Uric Acid and Cardiovascular Disease: An Update From Molecular Mechanism to Clinical Perspective
Uric acid (UA) is the end product of purine nucleotide metabolism in the human body. Hyperuricemia is an abnormally high level of UA in the blood and may result in arthritis and gout. The prevalence of hyperuricemia has been increasing globally. Epidemiological studies have shown that UA levels are...
Saved in:
Published in | Frontiers in pharmacology Vol. 11; p. 582680 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
16.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Uric acid (UA) is the end product of purine nucleotide metabolism in the human body. Hyperuricemia is an abnormally high level of UA in the blood and may result in arthritis and gout. The prevalence of hyperuricemia has been increasing globally. Epidemiological studies have shown that UA levels are positively correlated with cardiovascular diseases, including hypertension, atherosclerosis, atrial fibrillation (AF), and heart failure (HF). Hyperuricemia promotes the occurrence and development of cardiovascular diseases by regulating molecular signals, such as inflammatory response, oxidative stress, insulin resistance/diabetes, endoplasmic reticulum stress, and endothelial dysfunction. Despite extensive research, the underlying molecular mechanisms are still unclear. Allopurinol, a xanthine oxidase (XO) inhibitor, has been shown to improve cardiovascular outcomes in patients with HF, coronary heart disease (CHD), type 2 diabetes (T2D), and left ventricular hypertrophy (LVH). Whether febuxostat, another XO inhibitor, can improve cardiovascular outcomes as well as allopurinol remains controversial. Furthermore, it is also not clear whether UA-lowering treatment (ULT) can benefit patients with asymptomatic hyperuricemia. In this review, we focus on the latest cellular and molecular findings of cardiovascular disease associated with hyperuricemia and clinical data about the efficacy of ULT in patients with cardiovascular disease.Uric acid (UA) is the end product of purine nucleotide metabolism in the human body. Hyperuricemia is an abnormally high level of UA in the blood and may result in arthritis and gout. The prevalence of hyperuricemia has been increasing globally. Epidemiological studies have shown that UA levels are positively correlated with cardiovascular diseases, including hypertension, atherosclerosis, atrial fibrillation (AF), and heart failure (HF). Hyperuricemia promotes the occurrence and development of cardiovascular diseases by regulating molecular signals, such as inflammatory response, oxidative stress, insulin resistance/diabetes, endoplasmic reticulum stress, and endothelial dysfunction. Despite extensive research, the underlying molecular mechanisms are still unclear. Allopurinol, a xanthine oxidase (XO) inhibitor, has been shown to improve cardiovascular outcomes in patients with HF, coronary heart disease (CHD), type 2 diabetes (T2D), and left ventricular hypertrophy (LVH). Whether febuxostat, another XO inhibitor, can improve cardiovascular outcomes as well as allopurinol remains controversial. Furthermore, it is also not clear whether UA-lowering treatment (ULT) can benefit patients with asymptomatic hyperuricemia. In this review, we focus on the latest cellular and molecular findings of cardiovascular disease associated with hyperuricemia and clinical data about the efficacy of ULT in patients with cardiovascular disease. |
---|---|
AbstractList | Uric acid (UA) is the end product of purine nucleotide metabolism in the human body. Hyperuricemia is an abnormally high level of UA in the blood and may result in arthritis and gout. The prevalence of hyperuricemia has been increasing globally. Epidemiological studies have shown that UA levels are positively correlated with cardiovascular diseases, including hypertension, atherosclerosis, atrial fibrillation (AF), and heart failure (HF). Hyperuricemia promotes the occurrence and development of cardiovascular diseases by regulating molecular signals, such as inflammatory response, oxidative stress, insulin resistance/diabetes, endoplasmic reticulum stress, and endothelial dysfunction. Despite extensive research, the underlying molecular mechanisms are still unclear. Allopurinol, a xanthine oxidase (XO) inhibitor, has been shown to improve cardiovascular outcomes in patients with HF, coronary heart disease (CHD), type 2 diabetes (T2D), and left ventricular hypertrophy (LVH). Whether febuxostat, another XO inhibitor, can improve cardiovascular outcomes as well as allopurinol remains controversial. Furthermore, it is also not clear whether UA-lowering treatment (ULT) can benefit patients with asymptomatic hyperuricemia. In this review, we focus on the latest cellular and molecular findings of cardiovascular disease associated with hyperuricemia and clinical data about the efficacy of ULT in patients with cardiovascular disease.Uric acid (UA) is the end product of purine nucleotide metabolism in the human body. Hyperuricemia is an abnormally high level of UA in the blood and may result in arthritis and gout. The prevalence of hyperuricemia has been increasing globally. Epidemiological studies have shown that UA levels are positively correlated with cardiovascular diseases, including hypertension, atherosclerosis, atrial fibrillation (AF), and heart failure (HF). Hyperuricemia promotes the occurrence and development of cardiovascular diseases by regulating molecular signals, such as inflammatory response, oxidative stress, insulin resistance/diabetes, endoplasmic reticulum stress, and endothelial dysfunction. Despite extensive research, the underlying molecular mechanisms are still unclear. Allopurinol, a xanthine oxidase (XO) inhibitor, has been shown to improve cardiovascular outcomes in patients with HF, coronary heart disease (CHD), type 2 diabetes (T2D), and left ventricular hypertrophy (LVH). Whether febuxostat, another XO inhibitor, can improve cardiovascular outcomes as well as allopurinol remains controversial. Furthermore, it is also not clear whether UA-lowering treatment (ULT) can benefit patients with asymptomatic hyperuricemia. In this review, we focus on the latest cellular and molecular findings of cardiovascular disease associated with hyperuricemia and clinical data about the efficacy of ULT in patients with cardiovascular disease. Uric acid (UA) is the end product of purine nucleotide metabolism in the human body. Hyperuricemia is an abnormally high level of UA in the blood and may result in arthritis and gout. The prevalence of hyperuricemia has been increasing globally. Epidemiological studies have shown that UA levels are positively correlated with cardiovascular diseases, including hypertension, atherosclerosis, atrial fibrillation (AF), and heart failure (HF). Hyperuricemia promotes the occurrence and development of cardiovascular diseases by regulating molecular signals, such as inflammatory response, oxidative stress, insulin resistance/diabetes, endoplasmic reticulum stress, and endothelial dysfunction. Despite extensive research, the underlying molecular mechanisms are still unclear. Allopurinol, a xanthine oxidase (XO) inhibitor, has been shown to improve cardiovascular outcomes in patients with HF, coronary heart disease (CHD), type 2 diabetes (T2D), and left ventricular hypertrophy (LVH). Whether febuxostat, another XO inhibitor, can improve cardiovascular outcomes as well as allopurinol remains controversial. Furthermore, it is also not clear whether UA-lowering treatment (ULT) can benefit patients with asymptomatic hyperuricemia. In this review, we focus on the latest cellular and molecular findings of cardiovascular disease associated with hyperuricemia and clinical data about the efficacy of ULT in patients with cardiovascular disease. |
Author | Yu, Wei Cheng, Ji-Dong |
AuthorAffiliation | Department of Internal Medicine, Xiang’an Hospital of Xiamen University , Xiamen , China |
AuthorAffiliation_xml | – name: Department of Internal Medicine, Xiang’an Hospital of Xiamen University , Xiamen , China |
Author_xml | – sequence: 1 givenname: Wei surname: Yu fullname: Yu, Wei – sequence: 2 givenname: Ji-Dong surname: Cheng fullname: Cheng, Ji-Dong |
BookMark | eNp1kUtv1DAUhS1URB_0B7Dzks1M_YrjsEAaTSlUagULZm1u7JuOK08c7MxI_HsyTZEoEt7Yuj7nu0c65-SkTz0S8o6zpZSmueqGLeSlYIItKyO0Ya_IGddaLhrDxclf71NyWcojm45sGqnVG3IqpWRK1OyM_Njk4OjKBU-h93QN2Yd0gOL2ETK9DgWh4Ae66ulm8DAivclpR-9TxFlxj24LfSg7Oia6jqEPDiL9hrkM6MZwwLfkdQex4OXzfUE2N5--r78s7r5-vl2v7hauYmZcKIZGsw61FroBzVF6LrzhjeOikszxTlZV3fKGg288GG46pRSC0sqbFrm8ILcz1yd4tEMOO8i_bIJgnwYpP1jIY3ARLVZcTLTOTTylmTLOCaEM75B3rWzdxPo4s4Z9u0PvsB8zxBfQlz992NqHdLB1zaa4bAK8fwbk9HOPZbS7UBzGCD2mfbHTNqmYVrqZpPUsdTmVkrGzLowwhnQkh2g5s8e67VPd9li3neuenPwf55-A__f8Br_5rxM |
CitedBy_id | crossref_primary_10_1007_s13320_024_0751_z crossref_primary_10_3389_fcvm_2021_641136 crossref_primary_10_3390_jcm13082314 crossref_primary_10_1016_j_ijbiomac_2024_132241 crossref_primary_10_1371_journal_pone_0306178 crossref_primary_10_12677_ACM_2023_133572 crossref_primary_10_1038_s41467_024_50752_9 crossref_primary_10_1186_s12872_024_03824_z crossref_primary_10_1007_s00580_024_03560_y crossref_primary_10_1016_j_heliyon_2024_e37839 crossref_primary_10_1080_17446651_2025_2456504 crossref_primary_10_1186_s12872_024_04055_y crossref_primary_10_12677_ACM_2022_125541 crossref_primary_10_1016_j_numecd_2022_03_026 crossref_primary_10_1016_j_ijcha_2024_101434 crossref_primary_10_3389_fnut_2022_970364 crossref_primary_10_1186_s13104_023_06429_5 crossref_primary_10_1016_j_phymed_2022_154275 crossref_primary_10_12677_ACM_2023_132251 crossref_primary_10_1111_dom_15895 crossref_primary_10_1016_j_jnutbio_2025_109864 crossref_primary_10_1038_s41598_024_53077_1 crossref_primary_10_1177_00033197221141666 crossref_primary_10_1136_bmjopen_2024_091175 crossref_primary_10_3389_fphys_2022_825966 crossref_primary_10_3390_metabo14110642 crossref_primary_10_1016_j_diabres_2023_110919 crossref_primary_10_1016_j_ejim_2023_05_016 crossref_primary_10_3390_jcm11195741 crossref_primary_10_1080_10837450_2022_2123510 crossref_primary_10_1007_s11739_023_03360_2 crossref_primary_10_1007_s10554_025_03345_6 crossref_primary_10_1097_MD_0000000000025621 crossref_primary_10_1186_s12872_024_04319_7 crossref_primary_10_3390_ijms25147766 crossref_primary_10_1093_eurjpc_zwae222 crossref_primary_10_3390_biom13111578 crossref_primary_10_1038_s41598_023_40972_2 crossref_primary_10_1038_s41598_024_54581_0 crossref_primary_10_4103_NJM_NJM_113_22 crossref_primary_10_1016_j_numecd_2023_12_023 crossref_primary_10_2147_JIR_S345576 crossref_primary_10_1007_s40618_021_01719_w crossref_primary_10_1177_00033197231161902 crossref_primary_10_3390_biomedicines11092353 crossref_primary_10_1186_s12889_025_21419_x crossref_primary_10_1038_s41598_023_45624_z crossref_primary_10_1016_j_nefroe_2022_11_015 crossref_primary_10_1016_j_csbj_2024_01_018 crossref_primary_10_1016_j_freeradbiomed_2021_11_034 crossref_primary_10_1111_febs_16902 crossref_primary_10_3389_frmbi_2024_1384703 crossref_primary_10_1109_JSEN_2023_3319702 crossref_primary_10_1136_bmjopen_2023_072110 crossref_primary_10_3892_mmr_2023_13133 crossref_primary_10_1016_j_chemosphere_2022_135134 crossref_primary_10_18663_tjcl_1553897 crossref_primary_10_1016_j_ejim_2023_04_010 crossref_primary_10_1515_jpem_2021_0211 crossref_primary_10_1097_MD_0000000000032338 crossref_primary_10_1016_j_nefro_2021_09_010 crossref_primary_10_12677_ACM_2023_1371566 crossref_primary_10_1007_s10654_024_01138_0 crossref_primary_10_2147_IJGM_S458089 crossref_primary_10_1016_j_heliyon_2024_e31535 crossref_primary_10_3389_fcvm_2023_1264640 crossref_primary_10_1016_j_jbiosc_2023_09_002 crossref_primary_10_1038_s41440_023_01535_0 crossref_primary_10_31083_j_rcm2305178 crossref_primary_10_3390_antiox14030275 crossref_primary_10_47470_0016_9900_2024_103_10_1222_1229 crossref_primary_10_1111_jch_14389 crossref_primary_10_1177_1759720X221116409 crossref_primary_10_1016_j_numecd_2025_103865 crossref_primary_10_1186_s12872_023_03333_5 crossref_primary_10_3389_fcvm_2023_1296405 crossref_primary_10_1016_j_amjmed_2024_09_018 crossref_primary_10_1016_j_heliyon_2024_e39707 crossref_primary_10_1186_s12889_023_17471_0 crossref_primary_10_3892_br_2024_1859 crossref_primary_10_2174_1573397118666220802141420 crossref_primary_10_3389_fcvm_2022_1017673 crossref_primary_10_1007_s11154_023_09787_4 crossref_primary_10_1097_GME_0000000000002186 crossref_primary_10_3389_fcvm_2023_1151575 crossref_primary_10_1186_s40360_023_00723_5 crossref_primary_10_1097_MCO_0000000000000764 crossref_primary_10_3390_metabo13050590 crossref_primary_10_1016_j_ecoenv_2022_114354 crossref_primary_10_1016_j_lanepe_2022_100416 crossref_primary_10_1016_j_numecd_2023_08_009 crossref_primary_10_3390_biomedicines11010046 crossref_primary_10_3389_fcvm_2022_895917 crossref_primary_10_38109_2225_1685_2022_2_72_78 crossref_primary_10_1007_s40520_021_01850_x crossref_primary_10_1155_2022_8861911 crossref_primary_10_1186_s12944_023_01792_5 crossref_primary_10_3390_ijms24032813 crossref_primary_10_1080_21548331_2023_2173413 crossref_primary_10_14412_1996_7012_2023_4_97_102 crossref_primary_10_3389_fendo_2024_1424070 crossref_primary_10_4274_csmedj_galenos_2022_2022_11_5 crossref_primary_10_1002_clc_24215 crossref_primary_10_7759_cureus_62472 crossref_primary_10_1055_a_1947_7716 crossref_primary_10_1093_eurheartj_ehae887 crossref_primary_10_1002_advs_202104463 crossref_primary_10_1016_j_cpcardiol_2024_102608 crossref_primary_10_1016_j_humgen_2022_201125 crossref_primary_10_1038_s41598_024_51724_1 crossref_primary_10_7759_cureus_36242 crossref_primary_10_7759_cureus_70285 crossref_primary_10_1186_s12937_024_00953_1 crossref_primary_10_2174_0929867331666230809143758 crossref_primary_10_1097_HJH_0000000000003807 crossref_primary_10_1007_s11033_021_06840_w crossref_primary_10_3390_ijms22179221 crossref_primary_10_51847_TfjLbFn5kr crossref_primary_10_1002_edm2_387 crossref_primary_10_1161_CIRCRESAHA_123_324001 crossref_primary_10_3390_nu15194237 crossref_primary_10_1536_ihj_21_826 crossref_primary_10_3390_app14135630 crossref_primary_10_1002_jcph_2159 crossref_primary_10_1186_s40360_022_00595_1 crossref_primary_10_3390_jcdd11060165 crossref_primary_10_3390_cells12091341 crossref_primary_10_1080_00325481_2024_2377952 crossref_primary_10_1016_j_numecd_2024_01_027 crossref_primary_10_1186_s13098_025_01586_y crossref_primary_10_3389_fendo_2023_1021267 crossref_primary_10_1007_s00392_024_02537_9 crossref_primary_10_1155_2021_8698232 crossref_primary_10_19127_mbsjohs_1126040 crossref_primary_10_1038_s41598_022_18361_y crossref_primary_10_1021_acs_jafc_2c01513 crossref_primary_10_1039_D2NJ00115B crossref_primary_10_1097_HCO_0000000000001029 crossref_primary_10_1177_00033197211072344 crossref_primary_10_3390_ijerph20043596 crossref_primary_10_3390_diagnostics14020195 crossref_primary_10_3390_ijms24044031 crossref_primary_10_1186_s12920_021_01067_x crossref_primary_10_3389_fcvm_2024_1471633 crossref_primary_10_1080_08820139_2024_2341233 crossref_primary_10_1111_1744_9987_70000 crossref_primary_10_1016_j_numecd_2024_103789 crossref_primary_10_12677_acm_2024_1492462 crossref_primary_10_1155_2022_9304383 crossref_primary_10_1021_acs_jcim_3c00624 crossref_primary_10_1126_sciadv_abn1736 crossref_primary_10_17116_profmed20242708166 crossref_primary_10_1177_09760016241247920 crossref_primary_10_1007_s00726_023_03261_w crossref_primary_10_1016_j_fct_2023_113747 crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107206 crossref_primary_10_37349_emd_2024_00048 crossref_primary_10_1096_fj_202402831R crossref_primary_10_54307_2024_NWMJ_84 crossref_primary_10_1371_journal_pone_0308719 crossref_primary_10_1097_MCA_0000000000001400 crossref_primary_10_3389_fcvm_2021_775753 crossref_primary_10_3389_fendo_2024_1499417 crossref_primary_10_3390_ijms251910426 crossref_primary_10_1002_jcp_31038 crossref_primary_10_1088_1758_5090_ad467f crossref_primary_10_1002_jcla_24451 crossref_primary_10_3390_jcm10102062 crossref_primary_10_1021_acssensors_2c00854 crossref_primary_10_1038_s41598_024_83831_4 crossref_primary_10_3389_fsurg_2022_956213 crossref_primary_10_3390_metabo14070368 crossref_primary_10_1016_j_numecd_2022_11_006 crossref_primary_10_1080_03630242_2021_2019170 crossref_primary_10_3389_fendo_2023_1198911 crossref_primary_10_3389_fendo_2025_1479662 crossref_primary_10_1186_s13020_022_00614_7 crossref_primary_10_1080_00325481_2023_2263372 crossref_primary_10_1002_ejhf_2433 crossref_primary_10_1111_echo_15911 crossref_primary_10_1111_hdi_13174 crossref_primary_10_1016_j_ccmp_2023_100104 crossref_primary_10_3390_ijms241411293 crossref_primary_10_1001_jamanetworkopen_2021_42347 crossref_primary_10_1016_j_pmedr_2024_102763 crossref_primary_10_3390_gucdd2040023 crossref_primary_10_1186_s40001_022_00768_y crossref_primary_10_1039_D2FO00560C crossref_primary_10_1097_MCA_0000000000001300 crossref_primary_10_3390_antiox11112163 crossref_primary_10_2147_JIR_S482977 crossref_primary_10_5551_jat_63645 crossref_primary_10_1007_s11926_021_01050_6 crossref_primary_10_1111_jch_14648 crossref_primary_10_1111_jch_14405 crossref_primary_10_1021_acs_jafc_4c07209 crossref_primary_10_1097_HJH_0000000000003592 crossref_primary_10_1007_s00393_024_01600_0 crossref_primary_10_3389_fphar_2023_1298049 crossref_primary_10_1186_s12944_024_02404_6 crossref_primary_10_1016_j_cej_2023_145953 crossref_primary_10_1002_slct_202403229 crossref_primary_10_1038_s41598_024_78787_4 crossref_primary_10_1016_j_numecd_2023_06_001 crossref_primary_10_1016_j_jelechem_2023_117982 crossref_primary_10_1016_j_trre_2023_100775 crossref_primary_10_3389_fcvm_2023_1190069 crossref_primary_10_1016_j_ahj_2023_07_015 crossref_primary_10_1631_jzus_B2000637 crossref_primary_10_3390_jcm11082124 crossref_primary_10_1016_j_gene_2025_149256 |
Cites_doi | 10.1016/j.cjca.2014.06.009 10.1093/rheumatology/ket001 10.1093/rheumatology/kex232 10.1159/000496053 10.1159/000443099 10.1016/j.sjbs.2018.11.013 10.1016/j.steroids.2014.04.005 10.1097/HJH.0b013e328365b916 10.1016/j.atherosclerosis.2016.10.006 10.2337/dc18-2147 10.1056/NEJMoa1812389 10.1097/00005344-200109000-00005 10.1016/j.jacc.2013.07.074 10.1042/bj2350747 10.1038/srep19520 10.1016/j.amjcard.2005.07.068 10.2169/internalmedicine.54.4310 10.1166/jbn.2019.2752 10.3892/ijmm.2016.2491 10.1016/S0140-6736(10)60407-2 10.1161/ATVBAHA.119.313224 10.2337/db19-0704 10.1253/circj.CJ-15-0416 10.1016/j.numecd.2016.03.011 10.1007/s10067-015-2878-1 10.1097/HJH.0000000000000888 10.1097/HPC.0000000000000150 10.1016/S0140-6736(10)60391-1 10.3109/10641963.2013.827694 10.1016/j.hlc.2008.11.003 10.1186/s12872-017-0513-6 10.1093/rheumatology/kez196 10.1080/15257770902736400 10.1007/s40618-017-0729-4 10.1073/pnas.78.11.6858 10.1038/nature04516 10.1053/j.ajkd.2017.12.009 10.12659/MSM.916667 10.1016/j.jacc.2012.09.066 10.1111/j.1749-6632.2002.tb04072.x 10.1007/s11906-018-0878-7 10.1161/HYPERTENSIONAHA.117.10370 10.3892/ijmm.2015.2148 10.1161/HYPERTENSIONAHA.114.04737 10.1111/febs.14768 10.1080/15257770802138558 10.1056/NEJMoa1504720 10.1016/j.amjcard.2011.06.043 10.1056/NEJM199007053230106 10.3899/jrheum.180855 10.1038/ajh.2011.55 10.1093/eurjhf/hft132 10.1161/hypertensionaha.119.13643 10.3389/fendo.2013.00161 10.1161/01.cir.0000017502.58595.ed 10.1177/2047487317749039 10.1080/10715762.2017.1362106 10.1371/journal.pone.0143786 10.1136/bmjopen-2017-019037 10.1515/cclm-2015-0523 10.1016/j.tcm.2018.07.006 10.1097/HJH.0b013e3282f240bf 10.1016/j.atherosclerosis.2018.02.014 10.1371/journal.pone.0179482 10.1002/ejhf.419 10.1161/HYPERTENSIONAHA.118.11390 10.5603/CJ.a2014.0059 10.1111/dom.13101 10.1186/s12882-019-1506-8 10.1056/NEJMoa1611925 10.1016/j.amjcard.2014.09.008 10.1371/journal.pone.0147737 10.1159/000487356 10.1016/j.bbrc.2019.07.087 10.1097/HJH.0b013e328337da1d 10.1002/ejhf.1787 10.2174/1574887115666200709142119 10.1016/j.ijcard.2015.11.167 10.1253/circj.CJ-18-1088 10.1136/bmjopen-2018-028007 10.1155/2016/8603164 10.1161/01.cir.0000022140.61460.1d 10.1371/journal.pone.0129095 10.1161/HYPERTENSIONAHA.116.08436 10.1161/JAHA.117.007046 10.1007/s10238-017-0483-0 10.1016/j.ijcard.2018.03.045 10.1016/j.ijcard.2016.11.268 10.1093/rheumatology/keq184 10.2337/dc09-0288 10.1016/j.amjcard.2017.06.057 10.1016/j.bbadis.2018.05.003 10.7326/0003-4819-131-1-199907060-00003 10.1007/s11906-017-0770-x 10.1002/oby.22000 10.3109/0886022X.2014.882240 10.1016/j.amjcard.2004.06.032 10.1136/bmjopen-2013-003659 10.1161/HYPERTENSIONAHA.116.08998 10.1002/acr.20344 10.1001/archinternmed.2008.521 10.1155/2017/4391920 10.1161/HYPERTENSIONAHA.116.08488 10.1136/heart.87.3.229 10.1093/europace/euu198 10.1016/j.ebiom.2018.10.039 10.1159/000373892 10.1016/j.bbrc.2017.10.004 10.1002/cpt.1377 10.1056/NEJMoa1710895 10.1016/j.atherosclerosis.2018.10.007 10.1056/NEJMoa1911303 10.1161/HYPERTENSIONAHA.115.06344 10.1002/clc.23197 10.1159/000381398 10.1159/000488048 10.1161/HYPERTENSIONAHA.119.12727 10.1161/CIRCULATIONAHA.118.033992 10.1161/CIRCULATIONAHA.106.651117 10.3109/10715762.2012.747677 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Yu and Cheng. Copyright © 2020 Yu and Cheng 2020 Yu and Cheng |
Copyright_xml | – notice: Copyright © 2020 Yu and Cheng. – notice: Copyright © 2020 Yu and Cheng 2020 Yu and Cheng |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fphar.2020.582680 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journal Collection |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1663-9812 |
ExternalDocumentID | oai_doaj_org_article_e512355fc7b146048cc22481fe1fb3bc PMC7701250 10_3389_fphar_2020_582680 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 P2P PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c508t-40e860fe66269a61e3d12d819c12530c1f3557b191ad9da818f444ea464d8be13 |
IEDL.DBID | M48 |
ISSN | 1663-9812 |
IngestDate | Wed Aug 27 01:26:55 EDT 2025 Thu Aug 21 13:59:35 EDT 2025 Fri Jul 11 09:20:36 EDT 2025 Tue Jul 01 03:27:43 EDT 2025 Thu Apr 24 22:59:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-40e860fe66269a61e3d12d819c12530c1f3557b191ad9da818f444ea464d8be13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to Cardiovascular and Smooth Muscle Pharmacology, a section of the journal Frontiers in Pharmacology Edited by: Yusuf Tutar, University of Health Sciences, Turkey Reviewed by: Claudio Borghi, University of Bologna, Italy; Carlos Alonso Escudero, University of the Bío Bío, Chile |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphar.2020.582680 |
PMID | 33304270 |
PQID | 2483406469 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e512355fc7b146048cc22481fe1fb3bc pubmedcentral_primary_oai_pubmedcentral_nih_gov_7701250 proquest_miscellaneous_2483406469 crossref_citationtrail_10_3389_fphar_2020_582680 crossref_primary_10_3389_fphar_2020_582680 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-16 |
PublicationDateYYYYMMDD | 2020-11-16 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in pharmacology |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Prasad (B80) 2017; 69 Sun (B90) 2015; 10 Palazzuoli (B77) 2017; 120 Xiao (B112) 2015; 35 Li (B56) 2016; 37 Vane (B100) 1990; 323 Bailey (B4) 2010; 375 Kobayashi (B44) 2018; 141 Kuwabara (B49) 2017; 69 Xin (B113) 2019; 26 Culleton (B20) 1999; 131 White (B107) 2018; 378 Kodama (B45) 2009; 32 Kim (B41) 2019; 517 Jia (B34) 2015; 65 Zhang (B117) 2016; 38 Nidorf (B73) 2018; 25 Pak (B76) 2018; 17 Khaliq (B40) 2018; 20 Bjornstad (B7) 2019; 42 Battelli (B5) 2018; 1864 Maruhashi (B66) 2013; 3 Li (B55) 2016; 6 Davies (B22) 1986; 235 Lu (B60) 2019; 286 Wu (B111) 2012; 21 Struthers (B89) 2002; 87 Kuwabara (B52) 2018; 71 Tamariz (B93) 2011; 108 Chen (B15) 2017; 7 Sun (B91) 2017; 51 Neal (B72) 2017; 377 Vaduganathan (B98) 2014; 114 Cai (B12) 2017; 2017 Kuwabara (B51) 2018; 261 Dai (B21) 2015; 34 Liu (B59) 2015; 54 Maruhashi (B67) 2018; 278 Virdis (B101) 2020; 75 Lin (B58) 2019; 9 Sautin (B84) 2008; 27 Singh (B87) 2017; 17 Papezikova (B78) 2013; 47 van der Schaft (B99) 2017; 12 Mantovani (B64) 2018; 41 Mortada (B71) 2017; 19 Chen (B17) 2019; 106 Kato (B38) 2005; 96 Forman (B25) 2009; 169 Rekhraj (B81) 2013; 61 Klisic (B43) 2018; 18 Yan (B114) 2018; 45 Maharani (B63) 2015; 79 Inaba (B33) 2013; 52 Canpolat (B13) 2014; 16 Martinon (B65) 2006; 440 Tang (B94) 2014; 30 Zhao (B119) 2016; 204 Wang (B105) 2016; 254 Ozturk (B75) 2015; 22 Ames (B2) 1981; 78 Farquharson (B24) 2002; 106 Bene (B6) 2014; 91 Borgi (B10) 2017; 69 Doehner (B23) 2002; 105 Jun (B37) 2018; 272 Ritchie (B82) 2009; 18 Kramer (B46) 2020; 22 George (B26) 2006; 114 Li (B54) 2019; 25 Zhi (B121) 2016; 11 Kushiyama (B47) 2016; 2016 Sincer (B85) 2014; 36 Singh (B88) 2019; 58 Huang (B32) 2017; 493 Kuwabara (B48) 2017; 25 Mercuro (B70) 2004; 94 Cicero (B18) 2014; 32 Corry (B19) 2008; 26 Zhao (B120) 2018; 20 Wiviott (B110) 2019; 380 Wang (B103) 2018; 49 Yu (B116) 2010; 28 Matias (B68) 2015; 10 Li (B53) 2018; 45 Pavlusova (B79) 2019; 42 Taufiq (B95) 2019; 83 Kimura (B42) 2020; 40 MacIsaac (B62) 2016; 67 von Lueder (B102) 2015; 17 Liang (B57) 2016; 26 Ho (B30) 2010; 49 McMurray (B69) 2019; 381 Chen (B16) 2018; 37 Johnson (B35) 2018; 71 Tomiyama (B97) 2018; 72 Celik (B14) 2015; 24 Hao (B29) 2019; 15 Braga (B11) 2016; 54 Johnson (B36) 2019; 74 Aroor (B3) 2013; 4 Grayson (B28) 2011; 63 Kuwabara (B50) 2017; 231 Whiteman (B108) 2002; 962 Alberts (B1) 2019; 46 Wilcox (B109) 2018; 7 Tomiyama (B96) 2011; 24 Boban (B9) 2014; 36 Yin (B115) 2019; 20 Katsiki (B39) 2015; 24 Huang (B31) 2014; 16 Noman (B74) 2010; 375 Gersch (B27) 2009; 28 Zinman (B122) 2015; 373 Waring (B106) 2001; 38 Sakr (B83) 2020; 15 Wang (B104) 2016; 34 Black-Maier (B8) 2019; 29 Szwejkowski (B92) 2013; 62 Zhang (B118) 2018; 138 Lu (B61) 2020; 69 Singh (B86) 2018; 57 |
References_xml | – volume: 30 start-page: 1415 year: 2014 ident: B94 article-title: Serum uric acid and risk of left atrial thrombus in patients with nonvalvular atrial fibrillation publication-title: Can. J. Cardiol. doi: 10.1016/j.cjca.2014.06.009 – volume: 52 start-page: 963 year: 2013 ident: B33 article-title: What can asymptomatic hyperuricaemia and systemic inflammation in the absence of gout tell us publication-title: Rheumatol. (Oxford) doi: 10.1093/rheumatology/ket001 – volume: 57 start-page: 451 year: 2018 ident: B86 article-title: Allopurinol and the risk of incident peripheral arterial disease in the elderly: a US Medicare claims data study publication-title: Rheumatol. (Oxford) doi: 10.1093/rheumatology/kex232 – volume: 141 start-page: 190 year: 2018 ident: B44 article-title: Impact of Accumulated Serum Uric Acid on Coronary Culprit Lesion Morphology Determined by Optical Coherence Tomography and Cardiac Outcomes in Patients with Acute Coronary Syndrome publication-title: Cardiology doi: 10.1159/000496053 – volume: 38 start-page: 1589 year: 2016 ident: B117 article-title: Association Between Serum Uric Acid Levels and Atrial Fibrillation Risk publication-title: Cell Physiol. Biochem. doi: 10.1159/000443099 – volume: 26 start-page: 421 year: 2019 ident: B113 article-title: Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: A systematic review with an indirect comparison meta-analysis publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2018.11.013 – volume: 91 start-page: 38 year: 2014 ident: B6 article-title: Mineralocorticoid receptors in immune cells: emerging role in cardiovascular disease publication-title: Steroids doi: 10.1016/j.steroids.2014.04.005 – volume: 32 start-page: 57 year: 2014 ident: B18 article-title: Association between serum uric acid, hypertension, vascular stiffness and subclinical atherosclerosis: data from the Brisighella Heart Study publication-title: J. Hypertens. doi: 10.1097/HJH.0b013e328365b916 – volume: 254 start-page: 193 year: 2016 ident: B105 article-title: Elevated serum uric acid and risk of cardiovascular or all-cause mortality in people with suspected or definite coronary artery disease: A meta-analysis publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2016.10.006 – volume: 42 start-page: 1120 year: 2019 ident: B7 article-title: Elevated Serum Uric Acid Is Associated With Greater Risk for Hypertension and Diabetic Kidney Diseases in Obese Adolescents With Type 2 Diabetes: An Observational Analysis From the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) Study publication-title: Diabetes Care doi: 10.2337/dc18-2147 – volume: 380 start-page: 347 year: 2019 ident: B110 article-title: Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes publication-title: N Engl. J. Med. doi: 10.1056/NEJMoa1812389 – volume: 38 start-page: 365 year: 2001 ident: B106 article-title: Systemic uric acid administration increases serum antioxidant capacity in healthy volunteers publication-title: J. Cardiovasc. Pharmacol. doi: 10.1097/00005344-200109000-00005 – volume: 62 start-page: 2284 year: 2013 ident: B92 article-title: Allopurinol reduces left ventricular mass in patients with type 2 diabetes and left ventricular hypertrophy publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2013.07.074 – volume: 235 start-page: 747 year: 1986 ident: B22 article-title: Uric acid-iron ion complexes. A new aspect of the antioxidant functions of uric acid publication-title: Biochem. J. doi: 10.1042/bj2350747 – volume: 6 year: 2016 ident: B55 article-title: Hyperuricemia and the risk for coronary heart disease morbidity and mortality a systematic review and dose-response meta-analysis publication-title: Sci. Rep. doi: 10.1038/srep19520 – volume: 96 start-page: 1576 year: 2005 ident: B38 article-title: Status of endothelial dependent vasodilation in patients with hyperuricemia publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2005.07.068 – volume: 54 start-page: 2129 year: 2015 ident: B59 article-title: The Effects of Allopurinol on the Carotid Intima-media Thickness in Patients with Type 2 Diabetes and Asymptomatic Hyperuricemia: A Three-year Randomized Parallel-controlled Study publication-title: Intern. Med. doi: 10.2169/internalmedicine.54.4310 – volume: 15 start-page: 951 year: 2019 ident: B29 article-title: Uricase and Horseradish Peroxidase Hybrid CaHPO(4) Nanoflower Integrated with Transcutaneous Patches for Treatment of Hyperuricemia publication-title: J. BioMed. Nanotechnol. doi: 10.1166/jbn.2019.2752 – volume: 37 start-page: 989 year: 2016 ident: B56 article-title: Uric acid enhances PKC-dependent eNOS phosphorylation and mediates cellular ER stress: A mechanism for uric acid-induced endothelial dysfunction publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2016.2491 – volume: 375 start-page: 2223 year: 2010 ident: B4 article-title: Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(10)60407-2 – volume: 40 start-page: 570 year: 2020 ident: B42 article-title: Soluble Uric Acid Promotes Atherosclerosis via AMPK (AMP-Activated Protein Kinase)-Mediated Inflammation publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.119.313224 – volume: 69 start-page: 1149 year: 2020 ident: B61 article-title: Hyperuricemia Predisposes to the Onset of Diabetes via Promoting Pancreatic beta-Cell Death in Uricase-Deficient Male Mice publication-title: Diabetes doi: 10.2337/db19-0704 – volume: 79 start-page: 2659 year: 2015 ident: B63 article-title: Molecular Mechanisms Underlying Urate-Induced Enhancement of Kv1.5 Channel Expression in HL-1 Atrial Myocytes publication-title: Circ. J. doi: 10.1253/circj.CJ-15-0416 – volume: 26 start-page: 575 year: 2016 ident: B57 article-title: Serum uric acid level and left ventricular hypertrophy in elderly male patients with nonvalvular atrial fibrillation publication-title: Nutr. Metab. Cardiovasc. Dis. doi: 10.1016/j.numecd.2016.03.011 – volume: 34 start-page: 1605 year: 2015 ident: B21 article-title: Serum uric acid and its relationship with cardiovascular risk profile in Chinese patients with early-onset coronary artery disease publication-title: Clin. Rheumatol. doi: 10.1007/s10067-015-2878-1 – volume: 34 start-page: 914 year: 2016 ident: B104 article-title: Subsequent risk of gout for women with hypertensive disorders in pregnancy: a retrospective cohort study publication-title: J. Hypertens. doi: 10.1097/HJH.0000000000000888 – volume: 17 start-page: 161 year: 2018 ident: B76 article-title: Serum Uric Acid and Atrial Fibrillation: Meta-analysis publication-title: Crit. Pathw. Cardiol. doi: 10.1097/HPC.0000000000000150 – volume: 375 start-page: 2161 year: 2010 ident: B74 article-title: Effect of High-Dose Allopurinol on Exercise in Patients With Chronic Stable Angina: A Randomised, Placebo Controlled Crossover Trial publication-title: Lancet doi: 10.1016/S0140-6736(10)60391-1 – volume: 36 start-page: 315 year: 2014 ident: B85 article-title: Significant correlation between uric acid levels and flow-mediated dilatation in patients with masked hypertension publication-title: Clin. Exp. Hypertens. doi: 10.3109/10641963.2013.827694 – volume: 49 start-page: 512 year: 2018 ident: B103 article-title: Soluble Uric Acid Activates NLRP3 Inflammasome in Myocardial Cells Through Down-regulating UCP2 publication-title: Sichuan Da Xue Xue Bao Yi Xue Ban (Article Chinese) – volume: 18 start-page: 11 year: 2009 ident: B82 article-title: Evidence for a causal role of oxidative stress in the myocardial complications of insulin resistance publication-title: Heart Lung Circ. doi: 10.1016/j.hlc.2008.11.003 – volume: 17 start-page: 76 year: 2017 ident: B87 article-title: Allopurinol use and the risk of acute cardiovascular events in patients with gout and diabetes publication-title: BMC Cardiovasc. Disord. doi: 10.1186/s12872-017-0513-6 – volume: 58 start-page: 2177 year: 2019 ident: B88 article-title: Gout and hyperuricaemia in the USA: prevalence and trends publication-title: Rheumatol. (Oxford) doi: 10.1093/rheumatology/kez196 – volume: 28 start-page: 118 year: 2009 ident: B27 article-title: Reactions of peroxynitrite with uric acid: formation of reactive intermediates, alkylated products and triuret, and in vivo production of triuret under conditions of oxidative stress publication-title: Nucleosides Nucleotides Nucleic Acids doi: 10.1080/15257770902736400 – volume: 41 start-page: 223 year: 2018 ident: B64 article-title: Hyperuricemia is associated with an increased prevalence of paroxysmal atrial fibrillation in patients with type 2 diabetes referred for clinically indicated 24-h Holter monitoring publication-title: J. Endocrinol. Invest. doi: 10.1007/s40618-017-0729-4 – volume: 78 start-page: 6858 year: 1981 ident: B2 article-title: Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.78.11.6858 – volume: 440 start-page: 237 year: 2006 ident: B65 article-title: Gout-associated uric acid crystals activate the NALP3 inflammasome publication-title: Nature doi: 10.1038/nature04516 – volume: 71 start-page: 851 year: 2018 ident: B35 article-title: Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation publication-title: Am. J. Kidney Dis. doi: 10.1053/j.ajkd.2017.12.009 – volume: 25 start-page: 8457 year: 2019 ident: B54 article-title: Elevated Uric Acid Levels Promote Vascular Smooth Muscle Cells (VSMC) Proliferation via an Nod-Like Receptor Protein 3 (NLRP3)-Inflammasome-Dependent Mechanism publication-title: Med. Sci. Monit. doi: 10.12659/MSM.916667 – volume: 61 start-page: 926 year: 2013 ident: B81 article-title: High-dose allopurinol reduces left ventricular mass in patients with ischemic heart disease publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2012.09.066 – volume: 962 start-page: 242 year: 2002 ident: B108 article-title: A reassessment of the peroxynitrite scavenging activity of uric acid publication-title: Ann. N Y Acad. Sci. doi: 10.1111/j.1749-6632.2002.tb04072.x – volume: 20 start-page: 80 year: 2018 ident: B40 article-title: The Role of Uric Acid in Preeclampsia: Is Uric Acid a Causative Factor or a Sign of Preeclampsia publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-018-0878-7 – volume: 71 start-page: 78 year: 2018 ident: B52 article-title: Uric Acid Is a Strong Risk Marker for Developing Hypertension From Prehypertension: A 5-Year Japanese Cohort Study publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.117.10370 – volume: 35 start-page: 1347 year: 2015 ident: B112 article-title: Soluble uric acid increases NALP3 inflammasome and interleukin-1beta expression in human primary renal proximal tubule epithelial cells through the Toll-like receptor 4-mediated pathway publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2015.2148 – volume: 65 start-page: 531 year: 2015 ident: B34 article-title: Uric acid promotes left ventricular diastolic dysfunction in mice fed a Western diet publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.114.04737 – volume: 286 start-page: 1346 year: 2019 ident: B60 article-title: Urate-lowering therapy alleviates atherosclerosis inflammatory response factors and neointimal lesions in a mouse model of induced carotid atherosclerosis publication-title: FEBS J. doi: 10.1111/febs.14768 – volume: 27 start-page: 608 year: 2008 ident: B84 article-title: Uric acid: the oxidant-antioxidant paradox publication-title: Nucleosides Nucleotides Nucleic Acids doi: 10.1080/15257770802138558 – volume: 373 start-page: 2117 year: 2015 ident: B122 article-title: Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes publication-title: N Engl. J. Med. doi: 10.1056/NEJMoa1504720 – volume: 108 start-page: 1272 year: 2011 ident: B93 article-title: Association of serum uric acid with incident atrial fibrillation (from the Atherosclerosis Risk in Communities [ARIC] study) publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2011.06.043 – volume: 323 start-page: 27 year: 1990 ident: B100 article-title: Regulatory functions of the vascular endothelium publication-title: N Engl. J. Med. doi: 10.1056/NEJM199007053230106 – volume: 46 start-page: 1141 year: 2019 ident: B1 article-title: Precipitation of Soluble Uric Acid Is Necessary for In Vitro Activation of the NLRP3 Inflammasome in Primary Human Monocytes publication-title: J. Rheumatol. doi: 10.3899/jrheum.180855 – volume: 24 start-page: 770 year: 2011 ident: B96 article-title: Relationships among hyperuricemia, metabolic syndrome, and endothelial function publication-title: Am. J. Hypertens. doi: 10.1038/ajh.2011.55 – volume: 16 start-page: 15 year: 2014 ident: B31 article-title: Uric acid and risk of heart failure: a systematic review and meta-analysis publication-title: Eur. J. Heart Fail doi: 10.1093/eurjhf/hft132 – volume: 75 start-page: 302 year: 2020 ident: B101 article-title: Identification of the Uric Acid Thresholds Predicting an Increased Total and Cardiovascular Mortality Over 20 Years publication-title: Hypertension doi: 10.1161/hypertensionaha.119.13643 – volume: 4 year: 2013 ident: B3 article-title: The role of tissue Renin-Angiotensin-aldosterone system in the development of endothelial dysfunction and arterial stiffness publication-title: Front. Endocrinol. (Lausanne) doi: 10.3389/fendo.2013.00161 – volume: 105 start-page: 2619 year: 2002 ident: B23 article-title: Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies publication-title: Circulation doi: 10.1161/01.cir.0000017502.58595.ed – volume: 25 start-page: 231 year: 2018 ident: B73 article-title: Serendipity: How the search for meaning of serum uric acid might lead to the repurposing of an old drug in patients with cardiovascular disease publication-title: Eur. J. Prev. Cardiol. doi: 10.1177/2047487317749039 – volume: 51 start-page: 693 year: 2017 ident: B91 article-title: Unexpected effect of urate on hydrogen peroxide-induced oxidative damage in embryonic chicken cardiac cells publication-title: Free Radic. Res. doi: 10.1080/10715762.2017.1362106 – volume: 10 year: 2015 ident: B90 article-title: Uric Acid Levels Can Predict Metabolic Syndrome and Hypertension in Adolescents: A 10-Year Longitudinal Study publication-title: PloS One doi: 10.1371/journal.pone.0143786 – volume: 7 year: 2017 ident: B15 article-title: Association between serum uric acid and atrial fibrillation: a cross-sectional community-based study in China publication-title: BMJ Open doi: 10.1136/bmjopen-2017-019037 – volume: 54 start-page: 7 year: 2016 ident: B11 article-title: Hyperuricemia as risk factor for coronary heart disease incidence and mortality in the general population: a systematic review and meta-analysis publication-title: Clin. Chem. Lab. Med. doi: 10.1515/cclm-2015-0523 – volume: 29 start-page: 48 year: 2019 ident: B8 article-title: Editorial Commentary: Prevention and treatment of atrial fibrillation: Is hyperuricemia the next target publication-title: Trends Cardiovasc. Med. doi: 10.1016/j.tcm.2018.07.006 – volume: 26 start-page: 269 year: 2008 ident: B19 article-title: Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system publication-title: J. Hypertens. doi: 10.1097/HJH.0b013e3282f240bf – volume: 272 start-page: 233 year: 2018 ident: B37 article-title: Elevated serum uric acid predicts the development of moderate coronary artery calcification independent of conventional cardiovascular risk factors publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2018.02.014 – volume: 12 year: 2017 ident: B99 article-title: The association between serum uric acid and the incidence of prediabetes and type 2 diabetes mellitus: The Rotterdam Study publication-title: PloS One doi: 10.1371/journal.pone.0179482 – volume: 17 start-page: 1144 year: 2015 ident: B102 article-title: Serum uric acid is associated with mortality and heart failure hospitalizations in patients with complicated myocardial infarction: findings from the High-Risk Myocardial Infarction Database Initiative publication-title: Eur. J. Heart Fail doi: 10.1002/ejhf.419 – volume: 72 start-page: 739 year: 2018 ident: B97 article-title: Involvement of Arterial Stiffness and Inflammation in Hyperuricemia-Related Development of Hypertension publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.118.11390 – volume: 22 start-page: 336 year: 2015 ident: B75 article-title: Usefulness of the uric acid and CHA(2)DS(2)-VASc score in prediction of left atrial thrombosis in patients with mitral stenosis and sinus rhythm publication-title: Cardiol. J. doi: 10.5603/CJ.a2014.0059 – volume: 20 start-page: 458 year: 2018 ident: B120 article-title: Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.13101 – volume: 20 start-page: 319 year: 2019 ident: B115 article-title: Uric acid regulates NLRP3/IL-1beta signaling pathway and further induces vascular endothelial cells injury in early CKD through ROS activation and K(+) efflux publication-title: BMC Nephrol. doi: 10.1186/s12882-019-1506-8 – volume: 377 start-page: 644 year: 2017 ident: B72 article-title: Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes publication-title: N Engl. J. Med. doi: 10.1056/NEJMoa1611925 – volume: 114 start-page: 1713 year: 2014 ident: B98 article-title: Relation of serum uric acid levels and outcomes among patients hospitalized for worsening heart failure with reduced ejection fraction (from the efficacy of vasopressin antagonism in heart failure outcome study with tolvaptan trial) publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2014.09.008 – volume: 11 year: 2016 ident: B121 article-title: High Uric Acid Induces Insulin Resistance in Cardiomyocytes In Vitro and In Vivo publication-title: PloS One doi: 10.1371/journal.pone.0147737 – volume: 45 start-page: 1156 year: 2018 ident: B53 article-title: High Uric Acid Inhibits Cardiomyocyte Viability Through the ERK/P38 Pathway via Oxidative Stress publication-title: Cell Physiol. Biochem. doi: 10.1159/000487356 – volume: 517 start-page: 338 year: 2019 ident: B41 article-title: Anti-inflammatory effect of artemisinin on uric acid-induced NLRP3 inflammasome activation through blocking interaction between NLRP3 and NEK7 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.07.087 – volume: 28 start-page: 1234 year: 2010 ident: B116 article-title: Oxidative stress with an activation of the renin–angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction publication-title: J. Hypertension. doi: 10.1097/HJH.0b013e328337da1d – volume: 22 start-page: 1675 year: 2020 ident: B46 article-title: Evaluation of high-sensitivity C-reactive protein and uric acid in vericiguat-treated patients with heart failure with reduced ejection fraction publication-title: Eur. J. Heart Fail. doi: 10.1002/ejhf.1787 – volume: 15 start-page: 227 year: 2020 ident: B83 article-title: Serum Uric Acid Level as a Predictive Biomarker of Gestational Hypertension Severity; A Prospective Observational Case-Control Study publication-title: Rev. Recent Clin. Trials doi: 10.2174/1574887115666200709142119 – volume: 204 start-page: 103 year: 2016 ident: B119 article-title: Association between serum uric acid and atrial fibrillation recurrence following catheter ablation: A meta-analysis publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2015.11.167 – volume: 83 start-page: 718 year: 2019 ident: B95 article-title: Uric Acid-Induced Enhancements of Kv1.5 Protein Expression and Channel Activity via the Akt-HSF1-Hsp70 Pathway in HL-1 Atrial Myocytes publication-title: Circ. J. doi: 10.1253/circj.CJ-18-1088 – volume: 9 year: 2019 ident: B58 article-title: High prevalence of hyperuricaemia and its impact on non-valvular atrial fibrillation: the cross-sectional Guangzhou (China) Heart Study publication-title: BMJ Open doi: 10.1136/bmjopen-2018-028007 – volume: 2016 start-page: 1 year: 2016 ident: B47 article-title: Role of Uric Acid Metabolism-Related Inflammation in the Pathogenesis of Metabolic Syndrome Components Such as Atherosclerosis and Nonalcoholic Steatohepatitis publication-title: Mediators Inflammation doi: 10.1155/2016/8603164 – volume: 106 start-page: 221 year: 2002 ident: B24 article-title: Allopurinol improves endothelial dysfunction in chronic heart failure publication-title: Circulation doi: 10.1161/01.cir.0000022140.61460.1d – volume: 10 year: 2015 ident: B68 article-title: Endogenous and Uric Acid-Induced Activation of NLRP3 Inflammasome in Pregnant Women with Preeclampsia publication-title: PloS One doi: 10.1371/journal.pone.0129095 – volume: 69 start-page: 236 year: 2017 ident: B80 article-title: Uric Acid Is Associated With Inflammation, Coronary Microvascular Dysfunction, and Adverse Outcomes in Postmenopausal Women publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.116.08436 – volume: 7 year: 2018 ident: B109 article-title: Interaction Between the Sodium-Glucose-Linked Transporter 2 Inhibitor Dapagliflozin and the Loop Diuretic Bumetanide in Normal Human Subjects publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.117.007046 – volume: 18 start-page: 283 year: 2018 ident: B43 article-title: Xanthine oxidase and uric acid as independent predictors of albuminuria in patients with diabetes mellitus type 2 publication-title: Clin. Exp. Med. doi: 10.1007/s10238-017-0483-0 – volume: 261 start-page: 183 year: 2018 ident: B51 article-title: Elevated serum uric acid increases risks for developing high LDL cholesterol and hypertriglyceridemia: A five-year cohort study in Japan publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2018.03.045 – volume: 231 start-page: 137 year: 2017 ident: B50 article-title: Hyperuricemia is an independent competing risk factor for atrial fibrillation publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2016.11.268 – volume: 49 start-page: 1929 year: 2010 ident: B30 article-title: Association between endothelial dysfunction and hyperuricaemia publication-title: Rheumatol. (Oxford) doi: 10.1093/rheumatology/keq184 – volume: 32 start-page: 1737 year: 2009 ident: B45 article-title: Association between serum uric acid and development of type 2 diabetes publication-title: Diabetes Care doi: 10.2337/dc09-0288 – volume: 120 start-page: 1146 year: 2017 ident: B77 article-title: Prevalence of Hyperuricemia in Patients With Acute Heart Failure With Either Reduced or Preserved Ejection Fraction publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2017.06.057 – volume: 1864 start-page: 2557 year: 2018 ident: B5 article-title: The role of xanthine oxidoreductase and uric acid in metabolic syndrome publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/j.bbadis.2018.05.003 – volume: 131 start-page: 7 year: 1999 ident: B20 article-title: Serum Uric Acid and Risk for Cardiovascular Disease and Death: The Framingham Heart Study publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-131-1-199907060-00003 – volume: 19 start-page: 69 year: 2017 ident: B71 article-title: Hyperuricemia, Type 2 Diabetes Mellitus, and Hypertension: an Emerging Association publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-017-0770-x – volume: 25 start-page: 1997 year: 2017 ident: B48 article-title: Metabolically Healthy” Obesity and Hyperuricemia Increase Risk for Hypertension and Diabetes: 5-year Japanese Cohort Study publication-title: Obes. (Silver Spring) doi: 10.1002/oby.22000 – volume: 36 start-page: 613 year: 2014 ident: B9 article-title: Circulating purine compounds, uric acid, and xanthine oxidase/dehydrogenase relationship in essential hypertension and end stage renal disease publication-title: Ren. Fail doi: 10.3109/0886022X.2014.882240 – volume: 94 start-page: 932 year: 2004 ident: B70 article-title: Effect of hyperuricemia upon endothelial function in patients at increased cardiovascular risk publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2004.06.032 – volume: 3 year: 2013 ident: B66 article-title: Hyperuricemia is independently associated with endothelial dysfunction in postmenopausal women but not in premenopausal women publication-title: BMJ Open doi: 10.1136/bmjopen-2013-003659 – volume: 69 start-page: 1036 year: 2017 ident: B49 article-title: Asymptomatic Hyperuricemia Without Comorbidities Predicts Cardiometabolic Diseases: Five-Year Japanese Cohort Study publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.116.08998 – volume: 63 start-page: 102 year: 2011 ident: B28 article-title: Hyperuricemia and incident hypertension: a systematic review and meta-analysis publication-title: Arthritis Care Res. (Hoboken) doi: 10.1002/acr.20344 – volume: 169 start-page: 155 year: 2009 ident: B25 article-title: Uric acid and insulin sensitivity and risk of incident hypertension publication-title: Arch. Intern. Med. doi: 10.1001/archinternmed.2008.521 – volume: 2017 year: 2017 ident: B12 article-title: Uric Acid Induces Endothelial Dysfunction by Activating the HMGB1/RAGE Signaling Pathway publication-title: BioMed. Res. Int. doi: 10.1155/2017/4391920 – volume: 69 start-page: 243 year: 2017 ident: B10 article-title: Effect of Uric Acid-Lowering Agents on Endothelial Function: A Randomized, Double-Blind, Placebo-Controlled Trial publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.116.08488 – volume: 87 start-page: 229 year: 2002 ident: B89 article-title: Effect of allopurinol on mortality and hospitalisations in chronic heart failure: a retrospective cohort study publication-title: Heart doi: 10.1136/heart.87.3.229 – volume: 16 start-page: 1731 year: 2014 ident: B13 article-title: Usefulness of serum uric acid level to predict atrial fibrillation recurrence after cryoballoon-based catheter ablation publication-title: Europace doi: 10.1093/europace/euu198 – volume: 37 start-page: 259 year: 2018 ident: B16 article-title: Dissociation between urate and blood pressure in mice and in people with early Parkinson’s disease publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.10.039 – volume: 24 start-page: 263 year: 2015 ident: B14 article-title: Increased serum uric acid levels are correlated with decreased left atrial appendage peak flow velocity in patients with atrial fibrillation publication-title: Med. Princ. Pract. doi: 10.1159/000373892 – volume: 493 start-page: 1443 year: 2017 ident: B32 article-title: Uric acid demonstrates neuroprotective effect on Parkinson’s disease mice through Nrf2-ARE signaling pathway publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.10.004 – volume: 106 start-page: 391 year: 2019 ident: B17 article-title: Hypersensitivity and Cardiovascular Risks Related to Allopurinol and Febuxostat Therapy in Asians: A Population-Based Cohort Study and Meta-Analysis publication-title: Clin. Pharmacol. Ther. doi: 10.1002/cpt.1377 – volume: 378 start-page: 1200 year: 2018 ident: B107 article-title: Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout publication-title: N Engl. J. Med. doi: 10.1056/NEJMoa1710895 – volume: 278 start-page: 226 year: 2018 ident: B67 article-title: Hyperuricemia and endothelial function: From molecular background to clinical perspectives publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2018.10.007 – volume: 381 start-page: 1995 year: 2019 ident: B69 article-title: Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction publication-title: N Engl. J. Med. doi: 10.1056/NEJMoa1911303 – volume: 67 start-page: 535 year: 2016 ident: B62 article-title: Allopurinol and Cardiovascular Outcomes in Adults With Hypertension publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.115.06344 – volume: 21 start-page: 216 year: 2012 ident: B111 article-title: Research Progress on the relationship between hyperuricemia and coronary heart disease publication-title: Chin. J. Cardiovasc. Rehablil. Med. – volume: 42 start-page: 720 year: 2019 ident: B79 article-title: Hyperuricemia treatment in acute heart failure patients does not improve their long-term prognosis: A propensity score matched analysis from the AHEAD registry publication-title: Clin. Cardiol. doi: 10.1002/clc.23197 – volume: 24 start-page: 269 year: 2015 ident: B39 article-title: Hyperuricaemia in cardiovascular diseases: a passive or an active player publication-title: Med. Princ. Pract. doi: 10.1159/000381398 – volume: 45 start-page: 2122 year: 2018 ident: B114 article-title: Uric Acid Induces Cardiomyocyte Apoptosis via Activation of Calpain-1 and Endoplasmic Reticulum Stress publication-title: Cell Physiol. Biochem. doi: 10.1159/000488048 – volume: 74 start-page: 95 year: 2019 ident: B36 article-title: Pegloticase Treatment Significantly Decreases Blood Pressure in Patients With Chronic Gout publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.119.12727 – volume: 138 start-page: 1116 year: 2018 ident: B118 article-title: Assessment of Cardiovascular Risk in Older Patients With Gout Initiating Febuxostat Versus Allopurinol: Population-Based Cohort Study publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.033992 – volume: 114 start-page: 2508 year: 2006 ident: B26 article-title: High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.651117 – volume: 47 start-page: 82 year: 2013 ident: B78 article-title: Uric acid modulates vascular endothelial function through the down regulation of nitric oxide production publication-title: Free Radic. Res. doi: 10.3109/10715762.2012.747677 |
SSID | ssj0000399364 |
Score | 2.615054 |
SecondaryResourceType | review_article |
Snippet | Uric acid (UA) is the end product of purine nucleotide metabolism in the human body. Hyperuricemia is an abnormally high level of UA in the blood and may... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 582680 |
SubjectTerms | cardiovascular disease clinical prospect molecular mechanism Pharmacology therapeutics uric acid |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journal Collection dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELYQJy6r5bHa7gIaJMRh1WzjxnZibuVRoZVAPVCJm9exHbUSpBUtB_49M0n6yGX3wjVxFGdm7PkmnvmGsXPuEyt5lkeJs1kkcp1EuhA6Ej4EBNCo91BlWzyou7H48ySftlp9UU5YTQ9cC64XJFVzysKlOS5qtDfn0OtkvAi8yJPc0e6LPm8rmKr2YPK7StTHmBiF6V4xn1ji_-zHvyVCaqKB3HJEFV9_C2S2UyS3fM7wK_vSgEUY1JPcZzuhPGAXo5pt-r0Lj5viqUUXLmC04aF-P2R_x7jHwcBNPdjSw3Ur8xRu6pOZSxiUMJ5T3A_D19kL3K_65cJ9oKrg6eIFljNo-EOfYbSpzjxi4-Ht4_Vd1DRUiBzisCXGiij_uAgKoxhtFQ-J532PmMAhzElixwuUNMpZc-u1t-jLCyFEsEIJn-WBJ9_Ybjkrw3cGqRDSpjFGJ9aLNGSZzBD5amellX0VVIfFK-ka17CNU9OLZ4NRBynEVAoxpBBTK6TDfq0fmddUG_8afEUqWw8kluzqAtqOaWzH_M92OuxspXCDq4qOSmwZZm8L06d_rIjWlO6wtGUJrTe275TTScXPnaJcEFn--Iwp_mR79NVU_cjVMdtdvr6FE4RBy_y0svgPSccGlA priority: 102 providerName: Directory of Open Access Journals |
Title | Uric Acid and Cardiovascular Disease: An Update From Molecular Mechanism to Clinical Perspective |
URI | https://www.proquest.com/docview/2483406469 https://pubmed.ncbi.nlm.nih.gov/PMC7701250 https://doaj.org/article/e512355fc7b146048cc22481fe1fb3bc |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBale9nL2LqNZT_KDUYfRt1ZsSTbhVHSbqEMMvJQQ980WZLXQGpnSQrLf7872WlmKGOvtiwjfZLuO0n3HWMfuEuM5FkZJdZkkSjzJMorkUfCeY8EGnH34bbFd3VZiG_X8nqPbdNbdR24etC1o3xSxXJ-8vvX5gwn_GfyONHefqoWN4akPYfxiUS2nKEH_wgNU0rzdNKx_bAwkzEOglIc7WyUo21rzzkfrqVnqYKgf4-F9u9Q_mWUxk_Zk45NwqiF_xnb8_UBO5q2ctSbY7jaRVetjuEIpjuh6s1z9qPARRBGdubA1A4ueldT4Ut7dHMKoxqKBW0MwHjZ3MJkm1AXJp7ChmerW1g30AmMzmG6C998wYrx16uLy6jLuBBZJGprdCYRoLjyCt2c3CjuE8eHDkmDRR6UxJZXSE_SEn0843Jn0NhXQghvhBIuKz1PXrL9uqn9KwapENKkMbovxonUZ5nMkBrn1kgjh8qrAYu3vattJ0dOWTHmGt0SAkQHQDQBoltABuzj_SeLVovjX4XPCbL7giSjHR40y5-6m5XaSwoVlpXFNgmFi5m1SGkyXnlelUlpB-z9FnCN047OUkztm7uVHtImLNI5lQ9Y2hsJvT_239SzmyDgnWK_IPV8_R-1v2GPqVEU_cjVW7a_Xt75d0iD1uVh2D44DEP8D3eOBs8 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uric+Acid+and+Cardiovascular+Disease%3A+An+Update+From+Molecular+Mechanism+to+Clinical+Perspective&rft.jtitle=Frontiers+in+pharmacology&rft.au=Yu%2C+Wei&rft.au=Cheng%2C+Ji-Dong&rft.date=2020-11-16&rft.issn=1663-9812&rft.eissn=1663-9812&rft.volume=11&rft.spage=582680&rft_id=info:doi/10.3389%2Ffphar.2020.582680&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-9812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-9812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-9812&client=summon |