Adsorption of divalent metal ions from aqueous solutions using graphene oxide
The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray pho...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 42; no. 16; pp. 5682 - 5689 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
28.04.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FT-IR). The results of batch experiments and measurements by flame atomic absorption spectrometry (F-AAS) indicate that maximum adsorption can be achieved in broad pH ranges: 3-7 for Cu(
ii
), 5-8 for Zn(
ii
), 4-8 for Cd(
ii
), 3-7 for Pb(
ii
). The maximum adsorption capacities of Cu(
ii
), Zn(
ii
), Cd(
ii
) and Pb(
ii
) on GO at pH = 5 are 294, 345, 530, 1119 mg g
−1
, respectively. The competitive adsorption experiments showed the affinity in the order of Pb(
ii
) > Cu(
ii
) > Cd(
ii
) > Zn(
ii
). Adsorption isotherms and kinetic studies suggest that sorption of metal ions on GO nanosheets is monolayer coverage and adsorption is controlled by chemical adsorption involving the strong surface complexation of metal ions with the oxygen-containing groups on the surface of GO. Chemisorption was confirmed by XPS (binding energy and shape of O1s and C1s peaks) of GO with adsorbed metal ions. The adsorption experiments show that the dispersibility of GO in water changes remarkably after complexation of metal ions. After adsorption, the tendency to agglomerate and precipitate is observed. Excellent dispersibility of GO and strong tendency of GO-Me(
ii
) to precipitate open the path to removal of heavy metals from water solution. Potential application of GO in analytical chemistry as a solid sorbent for preconcentration of trace elements and in heavy metal ion pollution cleanup results from its maximum adsorption capacities that are much higher than those of any of the currently reported sorbents.
The adsorptive properties of graphene oxide towards divalent metal ions (copper, zinc, cadmium and lead) have been investigated. |
---|---|
AbstractList | The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FT-IR). The results of batch experiments and measurements by flame atomic absorption spectrometry (F-AAS) indicate that maximum adsorption can be achieved in broad pH ranges: 3-7 for Cu(ii), 5-8 for Zn(ii), 4-8 for Cd(ii), 3-7 for Pb(ii). The maximum adsorption capacities of Cu(ii), Zn(ii), Cd(ii) and Pb(ii) on GO at pH = 5 are 294, 345, 530, 1119 mg g super(-1), respectively. The competitive adsorption experiments showed the affinity in the order of Pb(ii) > Cu(ii) >> Cd(ii) > Zn(ii). Adsorption isotherms and kinetic studies suggest that sorption of metal ions on GO nanosheets is monolayer coverage and adsorption is controlled by chemical adsorption involving the strong surface complexation of metal ions with the oxygen-containing groups on the surface of GO. Chemisorption was confirmed by XPS (binding energy and shape of O1s and C1s peaks) of GO with adsorbed metal ions. The adsorption experiments show that the dispersibility of GO in water changes remarkably after complexation of metal ions. After adsorption, the tendency to agglomerate and precipitate is observed. Excellent dispersibility of GO and strong tendency of GO-Me(ii) to precipitate open the path to removal of heavy metals from water solution. Potential application of GO in analytical chemistry as a solid sorbent for preconcentration of trace elements and in heavy metal ion pollution cleanup results from its maximum adsorption capacities that are much higher than those of any of the currently reported sorbents. The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FT-IR). The results of batch experiments and measurements by flame atomic absorption spectrometry (F-AAS) indicate that maximum adsorption can be achieved in broad pH ranges: 3-7 for Cu(II), 5-8 for Zn(II), 4-8 for Cd(II), 3-7 for Pb(II). The maximum adsorption capacities of Cu(II), Zn(II), Cd(II) and Pb(II) on GO at pH = 5 are 294, 345, 530, 1119 mg g(-1), respectively. The competitive adsorption experiments showed the affinity in the order of Pb(II) > Cu(II) ≫ Cd(II) > Zn(II). Adsorption isotherms and kinetic studies suggest that sorption of metal ions on GO nanosheets is monolayer coverage and adsorption is controlled by chemical adsorption involving the strong surface complexation of metal ions with the oxygen-containing groups on the surface of GO. Chemisorption was confirmed by XPS (binding energy and shape of O1s and C1s peaks) of GO with adsorbed metal ions. The adsorption experiments show that the dispersibility of GO in water changes remarkably after complexation of metal ions. After adsorption, the tendency to agglomerate and precipitate is observed. Excellent dispersibility of GO and strong tendency of GO-Me(II) to precipitate open the path to removal of heavy metals from water solution. Potential application of GO in analytical chemistry as a solid sorbent for preconcentration of trace elements and in heavy metal ion pollution cleanup results from its maximum adsorption capacities that are much higher than those of any of the currently reported sorbents. The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FT-IR). The results of batch experiments and measurements by flame atomic absorption spectrometry (F-AAS) indicate that maximum adsorption can be achieved in broad pH ranges: 3-7 for Cu( ii ), 5-8 for Zn( ii ), 4-8 for Cd( ii ), 3-7 for Pb( ii ). The maximum adsorption capacities of Cu( ii ), Zn( ii ), Cd( ii ) and Pb( ii ) on GO at pH = 5 are 294, 345, 530, 1119 mg g −1 , respectively. The competitive adsorption experiments showed the affinity in the order of Pb( ii ) > Cu( ii ) > Cd( ii ) > Zn( ii ). Adsorption isotherms and kinetic studies suggest that sorption of metal ions on GO nanosheets is monolayer coverage and adsorption is controlled by chemical adsorption involving the strong surface complexation of metal ions with the oxygen-containing groups on the surface of GO. Chemisorption was confirmed by XPS (binding energy and shape of O1s and C1s peaks) of GO with adsorbed metal ions. The adsorption experiments show that the dispersibility of GO in water changes remarkably after complexation of metal ions. After adsorption, the tendency to agglomerate and precipitate is observed. Excellent dispersibility of GO and strong tendency of GO-Me( ii ) to precipitate open the path to removal of heavy metals from water solution. Potential application of GO in analytical chemistry as a solid sorbent for preconcentration of trace elements and in heavy metal ion pollution cleanup results from its maximum adsorption capacities that are much higher than those of any of the currently reported sorbents. The adsorptive properties of graphene oxide towards divalent metal ions (copper, zinc, cadmium and lead) have been investigated. The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FT-IR). The results of batch experiments and measurements by flame atomic absorption spectrometry (F-AAS) indicate that maximum adsorption can be achieved in broad pH ranges: 3-7 for Cu(II), 5-8 for Zn(II), 4-8 for Cd(II), 3-7 for Pb(II). The maximum adsorption capacities of Cu(II), Zn(II), Cd(II) and Pb(II) on GO at pH = 5 are 294, 345, 530, 1119 mg g(-1), respectively. The competitive adsorption experiments showed the affinity in the order of Pb(II) > Cu(II) ≫ Cd(II) > Zn(II). Adsorption isotherms and kinetic studies suggest that sorption of metal ions on GO nanosheets is monolayer coverage and adsorption is controlled by chemical adsorption involving the strong surface complexation of metal ions with the oxygen-containing groups on the surface of GO. Chemisorption was confirmed by XPS (binding energy and shape of O1s and C1s peaks) of GO with adsorbed metal ions. The adsorption experiments show that the dispersibility of GO in water changes remarkably after complexation of metal ions. After adsorption, the tendency to agglomerate and precipitate is observed. Excellent dispersibility of GO and strong tendency of GO-Me(II) to precipitate open the path to removal of heavy metals from water solution. Potential application of GO in analytical chemistry as a solid sorbent for preconcentration of trace elements and in heavy metal ion pollution cleanup results from its maximum adsorption capacities that are much higher than those of any of the currently reported sorbents. |
Author | Heimann, Jan Sitko, Rafal Wrzalik, Roman Turek, Edyta Malicka, Ewa Feist, Barbara Talik, Ewa Zawisza, Beata Gagor, Anna |
AuthorAffiliation | Institute of Physics Institute of Chemistry University of Silesia Polish Academy of Sciences Institute of Low Temperature and Structure Research |
AuthorAffiliation_xml | – name: Institute of Low Temperature and Structure Research – name: Institute of Chemistry – name: Institute of Physics – name: Polish Academy of Sciences – name: University of Silesia |
Author_xml | – sequence: 1 givenname: Rafal surname: Sitko fullname: Sitko, Rafal – sequence: 2 givenname: Edyta surname: Turek fullname: Turek, Edyta – sequence: 3 givenname: Beata surname: Zawisza fullname: Zawisza, Beata – sequence: 4 givenname: Ewa surname: Malicka fullname: Malicka, Ewa – sequence: 5 givenname: Ewa surname: Talik fullname: Talik, Ewa – sequence: 6 givenname: Jan surname: Heimann fullname: Heimann, Jan – sequence: 7 givenname: Anna surname: Gagor fullname: Gagor, Anna – sequence: 8 givenname: Barbara surname: Feist fullname: Feist, Barbara – sequence: 9 givenname: Roman surname: Wrzalik fullname: Wrzalik, Roman |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23443993$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtLxDAUhYMoPkY37pW4E6Ga5DaTdDmILxhx476keWilbWrSiv57M46OuFFX93LOx-HA2UHrne8sQvuUnFICxZkGMwCQQpg1tE1zIbKCQb6--tl0C-3E-EQIY4SzTbSV7ByKArbR7cxEH_qh9h32Dpv6RTW2G3BrB9XgpEbsgm-xeh6tHyOOvhmHD3mMdfeAH4LqH21nsX-tjd1FG0410e593gm6v7y4P7_O5ndXN-ezeaY5kUPGHNOmqpRWijuhjSOVrFSVG6lSQyoZF8ColFMlK2GcA6E1McxwrhjQCiboeBnbB596xaFs66ht06huUbKkAgglTHD6Nwp5kfOEin-gjAJwkDKhJ0tUBx9jsK7sQ92q8FZSUi42Kb83SfDhZ-5Ytdas0K8REnCwBELUK_dHwNFvftkbB--z4p7r |
CitedBy_id | crossref_primary_10_2174_1570179418666210113162124 crossref_primary_10_1039_C9ME00156E crossref_primary_10_1080_02670844_2019_1693753 crossref_primary_10_1016_j_apcatb_2018_03_070 crossref_primary_10_1016_j_envpol_2019_05_050 crossref_primary_10_1039_C5RA04545B crossref_primary_10_1007_s11814_019_0306_y crossref_primary_10_1016_j_pce_2018_08_002 crossref_primary_10_1039_C4RA13333A crossref_primary_10_1039_C6NJ03202H crossref_primary_10_1016_j_jiec_2020_07_015 crossref_primary_10_1016_j_envpol_2017_10_082 crossref_primary_10_1080_09593330_2017_1371797 crossref_primary_10_3390_w14233972 crossref_primary_10_1016_j_cej_2016_09_139 crossref_primary_10_1016_j_carbon_2018_04_032 crossref_primary_10_1016_j_seppur_2019_116278 crossref_primary_10_1039_D1NA00435B crossref_primary_10_1016_j_seppur_2022_122847 crossref_primary_10_1016_j_cej_2019_123730 crossref_primary_10_1080_01932691_2020_1773848 crossref_primary_10_1007_s00216_017_0211_3 crossref_primary_10_1016_j_chemosphere_2021_131969 crossref_primary_10_1016_j_memsci_2023_121727 crossref_primary_10_1016_j_apsusc_2016_01_176 crossref_primary_10_1016_j_cclet_2015_10_018 crossref_primary_10_3390_ijerph17186911 crossref_primary_10_1016_j_jece_2017_06_029 crossref_primary_10_1007_s10853_020_04651_1 crossref_primary_10_1016_j_cclet_2020_05_011 crossref_primary_10_25046_aj060102 crossref_primary_10_1038_s41377_021_00603_9 crossref_primary_10_3390_catal13121469 crossref_primary_10_1016_j_cej_2016_09_122 crossref_primary_10_1016_j_aca_2014_05_014 crossref_primary_10_3390_nano10061022 crossref_primary_10_3390_ijms23126517 crossref_primary_10_1016_j_jwpe_2023_104658 crossref_primary_10_3390_molecules29102342 crossref_primary_10_1016_j_micromeso_2022_112344 crossref_primary_10_1016_j_seppur_2022_122957 crossref_primary_10_1016_j_jes_2018_11_023 crossref_primary_10_1016_j_microc_2017_02_011 crossref_primary_10_1002_adsu_202200039 crossref_primary_10_1039_C6RA15364J crossref_primary_10_1016_j_foodchem_2019_125751 crossref_primary_10_1039_C4RA09175B crossref_primary_10_1039_c3ay41451e crossref_primary_10_1002_cplu_201402284 crossref_primary_10_1039_C9TA02935D crossref_primary_10_1016_j_scitotenv_2019_134222 crossref_primary_10_1039_C8RA00823J crossref_primary_10_54370_ordubtd_1339985 crossref_primary_10_1007_s13201_022_01588_5 crossref_primary_10_1021_la504077x crossref_primary_10_1016_j_jhazmat_2016_02_012 crossref_primary_10_1039_C7NJ03877A crossref_primary_10_1016_j_jallcom_2020_153855 crossref_primary_10_1016_j_jenvman_2021_113443 crossref_primary_10_1021_acsami_7b08232 crossref_primary_10_7567_JJAP_57_04FP04 crossref_primary_10_1039_C8TA01622D crossref_primary_10_1002_adma_201704609 crossref_primary_10_1039_C5RA23900A crossref_primary_10_1016_j_radphyschem_2023_111312 crossref_primary_10_3390_s18051496 crossref_primary_10_1080_19443994_2015_1005150 crossref_primary_10_1007_s11356_020_11202_3 crossref_primary_10_1016_j_apsadv_2023_100431 crossref_primary_10_1016_j_seppur_2022_122851 crossref_primary_10_1039_C4RA12441C crossref_primary_10_1016_j_chemosphere_2021_129884 crossref_primary_10_1016_j_colsurfa_2021_126216 crossref_primary_10_1039_C7EN01258F crossref_primary_10_1016_j_talanta_2018_08_044 crossref_primary_10_1039_C8RA02264J crossref_primary_10_3389_fmats_2022_909534 crossref_primary_10_1016_j_jwpe_2021_101961 crossref_primary_10_1016_j_scitotenv_2023_164288 crossref_primary_10_1039_C5RA13620B crossref_primary_10_1016_j_jclepro_2018_08_002 crossref_primary_10_1016_j_diamond_2024_110826 crossref_primary_10_1016_j_microc_2018_04_003 crossref_primary_10_1021_acsanm_8b00275 crossref_primary_10_1021_acssuschemeng_7b00867 crossref_primary_10_1016_j_jece_2023_110070 crossref_primary_10_1002_slct_202000537 crossref_primary_10_1007_s41204_024_00373_w crossref_primary_10_1021_acssuschemeng_8b03428 crossref_primary_10_1016_j_bcab_2019_101398 crossref_primary_10_1016_j_chemosphere_2017_03_071 crossref_primary_10_1007_s00339_018_1816_x crossref_primary_10_1080_01496395_2017_1328443 crossref_primary_10_3390_min11010015 crossref_primary_10_1016_j_cej_2015_02_066 crossref_primary_10_1016_j_jics_2021_100188 crossref_primary_10_1080_1536383X_2019_1671363 crossref_primary_10_1016_j_apsusc_2024_160064 crossref_primary_10_1016_j_est_2019_101165 crossref_primary_10_1080_03067319_2014_983437 crossref_primary_10_1016_j_ijpharm_2020_119919 crossref_primary_10_1007_s11356_020_07890_6 crossref_primary_10_1016_j_ijbiomac_2020_11_079 crossref_primary_10_1016_j_jhazmat_2023_132722 crossref_primary_10_1016_j_ijbiomac_2016_10_084 crossref_primary_10_1155_2022_7385541 crossref_primary_10_1016_j_foodchem_2023_136777 crossref_primary_10_1021_am402615m crossref_primary_10_1016_j_clce_2022_100045 crossref_primary_10_1038_srep28924 crossref_primary_10_1039_D2AN00531J crossref_primary_10_1016_j_arabjc_2018_03_021 crossref_primary_10_1016_j_seppur_2020_117606 crossref_primary_10_1016_j_seppur_2018_01_061 crossref_primary_10_1039_C5NJ03140K crossref_primary_10_1016_j_jwpe_2020_101404 crossref_primary_10_1016_j_apsusc_2021_150254 crossref_primary_10_1002_admi_201801094 crossref_primary_10_1016_j_cartre_2022_100196 crossref_primary_10_1016_j_microc_2024_109924 crossref_primary_10_7868_S2308112018040028 crossref_primary_10_2139_ssrn_4200016 crossref_primary_10_1016_j_ceramint_2021_11_018 crossref_primary_10_1002_aelm_201900040 crossref_primary_10_1016_j_aquatox_2020_105579 crossref_primary_10_1016_j_cej_2020_128106 crossref_primary_10_3390_su15118815 crossref_primary_10_1016_j_carbon_2018_05_018 crossref_primary_10_1021_acs_est_4c00812 crossref_primary_10_1016_j_jece_2019_103463 crossref_primary_10_1016_j_molliq_2022_120821 crossref_primary_10_1080_17435390_2018_1458342 crossref_primary_10_1021_acsami_8b19971 crossref_primary_10_1039_C9NR07116D crossref_primary_10_1016_j_chemosphere_2022_137467 crossref_primary_10_1016_j_cej_2018_04_212 crossref_primary_10_1016_j_radphyschem_2019_108395 crossref_primary_10_3390_ma15103657 crossref_primary_10_3390_biomimetics8020167 crossref_primary_10_7498_aps_71_20211315 crossref_primary_10_1016_j_jphotochem_2024_115686 crossref_primary_10_1016_j_biombioe_2021_106197 crossref_primary_10_1016_j_chemosphere_2021_131760 crossref_primary_10_1016_j_jece_2015_10_038 crossref_primary_10_3390_catal7120391 crossref_primary_10_1016_j_molliq_2024_124438 crossref_primary_10_20964_2021_10_19 crossref_primary_10_1016_j_cej_2016_02_015 crossref_primary_10_1061__ASCE_EE_1943_7870_0001551 crossref_primary_10_1016_j_gsd_2017_06_006 crossref_primary_10_1016_j_jenvman_2021_112024 crossref_primary_10_1007_s13762_021_03464_2 crossref_primary_10_1088_1755_1315_68_1_012003 crossref_primary_10_1016_j_cej_2018_03_114 crossref_primary_10_1080_17435390_2017_1398357 crossref_primary_10_1007_s13762_021_03610_w crossref_primary_10_1016_j_cej_2016_08_053 crossref_primary_10_1016_j_jcis_2021_01_021 crossref_primary_10_1016_j_jhazmat_2022_129589 crossref_primary_10_1016_j_jhazmat_2021_125825 crossref_primary_10_1016_j_tet_2015_07_035 crossref_primary_10_1063_5_0093261 crossref_primary_10_3390_ma13071537 crossref_primary_10_1016_j_envpol_2021_118256 crossref_primary_10_1080_03067319_2019_1607318 crossref_primary_10_1016_j_jece_2021_106212 crossref_primary_10_1016_j_carbon_2023_02_047 crossref_primary_10_1016_j_molliq_2017_01_064 crossref_primary_10_1016_j_trac_2013_05_011 crossref_primary_10_1007_s00604_015_1738_7 crossref_primary_10_37015_AUDT_2022_210030 crossref_primary_10_1002_tcr_202000153 crossref_primary_10_1039_C6RA04415H crossref_primary_10_3390_ijerph15071454 crossref_primary_10_1016_j_jhazmat_2015_09_028 crossref_primary_10_1007_s12034_020_2060_5 crossref_primary_10_1021_acsami_7b06358 crossref_primary_10_15407_hftp09_04_417 crossref_primary_10_1007_s00604_015_1629_y crossref_primary_10_3390_membranes11070481 crossref_primary_10_1007_s11356_019_06160_4 crossref_primary_10_1016_j_enmm_2022_100679 crossref_primary_10_1039_C6RA07151A crossref_primary_10_1002_slct_202401504 crossref_primary_10_1002_ep_12974 crossref_primary_10_1016_j_colsurfa_2018_06_034 crossref_primary_10_1021_acssuschemeng_8b05138 crossref_primary_10_1016_j_seppur_2024_126355 crossref_primary_10_1007_s10853_020_04474_0 crossref_primary_10_1016_j_powtec_2017_12_003 crossref_primary_10_1080_10584587_2015_1035597 crossref_primary_10_1016_j_colsurfa_2022_129610 crossref_primary_10_1039_D3NJ00666B crossref_primary_10_13168_cs_2020_0040 crossref_primary_10_1016_j_chemosphere_2020_126008 crossref_primary_10_1038_s41598_018_35656_1 crossref_primary_10_1002_adfm_201904603 crossref_primary_10_1016_j_cej_2019_05_108 crossref_primary_10_1016_j_inoche_2021_108603 crossref_primary_10_1016_j_jwpe_2019_101009 crossref_primary_10_1155_2015_836287 crossref_primary_10_1007_s13738_023_02882_y crossref_primary_10_1016_j_cherd_2018_09_028 crossref_primary_10_1016_j_hydromet_2022_105911 crossref_primary_10_1039_D3NA01042B crossref_primary_10_1080_10408347_2019_1653165 crossref_primary_10_1007_s11356_023_28018_6 crossref_primary_10_1016_j_seppur_2022_120604 crossref_primary_10_1016_j_apsusc_2021_150503 crossref_primary_10_1016_j_carbpol_2021_117622 crossref_primary_10_1007_s10971_017_4313_3 crossref_primary_10_1016_j_jcis_2018_05_044 crossref_primary_10_1016_j_ultsonch_2020_104962 crossref_primary_10_1080_09276440_2016_1169707 crossref_primary_10_1039_C7RA12087G crossref_primary_10_1016_j_carbon_2020_08_059 crossref_primary_10_1016_j_ijhydene_2019_09_082 crossref_primary_10_1016_j_jhazmat_2022_129337 crossref_primary_10_2139_ssrn_4103331 crossref_primary_10_1002_app_45306 crossref_primary_10_2166_wst_2023_179 crossref_primary_10_1021_acsaem_0c01722 crossref_primary_10_1002_chem_201806309 crossref_primary_10_1016_j_porgcoat_2020_105547 crossref_primary_10_1080_15226514_2019_1647405 crossref_primary_10_1016_j_cej_2014_07_034 crossref_primary_10_1016_j_carbpol_2021_117731 crossref_primary_10_1039_D0MA00060D crossref_primary_10_1016_j_cjche_2015_08_031 crossref_primary_10_1021_acs_iecr_0c00403 crossref_primary_10_1002_er_8654 crossref_primary_10_1007_s10853_016_9913_8 crossref_primary_10_3934_ctr_2021001 crossref_primary_10_1016_j_chemosphere_2020_128005 crossref_primary_10_1016_j_microc_2019_03_013 crossref_primary_10_1007_s13762_020_02813_x crossref_primary_10_3390_molecules27175637 crossref_primary_10_3390_nano12234159 crossref_primary_10_1007_s11356_022_22715_4 crossref_primary_10_1016_j_jallcom_2020_154280 crossref_primary_10_1021_acsanm_0c01916 crossref_primary_10_1002_cben_202100003 crossref_primary_10_3390_nano13162277 crossref_primary_10_1016_j_jtice_2018_03_045 crossref_primary_10_1016_j_cej_2015_08_139 crossref_primary_10_1016_j_ultsonch_2017_03_039 crossref_primary_10_1016_j_carbon_2014_05_032 crossref_primary_10_1039_D3NJ05918A crossref_primary_10_2166_wst_2015_124 crossref_primary_10_1007_s10311_020_01001_0 crossref_primary_10_1039_C4TA02983F crossref_primary_10_1039_C8CS00417J crossref_primary_10_1021_acs_iecr_9b00576 crossref_primary_10_2166_aqua_2015_102 crossref_primary_10_1007_s11356_023_29374_z crossref_primary_10_1039_C6EN00297H crossref_primary_10_3390_catal11070760 crossref_primary_10_1016_j_apsusc_2014_04_083 crossref_primary_10_1016_j_cej_2015_08_144 crossref_primary_10_1007_s11270_017_3589_9 crossref_primary_10_1016_j_carbon_2020_06_004 crossref_primary_10_1002_app_50065 crossref_primary_10_1007_s10661_015_4378_9 crossref_primary_10_1016_j_enmm_2021_100578 crossref_primary_10_1002_chem_202000223 crossref_primary_10_1002_aenm_201903833 crossref_primary_10_1016_j_aca_2017_09_008 crossref_primary_10_1016_j_chemosphere_2019_05_076 crossref_primary_10_1039_C5TA08106H crossref_primary_10_1002_cssc_201300990 crossref_primary_10_1016_j_jtice_2016_08_008 crossref_primary_10_1039_C4RA08862J crossref_primary_10_1016_j_jiec_2019_01_019 crossref_primary_10_1088_2053_1591_aae03b crossref_primary_10_3390_app9142925 crossref_primary_10_1016_j_chemosphere_2019_02_017 crossref_primary_10_1016_j_jwpe_2020_101249 crossref_primary_10_1016_j_envres_2017_12_025 crossref_primary_10_1016_j_nanoen_2016_06_042 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000400 crossref_primary_10_1039_D4GC01870B crossref_primary_10_1016_j_envpol_2019_06_109 crossref_primary_10_1016_j_molliq_2015_11_022 crossref_primary_10_1021_acsnano_9b00144 crossref_primary_10_3390_w15244259 crossref_primary_10_1002_aenm_202001471 crossref_primary_10_1002_advs_201800235 crossref_primary_10_1016_j_seppur_2021_118483 crossref_primary_10_1016_j_seppur_2019_115956 crossref_primary_10_1016_j_jece_2017_05_055 crossref_primary_10_1016_j_seppur_2021_119450 crossref_primary_10_1016_j_enmm_2023_100843 crossref_primary_10_1021_acs_est_6b02934 crossref_primary_10_1016_j_carbon_2016_09_035 crossref_primary_10_1021_acs_jpcc_6b08088 crossref_primary_10_1039_D1NR02255E crossref_primary_10_1016_j_envadv_2023_100402 crossref_primary_10_1021_am503997e crossref_primary_10_1039_C5CS00021A crossref_primary_10_1515_ract_2016_2722 crossref_primary_10_1039_C7EN00366H crossref_primary_10_1007_s13206_021_00029_w crossref_primary_10_1007_s11356_018_2749_9 crossref_primary_10_1016_j_cis_2021_102360 crossref_primary_10_1016_j_desal_2023_116772 crossref_primary_10_3390_su10103547 crossref_primary_10_1016_j_apmt_2020_100766 crossref_primary_10_13005_msri_200107 crossref_primary_10_1016_j_scitotenv_2018_03_036 crossref_primary_10_1016_j_electacta_2017_03_187 crossref_primary_10_1371_journal_pone_0143819 crossref_primary_10_1016_j_carbon_2023_118122 crossref_primary_10_1039_D0RA03057K crossref_primary_10_1016_j_surfin_2019_04_007 crossref_primary_10_1246_bcsj_20220058 crossref_primary_10_1016_j_mssp_2023_107350 crossref_primary_10_1016_j_jcis_2017_02_024 crossref_primary_10_1002_ange_201908586 crossref_primary_10_1080_03067319_2018_1495201 crossref_primary_10_1016_j_chemosphere_2020_129420 crossref_primary_10_1039_D1RA01055G crossref_primary_10_3389_fchem_2019_00708 crossref_primary_10_1016_j_carbpol_2021_118508 crossref_primary_10_2166_wst_2020_350 crossref_primary_10_1016_j_apsoil_2019_103464 crossref_primary_10_1039_C7CP03076B crossref_primary_10_1007_s00396_018_4345_4 crossref_primary_10_1016_j_jcis_2017_10_092 crossref_primary_10_3389_frcrb_2023_1220021 crossref_primary_10_1016_j_jssc_2019_07_051 crossref_primary_10_1016_j_matchemphys_2018_09_075 crossref_primary_10_1016_j_jhazmat_2019_120914 crossref_primary_10_1016_j_ijhydene_2020_08_001 crossref_primary_10_1016_j_molliq_2015_06_047 crossref_primary_10_1016_j_rineng_2022_100682 crossref_primary_10_1016_j_sab_2021_106267 crossref_primary_10_1515_ract_2023_0160 crossref_primary_10_1039_C6RA01910B crossref_primary_10_1016_j_cej_2014_01_107 crossref_primary_10_1039_C6RA24184K crossref_primary_10_1016_j_aca_2020_07_046 crossref_primary_10_1016_j_talanta_2020_121736 crossref_primary_10_1039_D2EW00644H crossref_primary_10_1016_j_aca_2019_04_066 crossref_primary_10_3390_ijms232315135 crossref_primary_10_1016_j_microc_2024_111112 crossref_primary_10_1016_j_resconrec_2022_106648 crossref_primary_10_1021_acs_jpcc_7b00908 crossref_primary_10_1002_chem_201603766 crossref_primary_10_1016_j_jenvman_2018_10_063 crossref_primary_10_3390_ma16031078 crossref_primary_10_1002_jctb_5601 crossref_primary_10_1007_s00339_021_04734_z crossref_primary_10_1039_C7QM00210F crossref_primary_10_1016_j_seppur_2023_124625 crossref_primary_10_1007_s13201_021_01420_6 crossref_primary_10_1002_app_40957 crossref_primary_10_1016_j_scitotenv_2018_06_205 crossref_primary_10_1088_2053_1591_acdecb crossref_primary_10_1134_S0040579516040436 crossref_primary_10_1016_j_apcatb_2019_118277 crossref_primary_10_2166_wst_2017_045 crossref_primary_10_1016_j_scitotenv_2014_08_077 crossref_primary_10_1039_C4RA02640C crossref_primary_10_1038_s41467_022_32204_4 crossref_primary_10_1016_j_jece_2017_09_003 crossref_primary_10_1039_C5RA07892J crossref_primary_10_1016_j_apsusc_2015_10_014 crossref_primary_10_3390_molecules26206163 crossref_primary_10_1016_j_molliq_2017_10_146 crossref_primary_10_1016_j_seppur_2024_128374 crossref_primary_10_1038_s41598_018_30613_4 crossref_primary_10_3389_fchem_2024_1347129 crossref_primary_10_1080_10643389_2017_1342514 crossref_primary_10_1016_j_colsurfa_2014_01_054 crossref_primary_10_1007_s10967_016_4928_9 crossref_primary_10_1016_j_ecoenv_2024_116015 crossref_primary_10_1016_j_jmrt_2020_08_011 crossref_primary_10_1007_s10967_023_08876_7 crossref_primary_10_54097_hset_v73i_14053 crossref_primary_10_1007_s00216_014_8429_9 crossref_primary_10_1016_j_mseb_2016_03_006 crossref_primary_10_1016_j_molliq_2013_09_036 crossref_primary_10_3390_pr10040618 crossref_primary_10_1016_j_envpol_2019_01_050 crossref_primary_10_1080_09593330_2020_1841307 crossref_primary_10_1007_s12598_021_01759_4 crossref_primary_10_1016_j_commatsci_2019_05_038 crossref_primary_10_1039_C6RA23986B crossref_primary_10_1002_jssc_201800577 crossref_primary_10_1016_j_jiec_2019_01_029 crossref_primary_10_3390_catal10101136 crossref_primary_10_1007_s13399_023_03884_9 crossref_primary_10_1016_j_foodchem_2020_128916 crossref_primary_10_1016_j_carbon_2019_11_086 crossref_primary_10_1016_j_cej_2014_02_006 crossref_primary_10_1016_j_molliq_2017_09_046 crossref_primary_10_1016_j_envres_2022_113720 crossref_primary_10_1016_j_micromeso_2021_111540 crossref_primary_10_1007_s10971_015_3625_4 crossref_primary_10_1039_C6RA15612F crossref_primary_10_1016_j_jhazmat_2019_05_087 crossref_primary_10_1021_acsestengg_3c00201 crossref_primary_10_1080_14686996_2016_1201413 crossref_primary_10_1021_acsami_8b18033 crossref_primary_10_1016_j_jclepro_2022_132170 crossref_primary_10_1007_s10967_016_4895_1 crossref_primary_10_1016_j_ijpharm_2020_119226 crossref_primary_10_1016_j_jhazmat_2020_123552 crossref_primary_10_1021_acs_iecr_3c03397 crossref_primary_10_1039_C7CP07055A crossref_primary_10_1016_j_chemosphere_2021_133448 crossref_primary_10_1021_acsami_2c20309 crossref_primary_10_1007_s42247_021_00311_5 crossref_primary_10_1007_s10853_020_04539_0 crossref_primary_10_1016_j_jchromb_2019_06_007 crossref_primary_10_1002_slct_201802211 crossref_primary_10_1016_j_cdc_2020_100627 crossref_primary_10_1016_j_envint_2016_05_001 crossref_primary_10_1016_j_psep_2016_04_002 crossref_primary_10_1002_clen_201800073 crossref_primary_10_1002_slct_201701784 crossref_primary_10_1039_C6CS00921B crossref_primary_10_1007_s11051_021_05392_1 crossref_primary_10_1016_j_scitotenv_2022_156525 crossref_primary_10_1016_j_carbpol_2020_116348 crossref_primary_10_1016_j_chemosphere_2023_139140 crossref_primary_10_1002_cben_202200015 crossref_primary_10_1038_s41598_021_88747_x crossref_primary_10_1142_S1793292016500454 crossref_primary_10_3390_ijms24119141 crossref_primary_10_1007_s10311_018_0778_8 crossref_primary_10_1016_j_jtice_2018_01_036 crossref_primary_10_1016_j_electacta_2022_141307 crossref_primary_10_1016_j_sab_2022_106471 crossref_primary_10_1007_s10854_015_3463_8 crossref_primary_10_1021_acs_jced_8b00344 crossref_primary_10_1021_acsnano_0c10093 crossref_primary_10_1016_j_cej_2014_09_057 crossref_primary_10_1016_j_surfcoat_2019_07_060 crossref_primary_10_1007_s11270_023_06666_1 crossref_primary_10_1021_acssuschemeng_9b06918 crossref_primary_10_24012_dumf_639086 crossref_primary_10_1016_j_jpowsour_2021_229958 crossref_primary_10_1016_j_seppur_2021_118550 crossref_primary_10_3390_ma7032242 crossref_primary_10_1021_es401174n crossref_primary_10_1039_c4dt00063c crossref_primary_10_1016_j_jmmm_2016_09_128 crossref_primary_10_3390_ma15155392 crossref_primary_10_3390_ma14175008 crossref_primary_10_1080_15685551_2018_1564425 crossref_primary_10_1039_D3TA01918G crossref_primary_10_3390_nano11030771 crossref_primary_10_1016_j_carbon_2019_11_091 crossref_primary_10_3390_ma17122831 crossref_primary_10_1016_j_colsurfa_2020_125534 crossref_primary_10_1021_acsami_7b07890 crossref_primary_10_1021_am500768g crossref_primary_10_1007_s11270_022_05770_y crossref_primary_10_1016_j_jhazmat_2014_03_023 crossref_primary_10_1039_C6RA21432K crossref_primary_10_1016_j_jiec_2013_12_101 crossref_primary_10_1080_03067319_2019_1617283 crossref_primary_10_1021_acsanm_1c02759 crossref_primary_10_1039_C8QI00242H crossref_primary_10_1016_j_matchemphys_2021_125356 crossref_primary_10_1016_j_molliq_2014_10_001 crossref_primary_10_1021_acsami_6b08059 crossref_primary_10_1016_j_jhazmat_2018_12_073 crossref_primary_10_3390_w13212960 crossref_primary_10_1021_acsnano_8b07534 crossref_primary_10_1039_D0MA00087F crossref_primary_10_1002_jssc_201900694 crossref_primary_10_1002_slct_201601765 crossref_primary_10_1016_j_scitotenv_2015_01_068 crossref_primary_10_1016_j_ultsonch_2016_03_020 crossref_primary_10_1039_C6RA06438H crossref_primary_10_1007_s10853_021_06211_7 crossref_primary_10_1016_j_carbon_2017_01_094 crossref_primary_10_1039_C7NJ01927K crossref_primary_10_1002_chem_201704515 crossref_primary_10_1016_j_cej_2019_02_119 crossref_primary_10_1007_s12517_022_09790_0 crossref_primary_10_1039_C7RA12999H crossref_primary_10_1039_C7NR09037D crossref_primary_10_1007_s00604_019_4069_2 crossref_primary_10_1007_s11696_024_03510_6 crossref_primary_10_1002_adma_202103316 crossref_primary_10_1016_j_susmat_2022_e00406 crossref_primary_10_1002_solr_201900538 crossref_primary_10_1016_j_cej_2016_07_035 crossref_primary_10_1007_s10967_021_07845_2 crossref_primary_10_1039_C5RA09228K crossref_primary_10_1016_j_sab_2024_106948 crossref_primary_10_1016_j_chemosphere_2021_130489 crossref_primary_10_1380_ejssnt_2018_320 crossref_primary_10_1016_j_snb_2021_129960 crossref_primary_10_1039_C5NR00963D crossref_primary_10_1016_j_ultsonch_2016_04_030 crossref_primary_10_1134_S0965545X18040119 crossref_primary_10_1016_j_memsci_2022_120863 crossref_primary_10_1039_C6RA18052C crossref_primary_10_1039_D0RA07836K crossref_primary_10_1038_s41598_024_65709_7 crossref_primary_10_1021_acs_langmuir_2c02155 crossref_primary_10_20964_2018_08_55 crossref_primary_10_1002_slct_201800221 crossref_primary_10_1002_jctb_6655 crossref_primary_10_1016_j_cej_2019_123335 crossref_primary_10_1016_j_jece_2017_08_047 crossref_primary_10_1016_j_microc_2023_109715 crossref_primary_10_1039_C7NR07966D crossref_primary_10_1002_adma_201705080 crossref_primary_10_1039_c4py00102h crossref_primary_10_1007_s13762_023_04902_z crossref_primary_10_1016_j_cej_2021_129507 crossref_primary_10_1016_j_seppur_2017_07_024 crossref_primary_10_1016_j_surfin_2024_104628 crossref_primary_10_1039_C9EW00625G crossref_primary_10_1002_pi_6281 crossref_primary_10_1016_j_ccr_2019_213111 crossref_primary_10_1016_j_chroma_2014_08_023 crossref_primary_10_1002_elsc_201700137 crossref_primary_10_1007_s42114_017_0004_3 crossref_primary_10_1016_j_flatc_2018_11_001 crossref_primary_10_1021_acs_chemrev_1c00069 crossref_primary_10_1080_10408347_2015_1034354 crossref_primary_10_1016_j_apsusc_2019_145090 crossref_primary_10_1021_acssensors_9b02367 crossref_primary_10_1016_j_plaphy_2024_108403 crossref_primary_10_1016_j_desal_2024_117412 crossref_primary_10_1016_j_envpol_2021_116861 crossref_primary_10_1016_j_molliq_2020_114344 crossref_primary_10_1039_C8EN00965A crossref_primary_10_1007_s11434_014_0530_0 crossref_primary_10_1016_j_microc_2018_11_032 crossref_primary_10_1007_s00289_022_04542_2 crossref_primary_10_1002_ajoc_202300186 crossref_primary_10_1016_j_ceramint_2020_04_114 crossref_primary_10_1016_j_scitotenv_2014_09_048 crossref_primary_10_1007_s10967_016_4924_0 crossref_primary_10_1039_C8EN00194D crossref_primary_10_2166_wst_2017_354 crossref_primary_10_1007_s11837_014_1245_z crossref_primary_10_1088_1755_1315_61_1_012147 crossref_primary_10_1021_acs_iecr_6b00728 crossref_primary_10_1016_j_surfin_2021_101601 crossref_primary_10_1007_s10967_015_4461_2 crossref_primary_10_3389_fchem_2020_00150 crossref_primary_10_1021_am505740d crossref_primary_10_1080_09593330_2017_1337236 crossref_primary_10_1021_acsanm_9b02052 crossref_primary_10_1016_j_molliq_2020_114692 crossref_primary_10_1021_acsami_9b11214 crossref_primary_10_1016_j_jhazmat_2019_121980 crossref_primary_10_1039_C5JA00495K crossref_primary_10_1016_j_carbon_2017_08_079 crossref_primary_10_1016_j_envpol_2020_116378 crossref_primary_10_3390_nano14121037 crossref_primary_10_1016_j_compscitech_2022_109295 crossref_primary_10_1016_j_jhazmat_2021_127898 crossref_primary_10_1002_pen_26839 crossref_primary_10_1016_j_hydromet_2015_10_021 crossref_primary_10_1039_C7NJ01450C crossref_primary_10_3390_ma16062527 crossref_primary_10_1007_s10853_021_06646_y crossref_primary_10_3390_molecules27134044 crossref_primary_10_1039_C9EN00274J crossref_primary_10_1515_ract_2021_1090 crossref_primary_10_3390_w15061121 crossref_primary_10_1016_j_biortech_2020_123520 crossref_primary_10_1021_acsami_5b02209 crossref_primary_10_1016_j_scitotenv_2019_135725 crossref_primary_10_1021_acsnano_6b05179 crossref_primary_10_1039_C3DT52881B crossref_primary_10_1016_j_jwpe_2019_100815 crossref_primary_10_1016_j_jpcs_2023_111433 crossref_primary_10_5155_eurjchem_13_3_358_368_2251 crossref_primary_10_2147_IJN_S241859 crossref_primary_10_1016_j_carbon_2014_02_032 crossref_primary_10_1016_j_trac_2021_116212 crossref_primary_10_1039_C4RA11271G crossref_primary_10_1016_j_carbon_2015_03_025 crossref_primary_10_1002_anie_201908586 crossref_primary_10_1016_j_jiec_2018_05_028 crossref_primary_10_1038_s41598_020_58852_4 crossref_primary_10_1016_j_ijbiomac_2019_12_017 crossref_primary_10_1080_01496395_2019_1652651 crossref_primary_10_1002_asia_202000090 crossref_primary_10_1016_j_ijbiomac_2019_06_144 crossref_primary_10_1016_j_watres_2016_12_037 crossref_primary_10_4028_www_scientific_net_AMM_455_7 crossref_primary_10_1021_acsnano_8b09301 crossref_primary_10_1016_j_colsurfa_2014_10_049 crossref_primary_10_1016_j_molliq_2018_05_048 crossref_primary_10_1364_AO_458564 crossref_primary_10_1039_C9RA09470A crossref_primary_10_1002_cphc_201402279 crossref_primary_10_1002_slct_201801594 crossref_primary_10_1016_j_colsurfa_2015_05_026 crossref_primary_10_1021_acsanm_2c00296 crossref_primary_10_1016_j_jece_2018_01_012 crossref_primary_10_1007_s11356_019_06149_z crossref_primary_10_1007_s42452_019_0462_z crossref_primary_10_1021_acs_analchem_5b00283 crossref_primary_10_5802_crchim_183 crossref_primary_10_2139_ssrn_4188552 crossref_primary_10_1016_j_biortech_2017_07_082 crossref_primary_10_1016_j_jenvrad_2016_02_014 crossref_primary_10_1021_am5031215 crossref_primary_10_1088_1757_899X_206_1_012053 crossref_primary_10_3390_app10082726 crossref_primary_10_1016_j_ejar_2018_10_004 crossref_primary_10_1016_j_cej_2017_12_102 crossref_primary_10_1021_acsami_6b16528 crossref_primary_10_1039_C6TA10513K crossref_primary_10_9767_bcrec_17_3_14288_520_532 crossref_primary_10_1007_s44211_024_00547_1 crossref_primary_10_1007_s10661_016_5226_2 crossref_primary_10_1039_C5AY03169A crossref_primary_10_1007_s11164_016_2727_0 crossref_primary_10_1007_s11356_020_07978_z crossref_primary_10_1021_es505590j crossref_primary_10_1080_10408347_2020_1736505 crossref_primary_10_1080_03067319_2018_1535061 crossref_primary_10_1016_j_jtice_2020_02_015 crossref_primary_10_1039_C5RA07223A crossref_primary_10_1246_cl_190948 crossref_primary_10_1016_j_cej_2019_123421 crossref_primary_10_1016_j_nanoso_2023_101017 crossref_primary_10_1039_C4TA01815J crossref_primary_10_1002_smll_202201003 crossref_primary_10_1016_j_msec_2017_02_044 crossref_primary_10_1016_j_jclepro_2019_01_040 crossref_primary_10_1016_j_jece_2017_09_031 crossref_primary_10_1021_acsami_7b12368 crossref_primary_10_1021_acs_jced_8b00637 crossref_primary_10_1007_s10924_017_0958_9 crossref_primary_10_1016_j_envint_2019_03_029 crossref_primary_10_1021_acs_jced_8b00887 crossref_primary_10_1016_j_ijhydene_2024_03_371 crossref_primary_10_3390_w12020444 crossref_primary_10_1016_j_diamond_2023_110039 crossref_primary_10_1016_j_jes_2021_08_041 crossref_primary_10_1016_j_apsusc_2018_11_240 crossref_primary_10_1016_j_cej_2017_07_067 crossref_primary_10_1002_jctb_6362 crossref_primary_10_1016_j_talanta_2016_03_022 crossref_primary_10_1016_j_jcis_2021_05_071 crossref_primary_10_1088_1361_6528_ab3991 crossref_primary_10_1007_s11661_020_05805_1 crossref_primary_10_3390_separations10030152 crossref_primary_10_1016_j_carbpol_2018_12_068 crossref_primary_10_1016_j_matchemphys_2020_124019 crossref_primary_10_1039_C6RA05255J crossref_primary_10_1016_j_chemosphere_2023_140419 crossref_primary_10_1039_D1CP01734A crossref_primary_10_1061__ASCE_EE_1943_7870_0001156 crossref_primary_10_1016_j_jes_2017_01_008 crossref_primary_10_1016_j_egypro_2014_06_016 crossref_primary_10_1016_j_matchemphys_2020_123298 crossref_primary_10_3390_w14172718 crossref_primary_10_1016_j_matchemphys_2015_07_023 crossref_primary_10_1039_C9JA00081J crossref_primary_10_1016_j_cis_2013_12_005 crossref_primary_10_1016_j_molliq_2020_112461 crossref_primary_10_1016_j_psep_2018_02_010 |
Cites_doi | 10.1016/S0008-6223(03)00392-0 10.1016/j.trac.2012.03.011 10.1021/nn1006368 10.1021/jp208575m 10.1002/smll.201002009 10.1016/j.aca.2011.12.007 10.1021/ja01539a017 10.1021/am301358b 10.1021/cr3000412 10.1039/c2dt00054g 10.1021/ja02268a002 10.1021/jp2052618 10.1016/0008-6223(95)00120-3 10.1021/la801744a 10.1021/es203439v 10.1039/c2jm00145d 10.1021/nn900227d 10.1039/c1cc00005e 10.1016/j.cej.2012.06.077 10.1002/smll.201102635 10.1039/c1dt11005e 10.1016/S0032-9592(98)00112-5 10.1016/S0009-2614(98)00144-4 10.1016/j.pmatsci.2012.03.002 10.1021/ja076473o 10.1021/es300720f 10.1016/j.jhazmat.2010.07.117 10.1016/j.jhazmat.2007.10.059 10.1007/s10853-012-6294-5 10.1002/adma.201202321 10.1039/c2ay05650j 10.1039/c2ra21623j 10.1016/j.jscs.2012.10.004 10.1016/j.jcis.2010.07.042 10.1016/j.talanta.2012.02.051 10.1016/j.mseb.2010.01.029 10.1016/S0008-6223(02)00037-4 10.1021/am201645g 10.1002/smll.201002352 10.1021/am2004202 10.1002/smll.201101396 10.1039/c0an00590h 10.1016/S1369-7021(12)70044-5 10.1016/S0040-6090(02)00030-5 10.1039/c1nr10549c 10.3938/jkps.57.1649 10.1021/ja02242a004 10.1016/j.trac.2012.03.016 10.1016/j.jhazmat.2009.01.050 10.1016/j.talanta.2011.08.030 10.1021/nn1008897 10.1016/j.matlet.2009.11.016 10.1016/j.jhazmat.2007.10.010 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 7TV C1K 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/c3dt33097d |
DatabaseName | PubMed CrossRef MEDLINE - Academic Pollution Abstracts Environmental Sciences and Pollution Management Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic Pollution Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Pollution Abstracts Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 5689 |
ExternalDocumentID | 10_1039_c3dt33097d 23443993 c3dt33097d |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29F 2WC 4.4 53G 5GY 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3H J3I M4U NPM O9- R7B R7C RAOCF RCNCU RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UPT VH6 VQA WH7 XOL 0UZ 186 3EH 6TJ 705 71~ 9M8 AAYXX ACHDF AHGXI ANLMG ASPBG AVWKF BBWZM CAG CITATION COF EEHRC F20 FEDTE HVGLF H~9 IDY L-8 NDZJH R56 RCLXC XJT ZCG 7X8 7TV C1K 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c508t-2f2cdbbacaa5f7cdf0b8bab4d8a22018257321886a8b7dff37cc0d2d55a231b3 |
ISSN | 1477-9226 |
IngestDate | Thu Oct 24 23:27:29 EDT 2024 Fri Aug 16 22:25:11 EDT 2024 Sat Oct 05 05:39:08 EDT 2024 Fri Aug 23 03:37:10 EDT 2024 Tue Aug 27 13:44:51 EDT 2024 Thu May 19 04:23:54 EDT 2016 Sat Jun 01 02:30:10 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c508t-2f2cdbbacaa5f7cdf0b8bab4d8a22018257321886a8b7dff37cc0d2d55a231b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23443993 |
PQID | 1321335388 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | rsc_primary_c3dt33097d pubmed_primary_23443993 proquest_miscellaneous_1730102751 proquest_miscellaneous_1321335388 crossref_primary_10_1039_c3dt33097d proquest_miscellaneous_1349452757 |
PublicationCentury | 2000 |
PublicationDate | 2013-04-28 |
PublicationDateYYYYMMDD | 2013-04-28 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationTitleAlternate | Dalton Trans |
PublicationYear | 2013 |
References | Huang (c3dt33097d-(cit8)/*[position()=1]) 2012; 8 Shao (c3dt33097d-(cit13)/*[position()=1]) 2012; 47 Luo (c3dt33097d-(cit6)/*[position()=1]) 2012; 8 Madadrang (c3dt33097d-(cit22)/*[position()=1]) 2012; 4 Liu (c3dt33097d-(cit24)/*[position()=1]) 2012; 93 Xu (c3dt33097d-(cit45)/*[position()=1]) 2008; 154 Hummers (c3dt33097d-(cit11)/*[position()=1]) 1958; 80 Huang (c3dt33097d-(cit1)/*[position()=1]) 2011; 7 Kuila (c3dt33097d-(cit57)/*[position()=1]) 2012; 57 Jeong (c3dt33097d-(cit38)/*[position()=1]) 2008; 130 Zhang (c3dt33097d-(cit33)/*[position()=1]) 2011; 86 Chandra (c3dt33097d-(cit29)/*[position()=1]) 2011; 47 Ju (c3dt33097d-(cit36)/*[position()=1]) 2010; 57 Georgakilas (c3dt33097d-(cit9)/*[position()=1]) 2012; 112 Gao (c3dt33097d-(cit53)/*[position()=1]) 2009; 167 Kodama (c3dt33097d-(cit41)/*[position()=1]) 2002; 407 Ma (c3dt33097d-(cit27)/*[position()=1]) 2012; 22 Liu (c3dt33097d-(cit25)/*[position()=1]) 2011; 115 Freundlich (c3dt33097d-(cit49)/*[position()=1]) 1906; 57 Sitko (c3dt33097d-(cit18)/*[position()=1]) 2012; 37 Li (c3dt33097d-(cit4)/*[position()=1]) 2012; 31 Marcano (c3dt33097d-(cit12)/*[position()=1]) 2010; 4 He (c3dt33097d-(cit14)/*[position()=1]) 1998; 287 Brownson (c3dt33097d-(cit5)/*[position()=1]) 2010; 135 Sun (c3dt33097d-(cit20)/*[position()=1]) 2012; 46 Langmuir (c3dt33097d-(cit47)/*[position()=1]) 1916; 38 Hontoria-Lucas (c3dt33097d-(cit15)/*[position()=1]) 1995; 33 Acik (c3dt33097d-(cit40)/*[position()=1]) 2011; 115 Avouris (c3dt33097d-(cit2)/*[position()=1]) 2012; 15 Yang (c3dt33097d-(cit16)/*[position()=1]) 2010; 351 Yu (c3dt33097d-(cit42)/*[position()=1]) 2011; 3 Langmuir (c3dt33097d-(cit48)/*[position()=1]) 1918; 40 Guo (c3dt33097d-(cit39)/*[position()=1]) 2009; 3 Ju (c3dt33097d-(cit37)/*[position()=1]) 2010; 64 Zhao (c3dt33097d-(cit21)/*[position()=1]) 2012; 41 Wang (c3dt33097d-(cit35)/*[position()=1]) Lagergren (c3dt33097d-(cit54)/*[position()=1]) 1898; 24 Zhu (c3dt33097d-(cit7)/*[position()=1]) 2012; 24 Ho (c3dt33097d-(cit55)/*[position()=1]) 1999; 34 Wang (c3dt33097d-(cit34)/*[position()=1]) 2012; 716 Hameed (c3dt33097d-(cit50)/*[position()=1]) 2008; 154 Deng (c3dt33097d-(cit28)/*[position()=1]) 2010; 183 Chandra (c3dt33097d-(cit26)/*[position()=1]) 2010; 4 Chandra (c3dt33097d-(cit10)/*[position()=1]) 2010; 167 Jabeen (c3dt33097d-(cit30)/*[position()=1]) 2011; 3 Jiang (c3dt33097d-(cit3)/*[position()=1]) 2011; 7 Zhao (c3dt33097d-(cit19)/*[position()=1]) 2011; 45 Sheng (c3dt33097d-(cit23)/*[position()=1]) 2012; 2 Zhao (c3dt33097d-(cit17)/*[position()=1]) 2011; 40 Dastgheib (c3dt33097d-(cit51)/*[position()=1]) 2002; 40 Liu (c3dt33097d-(cit31)/*[position()=1]) 2012; 37 Li (c3dt33097d-(cit58)/*[position()=1]) 2012; 4 Li (c3dt33097d-(cit52)/*[position()=1]) 2003; 41 Chang (c3dt33097d-(cit32)/*[position()=1]) 2012; 4 Depci (c3dt33097d-(cit43)/*[position()=1]) 2012; 200–202 Parades (c3dt33097d-(cit56)/*[position()=1]) 2008; 24 |
References_xml | – issn: 1999 publication-title: Lange's handbook of chemistry doi: Dean – volume: 41 start-page: 2787 year: 2003 ident: c3dt33097d-(cit52)/*[position()=1] publication-title: Carbon doi: 10.1016/S0008-6223(03)00392-0 contributor: fullname: Li – volume: 37 start-page: 1 year: 2012 ident: c3dt33097d-(cit31)/*[position()=1] publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2012.03.011 contributor: fullname: Liu – volume: 4 start-page: 4806 year: 2010 ident: c3dt33097d-(cit12)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn1006368 contributor: fullname: Marcano – volume: 115 start-page: 25234 year: 2011 ident: c3dt33097d-(cit25)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp208575m contributor: fullname: Liu – volume: 7 start-page: 1876 year: 2011 ident: c3dt33097d-(cit1)/*[position()=1] publication-title: Small doi: 10.1002/smll.201002009 contributor: fullname: Huang – volume: 716 start-page: 112 year: 2012 ident: c3dt33097d-(cit34)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.12.007 contributor: fullname: Wang – volume: 80 start-page: 1339 year: 1958 ident: c3dt33097d-(cit11)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01539a017 contributor: fullname: Hummers – volume: 4 start-page: 4991 year: 2012 ident: c3dt33097d-(cit58)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am301358b contributor: fullname: Li – volume: 112 start-page: 6156 year: 2012 ident: c3dt33097d-(cit9)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr3000412 contributor: fullname: Georgakilas – volume: 41 start-page: 6182 year: 2012 ident: c3dt33097d-(cit21)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c2dt00054g contributor: fullname: Zhao – volume: 38 start-page: 2221 year: 1916 ident: c3dt33097d-(cit47)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02268a002 contributor: fullname: Langmuir – volume: 115 start-page: 19761 year: 2011 ident: c3dt33097d-(cit40)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp2052618 contributor: fullname: Acik – volume: 33 start-page: 1585 year: 1995 ident: c3dt33097d-(cit15)/*[position()=1] publication-title: Carbon doi: 10.1016/0008-6223(95)00120-3 contributor: fullname: Hontoria-Lucas – volume: 24 start-page: 10560 year: 2008 ident: c3dt33097d-(cit56)/*[position()=1] publication-title: Langmuir doi: 10.1021/la801744a contributor: fullname: Parades – volume: 45 start-page: 10454 year: 2011 ident: c3dt33097d-(cit19)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es203439v contributor: fullname: Zhao – volume: 22 start-page: 5914 year: 2012 ident: c3dt33097d-(cit27)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm00145d contributor: fullname: Ma – volume: 3 start-page: 2653 year: 2009 ident: c3dt33097d-(cit39)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn900227d contributor: fullname: Guo – volume: 24 start-page: 1 year: 1898 ident: c3dt33097d-(cit54)/*[position()=1] publication-title: Vetenskapsakad. Handle. contributor: fullname: Lagergren – volume: 47 start-page: 3942 year: 2011 ident: c3dt33097d-(cit29)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c1cc00005e contributor: fullname: Chandra – volume: 200–202 start-page: 224 year: 2012 ident: c3dt33097d-(cit43)/*[position()=1] publication-title: Chem.–Eng. J. doi: 10.1016/j.cej.2012.06.077 contributor: fullname: Depci – volume: 8 start-page: 1805 year: 2012 ident: c3dt33097d-(cit8)/*[position()=1] publication-title: Small doi: 10.1002/smll.201102635 contributor: fullname: Huang – volume: 31 start-page: 57 year: 2012 ident: c3dt33097d-(cit4)/*[position()=1] publication-title: Rev. Anal. Chem. contributor: fullname: Li – volume: 40 start-page: 10945 year: 2011 ident: c3dt33097d-(cit17)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c1dt11005e contributor: fullname: Zhao – volume: 34 start-page: 451 year: 1999 ident: c3dt33097d-(cit55)/*[position()=1] publication-title: Process Biochem. doi: 10.1016/S0032-9592(98)00112-5 contributor: fullname: Ho – volume: 287 start-page: 53 year: 1998 ident: c3dt33097d-(cit14)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(98)00144-4 contributor: fullname: He – volume: 57 start-page: 1061 year: 2012 ident: c3dt33097d-(cit57)/*[position()=1] publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2012.03.002 contributor: fullname: Kuila – volume: 130 start-page: 1362 year: 2008 ident: c3dt33097d-(cit38)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076473o contributor: fullname: Jeong – volume: 46 start-page: 6020 year: 2012 ident: c3dt33097d-(cit20)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es300720f contributor: fullname: Sun – volume: 183 start-page: 923 year: 2010 ident: c3dt33097d-(cit28)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.07.117 contributor: fullname: Deng – volume: 154 start-page: 407 year: 2008 ident: c3dt33097d-(cit45)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.10.059 contributor: fullname: Xu – volume: 47 start-page: 4400 year: 2012 ident: c3dt33097d-(cit13)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-012-6294-5 contributor: fullname: Shao – volume: 24 start-page: 4924 year: 2012 ident: c3dt33097d-(cit7)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201202321 contributor: fullname: Zhu – volume: 57 start-page: 385 year: 1906 ident: c3dt33097d-(cit49)/*[position()=1] publication-title: Z. Phys. Chem. contributor: fullname: Freundlich – volume: 4 start-page: 1110 year: 2012 ident: c3dt33097d-(cit32)/*[position()=1] publication-title: Anal. Methods doi: 10.1039/c2ay05650j contributor: fullname: Chang – volume: 2 start-page: 12400 year: 2012 ident: c3dt33097d-(cit23)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c2ra21623j contributor: fullname: Sheng – ident: c3dt33097d-(cit35)/*[position()=1] publication-title: J. Saudi Chem. Soc. doi: 10.1016/j.jscs.2012.10.004 contributor: fullname: Wang – volume: 351 start-page: 122 year: 2010 ident: c3dt33097d-(cit16)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.07.042 contributor: fullname: Yang – volume: 93 start-page: 350 year: 2012 ident: c3dt33097d-(cit24)/*[position()=1] publication-title: Talanta doi: 10.1016/j.talanta.2012.02.051 contributor: fullname: Liu – volume: 167 start-page: 133 year: 2010 ident: c3dt33097d-(cit10)/*[position()=1] publication-title: Mater. Sci. Eng., B doi: 10.1016/j.mseb.2010.01.029 contributor: fullname: Chandra – volume: 40 start-page: 1843 year: 2002 ident: c3dt33097d-(cit51)/*[position()=1] publication-title: Carbon doi: 10.1016/S0008-6223(02)00037-4 contributor: fullname: Dastgheib – volume: 4 start-page: 1186 year: 2012 ident: c3dt33097d-(cit22)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am201645g contributor: fullname: Madadrang – volume: 7 start-page: 2413 year: 2011 ident: c3dt33097d-(cit3)/*[position()=1] publication-title: Small doi: 10.1002/smll.201002352 contributor: fullname: Jiang – volume: 3 start-page: 2585 year: 2011 ident: c3dt33097d-(cit42)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am2004202 contributor: fullname: Yu – volume: 8 start-page: 630 year: 2012 ident: c3dt33097d-(cit6)/*[position()=1] publication-title: Small doi: 10.1002/smll.201101396 contributor: fullname: Luo – volume: 135 start-page: 2768 year: 2010 ident: c3dt33097d-(cit5)/*[position()=1] publication-title: Analyst doi: 10.1039/c0an00590h contributor: fullname: Brownson – volume: 15 start-page: 86 year: 2012 ident: c3dt33097d-(cit2)/*[position()=1] publication-title: Mater. Today doi: 10.1016/S1369-7021(12)70044-5 contributor: fullname: Avouris – volume: 407 start-page: 151 year: 2002 ident: c3dt33097d-(cit41)/*[position()=1] publication-title: Thin Solid Films doi: 10.1016/S0040-6090(02)00030-5 contributor: fullname: Kodama – volume: 3 start-page: 3583 year: 2011 ident: c3dt33097d-(cit30)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c1nr10549c contributor: fullname: Jabeen – volume: 57 start-page: 1649 year: 2010 ident: c3dt33097d-(cit36)/*[position()=1] publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.57.1649 contributor: fullname: Ju – volume: 40 start-page: 1361 year: 1918 ident: c3dt33097d-(cit48)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02242a004 contributor: fullname: Langmuir – volume: 37 start-page: 22 year: 2012 ident: c3dt33097d-(cit18)/*[position()=1] publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2012.03.016 contributor: fullname: Sitko – volume: 167 start-page: 357 year: 2009 ident: c3dt33097d-(cit53)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.01.050 contributor: fullname: Gao – volume: 86 start-page: 114 year: 2011 ident: c3dt33097d-(cit33)/*[position()=1] publication-title: Talanta doi: 10.1016/j.talanta.2011.08.030 contributor: fullname: Zhang – volume: 4 start-page: 3979 year: 2010 ident: c3dt33097d-(cit26)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn1008897 contributor: fullname: Chandra – volume: 64 start-page: 357 year: 2010 ident: c3dt33097d-(cit37)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2009.11.016 contributor: fullname: Ju – volume: 154 start-page: 204 year: 2008 ident: c3dt33097d-(cit50)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.10.010 contributor: fullname: Hameed |
SSID | ssj0022052 |
Score | 2.642562 |
Snippet | The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the... |
SourceID | proquest crossref pubmed rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5682 |
SubjectTerms | Adsorption Chemisorption Graphene Metal ions Nanostructure Scanning electron microscopy Surface chemistry X-ray photoelectron spectroscopy |
Title | Adsorption of divalent metal ions from aqueous solutions using graphene oxide |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23443993 https://search.proquest.com/docview/1321335388 https://search.proquest.com/docview/1349452757 https://search.proquest.com/docview/1730102751 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAXxGuhy0NGcKsCqR0n8bFaulpQu0goK1VcIj9iqVrRVm2qhT3x0xk7cZKKarVwiVInsiaer_PyeAah9yIGH0GnPEgNiYOIcQp3aRxQKkahBoesEDYOObuIzy-jL3M27_V-d7KWdqX8oG4Oniv5H67CGPDVnpL9B842k8IA3AN_4QochuudeDzW29Vm7W0-vYC57db-j8KecHQZbu70iADZbzNdG2KGOxchcMWqQdYNVz8Xei8l6JOwzaZt_wjfTHzrYgdi6epLtCHEvcITVYcoNVS-iVwTvlmUVy4k-00Y0Unp2BSVLNa_ykY7fBfXi-1N1RC6EO34DBwGdeXGJ9eiG6ywjSMif_i7kq-R3TEmpK5-3R2rY5q1UI5IF3xdEcviqltRra7hJz-oCkJqK6kqqktKQ57oVuH5Tf6Lr_nZ5XSaZ5N5dg8dkYQz1kdH40n2edo47SR0XZsawn2JW8o_tnPvGzV_eSpgt2x8Pxlnt2SP0MPa4cDjCj2PUa9YPkH3Tz2LnqJZiyK8MtijCDsUYct6bFGEaxThBkXYoQh7FGGHomcoO5tkp-dB3WQjUGCblwExRGkphRKCmURpE8pUChnpVMC3g_fJEgpmYBqLVCbaGJooFWqiGRPgGkh6jPrL1bJ4gXBaaJMmWqtYy4gYycESlyKWvFCF4ZEeoHd-kfJ1VUoldykQlOftUg7QW79-OSyE3b4SS_t5-QjooBQUdHrbOxGPGElYcss7VqnZ3frRAD2vGNTQAyi0DjodoGPgWDPcJe_k8IN8rc3JHeh6iR60f4xXqF9udsVrsGtL-aaG3h8616pU |
link.rule.ids | 315,786,790,27955,27956 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+of+divalent+metal+ions+from+aqueous+solutions+using+graphene+oxide&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Sitko%2C+Rafal&rft.au=Turek%2C+Edyta&rft.au=Zawisza%2C+Beata&rft.au=Malicka%2C+Ewa&rft.date=2013-04-28&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=42&rft.issue=16&rft.spage=5682&rft.epage=5689&rft_id=info:doi/10.1039%2Fc3dt33097d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |