Optimal Architecture of Floating-Point Arithmetic for Neural Network Training Processors

The convergence of artificial intelligence (AI) is one of the critical technologies in the recent fourth industrial revolution. The AIoT (Artificial Intelligence Internet of Things) is expected to be a solution that aids rapid and secure data processing. While the success of AIoT demanded low-power...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 3; p. 1230
Main Authors Junaid, Muhammad, Arslan, Saad, Lee, TaeGeon, Kim, HyungWon
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 06.02.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The convergence of artificial intelligence (AI) is one of the critical technologies in the recent fourth industrial revolution. The AIoT (Artificial Intelligence Internet of Things) is expected to be a solution that aids rapid and secure data processing. While the success of AIoT demanded low-power neural network processors, most of the recent research has been focused on accelerator designs only for inference. The growing interest in self-supervised and semi-supervised learning now calls for processors offloading the training process in addition to the inference process. Incorporating training with high accuracy goals requires the use of floating-point operators. The higher precision floating-point arithmetic architectures in neural networks tend to consume a large area and energy. Consequently, an energy-efficient/compact accelerator is required. The proposed architecture incorporates training in 32 bits, 24 bits, 16 bits, and mixed precisions to find the optimal floating-point format for low power and smaller-sized edge device. The proposed accelerator engines have been verified on FPGA for both inference and training of the MNIST image dataset. The combination of 24-bit custom FP format with 16-bit Brain FP has achieved an accuracy of more than 93%. ASIC implementation of this optimized mixed-precision accelerator using TSMC 65nm reveals an active area of 1.036 × 1.036 mm and energy consumption of 4.445 µJ per training of one image. Compared with 32-bit architecture, the size and the energy are reduced by 4.7 and 3.91 times, respectively. Therefore, the CNN structure using floating-point numbers with an optimized data path will significantly contribute to developing the AIoT field that requires a small area, low energy, and high accuracy.
AbstractList The convergence of artificial intelligence (AI) is one of the critical technologies in the recent fourth industrial revolution. The AIoT (Artificial Intelligence Internet of Things) is expected to be a solution that aids rapid and secure data processing. While the success of AIoT demanded low-power neural network processors, most of the recent research has been focused on accelerator designs only for inference. The growing interest in self-supervised and semi-supervised learning now calls for processors offloading the training process in addition to the inference process. Incorporating training with high accuracy goals requires the use of floating-point operators. The higher precision floating-point arithmetic architectures in neural networks tend to consume a large area and energy. Consequently, an energy-efficient/compact accelerator is required. The proposed architecture incorporates training in 32 bits, 24 bits, 16 bits, and mixed precisions to find the optimal floating-point format for low power and smaller-sized edge device. The proposed accelerator engines have been verified on FPGA for both inference and training of the MNIST image dataset. The combination of 24-bit custom FP format with 16-bit Brain FP has achieved an accuracy of more than 93%. ASIC implementation of this optimized mixed-precision accelerator using TSMC 65nm reveals an active area of 1.036 × 1.036 mm 2 and energy consumption of 4.445 µJ per training of one image. Compared with 32-bit architecture, the size and the energy are reduced by 4.7 and 3.91 times, respectively. Therefore, the CNN structure using floating-point numbers with an optimized data path will significantly contribute to developing the AIoT field that requires a small area, low energy, and high accuracy.
The convergence of artificial intelligence (AI) is one of the critical technologies in the recent fourth industrial revolution. The AIoT (Artificial Intelligence Internet of Things) is expected to be a solution that aids rapid and secure data processing. While the success of AIoT demanded low-power neural network processors, most of the recent research has been focused on accelerator designs only for inference. The growing interest in self-supervised and semi-supervised learning now calls for processors offloading the training process in addition to the inference process. Incorporating training with high accuracy goals requires the use of floating-point operators. The higher precision floating-point arithmetic architectures in neural networks tend to consume a large area and energy. Consequently, an energy-efficient/compact accelerator is required. The proposed architecture incorporates training in 32 bits, 24 bits, 16 bits, and mixed precisions to find the optimal floating-point format for low power and smaller-sized edge device. The proposed accelerator engines have been verified on FPGA for both inference and training of the MNIST image dataset. The combination of 24-bit custom FP format with 16-bit Brain FP has achieved an accuracy of more than 93%. ASIC implementation of this optimized mixed-precision accelerator using TSMC 65nm reveals an active area of 1.036 × 1.036 mm[sup.2] and energy consumption of 4.445 µJ per training of one image. Compared with 32-bit architecture, the size and the energy are reduced by 4.7 and 3.91 times, respectively. Therefore, the CNN structure using floating-point numbers with an optimized data path will significantly contribute to developing the AIoT field that requires a small area, low energy, and high accuracy.
The convergence of artificial intelligence (AI) is one of the critical technologies in the recent fourth industrial revolution. The AIoT (Artificial Intelligence Internet of Things) is expected to be a solution that aids rapid and secure data processing. While the success of AIoT demanded low-power neural network processors, most of the recent research has been focused on accelerator designs only for inference. The growing interest in self-supervised and semi-supervised learning now calls for processors offloading the training process in addition to the inference process. Incorporating training with high accuracy goals requires the use of floating-point operators. The higher precision floating-point arithmetic architectures in neural networks tend to consume a large area and energy. Consequently, an energy-efficient/compact accelerator is required. The proposed architecture incorporates training in 32 bits, 24 bits, 16 bits, and mixed precisions to find the optimal floating-point format for low power and smaller-sized edge device. The proposed accelerator engines have been verified on FPGA for both inference and training of the MNIST image dataset. The combination of 24-bit custom FP format with 16-bit Brain FP has achieved an accuracy of more than 93%. ASIC implementation of this optimized mixed-precision accelerator using TSMC 65nm reveals an active area of 1.036 × 1.036 mm2 and energy consumption of 4.445 µJ per training of one image. Compared with 32-bit architecture, the size and the energy are reduced by 4.7 and 3.91 times, respectively. Therefore, the CNN structure using floating-point numbers with an optimized data path will significantly contribute to developing the AIoT field that requires a small area, low energy, and high accuracy.
The convergence of artificial intelligence (AI) is one of the critical technologies in the recent fourth industrial revolution. The AIoT (Artificial Intelligence Internet of Things) is expected to be a solution that aids rapid and secure data processing. While the success of AIoT demanded low-power neural network processors, most of the recent research has been focused on accelerator designs only for inference. The growing interest in self-supervised and semi-supervised learning now calls for processors offloading the training process in addition to the inference process. Incorporating training with high accuracy goals requires the use of floating-point operators. The higher precision floating-point arithmetic architectures in neural networks tend to consume a large area and energy. Consequently, an energy-efficient/compact accelerator is required. The proposed architecture incorporates training in 32 bits, 24 bits, 16 bits, and mixed precisions to find the optimal floating-point format for low power and smaller-sized edge device. The proposed accelerator engines have been verified on FPGA for both inference and training of the MNIST image dataset. The combination of 24-bit custom FP format with 16-bit Brain FP has achieved an accuracy of more than 93%. ASIC implementation of this optimized mixed-precision accelerator using TSMC 65nm reveals an active area of 1.036 × 1.036 mm and energy consumption of 4.445 µJ per training of one image. Compared with 32-bit architecture, the size and the energy are reduced by 4.7 and 3.91 times, respectively. Therefore, the CNN structure using floating-point numbers with an optimized data path will significantly contribute to developing the AIoT field that requires a small area, low energy, and high accuracy.
Audience Academic
Author Junaid, Muhammad
Lee, TaeGeon
Arslan, Saad
Kim, HyungWon
AuthorAffiliation 1 Department of Electronics, College of Electrical and Computer Engineering, Chungbuk National University, Cheongju 28644, Korea; junaid@chungbuk.ac.kr (M.J.); tglee2@chungbuk.ac.kr (T.L.)
2 Department of Electrical and Computer Engineering, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; saad.arslan@comsats.edu.pk
AuthorAffiliation_xml – name: 2 Department of Electrical and Computer Engineering, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan; saad.arslan@comsats.edu.pk
– name: 1 Department of Electronics, College of Electrical and Computer Engineering, Chungbuk National University, Cheongju 28644, Korea; junaid@chungbuk.ac.kr (M.J.); tglee2@chungbuk.ac.kr (T.L.)
Author_xml – sequence: 1
  givenname: Muhammad
  orcidid: 0000-0003-0500-904X
  surname: Junaid
  fullname: Junaid, Muhammad
  organization: Department of Electronics, College of Electrical and Computer Engineering, Chungbuk National University, Cheongju 28644, Korea
– sequence: 2
  givenname: Saad
  orcidid: 0000-0003-4038-462X
  surname: Arslan
  fullname: Arslan, Saad
  organization: Department of Electrical and Computer Engineering, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
– sequence: 3
  givenname: TaeGeon
  surname: Lee
  fullname: Lee, TaeGeon
  organization: Department of Electronics, College of Electrical and Computer Engineering, Chungbuk National University, Cheongju 28644, Korea
– sequence: 4
  givenname: HyungWon
  orcidid: 0000-0003-2602-2075
  surname: Kim
  fullname: Kim, HyungWon
  organization: Department of Electronics, College of Electrical and Computer Engineering, Chungbuk National University, Cheongju 28644, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35161975$$D View this record in MEDLINE/PubMed
BookMark eNpdkl9vFCEUxYmpsX_0wS9gJvFFH6YCl2GYF5NNY7VJ0_ahJr4RhoFd1tlhBUbjt_euWzet4QFy-d3DPeSckqMpTo6Q14yeA3T0Q-acAuNAn5ETJrioFRaOHp2PyWnOa0o5AKgX5BgaJlnXNifk2-22hI0Zq0Wyq1CcLXNyVfTV5RhNCdOyvothKngdymrjSrCVj6m6cXPCphtXfsX0vbpPJkwIV3cpWpdzTPklee7NmN2rh_2MfL38dH_xpb6-_Xx1sbiubUNVqUFSI0XPBAxUUtYI1UjXGMda0fRK0Ib1bFDccw8tc6xrhp4qBWC4AgNUwBm52usO0az1NqGZ9FtHE_TfQkxLbRKOPTo99KLHHs6M74RUsvPWD74zzpqBtqpDrY97re3cb9xg3VTQ5RPRpzdTWOll_KkVTiqAosC7B4EUf8wuF70J2bpxNJOLc9Zc8o5KQJeIvv0PXcc5TfhVO6pVIIHvqPM9tTRoIEw-4rsW1-A2wWIKfMD6olVM0k5Ciw3v9w02xZyT84fpGdW7sOhDWJB989jugfyXDvgD4p26Jg
CitedBy_id crossref_primary_10_1016_j_iswa_2024_200356
crossref_primary_10_1109_ACCESS_2022_3204704
crossref_primary_10_3390_s24072145
crossref_primary_10_1007_s11554_023_01352_1
crossref_primary_10_1109_TNANO_2024_3367916
crossref_primary_10_1038_s41598_024_52356_1
Cites_doi 10.1145/3341301.3359646
10.1109/VLSIC.2018.8502276
10.1109/ISSCC42613.2021.9365816
10.3390/electronics10070787
10.1016/j.nanoen.2020.105414
10.1109/SiPS50750.2020.9195234
10.1109/TVLSI.2019.2935251
10.1109/TNNLS.2017.2778940
10.1109/ACCESS.2019.2924045
10.1109/IJCNN.1989.118695
10.3390/s18072110
10.1109/TVLSI.2013.2294916
10.3389/fncom.2015.00099
10.1109/LED.2017.2731859
10.3390/s21134462
10.1109/ISVLSI.2019.00087
10.1109/JIOT.2021.3095077
10.1109/CVPR42600.2020.00240
10.1021/acsnano.6b07894
10.1109/ACCESS.2019.2923822
10.1109/TVLSI.2019.2913958
10.1109/IPSN.2016.7460664
10.1109/ICAECC.2018.8479517
10.1109/JETCAS.2018.2842761
10.23919/DATE.2018.8342119
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22031230
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 7X7
  name: ProQuest Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_db4ba3021af946869fcfdf9aecad0789
A781609637
10_3390_s22031230
35161975
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Science ICT and Future Planning
  grantid: IITP-2020-0-01462
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CGR
CS3
CUY
CVF
D1I
DU5
E3Z
EBD
ECM
EIF
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
NPM
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
AAHBH
AAYXX
ALIPV
CITATION
BGLVJ
7XB
8FK
AZQEC
DWQXO
ITC
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c508t-360a64b143d060154856e5ae1745b84051b1d82f2f371e195db08833a283a3043
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Thu Jul 04 20:46:51 EDT 2024
Tue Sep 17 21:13:55 EDT 2024
Fri Jun 28 14:13:54 EDT 2024
Wed Sep 25 00:00:59 EDT 2024
Tue Feb 13 05:09:44 EST 2024
Wed Jul 31 12:49:41 EDT 2024
Thu May 23 23:40:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords floating-points
convolutional neural network (CNN)
MNIST dataset
IEEE 754
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-360a64b143d060154856e5ae1745b84051b1d82f2f371e195db08833a283a3043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0500-904X
0000-0003-2602-2075
0000-0003-4038-462X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840430/
PMID 35161975
PQID 2627836328
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_db4ba3021af946869fcfdf9aecad0789
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8840430
proquest_miscellaneous_2629063548
proquest_journals_2627836328
gale_infotracacademiconefile_A781609637
crossref_primary_10_3390_s22031230
pubmed_primary_35161975
PublicationCentury 2000
PublicationDate 20220206
PublicationDateYYYYMMDD 2022-02-06
PublicationDate_xml – month: 2
  year: 2022
  text: 20220206
  day: 6
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Imteaj (ref_6) 2021; 9
Sim (ref_21) 2020; 28
Tan (ref_4) 2020; 67
ref_12
ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
Hassija (ref_2) 2019; 7
ref_30
ref_19
Kim (ref_14) 2017; 11
ref_18
Sun (ref_17) 2019; 7
Neil (ref_35) 2014; 22
Lian (ref_25) 2019; 27
ref_24
ref_23
Diehl (ref_13) 2015; 9
ref_22
Guo (ref_15) 2018; 29
ref_1
Truong (ref_20) 2018; 8
Woo (ref_16) 2017; 38
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
ref_5
ref_7
Dong (ref_3) 2020; 79
References_xml – ident: ref_10
  doi: 10.1145/3341301.3359646
– ident: ref_30
– ident: ref_24
  doi: 10.1109/VLSIC.2018.8502276
– ident: ref_32
– ident: ref_34
– ident: ref_11
– ident: ref_5
  doi: 10.1109/ISSCC42613.2021.9365816
– ident: ref_33
  doi: 10.3390/electronics10070787
– volume: 79
  start-page: 105414
  year: 2020
  ident: ref_3
  article-title: Technology evolution from self-powered sensors to AIoT enabled smart homes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105414
  contributor:
    fullname: Dong
– ident: ref_9
  doi: 10.1109/SiPS50750.2020.9195234
– volume: 28
  start-page: 87
  year: 2020
  ident: ref_21
  article-title: An Energy-Efficient Deep Convolutional Neural Network Inference Processor With Enhanced Output Stationary Dataflow in 65-Nm CMOS
  publication-title: IEEE Trans. VLSI Syst.
  doi: 10.1109/TVLSI.2019.2935251
  contributor:
    fullname: Sim
– volume: 67
  start-page: 1534
  year: 2020
  ident: ref_4
  article-title: A ReRAM-Based Computing-in-Memory Convolutional-Macro With Customized 2T2R Bit-Cell for AIoT Chip IP Applications
  publication-title: IEEE Trans. Circuits Syst. II: Express Briefs
  contributor:
    fullname: Tan
– volume: 29
  start-page: 4782
  year: 2018
  ident: ref_15
  article-title: High-performance mixed-signal neurocom- puting with nanoscale floating-gate memory cell arrays
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2778940
  contributor:
    fullname: Guo
– volume: 7
  start-page: 82721
  year: 2019
  ident: ref_2
  article-title: A Survey on IoT Security: Application Areas, Security Threats, and Solution Architectures
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924045
  contributor:
    fullname: Hassija
– ident: ref_26
  doi: 10.1109/IJCNN.1989.118695
– ident: ref_18
  doi: 10.3390/s18072110
– ident: ref_23
– volume: 22
  start-page: 2621
  year: 2014
  ident: ref_35
  article-title: Minitaur, an Event-Driven FPGA-Based Spiking Network Accelerator
  publication-title: IEEE Trans. Very Large-Scale Integr. (VLSI) Syst.
  doi: 10.1109/TVLSI.2013.2294916
  contributor:
    fullname: Neil
– volume: 9
  start-page: 99
  year: 2015
  ident: ref_13
  article-title: Unsupervised learning of digit recognition using spike-timing-dependent plasticity
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2015.00099
  contributor:
    fullname: Diehl
– volume: 38
  start-page: 1220
  year: 2017
  ident: ref_16
  article-title: Linking conductive filament properties and evolution to synaptic behavior of RRAM devices for neuromorphic applications
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2017.2731859
  contributor:
    fullname: Woo
– ident: ref_12
  doi: 10.3390/s21134462
– ident: ref_1
  doi: 10.1109/ISVLSI.2019.00087
– ident: ref_8
– volume: 9
  start-page: 1
  year: 2021
  ident: ref_6
  article-title: A Survey on Federated Learning for Resource-Constrained IoT Devices
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3095077
  contributor:
    fullname: Imteaj
– ident: ref_31
– ident: ref_27
  doi: 10.1109/CVPR42600.2020.00240
– volume: 11
  start-page: 2814
  year: 2017
  ident: ref_14
  article-title: Pattern recognition using carbon nanotube synaptic transistors with an adjustable weight update protocol
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07894
  contributor:
    fullname: Kim
– volume: 7
  start-page: 81370
  year: 2019
  ident: ref_17
  article-title: ADAS Acceptability Improvement Based on Self-Learning of Individual Driving Characteristics: A Case Study of Lane Change Warning System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923822
  contributor:
    fullname: Sun
– volume: 27
  start-page: 1874
  year: 2019
  ident: ref_25
  article-title: High-Performance FPGA-Based CNN Accelerator With Block-Floating-Point Arithmetic
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
  doi: 10.1109/TVLSI.2019.2913958
  contributor:
    fullname: Lian
– ident: ref_7
  doi: 10.1109/IPSN.2016.7460664
– ident: ref_19
– ident: ref_22
– ident: ref_28
  doi: 10.1109/ICAECC.2018.8479517
– volume: 8
  start-page: 849
  year: 2018
  ident: ref_20
  article-title: Integer Convolutional Neural Network for Seizure Detection
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
  doi: 10.1109/JETCAS.2018.2842761
  contributor:
    fullname: Truong
– ident: ref_29
  doi: 10.23919/DATE.2018.8342119
SSID ssj0023338
Score 2.429488
Snippet The convergence of artificial intelligence (AI) is one of the critical technologies in the recent fourth industrial revolution. The AIoT (Artificial...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1230
SubjectTerms Accuracy
Algorithms
Approximation
Artificial Intelligence
Back propagation
Brain
Computer architecture
convolutional neural network (CNN)
Data processing
Energy consumption
Floating point arithmetic
floating-points
Format
IEEE 754
Inference
Internet of Things
MNIST dataset
Neural networks
Neural Networks, Computer
Power management
Probability
Probability distribution
Processors
Semiconductors
Supervised Machine Learning
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCAKJ-BggJC4hQ18cSOfWwRqwqJwqGV9mbZsa2uRBPUTf8_M0l22YgDF66xIzkztuc9ZeYNwMeEykUdyqIWxE1qV8vChxILITwaRxFIeq5G_napLq7rr2u5Pmj1xTlhkzzwZLjT4GvvkCKRS6ZWWpnUppCMi60LLJU-3r6V3JGpmWohMa9JRwiJ1J9uaSFId3S5iD6jSP_fV_FBLFrmSR4EntUTeDwjxvxsWukxPIjdU3h0oCP4DNbf6eDfjpP-_BbI-5SvfvaO85qLH_2mG2h4M9zcctliTlg1Z2EOeulyygTPr-ZuEflcPNDfbZ_D9erL1eeLYm6ZULSEtIYCVelU7QkEBRZaIToiVZQuEu-QnricrHwVtEgiYVPFysjgS2437AhlkJVrfAFHXd_FV5C3pYmoW-eRXECw0aHAJgYtIwadGpPBh50p7a9JGcMSo2B72729MzhnI-8nsJj1-IBcbGcX23-5OINP7CLLR4780Lq5coDWyeJV9qzRlSIqhk0GJzsv2vksbq1Q3E1EodAZvN8P0yniXyOui_39OMcQWCN7ZfBycvp-zSgJFZtGZtAstsPio5Yj3eZmVOrWmsWLytf_wwpv4KHg0gvOGFcncDTc3ce3BIgG_27c-78B9MgLCg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VcoED4k3aggJC4hRtYseOfUIFsVohUTi00t4sO7bpSm1SdtP_z0ySfURIXNfeXWc8npkvnvkG4GPk0gbl86xkiE1KW4rM-ZxnjDmuLXog4aga-ceFXFyV35dieQSLbS0MpVVubWJvqH1b0zvyGZPUE0JypmbW0VuAupt9vvuTUf8oumcdm2k8gIcFw7ACNbta7qEXRyQ28ApxBPmzDS6Mo83OJ96oJ-3_1zQf-KZp3uSBI5o_hSdjBJmeD1v-DI5C8xweH_AKvoDlTzQEt_2k_TVB2sZ0ftNaynPOfrWrpsPhVXd9S2WMKcauKRF14Jcuhszw9HLsHpGOxQTtevMSrubfLr8usrGFQlZj5NVlXOZWlg6DIk_EKwhPhAzCBsQhwiG2E4UrvGKRRV4VodDCu5zaD1uMOizPS_4Kjpu2CW8grXMduKqt496h188tZ7wKXonAvYqVTuDDVpTmbmDKMIgwSN5mJ-8EvpCQdxOI3Lr_oF3_NuNZMfj7Dv-cFTbqUiqpYx191DbU1hM7fgKfaIsMHUFSBDtWEuA6iczKnFeqkAjNeJXA2XYXzXg2N2avSQm83w3jqaKrEtuE9r6fozF4Q3kl8HrY9N2aucAoWVcigWqiDpOHmo40q-ueuVspIjPKT_6_rFN4xKjIgnLD5Rkcd-v78BZDn86967X6LzmRBKA
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QIHxJtAQQEhcQokfsU5IFQQqwqphUNX2ptlxzZdqU1gN5Xg3zOTZMNGcOAaO7EzM_bMJ3u-AXgVubJB-zwTDLGJsEJmzuc8Y8zxyqIHko6ykU_P1MlSfF7J1QHsamyOAtz-E9pRPanl5vLNzx-_3uOCf0eIEyH72y0Ow3EHRuR-gwkuyNBPxXSYwDjCsIFUaN595op6xv6_9-U9xzS_NLnnhRZ34PYYPqbHg77vwkFo7sGtPVLB-7D6grvAVd_pzxlB2sZ0cdlauuScfW3XTYfN6-7iinIYUwxcU2LpwJfOhmvh6flYOiIdMwnazfYBLBefzj-eZGP9hKzGsKvLuMqtEg4jIk-sK4hNpArSBgQh0iGwk4UrvGaRRV4WoaikdznVHrYYclieC_4QDpu2CY8hrfMqcF1bx71Dl59bzngZvJaBex3LKoGXO1Ga7wNNhkF4QfI2k7wT-EBCnjoQs3X_oN18M-NCMfh9h4OzwsZKKK2qWEcfKxtq64kaP4HXpCJDFoF6qO2YRoDzJCYrc1zqQiEu42UCRzstmp1dGaaotIjiTCfwYmrGJUXnJLYJ7XXfp8LIDeWVwKNB6dOcucQQuSplAuXMHGY_NW9p1hc9bbfWxGSUP_mPcZ_CTUZpFnQ7XB3BYbe5Ds8w-Onc8960fwN_7QRM
  priority: 102
  providerName: Scholars Portal
Title Optimal Architecture of Floating-Point Arithmetic for Neural Network Training Processors
URI https://www.ncbi.nlm.nih.gov/pubmed/35161975
https://www.proquest.com/docview/2627836328/abstract/
https://search.proquest.com/docview/2629063548
https://pubmed.ncbi.nlm.nih.gov/PMC8840430
https://doaj.org/article/db4ba3021af946869fcfdf9aecad0789
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9swDCXa7rIdhn3PWxd4w4Cd3NiiJcvHtmhWDEgWDC2QmyFZ8hqgsYvE_f8jHTtLsNsuPkSyrZCiyWeTjwBfK1TGaxdHqSBskppURtbFGAlhMTfkgaTlauTpTF3fpj8WcnEEcqiF6ZL2S7s8q-9XZ_XyrsutfFiV4yFPbDyfXmrNnDDx-BiOM8QBovcoCwl0bSmEkPD8eENrQHo8c8s3lBTf5JxSuOeDOqr-fx_Iex7pMFtyz_1MXsDzPm4Mz7frewlHvn4Fz_bYBF_D4ieZ_6qb9PfjQNhU4eS-MZzdHM2bZd3S8LK9W3HxYkgRa8j0HHTSbJsPHt70PSPCvoSgWW_ewO3k6ubyOuobJ0QlxVtthCo2KrUUCjmmWyFQIpWXxhP6kJZkJxObOC0qUWGW-CSXzsbcdNhQrGGQRPsWTuqm9u8hLOPcoy6NRWfJ18cGBWbeaenR6SrLA_gyiLJ42PJjFIQrWPTFTvQBXLCQdxOY0rr7oVn_LnrFFnR9SzcXianyVGmVV2Xlqtz40jjmxA_gG6uoYMMjPZSmrx-gdTKFVXGe6UQRIMMsgNNBi0VvkZtCKO4polDoAD7vhsmW-AOJqX3z2M3JKWQjeQXwbqv03ZqHvRNAdrAdDv7U4Qht346vu9-uH_77zI_wVHDVBSeLq1M4adeP_hPFQq0dkQUsMjrqyfcRPLm4ms1_jbr3CnScpnrU2cYfvrgPBg
link.rule.ids 230,315,733,786,790,870,891,2115,2236,12083,12792,21416,24346,27957,27958,31754,31755,33408,33409,33779,33780,43345,43635,43840,53827,53829,74102,74392,74659
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BeAAeEN9kDAgIiadoiR07zhMaiKrAVnjopL5ZduxslViytdn_z13ifkRIvNZu69z5fPeL734H8LHm0njl0iRniE1yk4vEupQnjFleGvRAwlI18tlMTs_zHwuxCC_c1iGtcnMm9ge1ayt6R37MJPWEkJypz9c3CXWNotvV0ELjLtzLOc8ppa9Y7AAXR_w1sAlxhPbHa1wOx5M6Hfmgnqr_3wN5zyONsyX33M_kMTwKcWN8Mij6CdzxzVN4uMcm-AwWv9D8r_pJu8uBuK3jyZ_WUHZz8rtdNh0OL7vLKypejDFijYmeA780G_LB43noGRGHEoJ2tX4O55Nv86_TJDROSCqMt7qEy9TI3GIo5IhuBUGJkF4Yj-hDWER0IrOZU6xmNS8yn5XC2ZSaDhuMNQxPc_4CDpq28a8grtLSc1UZy51FX58aznjhnRKeO1UXZQQfNqLU1wM_hkZcQfLWW3lH8IWEvJ1AlNb9B-3qQgcL0fj7Fv-cZaYuc6lkWVe1q0vjK-OIEz-CT6QiTYaHeqhMqB_AdRKFlT4pVCYRkPEigqONFnWwyLXe7Z8I3m-H0ZbogsQ0vr3t55QYsqG8Ing5KH27Zi4wNi4LEUEx2g6jhxqPNMvLnq9bKaIwSg__v6x3cH86PzvVp99nP1_DA0ZlFpQdLo_goFvd-jcY_HT2bb_D_wI8jQPT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJiF4QHyOwICAkHiKmtixkzyhDVaNr1KhTeqbZcc2q8SS0Wb_P3eJm7VC4jV2EufufB_x3e8A3nkutSttmuQMY5Nc5yIxNuUJY4ZXGi2QMFSN_H0mT8_zLwuxCPlP65BWudGJvaK2bU3_yCdMUk8IyVk58SEtYv5p-uHqT0IdpOikNbTTuA37RS4FSvj-8cls_nMMvzhGYwO2EMdAf7LGxXHU2-mOReqB-_9Vz1v2aTd3cssYTR_A_eBFxkcD2x_CLdc8gntb2IKPYfEDlcFlP-nmqCBufTz93WrKdU7m7bLpcHjZXVxSKWOM_mtMYB1402zIDo_PQgeJOBQUtKv1Ezifnpx9PE1CG4WkRu-rS7hMtcwNOkaWwFcwRBHSCe0wFhEG4zuRmcyWzDPPi8xllbAmpRbEGj0PzdOcP4W9pm3cM4jrtHK8rLXh1qDlTzVnvHC2FI7b0hdVBG83pFRXA1qGwiiD6K1GekdwTEQeJxDAdX-hXf1SYb8ofL7Bl7NM-yqXpax87a2vtKu1JYT8CN4TixRtQ-RDrUM1Aa6TAK3UUVFmEsMzXkRwuOGiCvtzrW6kKYI34zDuLDou0Y1rr_s5FTpwSK8IDgamj2vmAj3lqhARFDvisPNRuyPN8qJH7y5LAjRKn_9_Wa_hDoq3-vZ59vUF3GVUc0Gp4vIQ9rrVtXuJnlBnXgUR_wvWEQl2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Architecture+of+Floating-Point+Arithmetic+for+Neural+Network+Training+Processors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Junaid%2C+Muhammad&rft.au=Arslan%2C+Saad&rft.au=Lee%2C+TaeGeon&rft.au=Kim%2C+HyungWon&rft.date=2022-02-06&rft.eissn=1424-8220&rft.volume=22&rft.issue=3&rft_id=info:doi/10.3390%2Fs22031230&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon