Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice
Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether ag...
Saved in:
Published in | The Journal of neuroscience Vol. 38; no. 16; pp. 3911 - 3928 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
18.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture.
SIGNIFICANCE STATEMENT
The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we performed chronic electrophysiological recordings of cortical neural activity during waking, sleep, and after sleep deprivation from young and older mice. We found that all main hallmarks of cortical activity during spontaneous sleep and recovery sleep after sleep deprivation were largely intact in older mice, suggesting that the well-described age-related changes in global sleep are unlikely to arise from a disruption of local network dynamics within the neocortex. |
---|---|
AbstractList | Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture.SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we performed chronic electrophysiological recordings of cortical neural activity during waking, sleep, and after sleep deprivation from young and older mice. We found that all main hallmarks of cortical activity during spontaneous sleep and recovery sleep after sleep deprivation were largely intact in older mice, suggesting that the well-described age-related changes in global sleep are unlikely to arise from a disruption of local network dynamics within the neocortex.Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture.SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we performed chronic electrophysiological recordings of cortical neural activity during waking, sleep, and after sleep deprivation from young and older mice. We found that all main hallmarks of cortical activity during spontaneous sleep and recovery sleep after sleep deprivation were largely intact in older mice, suggesting that the well-described age-related changes in global sleep are unlikely to arise from a disruption of local network dynamics within the neocortex. Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we performed chronic electrophysiological recordings of cortical neural activity during waking, sleep, and after sleep deprivation from young and older mice. We found that all main hallmarks of cortical activity during spontaneous sleep and recovery sleep after sleep deprivation were largely intact in older mice, suggesting that the well-described age-related changes in global sleep are unlikely to arise from a disruption of local network dynamics within the neocortex. Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we performed chronic electrophysiological recordings of cortical neural activity during waking, sleep, and after sleep deprivation from young and older mice. We found that all main hallmarks of cortical activity during spontaneous sleep and recovery sleep after sleep deprivation were largely intact in older mice, suggesting that the well-described age-related changes in global sleep are unlikely to arise from a disruption of local network dynamics within the neocortex. |
Author | Cui, Nanyi Wafford, Keith A. Vyazovskiy, Vladyslav V. Peirson, Stuart N. Foster, Russell G. McKillop, Laura E. Fisher, Simon P. |
Author_xml | – sequence: 1 givenname: Laura E. orcidid: 0000-0003-3085-1175 surname: McKillop fullname: McKillop, Laura E. – sequence: 2 givenname: Simon P. surname: Fisher fullname: Fisher, Simon P. – sequence: 3 givenname: Nanyi surname: Cui fullname: Cui, Nanyi – sequence: 4 givenname: Stuart N. surname: Peirson fullname: Peirson, Stuart N. – sequence: 5 givenname: Russell G. surname: Foster fullname: Foster, Russell G. – sequence: 6 givenname: Keith A. orcidid: 0000-0002-8508-4738 surname: Wafford fullname: Wafford, Keith A. – sequence: 7 givenname: Vladyslav V. orcidid: 0000-0002-4336-6681 surname: Vyazovskiy fullname: Vyazovskiy, Vladyslav V. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29581380$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctO3DAUtSoQDJRfQJa6YZPBduzEkSokNJ3y0ABVKWvLc7mZGiX2NE4q8fc4AkbAhtVdnIfOPWePbPngkZBDzqZcifz48np-9_vmdnYxFYrnGS-ngnH9hUwSWmVCMr5FJkyULCtkKXfJXowPjLGS8XKH7IpKaZ5rNiG_5nWN0Ecaanq6cn5Fg6ez0PUObEOvcejS-fHobesgUuvv6SKMyG2DuKbnocUQextdpM7TKwf4lWzXtol48HL3yd3P-Z_Zeba4ObuYnS4yUEz3WV6j1AgVAKhcWpZbkBoKAK5BgLBiyRGXyLWu6hS7hEothSpkoS2owqp8n5w8-66HZYv3gL5PUc26c63tHk2wzrxHvPtrVuG_UVVqQclkcPRi0IV_A8betC4CNo31GIZoUp8Vk7JkRaJ--0B9CEPn03uJVUnFGJej4eHbRJsor2UnQvFMgC7E2GG9oXBmxlXNZlUzrmp4OabQSfj9gxBcb3sXxs9c85n8CUuYqMA |
CitedBy_id | crossref_primary_10_7554_eLife_54148 crossref_primary_10_1093_sleep_zsz157 crossref_primary_10_3233_JAD_230527 crossref_primary_10_1016_j_neuron_2024_09_017 crossref_primary_10_1016_j_arr_2019_04_006 crossref_primary_10_1016_j_jsmc_2023_06_007 crossref_primary_10_3389_fnagi_2021_682388 crossref_primary_10_1016_j_cophys_2019_10_020 crossref_primary_10_3389_fneur_2022_955298 crossref_primary_10_1016_j_bcp_2021_114563 crossref_primary_10_1093_braincomms_fcac089 crossref_primary_10_1186_s12915_021_00982_w crossref_primary_10_1038_s41598_021_04502_2 crossref_primary_10_1093_sleep_zsab194 crossref_primary_10_1126_sciadv_abb3567 crossref_primary_10_3390_brainsci11081003 crossref_primary_10_1111_jsr_13603 crossref_primary_10_3390_cells12111477 crossref_primary_10_1016_j_nbas_2023_100068 crossref_primary_10_1016_j_bbr_2019_01_017 crossref_primary_10_1152_ajpregu_00383_2018 crossref_primary_10_1371_journal_pone_0304306 crossref_primary_10_3389_fnins_2023_1173537 crossref_primary_10_7554_eLife_64337 crossref_primary_10_1016_j_ijbiomac_2023_124609 crossref_primary_10_1038_s41593_022_01214_2 crossref_primary_10_1016_j_neurobiolaging_2019_02_004 crossref_primary_10_1038_s41467_024_50166_7 crossref_primary_10_1111_acel_13021 crossref_primary_10_1016_j_neuroscience_2019_11_033 crossref_primary_10_1111_jsr_13399 crossref_primary_10_1093_sleepadvances_zpac022 crossref_primary_10_1111_ejn_16460 crossref_primary_10_3389_fnagi_2022_988166 crossref_primary_10_1016_j_cub_2025_02_053 crossref_primary_10_26508_lsa_202301992 crossref_primary_10_1080_07420528_2023_2253299 crossref_primary_10_1186_s12868_023_00780_w crossref_primary_10_3389_fnsys_2019_00051 crossref_primary_10_1016_j_cophys_2020_03_004 crossref_primary_10_1016_j_cell_2019_08_040 crossref_primary_10_1038_s41593_021_00894_6 crossref_primary_10_1371_journal_pcbi_1012245 crossref_primary_10_1111_jsr_13262 crossref_primary_10_7554_eLife_84740 crossref_primary_10_1038_s41598_022_11888_0 crossref_primary_10_3389_fnins_2021_616760 crossref_primary_10_3389_fnagi_2018_00233 crossref_primary_10_1007_s10072_023_07232_7 crossref_primary_10_1016_j_bcp_2021_114515 |
Cites_doi | 10.1016/j.cub.2016.08.035 10.1016/S1388-2457(99)00020-6 10.1016/0006-8993(95)00713-Z 10.1159/000336149 10.2174/156802611797470330 10.1016/B0-72-160797-7/50014-8 10.1016/j.neurobiolaging.2012.05.018 10.12871/0002982920142310 10.1097/00001756-199707280-00027 10.1016/S0306-4522(01)00285-8 10.1016/j.neurobiolaging.2004.03.004 10.1016/j.cub.2015.11.062 10.1038/nature07150 10.1038/nrn1809 10.1523/JNEUROSCI.5773-08.2009 10.1038/nature04285 10.1016/j.neurobiolaging.2008.06.003 10.1038/nrn3494 10.1002/hbm.21374 10.1016/S1388-2457(00)00542-3 10.1016/j.ceca.2009.11.013 10.1016/j.neuron.2012.08.015 10.1038/nature14979 10.1113/jphysiol.2012.227462 10.1212/WNL.42.3.527 10.1093/cercor/bht188 10.1093/cercor/bhi110 10.3389/fncir.2015.00088 10.1016/j.neuron.2011.02.043 10.1093/sleep/30.12.1617 10.1016/j.neuron.2016.03.036 10.1038/nrn3208 10.1016/j.lfs.2015.10.025 10.1371/journal.pone.0050677 10.1523/JNEUROSCI.3956-14.2015 10.1016/S0079-6123(02)38086-5 10.1038/nature08983 10.1016/j.neuron.2017.05.015 10.1093/geronj/41.5.579 10.1126/science.aad1023 10.1523/ENEURO.0064-15.2015 10.1111/j.1460-9568.2010.07543.x 10.1016/0006-8993(71)90358-1 10.1212/01.WNL.0000161871.83614.BB 10.1523/JNEUROSCI.1318-04.2004 10.1016/j.neurobiolaging.2010.05.010 10.1111/j.1558-5646.2008.00392.x 10.1016/j.conb.2014.09.001 10.1111/j.1460-9568.2009.06722.x 10.1016/j.neuron.2017.02.004 10.1111/j.1460-9568.2004.03580.x 10.1016/j.smrv.2015.08.005 10.1523/JNEUROSCI.5685-07.2008 10.1098/rspb.2015.1853 10.1038/nrn2402 10.1152/ajpregu.1993.265.5.R1216 10.1016/j.tips.2005.09.009 10.1038/srep43656 10.1152/jn.2000.84.4.1888 10.1007/s12035-011-8164-6 10.1007/s00335-016-9639-6 10.1523/JNEUROSCI.6410-09.2010 10.1016/j.conb.2017.05.002 10.1007/s12017-012-8175-0 10.3389/fpsyg.2013.00863 10.1523/JNEUROSCI.2306-12.2012 10.1038/nrn3230 10.1016/j.cub.2008.06.047 10.1016/j.neurobiolaging.2012.05.020 10.1196/annals.1417.030 10.1007/s11357-009-9102-7 10.1093/sleep/26.2.192 10.1093/sleep/16.1.40 10.1016/j.arr.2014.01.003 10.1523/JNEUROSCI.19-11-04595.1999 10.1002/cne.10714 10.1016/j.neurobiolaging.2014.07.040 10.1016/0013-4694(71)90271-9 10.1016/S0197-4580(03)00043-5 10.1152/ajpregu.2000.278.1.R125 10.1016/j.neuroscience.2007.07.014 10.1523/JNEUROSCI.1156-13.2014 10.1038/nature10009 10.1016/j.neuron.2009.08.024 10.1016/0013-4694(86)90044-1 10.1038/nn.3324 10.1002/(SICI)1099-1166(199912)14:12<1050::AID-GPS56>3.0.CO;2-Z 10.1016/B978-0-444-53702-7.00011-7 10.1038/nrn3200 10.12871/000298292014239 10.1016/j.brainres.2012.12.047 10.1152/jn.91157.2008 10.1371/journal.pone.0043224 10.1093/sleep/30.12.1643 10.1016/j.bbr.2005.09.001 10.1038/nrn2521 10.1016/j.neuron.2013.12.025 10.1038/nrm3025 10.1073/pnas.1218731110 10.1111/ejn.12238 10.1038/nrn3086 10.4449/aib.v139i3.503 10.1038/ncomms13138 10.1126/science.982039 10.1093/sleep/27.7.1255 10.1111/j.1365-2869.2005.00456.x 10.1053/smrv.2002.0252 10.1111/j.1365-2826.2006.01452.x 10.1038/emboj.2011.162 10.1113/jphysiol.1980.sp013521 10.1371/journal.pone.0081880 10.1073/pnas.1423136112 10.1016/0197-4580(89)90004-3 10.1155/2016/6936381 10.1016/j.tins.2009.12.003 10.1016/j.neuron.2015.09.012 10.1523/JNEUROSCI.21-08-02610.2001 10.1016/j.conb.2017.05.008 10.1159/000124330 10.1016/j.smrv.2011.02.003 10.1093/sleep/30.12.1631 10.1016/S0006-8993(02)02925-6 10.1038/nature14622 10.1038/nature10243 10.1109/TIT.1982.1056489 10.1016/j.neuron.2012.08.034 10.1073/pnas.1424706112 10.1016/j.neuron.2008.09.014 10.1111/j.1753-4887.2010.00343.x 10.1016/j.tins.2007.04.006 10.1016/S0006-8993(96)00770-6 10.1016/j.smrv.2009.01.001 10.1126/science.1241224 10.1152/jn.00858.2013 10.1016/S0306-4522(97)00186-3 10.1523/JNEUROSCI.1614-16.2016 |
ContentType | Journal Article |
Copyright | Copyright © 2018 McKillop et al. Copyright Society for Neuroscience Apr 18, 2018 Copyright © 2018 McKillop et al. 2018 |
Copyright_xml | – notice: Copyright © 2018 McKillop et al. – notice: Copyright Society for Neuroscience Apr 18, 2018 – notice: Copyright © 2018 McKillop et al. 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
DOI | 10.1523/JNEUROSCI.2513-17.2018 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts Animal Behavior Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Architecture |
EISSN | 1529-2401 |
EndPage | 3928 |
ExternalDocumentID | PMC5907054 29581380 10_1523_JNEUROSCI_2513_17_2018 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/K011847/1 – fundername: Wellcome Trust grantid: 098461/Z/12/Z – fundername: Medical Research Council grantid: MR/L003635/1 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7QG 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
ID | FETCH-LOGICAL-c508t-3fe48ec9ccc534a03ac48c6cc18c2c2a2b1eebe1889f0077c95b256468ac56a53 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 17:55:25 EDT 2025 Fri Jul 11 12:25:53 EDT 2025 Mon Jun 30 16:43:31 EDT 2025 Sat May 31 02:09:26 EDT 2025 Tue Jul 01 03:47:44 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | sleep neocortex aging mice |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 Copyright © 2018 McKillop et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c508t-3fe48ec9ccc534a03ac48c6cc18c2c2a2b1eebe1889f0077c95b256468ac56a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: V.V.V. and K.A.W. designed research; V.V.V., L.E.M., S.P.F., and N.C. performed research; V.V.V., N.C., S.N.P., R.G.F., and K.A.W. contributed unpublished reagents/analytic tools; V.V.V. and L.E.M. analyzed data; V.V.V., and L.E.M. wrote the paper. |
ORCID | 0000-0002-4336-6681 0000-0003-3085-1175 0000-0002-8508-4738 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5907054 |
PMID | 29581380 |
PQID | 2094500144 |
PQPubID | 2049535 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5907054 proquest_miscellaneous_2019044706 proquest_journals_2094500144 pubmed_primary_29581380 crossref_primary_10_1523_JNEUROSCI_2513_17_2018 crossref_citationtrail_10_1523_JNEUROSCI_2513_17_2018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-18 |
PublicationDateYYYYMMDD | 2018-04-18 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2018 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041803303841000_38.16.3911.69 2023041803303841000_38.16.3911.61 2023041803303841000_38.16.3911.62 2023041803303841000_38.16.3911.63 2023041803303841000_38.16.3911.64 2023041803303841000_38.16.3911.65 2023041803303841000_38.16.3911.66 2023041803303841000_38.16.3911.67 2023041803303841000_38.16.3911.68 2023041803303841000_38.16.3911.60 2023041803303841000_38.16.3911.72 2023041803303841000_38.16.3911.140 2023041803303841000_38.16.3911.73 2023041803303841000_38.16.3911.74 2023041803303841000_38.16.3911.75 2023041803303841000_38.16.3911.76 2023041803303841000_38.16.3911.77 2023041803303841000_38.16.3911.78 2023041803303841000_38.16.3911.79 2023041803303841000_38.16.3911.70 2023041803303841000_38.16.3911.71 2023041803303841000_38.16.3911.47 2023041803303841000_38.16.3911.48 2023041803303841000_38.16.3911.49 2023041803303841000_38.16.3911.40 2023041803303841000_38.16.3911.41 2023041803303841000_38.16.3911.42 2023041803303841000_38.16.3911.44 2023041803303841000_38.16.3911.45 2023041803303841000_38.16.3911.46 2023041803303841000_38.16.3911.58 2023041803303841000_38.16.3911.59 2023041803303841000_38.16.3911.50 2023041803303841000_38.16.3911.51 2023041803303841000_38.16.3911.52 2023041803303841000_38.16.3911.53 2023041803303841000_38.16.3911.54 2023041803303841000_38.16.3911.55 2023041803303841000_38.16.3911.56 2023041803303841000_38.16.3911.57 Ge (2023041803303841000_38.16.3911.43) 2002; 23 2023041803303841000_38.16.3911.25 2023041803303841000_38.16.3911.26 2023041803303841000_38.16.3911.27 2023041803303841000_38.16.3911.28 2023041803303841000_38.16.3911.29 2023041803303841000_38.16.3911.20 2023041803303841000_38.16.3911.110 2023041803303841000_38.16.3911.21 2023041803303841000_38.16.3911.111 2023041803303841000_38.16.3911.22 2023041803303841000_38.16.3911.23 2023041803303841000_38.16.3911.113 2023041803303841000_38.16.3911.24 2023041803303841000_38.16.3911.114 2023041803303841000_38.16.3911.115 2023041803303841000_38.16.3911.116 2023041803303841000_38.16.3911.117 2023041803303841000_38.16.3911.118 2023041803303841000_38.16.3911.119 Timofeev (2023041803303841000_38.16.3911.112) 2013; 63 2023041803303841000_38.16.3911.36 2023041803303841000_38.16.3911.37 2023041803303841000_38.16.3911.38 2023041803303841000_38.16.3911.39 2023041803303841000_38.16.3911.5 2023041803303841000_38.16.3911.6 2023041803303841000_38.16.3911.7 2023041803303841000_38.16.3911.30 2023041803303841000_38.16.3911.8 2023041803303841000_38.16.3911.31 2023041803303841000_38.16.3911.9 2023041803303841000_38.16.3911.32 2023041803303841000_38.16.3911.100 2023041803303841000_38.16.3911.33 2023041803303841000_38.16.3911.101 2023041803303841000_38.16.3911.34 2023041803303841000_38.16.3911.102 2023041803303841000_38.16.3911.35 2023041803303841000_38.16.3911.103 2023041803303841000_38.16.3911.104 2023041803303841000_38.16.3911.105 2023041803303841000_38.16.3911.106 2023041803303841000_38.16.3911.107 2023041803303841000_38.16.3911.1 2023041803303841000_38.16.3911.108 2023041803303841000_38.16.3911.2 Borbély (2023041803303841000_38.16.3911.13) 1982; 1 2023041803303841000_38.16.3911.109 2023041803303841000_38.16.3911.3 2023041803303841000_38.16.3911.4 2023041803303841000_38.16.3911.83 2023041803303841000_38.16.3911.84 2023041803303841000_38.16.3911.130 2023041803303841000_38.16.3911.85 2023041803303841000_38.16.3911.131 2023041803303841000_38.16.3911.86 2023041803303841000_38.16.3911.132 2023041803303841000_38.16.3911.87 2023041803303841000_38.16.3911.133 2023041803303841000_38.16.3911.88 2023041803303841000_38.16.3911.134 2023041803303841000_38.16.3911.89 2023041803303841000_38.16.3911.135 2023041803303841000_38.16.3911.136 2023041803303841000_38.16.3911.137 2023041803303841000_38.16.3911.138 2023041803303841000_38.16.3911.139 2023041803303841000_38.16.3911.80 2023041803303841000_38.16.3911.81 2023041803303841000_38.16.3911.82 2023041803303841000_38.16.3911.14 2023041803303841000_38.16.3911.15 2023041803303841000_38.16.3911.16 2023041803303841000_38.16.3911.17 2023041803303841000_38.16.3911.18 2023041803303841000_38.16.3911.19 2023041803303841000_38.16.3911.94 2023041803303841000_38.16.3911.95 2023041803303841000_38.16.3911.96 2023041803303841000_38.16.3911.120 2023041803303841000_38.16.3911.97 2023041803303841000_38.16.3911.121 2023041803303841000_38.16.3911.10 2023041803303841000_38.16.3911.98 2023041803303841000_38.16.3911.122 2023041803303841000_38.16.3911.11 2023041803303841000_38.16.3911.99 2023041803303841000_38.16.3911.123 2023041803303841000_38.16.3911.12 2023041803303841000_38.16.3911.124 2023041803303841000_38.16.3911.125 2023041803303841000_38.16.3911.126 2023041803303841000_38.16.3911.127 2023041803303841000_38.16.3911.128 2023041803303841000_38.16.3911.129 2023041803303841000_38.16.3911.90 2023041803303841000_38.16.3911.91 2023041803303841000_38.16.3911.92 2023041803303841000_38.16.3911.93 |
References_xml | – ident: 2023041803303841000_38.16.3911.89 doi: 10.1016/j.cub.2016.08.035 – ident: 2023041803303841000_38.16.3911.106 doi: 10.1016/S1388-2457(99)00020-6 – ident: 2023041803303841000_38.16.3911.130 doi: 10.1016/0006-8993(95)00713-Z – ident: 2023041803303841000_38.16.3911.20 doi: 10.1159/000336149 – ident: 2023041803303841000_38.16.3911.63 doi: 10.2174/156802611797470330 – ident: 2023041803303841000_38.16.3911.113 doi: 10.1016/B0-72-160797-7/50014-8 – ident: 2023041803303841000_38.16.3911.54 – ident: 2023041803303841000_38.16.3911.58 doi: 10.1016/j.neurobiolaging.2012.05.018 – ident: 2023041803303841000_38.16.3911.27 doi: 10.12871/0002982920142310 – ident: 2023041803303841000_38.16.3911.97 doi: 10.1097/00001756-199707280-00027 – volume: 63 start-page: 105 year: 2013 ident: 2023041803303841000_38.16.3911.112 article-title: Local origin of slow EEG waves during sleep publication-title: Zh Vyssh Nerv Deiat Im I P Pavlova – ident: 2023041803303841000_38.16.3911.5 doi: 10.1016/S0306-4522(01)00285-8 – ident: 2023041803303841000_38.16.3911.23 doi: 10.1016/j.neurobiolaging.2004.03.004 – ident: 2023041803303841000_38.16.3911.42 doi: 10.1016/j.cub.2015.11.062 – ident: 2023041803303841000_38.16.3911.99 doi: 10.1038/nature07150 – ident: 2023041803303841000_38.16.3911.14 doi: 10.1038/nrn1809 – ident: 2023041803303841000_38.16.3911.134 doi: 10.1523/JNEUROSCI.5773-08.2009 – ident: 2023041803303841000_38.16.3911.109 doi: 10.1038/nature04285 – ident: 2023041803303841000_38.16.3911.24 doi: 10.1016/j.neurobiolaging.2008.06.003 – ident: 2023041803303841000_38.16.3911.118 doi: 10.1038/nrn3494 – ident: 2023041803303841000_38.16.3911.139 doi: 10.1002/hbm.21374 – ident: 2023041803303841000_38.16.3911.69 doi: 10.1016/S1388-2457(00)00542-3 – ident: 2023041803303841000_38.16.3911.115 doi: 10.1016/j.ceca.2009.11.013 – ident: 2023041803303841000_38.16.3911.45 doi: 10.1016/j.neuron.2012.08.015 – ident: 2023041803303841000_38.16.3911.132 doi: 10.1038/nature14979 – ident: 2023041803303841000_38.16.3911.19 doi: 10.1113/jphysiol.2012.227462 – ident: 2023041803303841000_38.16.3911.22 doi: 10.1212/WNL.42.3.527 – ident: 2023041803303841000_38.16.3911.76 doi: 10.1093/cercor/bht188 – ident: 2023041803303841000_38.16.3911.122 doi: 10.1093/cercor/bhi110 – ident: 2023041803303841000_38.16.3911.88 doi: 10.3389/fncir.2015.00088 – ident: 2023041803303841000_38.16.3911.90 doi: 10.1016/j.neuron.2011.02.043 – ident: 2023041803303841000_38.16.3911.37 doi: 10.1093/sleep/30.12.1617 – ident: 2023041803303841000_38.16.3911.131 doi: 10.1016/j.neuron.2016.03.036 – ident: 2023041803303841000_38.16.3911.59 doi: 10.1038/nrn3208 – ident: 2023041803303841000_38.16.3911.35 doi: 10.1016/j.lfs.2015.10.025 – ident: 2023041803303841000_38.16.3911.120 doi: 10.1371/journal.pone.0050677 – ident: 2023041803303841000_38.16.3911.33 doi: 10.1523/JNEUROSCI.3956-14.2015 – ident: 2023041803303841000_38.16.3911.111 doi: 10.1016/S0079-6123(02)38086-5 – ident: 2023041803303841000_38.16.3911.11 doi: 10.1038/nature08983 – ident: 2023041803303841000_38.16.3911.104 doi: 10.1016/j.neuron.2017.05.015 – ident: 2023041803303841000_38.16.3911.133 doi: 10.1093/geronj/41.5.579 – ident: 2023041803303841000_38.16.3911.49 doi: 10.1126/science.aad1023 – ident: 2023041803303841000_38.16.3911.87 doi: 10.1523/ENEURO.0064-15.2015 – ident: 2023041803303841000_38.16.3911.17 doi: 10.1111/j.1460-9568.2010.07543.x – ident: 2023041803303841000_38.16.3911.92 doi: 10.1016/0006-8993(71)90358-1 – ident: 2023041803303841000_38.16.3911.36 doi: 10.1212/01.WNL.0000161871.83614.BB – ident: 2023041803303841000_38.16.3911.80 doi: 10.1523/JNEUROSCI.1318-04.2004 – ident: 2023041803303841000_38.16.3911.48 doi: 10.1016/j.neurobiolaging.2010.05.010 – ident: 2023041803303841000_38.16.3911.16 doi: 10.1111/j.1558-5646.2008.00392.x – ident: 2023041803303841000_38.16.3911.26 doi: 10.1016/j.conb.2014.09.001 – ident: 2023041803303841000_38.16.3911.40 doi: 10.1111/j.1460-9568.2009.06722.x – ident: 2023041803303841000_38.16.3911.77 doi: 10.1016/j.neuron.2017.02.004 – ident: 2023041803303841000_38.16.3911.84 doi: 10.1111/j.1460-9568.2004.03580.x – ident: 2023041803303841000_38.16.3911.66 doi: 10.1016/j.smrv.2015.08.005 – ident: 2023041803303841000_38.16.3911.86 doi: 10.1523/JNEUROSCI.5685-07.2008 – ident: 2023041803303841000_38.16.3911.50 doi: 10.1098/rspb.2015.1853 – volume: 23 start-page: 1327 year: 2002 ident: 2023041803303841000_38.16.3911.43 article-title: Age-related total gray matter and white matter changes in normal adult brain: I. Volumetric MR imaging analysis publication-title: AJNR Am J Neuroradiol – ident: 2023041803303841000_38.16.3911.4 doi: 10.1038/nrn2402 – ident: 2023041803303841000_38.16.3911.105 doi: 10.1152/ajpregu.1993.265.5.R1216 – ident: 2023041803303841000_38.16.3911.55 doi: 10.1016/j.tips.2005.09.009 – ident: 2023041803303841000_38.16.3911.93 doi: 10.1038/srep43656 – ident: 2023041803303841000_38.16.3911.53 doi: 10.1152/jn.2000.84.4.1888 – ident: 2023041803303841000_38.16.3911.8 doi: 10.1007/s12035-011-8164-6 – ident: 2023041803303841000_38.16.3911.7 doi: 10.1007/s00335-016-9639-6 – ident: 2023041803303841000_38.16.3911.34 doi: 10.1523/JNEUROSCI.6410-09.2010 – ident: 2023041803303841000_38.16.3911.128 doi: 10.1016/j.conb.2017.05.002 – ident: 2023041803303841000_38.16.3911.102 doi: 10.1007/s12017-012-8175-0 – ident: 2023041803303841000_38.16.3911.68 doi: 10.3389/fpsyg.2013.00863 – ident: 2023041803303841000_38.16.3911.51 doi: 10.1523/JNEUROSCI.2306-12.2012 – ident: 2023041803303841000_38.16.3911.137 doi: 10.1038/nrn3230 – ident: 2023041803303841000_38.16.3911.57 doi: 10.1016/j.cub.2008.06.047 – ident: 2023041803303841000_38.16.3911.79 doi: 10.1016/j.neurobiolaging.2012.05.020 – ident: 2023041803303841000_38.16.3911.74 doi: 10.1196/annals.1417.030 – ident: 2023041803303841000_38.16.3911.10 doi: 10.1007/s11357-009-9102-7 – ident: 2023041803303841000_38.16.3911.38 doi: 10.1093/sleep/26.2.192 – ident: 2023041803303841000_38.16.3911.12 doi: 10.1093/sleep/16.1.40 – ident: 2023041803303841000_38.16.3911.96 doi: 10.1016/j.arr.2014.01.003 – ident: 2023041803303841000_38.16.3911.29 doi: 10.1523/JNEUROSCI.19-11-04595.1999 – ident: 2023041803303841000_38.16.3911.78 doi: 10.1002/cne.10714 – ident: 2023041803303841000_38.16.3911.6 doi: 10.1016/j.neurobiolaging.2014.07.040 – ident: 2023041803303841000_38.16.3911.52 doi: 10.1016/0013-4694(71)90271-9 – ident: 2023041803303841000_38.16.3911.98 doi: 10.1016/S0197-4580(03)00043-5 – ident: 2023041803303841000_38.16.3911.107 doi: 10.1152/ajpregu.2000.278.1.R125 – ident: 2023041803303841000_38.16.3911.95 doi: 10.1016/j.neuroscience.2007.07.014 – ident: 2023041803303841000_38.16.3911.71 doi: 10.1523/JNEUROSCI.1156-13.2014 – ident: 2023041803303841000_38.16.3911.127 doi: 10.1038/nature10009 – ident: 2023041803303841000_38.16.3911.126 doi: 10.1016/j.neuron.2009.08.024 – ident: 2023041803303841000_38.16.3911.114 doi: 10.1016/0013-4694(86)90044-1 – ident: 2023041803303841000_38.16.3911.75 doi: 10.1038/nn.3324 – ident: 2023041803303841000_38.16.3911.82 doi: 10.1002/(SICI)1099-1166(199912)14:12<1050::AID-GPS56>3.0.CO;2-Z – ident: 2023041803303841000_38.16.3911.3 doi: 10.1016/B978-0-444-53702-7.00011-7 – volume: 1 start-page: 195 year: 1982 ident: 2023041803303841000_38.16.3911.13 article-title: A two process model of sleep regulation publication-title: Hum Neurobiol – ident: 2023041803303841000_38.16.3911.83 doi: 10.1038/nrn3200 – ident: 2023041803303841000_38.16.3911.103 doi: 10.12871/000298292014239 – ident: 2023041803303841000_38.16.3911.47 doi: 10.1016/j.brainres.2012.12.047 – ident: 2023041803303841000_38.16.3911.125 doi: 10.1152/jn.91157.2008 – ident: 2023041803303841000_38.16.3911.67 doi: 10.1371/journal.pone.0043224 – ident: 2023041803303841000_38.16.3911.100 doi: 10.1093/sleep/30.12.1643 – ident: 2023041803303841000_38.16.3911.60 doi: 10.1016/j.bbr.2005.09.001 – ident: 2023041803303841000_38.16.3911.64 doi: 10.1038/nrn2521 – ident: 2023041803303841000_38.16.3911.116 doi: 10.1016/j.neuron.2013.12.025 – ident: 2023041803303841000_38.16.3911.140 doi: 10.1038/nrm3025 – ident: 2023041803303841000_38.16.3911.44 doi: 10.1073/pnas.1218731110 – ident: 2023041803303841000_38.16.3911.65 doi: 10.1111/ejn.12238 – ident: 2023041803303841000_38.16.3911.25 doi: 10.1038/nrn3086 – ident: 2023041803303841000_38.16.3911.32 doi: 10.4449/aib.v139i3.503 – ident: 2023041803303841000_38.16.3911.39 doi: 10.1038/ncomms13138 – ident: 2023041803303841000_38.16.3911.2 doi: 10.1126/science.982039 – ident: 2023041803303841000_38.16.3911.91 doi: 10.1093/sleep/27.7.1255 – ident: 2023041803303841000_38.16.3911.119 doi: 10.1111/j.1365-2869.2005.00456.x – ident: 2023041803303841000_38.16.3911.28 doi: 10.1053/smrv.2002.0252 – ident: 2023041803303841000_38.16.3911.123 doi: 10.1111/j.1365-2826.2006.01452.x – ident: 2023041803303841000_38.16.3911.61 doi: 10.1038/emboj.2011.162 – ident: 2023041803303841000_38.16.3911.9 doi: 10.1113/jphysiol.1980.sp013521 – ident: 2023041803303841000_38.16.3911.135 doi: 10.1371/journal.pone.0081880 – ident: 2023041803303841000_38.16.3911.117 doi: 10.1073/pnas.1423136112 – ident: 2023041803303841000_38.16.3911.31 doi: 10.1016/0197-4580(89)90004-3 – ident: 2023041803303841000_38.16.3911.21 doi: 10.1155/2016/6936381 – ident: 2023041803303841000_38.16.3911.15 doi: 10.1016/j.tins.2009.12.003 – ident: 2023041803303841000_38.16.3911.81 doi: 10.1016/j.neuron.2015.09.012 – ident: 2023041803303841000_38.16.3911.41 doi: 10.1523/JNEUROSCI.21-08-02610.2001 – ident: 2023041803303841000_38.16.3911.108 doi: 10.1016/j.conb.2017.05.008 – ident: 2023041803303841000_38.16.3911.138 doi: 10.1159/000124330 – ident: 2023041803303841000_38.16.3911.94 doi: 10.1016/j.smrv.2011.02.003 – ident: 2023041803303841000_38.16.3911.124 doi: 10.1093/sleep/30.12.1631 – ident: 2023041803303841000_38.16.3911.121 doi: 10.1016/S0006-8993(02)02925-6 – ident: 2023041803303841000_38.16.3911.62 doi: 10.1038/nature14622 – ident: 2023041803303841000_38.16.3911.129 doi: 10.1038/nature10243 – ident: 2023041803303841000_38.16.3911.73 doi: 10.1109/TIT.1982.1056489 – ident: 2023041803303841000_38.16.3911.18 doi: 10.1016/j.neuron.2012.08.034 – ident: 2023041803303841000_38.16.3911.46 doi: 10.1073/pnas.1424706112 – ident: 2023041803303841000_38.16.3911.110 doi: 10.1016/j.neuron.2008.09.014 – ident: 2023041803303841000_38.16.3911.56 doi: 10.1111/j.1753-4887.2010.00343.x – ident: 2023041803303841000_38.16.3911.30 doi: 10.1016/j.tins.2007.04.006 – ident: 2023041803303841000_38.16.3911.70 doi: 10.1016/S0006-8993(96)00770-6 – ident: 2023041803303841000_38.16.3911.85 doi: 10.1016/j.smrv.2009.01.001 – ident: 2023041803303841000_38.16.3911.136 doi: 10.1126/science.1241224 – ident: 2023041803303841000_38.16.3911.72 doi: 10.1152/jn.00858.2013 – ident: 2023041803303841000_38.16.3911.1 doi: 10.1016/S0306-4522(97)00186-3 – ident: 2023041803303841000_38.16.3911.101 doi: 10.1523/JNEUROSCI.1614-16.2016 |
SSID | ssj0007017 |
Score | 2.4838688 |
Snippet | Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3911 |
SubjectTerms | Aging Aging - physiology Animals Architecture Cortex (motor) Cortical Excitability EEG Electrophysiological recording Eye movements Homeostasis Life span Male Mice Mice, Inbred C57BL Motor Cortex - cytology Motor Cortex - growth & development Motor Cortex - physiology Motors Neurons - physiology NREM sleep Oscillations REM sleep Senescence Sleep Sleep and wakefulness Sleep deprivation Sleep Stages |
Title | Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29581380 https://www.proquest.com/docview/2094500144 https://www.proquest.com/docview/2019044706 https://pubmed.ncbi.nlm.nih.gov/PMC5907054 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCgPERGMhIiJcpW5PYqfNYVZ3GVgqordS3yHYdLVJJqpI-jL-eO-fDLavE4CWq4qSOfD-fz7673xHyUfEsM0tu_Fgr2KConvIlW2o_zGB9lUKppc2v-DKJL-fsasEXLpTXZpdU6kz_OphX8j9ShXsgV8yS_QfJdn8KN-A3yBeuIGG43kvGIxeMMaiLDWEK36Y-nkbaDdRpdcn5mop5jCvX6XRlzPoUC6SXYBsiI0leYPz8XlSQyxmz1uoO76WLltXX-WpVrtv8aunSGlxF9SmAoXBZZMNt3ij129yp5XzTJH5NKwwybfxDzWFEINCvsq8_Q-uwqeFiDtxrlG4kdsG1q0KjpNa-d3Q7txwTVxMMcZwOP5-BZYbsqhieJ9xq1nrwJ1_Ti_l4nM5Gi9lD8iiEXQSqwevvjky-37MFmbvvaxLIoZ_zw73s2y53NiR_xtXuGCqzp-RJIzM6qOHyjDwwxXNyPChkVf64pZ-ojfm1zpRj8q1BEC0zahFEy4K2CKI1gmiLIAoIohZB1CKI7iCI5gVFBL0g84vRbHjpNzU2fA2meeVHmWHC6ERrzSMme5HUTOhY60DoUIcyVIGBeR4IkWRI_aQTrmAWs1hIDZOZRy_JUVEW5jWhsUqkBEMo08yAWR6rkJkwNoleGsONlB7h7eiluiGgxzooqxQ3ojDqaTfqKY56GvRTHHWPnHfvrWsKlr--cdIKJ22m609oSBjHEwHmkQ9dMyhT9JDJwpRbfAbsY8b6vdgjr2pZdl2GCRdBJHoe6e9JuXsAidr3W4r8xhK28wSwxtmbe_T7ljx28-qEHFWbrXkHZm-l3lvw_gZIPqyN |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Aging+on+Cortical+Neural+Dynamics+and+Local+Sleep+Homeostasis+in+Mice&rft.jtitle=The+Journal+of+neuroscience&rft.au=McKillop%2C+Laura+E&rft.au=Fisher%2C+Simon+P&rft.au=Cui%2C+Nanyi&rft.au=Peirson%2C+Stuart+N&rft.date=2018-04-18&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=38&rft.issue=16&rft.spage=3911&rft_id=info:doi/10.1523%2FJNEUROSCI.2513-17.2018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |