Text+Detection+on+Dual+Feature+Fusion&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yuze+Li&rft.au=Wushour+Silamu&rft.au=Zhenchao+Wang&rft.au=Miaomiao+Xu&rft.date=2022-11-23&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=23&rft.spage=9072&rft_id=info:doi/10.3390%2Fs22239072&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_94d038b4341a4232b98ec20c9419e868 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |