Adsorption of divalent metal ions from aqueous solutions using graphene oxide

The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray pho...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 42; no. 16; pp. 5682 - 5689
Main Authors Sitko, Rafal, Turek, Edyta, Zawisza, Beata, Malicka, Ewa, Talik, Ewa, Heimann, Jan, Gagor, Anna, Feist, Barbara, Wrzalik, Roman
Format Journal Article
LanguageEnglish
Published England 28.04.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FT-IR). The results of batch experiments and measurements by flame atomic absorption spectrometry (F-AAS) indicate that maximum adsorption can be achieved in broad pH ranges: 3-7 for Cu( ii ), 5-8 for Zn( ii ), 4-8 for Cd( ii ), 3-7 for Pb( ii ). The maximum adsorption capacities of Cu( ii ), Zn( ii ), Cd( ii ) and Pb( ii ) on GO at pH = 5 are 294, 345, 530, 1119 mg g −1 , respectively. The competitive adsorption experiments showed the affinity in the order of Pb( ii ) > Cu( ii ) > Cd( ii ) > Zn( ii ). Adsorption isotherms and kinetic studies suggest that sorption of metal ions on GO nanosheets is monolayer coverage and adsorption is controlled by chemical adsorption involving the strong surface complexation of metal ions with the oxygen-containing groups on the surface of GO. Chemisorption was confirmed by XPS (binding energy and shape of O1s and C1s peaks) of GO with adsorbed metal ions. The adsorption experiments show that the dispersibility of GO in water changes remarkably after complexation of metal ions. After adsorption, the tendency to agglomerate and precipitate is observed. Excellent dispersibility of GO and strong tendency of GO-Me( ii ) to precipitate open the path to removal of heavy metals from water solution. Potential application of GO in analytical chemistry as a solid sorbent for preconcentration of trace elements and in heavy metal ion pollution cleanup results from its maximum adsorption capacities that are much higher than those of any of the currently reported sorbents. The adsorptive properties of graphene oxide towards divalent metal ions (copper, zinc, cadmium and lead) have been investigated.
AbstractList The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FT-IR). The results of batch experiments and measurements by flame atomic absorption spectrometry (F-AAS) indicate that maximum adsorption can be achieved in broad pH ranges: 3-7 for Cu(ii), 5-8 for Zn(ii), 4-8 for Cd(ii), 3-7 for Pb(ii). The maximum adsorption capacities of Cu(ii), Zn(ii), Cd(ii) and Pb(ii) on GO at pH = 5 are 294, 345, 530, 1119 mg g super(-1), respectively. The competitive adsorption experiments showed the affinity in the order of Pb(ii) > Cu(ii) >> Cd(ii) > Zn(ii). Adsorption isotherms and kinetic studies suggest that sorption of metal ions on GO nanosheets is monolayer coverage and adsorption is controlled by chemical adsorption involving the strong surface complexation of metal ions with the oxygen-containing groups on the surface of GO. Chemisorption was confirmed by XPS (binding energy and shape of O1s and C1s peaks) of GO with adsorbed metal ions. The adsorption experiments show that the dispersibility of GO in water changes remarkably after complexation of metal ions. After adsorption, the tendency to agglomerate and precipitate is observed. Excellent dispersibility of GO and strong tendency of GO-Me(ii) to precipitate open the path to removal of heavy metals from water solution. Potential application of GO in analytical chemistry as a solid sorbent for preconcentration of trace elements and in heavy metal ion pollution cleanup results from its maximum adsorption capacities that are much higher than those of any of the currently reported sorbents.
The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FT-IR). The results of batch experiments and measurements by flame atomic absorption spectrometry (F-AAS) indicate that maximum adsorption can be achieved in broad pH ranges: 3-7 for Cu(II), 5-8 for Zn(II), 4-8 for Cd(II), 3-7 for Pb(II). The maximum adsorption capacities of Cu(II), Zn(II), Cd(II) and Pb(II) on GO at pH = 5 are 294, 345, 530, 1119 mg g(-1), respectively. The competitive adsorption experiments showed the affinity in the order of Pb(II) > Cu(II) ≫ Cd(II) > Zn(II). Adsorption isotherms and kinetic studies suggest that sorption of metal ions on GO nanosheets is monolayer coverage and adsorption is controlled by chemical adsorption involving the strong surface complexation of metal ions with the oxygen-containing groups on the surface of GO. Chemisorption was confirmed by XPS (binding energy and shape of O1s and C1s peaks) of GO with adsorbed metal ions. The adsorption experiments show that the dispersibility of GO in water changes remarkably after complexation of metal ions. After adsorption, the tendency to agglomerate and precipitate is observed. Excellent dispersibility of GO and strong tendency of GO-Me(II) to precipitate open the path to removal of heavy metals from water solution. Potential application of GO in analytical chemistry as a solid sorbent for preconcentration of trace elements and in heavy metal ion pollution cleanup results from its maximum adsorption capacities that are much higher than those of any of the currently reported sorbents.
The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FT-IR). The results of batch experiments and measurements by flame atomic absorption spectrometry (F-AAS) indicate that maximum adsorption can be achieved in broad pH ranges: 3-7 for Cu( ii ), 5-8 for Zn( ii ), 4-8 for Cd( ii ), 3-7 for Pb( ii ). The maximum adsorption capacities of Cu( ii ), Zn( ii ), Cd( ii ) and Pb( ii ) on GO at pH = 5 are 294, 345, 530, 1119 mg g −1 , respectively. The competitive adsorption experiments showed the affinity in the order of Pb( ii ) > Cu( ii ) > Cd( ii ) > Zn( ii ). Adsorption isotherms and kinetic studies suggest that sorption of metal ions on GO nanosheets is monolayer coverage and adsorption is controlled by chemical adsorption involving the strong surface complexation of metal ions with the oxygen-containing groups on the surface of GO. Chemisorption was confirmed by XPS (binding energy and shape of O1s and C1s peaks) of GO with adsorbed metal ions. The adsorption experiments show that the dispersibility of GO in water changes remarkably after complexation of metal ions. After adsorption, the tendency to agglomerate and precipitate is observed. Excellent dispersibility of GO and strong tendency of GO-Me( ii ) to precipitate open the path to removal of heavy metals from water solution. Potential application of GO in analytical chemistry as a solid sorbent for preconcentration of trace elements and in heavy metal ion pollution cleanup results from its maximum adsorption capacities that are much higher than those of any of the currently reported sorbents. The adsorptive properties of graphene oxide towards divalent metal ions (copper, zinc, cadmium and lead) have been investigated.
The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FT-IR). The results of batch experiments and measurements by flame atomic absorption spectrometry (F-AAS) indicate that maximum adsorption can be achieved in broad pH ranges: 3-7 for Cu(II), 5-8 for Zn(II), 4-8 for Cd(II), 3-7 for Pb(II). The maximum adsorption capacities of Cu(II), Zn(II), Cd(II) and Pb(II) on GO at pH = 5 are 294, 345, 530, 1119 mg g(-1), respectively. The competitive adsorption experiments showed the affinity in the order of Pb(II) > Cu(II) ≫ Cd(II) > Zn(II). Adsorption isotherms and kinetic studies suggest that sorption of metal ions on GO nanosheets is monolayer coverage and adsorption is controlled by chemical adsorption involving the strong surface complexation of metal ions with the oxygen-containing groups on the surface of GO. Chemisorption was confirmed by XPS (binding energy and shape of O1s and C1s peaks) of GO with adsorbed metal ions. The adsorption experiments show that the dispersibility of GO in water changes remarkably after complexation of metal ions. After adsorption, the tendency to agglomerate and precipitate is observed. Excellent dispersibility of GO and strong tendency of GO-Me(II) to precipitate open the path to removal of heavy metals from water solution. Potential application of GO in analytical chemistry as a solid sorbent for preconcentration of trace elements and in heavy metal ion pollution cleanup results from its maximum adsorption capacities that are much higher than those of any of the currently reported sorbents.
Author Heimann, Jan
Sitko, Rafal
Wrzalik, Roman
Turek, Edyta
Malicka, Ewa
Feist, Barbara
Talik, Ewa
Zawisza, Beata
Gagor, Anna
AuthorAffiliation Institute of Physics
Institute of Chemistry
University of Silesia
Polish Academy of Sciences
Institute of Low Temperature and Structure Research
AuthorAffiliation_xml – name: Institute of Low Temperature and Structure Research
– name: Institute of Chemistry
– name: Institute of Physics
– name: Polish Academy of Sciences
– name: University of Silesia
Author_xml – sequence: 1
  givenname: Rafal
  surname: Sitko
  fullname: Sitko, Rafal
– sequence: 2
  givenname: Edyta
  surname: Turek
  fullname: Turek, Edyta
– sequence: 3
  givenname: Beata
  surname: Zawisza
  fullname: Zawisza, Beata
– sequence: 4
  givenname: Ewa
  surname: Malicka
  fullname: Malicka, Ewa
– sequence: 5
  givenname: Ewa
  surname: Talik
  fullname: Talik, Ewa
– sequence: 6
  givenname: Jan
  surname: Heimann
  fullname: Heimann, Jan
– sequence: 7
  givenname: Anna
  surname: Gagor
  fullname: Gagor, Anna
– sequence: 8
  givenname: Barbara
  surname: Feist
  fullname: Feist, Barbara
– sequence: 9
  givenname: Roman
  surname: Wrzalik
  fullname: Wrzalik, Roman
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23443993$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtLxDAUhYMoPkY37pW4E6Ga5DaTdDmILxhx476keWilbWrSiv57M46OuFFX93LOx-HA2UHrne8sQvuUnFICxZkGMwCQQpg1tE1zIbKCQb6--tl0C-3E-EQIY4SzTbSV7ByKArbR7cxEH_qh9h32Dpv6RTW2G3BrB9XgpEbsgm-xeh6tHyOOvhmHD3mMdfeAH4LqH21nsX-tjd1FG0410e593gm6v7y4P7_O5ndXN-ezeaY5kUPGHNOmqpRWijuhjSOVrFSVG6lSQyoZF8ColFMlK2GcA6E1McxwrhjQCiboeBnbB596xaFs66ht06huUbKkAgglTHD6Nwp5kfOEin-gjAJwkDKhJ0tUBx9jsK7sQ92q8FZSUi42Kb83SfDhZ-5Ytdas0K8REnCwBELUK_dHwNFvftkbB--z4p7r
CitedBy_id crossref_primary_10_2174_1570179418666210113162124
crossref_primary_10_1039_C9ME00156E
crossref_primary_10_1080_02670844_2019_1693753
crossref_primary_10_1016_j_apcatb_2018_03_070
crossref_primary_10_1016_j_envpol_2019_05_050
crossref_primary_10_1039_C5RA04545B
crossref_primary_10_1007_s11814_019_0306_y
crossref_primary_10_1016_j_pce_2018_08_002
crossref_primary_10_1039_C4RA13333A
crossref_primary_10_1039_C6NJ03202H
crossref_primary_10_1016_j_jiec_2020_07_015
crossref_primary_10_1016_j_envpol_2017_10_082
crossref_primary_10_1080_09593330_2017_1371797
crossref_primary_10_3390_w14233972
crossref_primary_10_1016_j_cej_2016_09_139
crossref_primary_10_1016_j_carbon_2018_04_032
crossref_primary_10_1016_j_seppur_2019_116278
crossref_primary_10_1039_D1NA00435B
crossref_primary_10_1016_j_seppur_2022_122847
crossref_primary_10_1016_j_cej_2019_123730
crossref_primary_10_1080_01932691_2020_1773848
crossref_primary_10_1007_s00216_017_0211_3
crossref_primary_10_1016_j_chemosphere_2021_131969
crossref_primary_10_1016_j_memsci_2023_121727
crossref_primary_10_1016_j_apsusc_2016_01_176
crossref_primary_10_1016_j_cclet_2015_10_018
crossref_primary_10_3390_ijerph17186911
crossref_primary_10_1016_j_jece_2017_06_029
crossref_primary_10_1007_s10853_020_04651_1
crossref_primary_10_1016_j_cclet_2020_05_011
crossref_primary_10_25046_aj060102
crossref_primary_10_1038_s41377_021_00603_9
crossref_primary_10_3390_catal13121469
crossref_primary_10_1016_j_cej_2016_09_122
crossref_primary_10_1016_j_aca_2014_05_014
crossref_primary_10_3390_nano10061022
crossref_primary_10_3390_ijms23126517
crossref_primary_10_1016_j_jwpe_2023_104658
crossref_primary_10_3390_molecules29102342
crossref_primary_10_1016_j_micromeso_2022_112344
crossref_primary_10_1016_j_seppur_2022_122957
crossref_primary_10_1016_j_jes_2018_11_023
crossref_primary_10_1016_j_microc_2017_02_011
crossref_primary_10_1002_adsu_202200039
crossref_primary_10_1039_C6RA15364J
crossref_primary_10_1016_j_foodchem_2019_125751
crossref_primary_10_1039_C4RA09175B
crossref_primary_10_1039_c3ay41451e
crossref_primary_10_1002_cplu_201402284
crossref_primary_10_1039_C9TA02935D
crossref_primary_10_1016_j_scitotenv_2019_134222
crossref_primary_10_1039_C8RA00823J
crossref_primary_10_54370_ordubtd_1339985
crossref_primary_10_1007_s13201_022_01588_5
crossref_primary_10_1021_la504077x
crossref_primary_10_1016_j_jhazmat_2016_02_012
crossref_primary_10_1039_C7NJ03877A
crossref_primary_10_1016_j_jallcom_2020_153855
crossref_primary_10_1016_j_jenvman_2021_113443
crossref_primary_10_1021_acsami_7b08232
crossref_primary_10_7567_JJAP_57_04FP04
crossref_primary_10_1039_C8TA01622D
crossref_primary_10_1002_adma_201704609
crossref_primary_10_1039_C5RA23900A
crossref_primary_10_1016_j_radphyschem_2023_111312
crossref_primary_10_3390_s18051496
crossref_primary_10_1080_19443994_2015_1005150
crossref_primary_10_1007_s11356_020_11202_3
crossref_primary_10_1016_j_apsadv_2023_100431
crossref_primary_10_1016_j_seppur_2022_122851
crossref_primary_10_1039_C4RA12441C
crossref_primary_10_1016_j_chemosphere_2021_129884
crossref_primary_10_1016_j_colsurfa_2021_126216
crossref_primary_10_1039_C7EN01258F
crossref_primary_10_1016_j_talanta_2018_08_044
crossref_primary_10_1039_C8RA02264J
crossref_primary_10_3389_fmats_2022_909534
crossref_primary_10_1016_j_jwpe_2021_101961
crossref_primary_10_1016_j_scitotenv_2023_164288
crossref_primary_10_1039_C5RA13620B
crossref_primary_10_1016_j_jclepro_2018_08_002
crossref_primary_10_1016_j_diamond_2024_110826
crossref_primary_10_1016_j_microc_2018_04_003
crossref_primary_10_1021_acsanm_8b00275
crossref_primary_10_1021_acssuschemeng_7b00867
crossref_primary_10_1016_j_jece_2023_110070
crossref_primary_10_1002_slct_202000537
crossref_primary_10_1007_s41204_024_00373_w
crossref_primary_10_1021_acssuschemeng_8b03428
crossref_primary_10_1016_j_bcab_2019_101398
crossref_primary_10_1016_j_chemosphere_2017_03_071
crossref_primary_10_1007_s00339_018_1816_x
crossref_primary_10_1080_01496395_2017_1328443
crossref_primary_10_3390_min11010015
crossref_primary_10_1016_j_cej_2015_02_066
crossref_primary_10_1016_j_jics_2021_100188
crossref_primary_10_1080_1536383X_2019_1671363
crossref_primary_10_1016_j_apsusc_2024_160064
crossref_primary_10_1016_j_est_2019_101165
crossref_primary_10_1080_03067319_2014_983437
crossref_primary_10_1016_j_ijpharm_2020_119919
crossref_primary_10_1007_s11356_020_07890_6
crossref_primary_10_1016_j_ijbiomac_2020_11_079
crossref_primary_10_1016_j_jhazmat_2023_132722
crossref_primary_10_1016_j_ijbiomac_2016_10_084
crossref_primary_10_1155_2022_7385541
crossref_primary_10_1016_j_foodchem_2023_136777
crossref_primary_10_1021_am402615m
crossref_primary_10_1016_j_clce_2022_100045
crossref_primary_10_1038_srep28924
crossref_primary_10_1039_D2AN00531J
crossref_primary_10_1016_j_arabjc_2018_03_021
crossref_primary_10_1016_j_seppur_2020_117606
crossref_primary_10_1016_j_seppur_2018_01_061
crossref_primary_10_1039_C5NJ03140K
crossref_primary_10_1016_j_jwpe_2020_101404
crossref_primary_10_1016_j_apsusc_2021_150254
crossref_primary_10_1002_admi_201801094
crossref_primary_10_1016_j_cartre_2022_100196
crossref_primary_10_1016_j_microc_2024_109924
crossref_primary_10_7868_S2308112018040028
crossref_primary_10_2139_ssrn_4200016
crossref_primary_10_1016_j_ceramint_2021_11_018
crossref_primary_10_1002_aelm_201900040
crossref_primary_10_1016_j_aquatox_2020_105579
crossref_primary_10_1016_j_cej_2020_128106
crossref_primary_10_3390_su15118815
crossref_primary_10_1016_j_carbon_2018_05_018
crossref_primary_10_1021_acs_est_4c00812
crossref_primary_10_1016_j_jece_2019_103463
crossref_primary_10_1016_j_molliq_2022_120821
crossref_primary_10_1080_17435390_2018_1458342
crossref_primary_10_1021_acsami_8b19971
crossref_primary_10_1039_C9NR07116D
crossref_primary_10_1016_j_chemosphere_2022_137467
crossref_primary_10_1016_j_cej_2018_04_212
crossref_primary_10_1016_j_radphyschem_2019_108395
crossref_primary_10_3390_ma15103657
crossref_primary_10_3390_biomimetics8020167
crossref_primary_10_7498_aps_71_20211315
crossref_primary_10_1016_j_jphotochem_2024_115686
crossref_primary_10_1016_j_biombioe_2021_106197
crossref_primary_10_1016_j_chemosphere_2021_131760
crossref_primary_10_1016_j_jece_2015_10_038
crossref_primary_10_3390_catal7120391
crossref_primary_10_1016_j_molliq_2024_124438
crossref_primary_10_20964_2021_10_19
crossref_primary_10_1016_j_cej_2016_02_015
crossref_primary_10_1061__ASCE_EE_1943_7870_0001551
crossref_primary_10_1016_j_gsd_2017_06_006
crossref_primary_10_1016_j_jenvman_2021_112024
crossref_primary_10_1007_s13762_021_03464_2
crossref_primary_10_1088_1755_1315_68_1_012003
crossref_primary_10_1016_j_cej_2018_03_114
crossref_primary_10_1080_17435390_2017_1398357
crossref_primary_10_1007_s13762_021_03610_w
crossref_primary_10_1016_j_cej_2016_08_053
crossref_primary_10_1016_j_jcis_2021_01_021
crossref_primary_10_1016_j_jhazmat_2022_129589
crossref_primary_10_1016_j_jhazmat_2021_125825
crossref_primary_10_1016_j_tet_2015_07_035
crossref_primary_10_1063_5_0093261
crossref_primary_10_3390_ma13071537
crossref_primary_10_1016_j_envpol_2021_118256
crossref_primary_10_1080_03067319_2019_1607318
crossref_primary_10_1016_j_jece_2021_106212
crossref_primary_10_1016_j_carbon_2023_02_047
crossref_primary_10_1016_j_molliq_2017_01_064
crossref_primary_10_1016_j_trac_2013_05_011
crossref_primary_10_1007_s00604_015_1738_7
crossref_primary_10_37015_AUDT_2022_210030
crossref_primary_10_1002_tcr_202000153
crossref_primary_10_1039_C6RA04415H
crossref_primary_10_3390_ijerph15071454
crossref_primary_10_1016_j_jhazmat_2015_09_028
crossref_primary_10_1007_s12034_020_2060_5
crossref_primary_10_1021_acsami_7b06358
crossref_primary_10_15407_hftp09_04_417
crossref_primary_10_1007_s00604_015_1629_y
crossref_primary_10_3390_membranes11070481
crossref_primary_10_1007_s11356_019_06160_4
crossref_primary_10_1016_j_enmm_2022_100679
crossref_primary_10_1039_C6RA07151A
crossref_primary_10_1002_slct_202401504
crossref_primary_10_1002_ep_12974
crossref_primary_10_1016_j_colsurfa_2018_06_034
crossref_primary_10_1021_acssuschemeng_8b05138
crossref_primary_10_1016_j_seppur_2024_126355
crossref_primary_10_1007_s10853_020_04474_0
crossref_primary_10_1016_j_powtec_2017_12_003
crossref_primary_10_1080_10584587_2015_1035597
crossref_primary_10_1016_j_colsurfa_2022_129610
crossref_primary_10_1039_D3NJ00666B
crossref_primary_10_13168_cs_2020_0040
crossref_primary_10_1016_j_chemosphere_2020_126008
crossref_primary_10_1038_s41598_018_35656_1
crossref_primary_10_1002_adfm_201904603
crossref_primary_10_1016_j_cej_2019_05_108
crossref_primary_10_1016_j_inoche_2021_108603
crossref_primary_10_1016_j_jwpe_2019_101009
crossref_primary_10_1155_2015_836287
crossref_primary_10_1007_s13738_023_02882_y
crossref_primary_10_1016_j_cherd_2018_09_028
crossref_primary_10_1016_j_hydromet_2022_105911
crossref_primary_10_1039_D3NA01042B
crossref_primary_10_1080_10408347_2019_1653165
crossref_primary_10_1007_s11356_023_28018_6
crossref_primary_10_1016_j_seppur_2022_120604
crossref_primary_10_1016_j_apsusc_2021_150503
crossref_primary_10_1016_j_carbpol_2021_117622
crossref_primary_10_1007_s10971_017_4313_3
crossref_primary_10_1016_j_jcis_2018_05_044
crossref_primary_10_1016_j_ultsonch_2020_104962
crossref_primary_10_1080_09276440_2016_1169707
crossref_primary_10_1039_C7RA12087G
crossref_primary_10_1016_j_carbon_2020_08_059
crossref_primary_10_1016_j_ijhydene_2019_09_082
crossref_primary_10_1016_j_jhazmat_2022_129337
crossref_primary_10_2139_ssrn_4103331
crossref_primary_10_1002_app_45306
crossref_primary_10_2166_wst_2023_179
crossref_primary_10_1021_acsaem_0c01722
crossref_primary_10_1002_chem_201806309
crossref_primary_10_1016_j_porgcoat_2020_105547
crossref_primary_10_1080_15226514_2019_1647405
crossref_primary_10_1016_j_cej_2014_07_034
crossref_primary_10_1016_j_carbpol_2021_117731
crossref_primary_10_1039_D0MA00060D
crossref_primary_10_1016_j_cjche_2015_08_031
crossref_primary_10_1021_acs_iecr_0c00403
crossref_primary_10_1002_er_8654
crossref_primary_10_1007_s10853_016_9913_8
crossref_primary_10_3934_ctr_2021001
crossref_primary_10_1016_j_chemosphere_2020_128005
crossref_primary_10_1016_j_microc_2019_03_013
crossref_primary_10_1007_s13762_020_02813_x
crossref_primary_10_3390_molecules27175637
crossref_primary_10_3390_nano12234159
crossref_primary_10_1007_s11356_022_22715_4
crossref_primary_10_1016_j_jallcom_2020_154280
crossref_primary_10_1021_acsanm_0c01916
crossref_primary_10_1002_cben_202100003
crossref_primary_10_3390_nano13162277
crossref_primary_10_1016_j_jtice_2018_03_045
crossref_primary_10_1016_j_cej_2015_08_139
crossref_primary_10_1016_j_ultsonch_2017_03_039
crossref_primary_10_1016_j_carbon_2014_05_032
crossref_primary_10_1039_D3NJ05918A
crossref_primary_10_2166_wst_2015_124
crossref_primary_10_1007_s10311_020_01001_0
crossref_primary_10_1039_C4TA02983F
crossref_primary_10_1039_C8CS00417J
crossref_primary_10_1021_acs_iecr_9b00576
crossref_primary_10_2166_aqua_2015_102
crossref_primary_10_1007_s11356_023_29374_z
crossref_primary_10_1039_C6EN00297H
crossref_primary_10_3390_catal11070760
crossref_primary_10_1016_j_apsusc_2014_04_083
crossref_primary_10_1016_j_cej_2015_08_144
crossref_primary_10_1007_s11270_017_3589_9
crossref_primary_10_1016_j_carbon_2020_06_004
crossref_primary_10_1002_app_50065
crossref_primary_10_1007_s10661_015_4378_9
crossref_primary_10_1016_j_enmm_2021_100578
crossref_primary_10_1002_chem_202000223
crossref_primary_10_1002_aenm_201903833
crossref_primary_10_1016_j_aca_2017_09_008
crossref_primary_10_1016_j_chemosphere_2019_05_076
crossref_primary_10_1039_C5TA08106H
crossref_primary_10_1002_cssc_201300990
crossref_primary_10_1016_j_jtice_2016_08_008
crossref_primary_10_1039_C4RA08862J
crossref_primary_10_1016_j_jiec_2019_01_019
crossref_primary_10_1088_2053_1591_aae03b
crossref_primary_10_3390_app9142925
crossref_primary_10_1016_j_chemosphere_2019_02_017
crossref_primary_10_1016_j_jwpe_2020_101249
crossref_primary_10_1016_j_envres_2017_12_025
crossref_primary_10_1016_j_nanoen_2016_06_042
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000400
crossref_primary_10_1039_D4GC01870B
crossref_primary_10_1016_j_envpol_2019_06_109
crossref_primary_10_1016_j_molliq_2015_11_022
crossref_primary_10_1021_acsnano_9b00144
crossref_primary_10_3390_w15244259
crossref_primary_10_1002_aenm_202001471
crossref_primary_10_1002_advs_201800235
crossref_primary_10_1016_j_seppur_2021_118483
crossref_primary_10_1016_j_seppur_2019_115956
crossref_primary_10_1016_j_jece_2017_05_055
crossref_primary_10_1016_j_seppur_2021_119450
crossref_primary_10_1016_j_enmm_2023_100843
crossref_primary_10_1021_acs_est_6b02934
crossref_primary_10_1016_j_carbon_2016_09_035
crossref_primary_10_1021_acs_jpcc_6b08088
crossref_primary_10_1039_D1NR02255E
crossref_primary_10_1016_j_envadv_2023_100402
crossref_primary_10_1021_am503997e
crossref_primary_10_1039_C5CS00021A
crossref_primary_10_1515_ract_2016_2722
crossref_primary_10_1039_C7EN00366H
crossref_primary_10_1007_s13206_021_00029_w
crossref_primary_10_1007_s11356_018_2749_9
crossref_primary_10_1016_j_cis_2021_102360
crossref_primary_10_1016_j_desal_2023_116772
crossref_primary_10_3390_su10103547
crossref_primary_10_1016_j_apmt_2020_100766
crossref_primary_10_13005_msri_200107
crossref_primary_10_1016_j_scitotenv_2018_03_036
crossref_primary_10_1016_j_electacta_2017_03_187
crossref_primary_10_1371_journal_pone_0143819
crossref_primary_10_1016_j_carbon_2023_118122
crossref_primary_10_1039_D0RA03057K
crossref_primary_10_1016_j_surfin_2019_04_007
crossref_primary_10_1246_bcsj_20220058
crossref_primary_10_1016_j_mssp_2023_107350
crossref_primary_10_1016_j_jcis_2017_02_024
crossref_primary_10_1002_ange_201908586
crossref_primary_10_1080_03067319_2018_1495201
crossref_primary_10_1016_j_chemosphere_2020_129420
crossref_primary_10_1039_D1RA01055G
crossref_primary_10_3389_fchem_2019_00708
crossref_primary_10_1016_j_carbpol_2021_118508
crossref_primary_10_2166_wst_2020_350
crossref_primary_10_1016_j_apsoil_2019_103464
crossref_primary_10_1039_C7CP03076B
crossref_primary_10_1007_s00396_018_4345_4
crossref_primary_10_1016_j_jcis_2017_10_092
crossref_primary_10_3389_frcrb_2023_1220021
crossref_primary_10_1016_j_jssc_2019_07_051
crossref_primary_10_1016_j_matchemphys_2018_09_075
crossref_primary_10_1016_j_jhazmat_2019_120914
crossref_primary_10_1016_j_ijhydene_2020_08_001
crossref_primary_10_1016_j_molliq_2015_06_047
crossref_primary_10_1016_j_rineng_2022_100682
crossref_primary_10_1016_j_sab_2021_106267
crossref_primary_10_1515_ract_2023_0160
crossref_primary_10_1039_C6RA01910B
crossref_primary_10_1016_j_cej_2014_01_107
crossref_primary_10_1039_C6RA24184K
crossref_primary_10_1016_j_aca_2020_07_046
crossref_primary_10_1016_j_talanta_2020_121736
crossref_primary_10_1039_D2EW00644H
crossref_primary_10_1016_j_aca_2019_04_066
crossref_primary_10_3390_ijms232315135
crossref_primary_10_1016_j_microc_2024_111112
crossref_primary_10_1016_j_resconrec_2022_106648
crossref_primary_10_1021_acs_jpcc_7b00908
crossref_primary_10_1002_chem_201603766
crossref_primary_10_1016_j_jenvman_2018_10_063
crossref_primary_10_3390_ma16031078
crossref_primary_10_1002_jctb_5601
crossref_primary_10_1007_s00339_021_04734_z
crossref_primary_10_1039_C7QM00210F
crossref_primary_10_1016_j_seppur_2023_124625
crossref_primary_10_1007_s13201_021_01420_6
crossref_primary_10_1002_app_40957
crossref_primary_10_1016_j_scitotenv_2018_06_205
crossref_primary_10_1088_2053_1591_acdecb
crossref_primary_10_1134_S0040579516040436
crossref_primary_10_1016_j_apcatb_2019_118277
crossref_primary_10_2166_wst_2017_045
crossref_primary_10_1016_j_scitotenv_2014_08_077
crossref_primary_10_1039_C4RA02640C
crossref_primary_10_1038_s41467_022_32204_4
crossref_primary_10_1016_j_jece_2017_09_003
crossref_primary_10_1039_C5RA07892J
crossref_primary_10_1016_j_apsusc_2015_10_014
crossref_primary_10_3390_molecules26206163
crossref_primary_10_1016_j_molliq_2017_10_146
crossref_primary_10_1016_j_seppur_2024_128374
crossref_primary_10_1038_s41598_018_30613_4
crossref_primary_10_3389_fchem_2024_1347129
crossref_primary_10_1080_10643389_2017_1342514
crossref_primary_10_1016_j_colsurfa_2014_01_054
crossref_primary_10_1007_s10967_016_4928_9
crossref_primary_10_1016_j_ecoenv_2024_116015
crossref_primary_10_1016_j_jmrt_2020_08_011
crossref_primary_10_1007_s10967_023_08876_7
crossref_primary_10_54097_hset_v73i_14053
crossref_primary_10_1007_s00216_014_8429_9
crossref_primary_10_1016_j_mseb_2016_03_006
crossref_primary_10_1016_j_molliq_2013_09_036
crossref_primary_10_3390_pr10040618
crossref_primary_10_1016_j_envpol_2019_01_050
crossref_primary_10_1080_09593330_2020_1841307
crossref_primary_10_1007_s12598_021_01759_4
crossref_primary_10_1016_j_commatsci_2019_05_038
crossref_primary_10_1039_C6RA23986B
crossref_primary_10_1002_jssc_201800577
crossref_primary_10_1016_j_jiec_2019_01_029
crossref_primary_10_3390_catal10101136
crossref_primary_10_1007_s13399_023_03884_9
crossref_primary_10_1016_j_foodchem_2020_128916
crossref_primary_10_1016_j_carbon_2019_11_086
crossref_primary_10_1016_j_cej_2014_02_006
crossref_primary_10_1016_j_molliq_2017_09_046
crossref_primary_10_1016_j_envres_2022_113720
crossref_primary_10_1016_j_micromeso_2021_111540
crossref_primary_10_1007_s10971_015_3625_4
crossref_primary_10_1039_C6RA15612F
crossref_primary_10_1016_j_jhazmat_2019_05_087
crossref_primary_10_1021_acsestengg_3c00201
crossref_primary_10_1080_14686996_2016_1201413
crossref_primary_10_1021_acsami_8b18033
crossref_primary_10_1016_j_jclepro_2022_132170
crossref_primary_10_1007_s10967_016_4895_1
crossref_primary_10_1016_j_ijpharm_2020_119226
crossref_primary_10_1016_j_jhazmat_2020_123552
crossref_primary_10_1021_acs_iecr_3c03397
crossref_primary_10_1039_C7CP07055A
crossref_primary_10_1016_j_chemosphere_2021_133448
crossref_primary_10_1021_acsami_2c20309
crossref_primary_10_1007_s42247_021_00311_5
crossref_primary_10_1007_s10853_020_04539_0
crossref_primary_10_1016_j_jchromb_2019_06_007
crossref_primary_10_1002_slct_201802211
crossref_primary_10_1016_j_cdc_2020_100627
crossref_primary_10_1016_j_envint_2016_05_001
crossref_primary_10_1016_j_psep_2016_04_002
crossref_primary_10_1002_clen_201800073
crossref_primary_10_1002_slct_201701784
crossref_primary_10_1039_C6CS00921B
crossref_primary_10_1007_s11051_021_05392_1
crossref_primary_10_1016_j_scitotenv_2022_156525
crossref_primary_10_1016_j_carbpol_2020_116348
crossref_primary_10_1016_j_chemosphere_2023_139140
crossref_primary_10_1002_cben_202200015
crossref_primary_10_1038_s41598_021_88747_x
crossref_primary_10_1142_S1793292016500454
crossref_primary_10_3390_ijms24119141
crossref_primary_10_1007_s10311_018_0778_8
crossref_primary_10_1016_j_jtice_2018_01_036
crossref_primary_10_1016_j_electacta_2022_141307
crossref_primary_10_1016_j_sab_2022_106471
crossref_primary_10_1007_s10854_015_3463_8
crossref_primary_10_1021_acs_jced_8b00344
crossref_primary_10_1021_acsnano_0c10093
crossref_primary_10_1016_j_cej_2014_09_057
crossref_primary_10_1016_j_surfcoat_2019_07_060
crossref_primary_10_1007_s11270_023_06666_1
crossref_primary_10_1021_acssuschemeng_9b06918
crossref_primary_10_24012_dumf_639086
crossref_primary_10_1016_j_jpowsour_2021_229958
crossref_primary_10_1016_j_seppur_2021_118550
crossref_primary_10_3390_ma7032242
crossref_primary_10_1021_es401174n
crossref_primary_10_1039_c4dt00063c
crossref_primary_10_1016_j_jmmm_2016_09_128
crossref_primary_10_3390_ma15155392
crossref_primary_10_3390_ma14175008
crossref_primary_10_1080_15685551_2018_1564425
crossref_primary_10_1039_D3TA01918G
crossref_primary_10_3390_nano11030771
crossref_primary_10_1016_j_carbon_2019_11_091
crossref_primary_10_3390_ma17122831
crossref_primary_10_1016_j_colsurfa_2020_125534
crossref_primary_10_1021_acsami_7b07890
crossref_primary_10_1021_am500768g
crossref_primary_10_1007_s11270_022_05770_y
crossref_primary_10_1016_j_jhazmat_2014_03_023
crossref_primary_10_1039_C6RA21432K
crossref_primary_10_1016_j_jiec_2013_12_101
crossref_primary_10_1080_03067319_2019_1617283
crossref_primary_10_1021_acsanm_1c02759
crossref_primary_10_1039_C8QI00242H
crossref_primary_10_1016_j_matchemphys_2021_125356
crossref_primary_10_1016_j_molliq_2014_10_001
crossref_primary_10_1021_acsami_6b08059
crossref_primary_10_1016_j_jhazmat_2018_12_073
crossref_primary_10_3390_w13212960
crossref_primary_10_1021_acsnano_8b07534
crossref_primary_10_1039_D0MA00087F
crossref_primary_10_1002_jssc_201900694
crossref_primary_10_1002_slct_201601765
crossref_primary_10_1016_j_scitotenv_2015_01_068
crossref_primary_10_1016_j_ultsonch_2016_03_020
crossref_primary_10_1039_C6RA06438H
crossref_primary_10_1007_s10853_021_06211_7
crossref_primary_10_1016_j_carbon_2017_01_094
crossref_primary_10_1039_C7NJ01927K
crossref_primary_10_1002_chem_201704515
crossref_primary_10_1016_j_cej_2019_02_119
crossref_primary_10_1007_s12517_022_09790_0
crossref_primary_10_1039_C7RA12999H
crossref_primary_10_1039_C7NR09037D
crossref_primary_10_1007_s00604_019_4069_2
crossref_primary_10_1007_s11696_024_03510_6
crossref_primary_10_1002_adma_202103316
crossref_primary_10_1016_j_susmat_2022_e00406
crossref_primary_10_1002_solr_201900538
crossref_primary_10_1016_j_cej_2016_07_035
crossref_primary_10_1007_s10967_021_07845_2
crossref_primary_10_1039_C5RA09228K
crossref_primary_10_1016_j_sab_2024_106948
crossref_primary_10_1016_j_chemosphere_2021_130489
crossref_primary_10_1380_ejssnt_2018_320
crossref_primary_10_1016_j_snb_2021_129960
crossref_primary_10_1039_C5NR00963D
crossref_primary_10_1016_j_ultsonch_2016_04_030
crossref_primary_10_1134_S0965545X18040119
crossref_primary_10_1016_j_memsci_2022_120863
crossref_primary_10_1039_C6RA18052C
crossref_primary_10_1039_D0RA07836K
crossref_primary_10_1038_s41598_024_65709_7
crossref_primary_10_1021_acs_langmuir_2c02155
crossref_primary_10_20964_2018_08_55
crossref_primary_10_1002_slct_201800221
crossref_primary_10_1002_jctb_6655
crossref_primary_10_1016_j_cej_2019_123335
crossref_primary_10_1016_j_jece_2017_08_047
crossref_primary_10_1016_j_microc_2023_109715
crossref_primary_10_1039_C7NR07966D
crossref_primary_10_1002_adma_201705080
crossref_primary_10_1039_c4py00102h
crossref_primary_10_1007_s13762_023_04902_z
crossref_primary_10_1016_j_cej_2021_129507
crossref_primary_10_1016_j_seppur_2017_07_024
crossref_primary_10_1016_j_surfin_2024_104628
crossref_primary_10_1039_C9EW00625G
crossref_primary_10_1002_pi_6281
crossref_primary_10_1016_j_ccr_2019_213111
crossref_primary_10_1016_j_chroma_2014_08_023
crossref_primary_10_1002_elsc_201700137
crossref_primary_10_1007_s42114_017_0004_3
crossref_primary_10_1016_j_flatc_2018_11_001
crossref_primary_10_1021_acs_chemrev_1c00069
crossref_primary_10_1080_10408347_2015_1034354
crossref_primary_10_1016_j_apsusc_2019_145090
crossref_primary_10_1021_acssensors_9b02367
crossref_primary_10_1016_j_plaphy_2024_108403
crossref_primary_10_1016_j_desal_2024_117412
crossref_primary_10_1016_j_envpol_2021_116861
crossref_primary_10_1016_j_molliq_2020_114344
crossref_primary_10_1039_C8EN00965A
crossref_primary_10_1007_s11434_014_0530_0
crossref_primary_10_1016_j_microc_2018_11_032
crossref_primary_10_1007_s00289_022_04542_2
crossref_primary_10_1002_ajoc_202300186
crossref_primary_10_1016_j_ceramint_2020_04_114
crossref_primary_10_1016_j_scitotenv_2014_09_048
crossref_primary_10_1007_s10967_016_4924_0
crossref_primary_10_1039_C8EN00194D
crossref_primary_10_2166_wst_2017_354
crossref_primary_10_1007_s11837_014_1245_z
crossref_primary_10_1088_1755_1315_61_1_012147
crossref_primary_10_1021_acs_iecr_6b00728
crossref_primary_10_1016_j_surfin_2021_101601
crossref_primary_10_1007_s10967_015_4461_2
crossref_primary_10_3389_fchem_2020_00150
crossref_primary_10_1021_am505740d
crossref_primary_10_1080_09593330_2017_1337236
crossref_primary_10_1021_acsanm_9b02052
crossref_primary_10_1016_j_molliq_2020_114692
crossref_primary_10_1021_acsami_9b11214
crossref_primary_10_1016_j_jhazmat_2019_121980
crossref_primary_10_1039_C5JA00495K
crossref_primary_10_1016_j_carbon_2017_08_079
crossref_primary_10_1016_j_envpol_2020_116378
crossref_primary_10_3390_nano14121037
crossref_primary_10_1016_j_compscitech_2022_109295
crossref_primary_10_1016_j_jhazmat_2021_127898
crossref_primary_10_1002_pen_26839
crossref_primary_10_1016_j_hydromet_2015_10_021
crossref_primary_10_1039_C7NJ01450C
crossref_primary_10_3390_ma16062527
crossref_primary_10_1007_s10853_021_06646_y
crossref_primary_10_3390_molecules27134044
crossref_primary_10_1039_C9EN00274J
crossref_primary_10_1515_ract_2021_1090
crossref_primary_10_3390_w15061121
crossref_primary_10_1016_j_biortech_2020_123520
crossref_primary_10_1021_acsami_5b02209
crossref_primary_10_1016_j_scitotenv_2019_135725
crossref_primary_10_1021_acsnano_6b05179
crossref_primary_10_1039_C3DT52881B
crossref_primary_10_1016_j_jwpe_2019_100815
crossref_primary_10_1016_j_jpcs_2023_111433
crossref_primary_10_5155_eurjchem_13_3_358_368_2251
crossref_primary_10_2147_IJN_S241859
crossref_primary_10_1016_j_carbon_2014_02_032
crossref_primary_10_1016_j_trac_2021_116212
crossref_primary_10_1039_C4RA11271G
crossref_primary_10_1016_j_carbon_2015_03_025
crossref_primary_10_1002_anie_201908586
crossref_primary_10_1016_j_jiec_2018_05_028
crossref_primary_10_1038_s41598_020_58852_4
crossref_primary_10_1016_j_ijbiomac_2019_12_017
crossref_primary_10_1080_01496395_2019_1652651
crossref_primary_10_1002_asia_202000090
crossref_primary_10_1016_j_ijbiomac_2019_06_144
crossref_primary_10_1016_j_watres_2016_12_037
crossref_primary_10_4028_www_scientific_net_AMM_455_7
crossref_primary_10_1021_acsnano_8b09301
crossref_primary_10_1016_j_colsurfa_2014_10_049
crossref_primary_10_1016_j_molliq_2018_05_048
crossref_primary_10_1364_AO_458564
crossref_primary_10_1039_C9RA09470A
crossref_primary_10_1002_cphc_201402279
crossref_primary_10_1002_slct_201801594
crossref_primary_10_1016_j_colsurfa_2015_05_026
crossref_primary_10_1021_acsanm_2c00296
crossref_primary_10_1016_j_jece_2018_01_012
crossref_primary_10_1007_s11356_019_06149_z
crossref_primary_10_1007_s42452_019_0462_z
crossref_primary_10_1021_acs_analchem_5b00283
crossref_primary_10_5802_crchim_183
crossref_primary_10_2139_ssrn_4188552
crossref_primary_10_1016_j_biortech_2017_07_082
crossref_primary_10_1016_j_jenvrad_2016_02_014
crossref_primary_10_1021_am5031215
crossref_primary_10_1088_1757_899X_206_1_012053
crossref_primary_10_3390_app10082726
crossref_primary_10_1016_j_ejar_2018_10_004
crossref_primary_10_1016_j_cej_2017_12_102
crossref_primary_10_1021_acsami_6b16528
crossref_primary_10_1039_C6TA10513K
crossref_primary_10_9767_bcrec_17_3_14288_520_532
crossref_primary_10_1007_s44211_024_00547_1
crossref_primary_10_1007_s10661_016_5226_2
crossref_primary_10_1039_C5AY03169A
crossref_primary_10_1007_s11164_016_2727_0
crossref_primary_10_1007_s11356_020_07978_z
crossref_primary_10_1021_es505590j
crossref_primary_10_1080_10408347_2020_1736505
crossref_primary_10_1080_03067319_2018_1535061
crossref_primary_10_1016_j_jtice_2020_02_015
crossref_primary_10_1039_C5RA07223A
crossref_primary_10_1246_cl_190948
crossref_primary_10_1016_j_cej_2019_123421
crossref_primary_10_1016_j_nanoso_2023_101017
crossref_primary_10_1039_C4TA01815J
crossref_primary_10_1002_smll_202201003
crossref_primary_10_1016_j_msec_2017_02_044
crossref_primary_10_1016_j_jclepro_2019_01_040
crossref_primary_10_1016_j_jece_2017_09_031
crossref_primary_10_1021_acsami_7b12368
crossref_primary_10_1021_acs_jced_8b00637
crossref_primary_10_1007_s10924_017_0958_9
crossref_primary_10_1016_j_envint_2019_03_029
crossref_primary_10_1021_acs_jced_8b00887
crossref_primary_10_1016_j_ijhydene_2024_03_371
crossref_primary_10_3390_w12020444
crossref_primary_10_1016_j_diamond_2023_110039
crossref_primary_10_1016_j_jes_2021_08_041
crossref_primary_10_1016_j_apsusc_2018_11_240
crossref_primary_10_1016_j_cej_2017_07_067
crossref_primary_10_1002_jctb_6362
crossref_primary_10_1016_j_talanta_2016_03_022
crossref_primary_10_1016_j_jcis_2021_05_071
crossref_primary_10_1088_1361_6528_ab3991
crossref_primary_10_1007_s11661_020_05805_1
crossref_primary_10_3390_separations10030152
crossref_primary_10_1016_j_carbpol_2018_12_068
crossref_primary_10_1016_j_matchemphys_2020_124019
crossref_primary_10_1039_C6RA05255J
crossref_primary_10_1016_j_chemosphere_2023_140419
crossref_primary_10_1039_D1CP01734A
crossref_primary_10_1061__ASCE_EE_1943_7870_0001156
crossref_primary_10_1016_j_jes_2017_01_008
crossref_primary_10_1016_j_egypro_2014_06_016
crossref_primary_10_1016_j_matchemphys_2020_123298
crossref_primary_10_3390_w14172718
crossref_primary_10_1016_j_matchemphys_2015_07_023
crossref_primary_10_1039_C9JA00081J
crossref_primary_10_1016_j_cis_2013_12_005
crossref_primary_10_1016_j_molliq_2020_112461
crossref_primary_10_1016_j_psep_2018_02_010
Cites_doi 10.1016/S0008-6223(03)00392-0
10.1016/j.trac.2012.03.011
10.1021/nn1006368
10.1021/jp208575m
10.1002/smll.201002009
10.1016/j.aca.2011.12.007
10.1021/ja01539a017
10.1021/am301358b
10.1021/cr3000412
10.1039/c2dt00054g
10.1021/ja02268a002
10.1021/jp2052618
10.1016/0008-6223(95)00120-3
10.1021/la801744a
10.1021/es203439v
10.1039/c2jm00145d
10.1021/nn900227d
10.1039/c1cc00005e
10.1016/j.cej.2012.06.077
10.1002/smll.201102635
10.1039/c1dt11005e
10.1016/S0032-9592(98)00112-5
10.1016/S0009-2614(98)00144-4
10.1016/j.pmatsci.2012.03.002
10.1021/ja076473o
10.1021/es300720f
10.1016/j.jhazmat.2010.07.117
10.1016/j.jhazmat.2007.10.059
10.1007/s10853-012-6294-5
10.1002/adma.201202321
10.1039/c2ay05650j
10.1039/c2ra21623j
10.1016/j.jscs.2012.10.004
10.1016/j.jcis.2010.07.042
10.1016/j.talanta.2012.02.051
10.1016/j.mseb.2010.01.029
10.1016/S0008-6223(02)00037-4
10.1021/am201645g
10.1002/smll.201002352
10.1021/am2004202
10.1002/smll.201101396
10.1039/c0an00590h
10.1016/S1369-7021(12)70044-5
10.1016/S0040-6090(02)00030-5
10.1039/c1nr10549c
10.3938/jkps.57.1649
10.1021/ja02242a004
10.1016/j.trac.2012.03.016
10.1016/j.jhazmat.2009.01.050
10.1016/j.talanta.2011.08.030
10.1021/nn1008897
10.1016/j.matlet.2009.11.016
10.1016/j.jhazmat.2007.10.010
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
7TV
C1K
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/c3dt33097d
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Pollution Abstracts
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Pollution Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Pollution Abstracts
Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 5689
ExternalDocumentID 10_1039_c3dt33097d
23443993
c3dt33097d
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29F
2WC
4.4
53G
5GY
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
NPM
O9-
R7B
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UPT
VH6
VQA
WH7
XOL
0UZ
186
3EH
6TJ
705
71~
9M8
AAYXX
ACHDF
AHGXI
ANLMG
ASPBG
AVWKF
BBWZM
CAG
CITATION
COF
EEHRC
F20
FEDTE
HVGLF
H~9
IDY
L-8
NDZJH
R56
RCLXC
XJT
ZCG
7X8
7TV
C1K
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c508t-2f2cdbbacaa5f7cdf0b8bab4d8a22018257321886a8b7dff37cc0d2d55a231b3
ISSN 1477-9226
IngestDate Thu Oct 24 23:27:29 EDT 2024
Fri Aug 16 22:25:11 EDT 2024
Sat Oct 05 05:39:08 EDT 2024
Fri Aug 23 03:37:10 EDT 2024
Tue Aug 27 13:44:51 EDT 2024
Thu May 19 04:23:54 EDT 2016
Sat Jun 01 02:30:10 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c508t-2f2cdbbacaa5f7cdf0b8bab4d8a22018257321886a8b7dff37cc0d2d55a231b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23443993
PQID 1321335388
PQPubID 23479
PageCount 8
ParticipantIDs rsc_primary_c3dt33097d
pubmed_primary_23443993
proquest_miscellaneous_1730102751
proquest_miscellaneous_1321335388
crossref_primary_10_1039_c3dt33097d
proquest_miscellaneous_1349452757
PublicationCentury 2000
PublicationDate 2013-04-28
PublicationDateYYYYMMDD 2013-04-28
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-28
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationTitleAlternate Dalton Trans
PublicationYear 2013
References Huang (c3dt33097d-(cit8)/*[position()=1]) 2012; 8
Shao (c3dt33097d-(cit13)/*[position()=1]) 2012; 47
Luo (c3dt33097d-(cit6)/*[position()=1]) 2012; 8
Madadrang (c3dt33097d-(cit22)/*[position()=1]) 2012; 4
Liu (c3dt33097d-(cit24)/*[position()=1]) 2012; 93
Xu (c3dt33097d-(cit45)/*[position()=1]) 2008; 154
Hummers (c3dt33097d-(cit11)/*[position()=1]) 1958; 80
Huang (c3dt33097d-(cit1)/*[position()=1]) 2011; 7
Kuila (c3dt33097d-(cit57)/*[position()=1]) 2012; 57
Jeong (c3dt33097d-(cit38)/*[position()=1]) 2008; 130
Zhang (c3dt33097d-(cit33)/*[position()=1]) 2011; 86
Chandra (c3dt33097d-(cit29)/*[position()=1]) 2011; 47
Ju (c3dt33097d-(cit36)/*[position()=1]) 2010; 57
Georgakilas (c3dt33097d-(cit9)/*[position()=1]) 2012; 112
Gao (c3dt33097d-(cit53)/*[position()=1]) 2009; 167
Kodama (c3dt33097d-(cit41)/*[position()=1]) 2002; 407
Ma (c3dt33097d-(cit27)/*[position()=1]) 2012; 22
Liu (c3dt33097d-(cit25)/*[position()=1]) 2011; 115
Freundlich (c3dt33097d-(cit49)/*[position()=1]) 1906; 57
Sitko (c3dt33097d-(cit18)/*[position()=1]) 2012; 37
Li (c3dt33097d-(cit4)/*[position()=1]) 2012; 31
Marcano (c3dt33097d-(cit12)/*[position()=1]) 2010; 4
He (c3dt33097d-(cit14)/*[position()=1]) 1998; 287
Brownson (c3dt33097d-(cit5)/*[position()=1]) 2010; 135
Sun (c3dt33097d-(cit20)/*[position()=1]) 2012; 46
Langmuir (c3dt33097d-(cit47)/*[position()=1]) 1916; 38
Hontoria-Lucas (c3dt33097d-(cit15)/*[position()=1]) 1995; 33
Acik (c3dt33097d-(cit40)/*[position()=1]) 2011; 115
Avouris (c3dt33097d-(cit2)/*[position()=1]) 2012; 15
Yang (c3dt33097d-(cit16)/*[position()=1]) 2010; 351
Yu (c3dt33097d-(cit42)/*[position()=1]) 2011; 3
Langmuir (c3dt33097d-(cit48)/*[position()=1]) 1918; 40
Guo (c3dt33097d-(cit39)/*[position()=1]) 2009; 3
Ju (c3dt33097d-(cit37)/*[position()=1]) 2010; 64
Zhao (c3dt33097d-(cit21)/*[position()=1]) 2012; 41
Wang (c3dt33097d-(cit35)/*[position()=1])
Lagergren (c3dt33097d-(cit54)/*[position()=1]) 1898; 24
Zhu (c3dt33097d-(cit7)/*[position()=1]) 2012; 24
Ho (c3dt33097d-(cit55)/*[position()=1]) 1999; 34
Wang (c3dt33097d-(cit34)/*[position()=1]) 2012; 716
Hameed (c3dt33097d-(cit50)/*[position()=1]) 2008; 154
Deng (c3dt33097d-(cit28)/*[position()=1]) 2010; 183
Chandra (c3dt33097d-(cit26)/*[position()=1]) 2010; 4
Chandra (c3dt33097d-(cit10)/*[position()=1]) 2010; 167
Jabeen (c3dt33097d-(cit30)/*[position()=1]) 2011; 3
Jiang (c3dt33097d-(cit3)/*[position()=1]) 2011; 7
Zhao (c3dt33097d-(cit19)/*[position()=1]) 2011; 45
Sheng (c3dt33097d-(cit23)/*[position()=1]) 2012; 2
Zhao (c3dt33097d-(cit17)/*[position()=1]) 2011; 40
Dastgheib (c3dt33097d-(cit51)/*[position()=1]) 2002; 40
Liu (c3dt33097d-(cit31)/*[position()=1]) 2012; 37
Li (c3dt33097d-(cit58)/*[position()=1]) 2012; 4
Li (c3dt33097d-(cit52)/*[position()=1]) 2003; 41
Chang (c3dt33097d-(cit32)/*[position()=1]) 2012; 4
Depci (c3dt33097d-(cit43)/*[position()=1]) 2012; 200–202
Parades (c3dt33097d-(cit56)/*[position()=1]) 2008; 24
References_xml – issn: 1999
  publication-title: Lange's handbook of chemistry
  doi: Dean
– volume: 41
  start-page: 2787
  year: 2003
  ident: c3dt33097d-(cit52)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/S0008-6223(03)00392-0
  contributor:
    fullname: Li
– volume: 37
  start-page: 1
  year: 2012
  ident: c3dt33097d-(cit31)/*[position()=1]
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2012.03.011
  contributor:
    fullname: Liu
– volume: 4
  start-page: 4806
  year: 2010
  ident: c3dt33097d-(cit12)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn1006368
  contributor:
    fullname: Marcano
– volume: 115
  start-page: 25234
  year: 2011
  ident: c3dt33097d-(cit25)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp208575m
  contributor:
    fullname: Liu
– volume: 7
  start-page: 1876
  year: 2011
  ident: c3dt33097d-(cit1)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201002009
  contributor:
    fullname: Huang
– volume: 716
  start-page: 112
  year: 2012
  ident: c3dt33097d-(cit34)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2011.12.007
  contributor:
    fullname: Wang
– volume: 80
  start-page: 1339
  year: 1958
  ident: c3dt33097d-(cit11)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01539a017
  contributor:
    fullname: Hummers
– volume: 4
  start-page: 4991
  year: 2012
  ident: c3dt33097d-(cit58)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am301358b
  contributor:
    fullname: Li
– volume: 112
  start-page: 6156
  year: 2012
  ident: c3dt33097d-(cit9)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr3000412
  contributor:
    fullname: Georgakilas
– volume: 41
  start-page: 6182
  year: 2012
  ident: c3dt33097d-(cit21)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt00054g
  contributor:
    fullname: Zhao
– volume: 38
  start-page: 2221
  year: 1916
  ident: c3dt33097d-(cit47)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja02268a002
  contributor:
    fullname: Langmuir
– volume: 115
  start-page: 19761
  year: 2011
  ident: c3dt33097d-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2052618
  contributor:
    fullname: Acik
– volume: 33
  start-page: 1585
  year: 1995
  ident: c3dt33097d-(cit15)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/0008-6223(95)00120-3
  contributor:
    fullname: Hontoria-Lucas
– volume: 24
  start-page: 10560
  year: 2008
  ident: c3dt33097d-(cit56)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la801744a
  contributor:
    fullname: Parades
– volume: 45
  start-page: 10454
  year: 2011
  ident: c3dt33097d-(cit19)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es203439v
  contributor:
    fullname: Zhao
– volume: 22
  start-page: 5914
  year: 2012
  ident: c3dt33097d-(cit27)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm00145d
  contributor:
    fullname: Ma
– volume: 3
  start-page: 2653
  year: 2009
  ident: c3dt33097d-(cit39)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn900227d
  contributor:
    fullname: Guo
– volume: 24
  start-page: 1
  year: 1898
  ident: c3dt33097d-(cit54)/*[position()=1]
  publication-title: Vetenskapsakad. Handle.
  contributor:
    fullname: Lagergren
– volume: 47
  start-page: 3942
  year: 2011
  ident: c3dt33097d-(cit29)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc00005e
  contributor:
    fullname: Chandra
– volume: 200–202
  start-page: 224
  year: 2012
  ident: c3dt33097d-(cit43)/*[position()=1]
  publication-title: Chem.–Eng. J.
  doi: 10.1016/j.cej.2012.06.077
  contributor:
    fullname: Depci
– volume: 8
  start-page: 1805
  year: 2012
  ident: c3dt33097d-(cit8)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201102635
  contributor:
    fullname: Huang
– volume: 31
  start-page: 57
  year: 2012
  ident: c3dt33097d-(cit4)/*[position()=1]
  publication-title: Rev. Anal. Chem.
  contributor:
    fullname: Li
– volume: 40
  start-page: 10945
  year: 2011
  ident: c3dt33097d-(cit17)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c1dt11005e
  contributor:
    fullname: Zhao
– volume: 34
  start-page: 451
  year: 1999
  ident: c3dt33097d-(cit55)/*[position()=1]
  publication-title: Process Biochem.
  doi: 10.1016/S0032-9592(98)00112-5
  contributor:
    fullname: Ho
– volume: 287
  start-page: 53
  year: 1998
  ident: c3dt33097d-(cit14)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(98)00144-4
  contributor:
    fullname: He
– volume: 57
  start-page: 1061
  year: 2012
  ident: c3dt33097d-(cit57)/*[position()=1]
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2012.03.002
  contributor:
    fullname: Kuila
– volume: 130
  start-page: 1362
  year: 2008
  ident: c3dt33097d-(cit38)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja076473o
  contributor:
    fullname: Jeong
– volume: 46
  start-page: 6020
  year: 2012
  ident: c3dt33097d-(cit20)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300720f
  contributor:
    fullname: Sun
– volume: 183
  start-page: 923
  year: 2010
  ident: c3dt33097d-(cit28)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.07.117
  contributor:
    fullname: Deng
– volume: 154
  start-page: 407
  year: 2008
  ident: c3dt33097d-(cit45)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.10.059
  contributor:
    fullname: Xu
– volume: 47
  start-page: 4400
  year: 2012
  ident: c3dt33097d-(cit13)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-012-6294-5
  contributor:
    fullname: Shao
– volume: 24
  start-page: 4924
  year: 2012
  ident: c3dt33097d-(cit7)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202321
  contributor:
    fullname: Zhu
– volume: 57
  start-page: 385
  year: 1906
  ident: c3dt33097d-(cit49)/*[position()=1]
  publication-title: Z. Phys. Chem.
  contributor:
    fullname: Freundlich
– volume: 4
  start-page: 1110
  year: 2012
  ident: c3dt33097d-(cit32)/*[position()=1]
  publication-title: Anal. Methods
  doi: 10.1039/c2ay05650j
  contributor:
    fullname: Chang
– volume: 2
  start-page: 12400
  year: 2012
  ident: c3dt33097d-(cit23)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c2ra21623j
  contributor:
    fullname: Sheng
– ident: c3dt33097d-(cit35)/*[position()=1]
  publication-title: J. Saudi Chem. Soc.
  doi: 10.1016/j.jscs.2012.10.004
  contributor:
    fullname: Wang
– volume: 351
  start-page: 122
  year: 2010
  ident: c3dt33097d-(cit16)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2010.07.042
  contributor:
    fullname: Yang
– volume: 93
  start-page: 350
  year: 2012
  ident: c3dt33097d-(cit24)/*[position()=1]
  publication-title: Talanta
  doi: 10.1016/j.talanta.2012.02.051
  contributor:
    fullname: Liu
– volume: 167
  start-page: 133
  year: 2010
  ident: c3dt33097d-(cit10)/*[position()=1]
  publication-title: Mater. Sci. Eng., B
  doi: 10.1016/j.mseb.2010.01.029
  contributor:
    fullname: Chandra
– volume: 40
  start-page: 1843
  year: 2002
  ident: c3dt33097d-(cit51)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/S0008-6223(02)00037-4
  contributor:
    fullname: Dastgheib
– volume: 4
  start-page: 1186
  year: 2012
  ident: c3dt33097d-(cit22)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am201645g
  contributor:
    fullname: Madadrang
– volume: 7
  start-page: 2413
  year: 2011
  ident: c3dt33097d-(cit3)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201002352
  contributor:
    fullname: Jiang
– volume: 3
  start-page: 2585
  year: 2011
  ident: c3dt33097d-(cit42)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am2004202
  contributor:
    fullname: Yu
– volume: 8
  start-page: 630
  year: 2012
  ident: c3dt33097d-(cit6)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201101396
  contributor:
    fullname: Luo
– volume: 135
  start-page: 2768
  year: 2010
  ident: c3dt33097d-(cit5)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/c0an00590h
  contributor:
    fullname: Brownson
– volume: 15
  start-page: 86
  year: 2012
  ident: c3dt33097d-(cit2)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(12)70044-5
  contributor:
    fullname: Avouris
– volume: 407
  start-page: 151
  year: 2002
  ident: c3dt33097d-(cit41)/*[position()=1]
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(02)00030-5
  contributor:
    fullname: Kodama
– volume: 3
  start-page: 3583
  year: 2011
  ident: c3dt33097d-(cit30)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c1nr10549c
  contributor:
    fullname: Jabeen
– volume: 57
  start-page: 1649
  year: 2010
  ident: c3dt33097d-(cit36)/*[position()=1]
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.57.1649
  contributor:
    fullname: Ju
– volume: 40
  start-page: 1361
  year: 1918
  ident: c3dt33097d-(cit48)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja02242a004
  contributor:
    fullname: Langmuir
– volume: 37
  start-page: 22
  year: 2012
  ident: c3dt33097d-(cit18)/*[position()=1]
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2012.03.016
  contributor:
    fullname: Sitko
– volume: 167
  start-page: 357
  year: 2009
  ident: c3dt33097d-(cit53)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.01.050
  contributor:
    fullname: Gao
– volume: 86
  start-page: 114
  year: 2011
  ident: c3dt33097d-(cit33)/*[position()=1]
  publication-title: Talanta
  doi: 10.1016/j.talanta.2011.08.030
  contributor:
    fullname: Zhang
– volume: 4
  start-page: 3979
  year: 2010
  ident: c3dt33097d-(cit26)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn1008897
  contributor:
    fullname: Chandra
– volume: 64
  start-page: 357
  year: 2010
  ident: c3dt33097d-(cit37)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2009.11.016
  contributor:
    fullname: Ju
– volume: 154
  start-page: 204
  year: 2008
  ident: c3dt33097d-(cit50)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.10.010
  contributor:
    fullname: Hameed
SSID ssj0022052
Score 2.642562
Snippet The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the...
SourceID proquest
crossref
pubmed
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5682
SubjectTerms Adsorption
Chemisorption
Graphene
Metal ions
Nanostructure
Scanning electron microscopy
Surface chemistry
X-ray photoelectron spectroscopy
Title Adsorption of divalent metal ions from aqueous solutions using graphene oxide
URI https://www.ncbi.nlm.nih.gov/pubmed/23443993
https://search.proquest.com/docview/1321335388
https://search.proquest.com/docview/1349452757
https://search.proquest.com/docview/1730102751
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAXxGuhy0NGcKsCqR0n8bFaulpQu0goK1VcIj9iqVrRVm2qhT3x0xk7cZKKarVwiVInsiaer_PyeAah9yIGH0GnPEgNiYOIcQp3aRxQKkahBoesEDYOObuIzy-jL3M27_V-d7KWdqX8oG4Oniv5H67CGPDVnpL9B842k8IA3AN_4QochuudeDzW29Vm7W0-vYC57db-j8KecHQZbu70iADZbzNdG2KGOxchcMWqQdYNVz8Xei8l6JOwzaZt_wjfTHzrYgdi6epLtCHEvcITVYcoNVS-iVwTvlmUVy4k-00Y0Unp2BSVLNa_ykY7fBfXi-1N1RC6EO34DBwGdeXGJ9eiG6ywjSMif_i7kq-R3TEmpK5-3R2rY5q1UI5IF3xdEcviqltRra7hJz-oCkJqK6kqqktKQ57oVuH5Tf6Lr_nZ5XSaZ5N5dg8dkYQz1kdH40n2edo47SR0XZsawn2JW8o_tnPvGzV_eSpgt2x8Pxlnt2SP0MPa4cDjCj2PUa9YPkH3Tz2LnqJZiyK8MtijCDsUYct6bFGEaxThBkXYoQh7FGGHomcoO5tkp-dB3WQjUGCblwExRGkphRKCmURpE8pUChnpVMC3g_fJEgpmYBqLVCbaGJooFWqiGRPgGkh6jPrL1bJ4gXBaaJMmWqtYy4gYycESlyKWvFCF4ZEeoHd-kfJ1VUoldykQlOftUg7QW79-OSyE3b4SS_t5-QjooBQUdHrbOxGPGElYcss7VqnZ3frRAD2vGNTQAyi0DjodoGPgWDPcJe_k8IN8rc3JHeh6iR60f4xXqF9udsVrsGtL-aaG3h8616pU
link.rule.ids 315,786,790,27955,27956
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+of+divalent+metal+ions+from+aqueous+solutions+using+graphene+oxide&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Sitko%2C+Rafal&rft.au=Turek%2C+Edyta&rft.au=Zawisza%2C+Beata&rft.au=Malicka%2C+Ewa&rft.date=2013-04-28&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=42&rft.issue=16&rft.spage=5682&rft.epage=5689&rft_id=info:doi/10.1039%2Fc3dt33097d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon