The Functional Relevance of Task-State Functional Connectivity

Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they ma...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 41; no. 12; pp. 2684 - 2702
Main Authors Cole, Michael W., Ito, Takuya, Cocuzza, Carrisa, Sanchez-Romero, Ruben
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 24.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they may have only minimal functional relevance. Alternatively, despite their small amplitude, these task-related changes may be essential for the ability of the human brain to adaptively alter its functionality via rapid changes in inter-regional relationships. We used activity flow mapping—an approach for building empirically derived network models—to quantify the functional importance of task-state functional connectivity (above and beyond resting-state functional connectivity) in shaping cognitive task activations in the (female and male) human brain. We found that task-state functional connectivity could be used to better predict independent fMRI activations across all 24 task conditions and all 360 cortical regions tested. Further, we found that prediction accuracy was strongly driven by individual-specific functional connectivity patterns, while functional connectivity patterns from other tasks (task-general functional connectivity) still improved predictions beyond resting-state functional connectivity. Additionally, since activity flow models simulate how task-evoked activations (which underlie behavior) are generated, these results may provide mechanistic insight into why prior studies found correlations between task-state functional connectivity and individual differences in behavior. These findings suggest that task-related changes to functional connections play an important role in dynamically reshaping brain network organization, shifting the flow of neural activity during task performance. SIGNIFICANCE STATEMENT Human cognition is highly dynamic, yet the functional network organization of the human brain is highly similar across rest and task states. We hypothesized that, despite this overall network stability, task-related changes from the intrinsic (resting-state) network organization of the brain strongly contribute to brain activations during cognitive task performance. Given that cognitive task activations emerge through network interactions, we leveraged connectivity-based models to predict independent cognitive task activations using resting-state versus task-state functional connectivity. This revealed that task-related changes in functional network organization increased prediction accuracy of cognitive task activations substantially, demonstrating their likely functional relevance for dynamic cognitive processes despite the small size of these task-related network changes.
AbstractList Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they may have only minimal functional relevance. Alternatively, despite their small amplitude, these task-related changes may be essential for the ability of the human brain to adaptively alter its functionality via rapid changes in inter-regional relationships. We used activity flow mapping—an approach for building empirically derived network models—to quantify the functional importance of task-state functional connectivity (above and beyond resting-state functional connectivity) in shaping cognitive task activations in the (female and male) human brain. We found that task-state functional connectivity could be used to better predict independent fMRI activations across all 24 task conditions and all 360 cortical regions tested. Further, we found that prediction accuracy was strongly driven by individual-specific functional connectivity patterns, while functional connectivity patterns from other tasks (task-general functional connectivity) still improved predictions beyond resting-state functional connectivity. Additionally, since activity flow models simulate how task-evoked activations (which underlie behavior) are generated, these results may provide mechanistic insight into why prior studies found correlations between task-state functional connectivity and individual differences in behavior. These findings suggest that task-related changes to functional connections play an important role in dynamically reshaping brain network organization, shifting the flow of neural activity during task performance. SIGNIFICANCE STATEMENT Human cognition is highly dynamic, yet the functional network organization of the human brain is highly similar across rest and task states. We hypothesized that, despite this overall network stability, task-related changes from the intrinsic (resting-state) network organization of the brain strongly contribute to brain activations during cognitive task performance. Given that cognitive task activations emerge through network interactions, we leveraged connectivity-based models to predict independent cognitive task activations using resting-state versus task-state functional connectivity. This revealed that task-related changes in functional network organization increased prediction accuracy of cognitive task activations substantially, demonstrating their likely functional relevance for dynamic cognitive processes despite the small size of these task-related network changes.
Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they may have only minimal functional relevance. Alternatively, despite their small amplitude, these task-related changes may be essential for the ability of the human brain to adaptively alter its functionality via rapid changes in inter-regional relationships. We used activity flow mapping-an approach for building empirically derived network models-to quantify the functional importance of task-state functional connectivity (above and beyond resting-state functional connectivity) in shaping cognitive task activations in the (female and male) human brain. We found that task-state functional connectivity could be used to better predict independent fMRI activations across all 24 task conditions and all 360 cortical regions tested. Further, we found that prediction accuracy was strongly driven by individual-specific functional connectivity patterns, while functional connectivity patterns from other tasks (task-general functional connectivity) still improved predictions beyond resting-state functional connectivity. Additionally, since activity flow models simulate how task-evoked activations (which underlie behavior) are generated, these results may provide mechanistic insight into why prior studies found correlations between task-state functional connectivity and individual differences in behavior. These findings suggest that task-related changes to functional connections play an important role in dynamically reshaping brain network organization, shifting the flow of neural activity during task performance. Human cognition is highly dynamic, yet the functional network organization of the human brain is highly similar across rest and task states. We hypothesized that, despite this overall network stability, task-related changes from the intrinsic (resting-state) network organization of the brain strongly contribute to brain activations during cognitive task performance. Given that cognitive task activations emerge through network interactions, we leveraged connectivity-based models to predict independent cognitive task activations using resting-state versus task-state functional connectivity. This revealed that task-related changes in functional network organization increased prediction accuracy of cognitive task activations substantially, demonstrating their likely functional relevance for dynamic cognitive processes despite the small size of these task-related network changes.
Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they may have only minimal functional relevance. Alternatively, despite their small amplitude, these task-related changes may be essential for the ability of the human brain to adaptively alter its functionality via rapid changes in inter-regional relationships. We used activity flow mapping-an approach for building empirically derived network models-to quantify the functional importance of task-state functional connectivity (above and beyond resting-state functional connectivity) in shaping cognitive task activations in the (female and male) human brain. We found that task-state functional connectivity could be used to better predict independent fMRI activations across all 24 task conditions and all 360 cortical regions tested. Further, we found that prediction accuracy was strongly driven by individual-specific functional connectivity patterns, while functional connectivity patterns from other tasks (task-general functional connectivity) still improved predictions beyond resting-state functional connectivity. Additionally, since activity flow models simulate how task-evoked activations (which underlie behavior) are generated, these results may provide mechanistic insight into why prior studies found correlations between task-state functional connectivity and individual differences in behavior. These findings suggest that task-related changes to functional connections play an important role in dynamically reshaping brain network organization, shifting the flow of neural activity during task performance.SIGNIFICANCE STATEMENT Human cognition is highly dynamic, yet the functional network organization of the human brain is highly similar across rest and task states. We hypothesized that, despite this overall network stability, task-related changes from the intrinsic (resting-state) network organization of the brain strongly contribute to brain activations during cognitive task performance. Given that cognitive task activations emerge through network interactions, we leveraged connectivity-based models to predict independent cognitive task activations using resting-state versus task-state functional connectivity. This revealed that task-related changes in functional network organization increased prediction accuracy of cognitive task activations substantially, demonstrating their likely functional relevance for dynamic cognitive processes despite the small size of these task-related network changes.Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they may have only minimal functional relevance. Alternatively, despite their small amplitude, these task-related changes may be essential for the ability of the human brain to adaptively alter its functionality via rapid changes in inter-regional relationships. We used activity flow mapping-an approach for building empirically derived network models-to quantify the functional importance of task-state functional connectivity (above and beyond resting-state functional connectivity) in shaping cognitive task activations in the (female and male) human brain. We found that task-state functional connectivity could be used to better predict independent fMRI activations across all 24 task conditions and all 360 cortical regions tested. Further, we found that prediction accuracy was strongly driven by individual-specific functional connectivity patterns, while functional connectivity patterns from other tasks (task-general functional connectivity) still improved predictions beyond resting-state functional connectivity. Additionally, since activity flow models simulate how task-evoked activations (which underlie behavior) are generated, these results may provide mechanistic insight into why prior studies found correlations between task-state functional connectivity and individual differences in behavior. These findings suggest that task-related changes to functional connections play an important role in dynamically reshaping brain network organization, shifting the flow of neural activity during task performance.SIGNIFICANCE STATEMENT Human cognition is highly dynamic, yet the functional network organization of the human brain is highly similar across rest and task states. We hypothesized that, despite this overall network stability, task-related changes from the intrinsic (resting-state) network organization of the brain strongly contribute to brain activations during cognitive task performance. Given that cognitive task activations emerge through network interactions, we leveraged connectivity-based models to predict independent cognitive task activations using resting-state versus task-state functional connectivity. This revealed that task-related changes in functional network organization increased prediction accuracy of cognitive task activations substantially, demonstrating their likely functional relevance for dynamic cognitive processes despite the small size of these task-related network changes.
Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they may have only minimal functional relevance. Alternatively, despite their small amplitude, these task-related changes may be essential for the ability of the human brain to adaptively alter its functionality via rapid changes in inter-regional relationships. We used activity flow mapping-an approach for building empirically derived network models-to quantify the functional importance of task-state functional connectivity (above and beyond resting-state functional connectivity) in shaping cognitive task activations in the (female and male) human brain. We found that task-state functional connectivity could be used to better predict independent fMRI activations across all 24 task conditions and all 360 cortical regions tested. Further, we found that prediction accuracy was strongly driven by individual-specific functional connectivity patterns, while functional connectivity patterns from other tasks (task-general functional connectivity) still improved predictions beyond resting-state functional connectivity. Additionally, since activity flow models simulate how task-evoked activations (which underlie behavior) are generated, these results may provide mechanistic insight into why prior studies found correlations between task-state functional connectivity and individual differences in behavior. These findings suggest that task-related changes to functional connections play an important role in dynamically reshaping brain network organization, shifting the flow of neural activity during task performance.
Author Ito, Takuya
Cole, Michael W.
Sanchez-Romero, Ruben
Cocuzza, Carrisa
Author_xml – sequence: 1
  givenname: Michael W.
  orcidid: 0000-0003-4329-438X
  surname: Cole
  fullname: Cole, Michael W.
– sequence: 2
  givenname: Takuya
  surname: Ito
  fullname: Ito, Takuya
– sequence: 3
  givenname: Carrisa
  surname: Cocuzza
  fullname: Cocuzza, Carrisa
– sequence: 4
  givenname: Ruben
  surname: Sanchez-Romero
  fullname: Sanchez-Romero, Ruben
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33542083$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9LwzAUxYNMdJt-hTHwxZfOm39NBiLIcDoZCjqfQ5qmWu2S2bQDv70ZbqK--BTC_Z2bk3N6qOO8swgNMIwwJ_Ts9u7q6eH-cTIbYYFpQmBEgOA91I3TcUIY4A7qAhGQpEywQ9QL4RUABGBxgA4p5YyApF10sXixw2nrTFN6p6vhg63sWjtjh74YLnR4Sx4b3fxCJt45Gy_rsvk4QvuFroI93p599DS9Wkxukvn99WxyOU8MB9kkZCx4Zi3hWUawoZwW1HBmOCl4LtKMykLmQhBsGS4oy7O8MNTkuaRpDlyYMe2ji6-9qzZb2txY19S6Uqu6XOr6Q3ldqt8TV76oZ79WErAUDOKC0-2C2r-3NjRqWQZjq0o769ugCJMCp4B5GtGTP-irb-v480hxSEUMOJWRGvx09G1lF20Ezr8AU_sQalsoU8YoY4bRYFkpDGrTpPpuUm2aVATUpskoT__Idy_8I_wEcTujAg
CitedBy_id crossref_primary_10_1016_j_jaac_2024_04_018
crossref_primary_10_1016_j_neuroimage_2024_120552
crossref_primary_10_1016_j_pnpbp_2024_110991
crossref_primary_10_1093_cercor_bhac295
crossref_primary_10_1002_hbm_26044
crossref_primary_10_1093_scan_nsae095
crossref_primary_10_1007_s11427_022_2206_3
crossref_primary_10_1016_j_xpro_2021_101094
crossref_primary_10_7554_eLife_96386
crossref_primary_10_1016_j_neuroimage_2021_118836
crossref_primary_10_1364_BOE_541820
crossref_primary_10_1371_journal_pcbi_1012870
crossref_primary_10_1016_j_nlm_2022_107701
crossref_primary_10_1089_brain_2024_0043
crossref_primary_10_1093_cercor_bhac457
crossref_primary_10_3389_fnagi_2022_1060734
crossref_primary_10_1162_imag_a_00443
crossref_primary_10_3389_fnagi_2025_1536658
crossref_primary_10_3389_fnins_2022_872036
crossref_primary_10_1016_j_biopsych_2021_09_007
crossref_primary_10_1016_j_neuroimage_2024_120983
crossref_primary_10_1371_journal_pbio_3002937
crossref_primary_10_1093_scan_nsac020
crossref_primary_10_1177_15500594211052208
crossref_primary_10_1016_j_neubiorev_2023_105193
crossref_primary_10_1016_j_neuropsychologia_2024_109034
crossref_primary_10_1038_s41467_022_32644_y
crossref_primary_10_1523_JNEUROSCI_1701_23_2024
crossref_primary_10_1016_j_neuroimage_2025_121096
crossref_primary_10_1186_s12984_024_01523_6
crossref_primary_10_1038_s41591_023_02317_4
crossref_primary_10_1007_s12264_024_01312_0
crossref_primary_10_1038_s41598_021_97960_7
crossref_primary_10_1016_j_dcn_2022_101079
crossref_primary_10_1016_j_neuroimage_2023_120237
crossref_primary_10_1162_imag_a_00015
crossref_primary_10_1002_hbm_26667
crossref_primary_10_1371_journal_pcbi_1012507
crossref_primary_10_1002_hbm_70064
crossref_primary_10_1016_j_neuropsychologia_2024_108815
crossref_primary_10_3389_fnagi_2024_1449276
crossref_primary_10_1016_j_cobeha_2024_101384
crossref_primary_10_7554_eLife_96386_3
crossref_primary_10_1016_j_neurad_2023_10_005
crossref_primary_10_1162_jocn_a_02153
crossref_primary_10_1162_netn_a_00225
crossref_primary_10_1016_j_brainres_2024_149265
crossref_primary_10_1016_j_clinph_2023_09_005
crossref_primary_10_1016_j_neuroimage_2023_119946
crossref_primary_10_1080_10400419_2023_2192563
crossref_primary_10_1016_j_neuroimage_2021_118656
crossref_primary_10_1016_j_yebeh_2023_109407
crossref_primary_10_3389_fnut_2022_827182
crossref_primary_10_1088_1361_6668_ada114
crossref_primary_10_1002_hbm_26813
crossref_primary_10_1126_sciadv_abf2513
crossref_primary_10_3389_fnhum_2023_1170419
crossref_primary_10_1016_j_jneuroling_2023_101162
crossref_primary_10_1016_j_neuroimage_2024_120761
crossref_primary_10_3389_fnsys_2021_642225
crossref_primary_10_1093_cercor_bhab473
crossref_primary_10_3389_fneur_2023_1143955
crossref_primary_10_1016_j_neuroimage_2023_120300
crossref_primary_10_1162_netn_a_00213
crossref_primary_10_1371_journal_pbio_3002239
crossref_primary_10_1073_pnas_2221533120
crossref_primary_10_1089_brain_2023_0048
crossref_primary_10_1162_netn_a_00374
crossref_primary_10_1016_j_neuroimage_2022_119418
crossref_primary_10_1093_scan_nsab118
crossref_primary_10_1016_j_biopsych_2023_04_001
crossref_primary_10_1038_s41598_024_52443_3
crossref_primary_10_1016_j_heliyon_2023_e21074
crossref_primary_10_1016_j_brainres_2024_148831
crossref_primary_10_1016_j_biopsych_2025_01_022
crossref_primary_10_3390_biomimetics7040231
crossref_primary_10_3389_fnhum_2021_713692
crossref_primary_10_3389_fnagi_2025_1535657
crossref_primary_10_3389_fnins_2024_1337976
Cites_doi 10.1126/science.272.5261.551
10.1113/jphysiol.1952.sp004764
10.1073/pnas.1720985115
10.1038/35084005
10.1016/j.neuroimage.2007.04.042
10.1371/journal.pcbi.1003553
10.1002/mrm.1910330602
10.1016/j.tics.2015.03.009
10.1038/nature18933
10.1016/j.neuroimage.2017.03.020
10.1016/S0006-3495(72)86068-5
10.1371/journal.pcbi.1007983
10.1523/JNEUROSCI.0358-16.2016
10.1002/hbm.1058
10.1016/j.neuron.2018.03.035
10.1016/j.neuroimage.2013.05.033
10.1093/cercor/bhs270
10.1093/cercor/bhr118
10.1038/s41467-017-01000-w
10.1038/nn.2439
10.1016/j.neuron.2014.05.014
10.1038/nn.2303
10.1016/j.neuroimage.2013.05.057
10.1016/j.neuroimage.2018.10.006
10.1016/j.tics.2019.10.005
10.1098/rstb.2013.0526
10.1371/journal.pone.0017832
10.1016/j.neuroimage.2008.09.036
10.1523/JNEUROSCI.2798-17.2017
10.1371/journal.pcbi.1006565
10.1038/nn.4406
10.1016/j.neuroimage.2010.07.073
10.1126/science.aad8127
10.1073/pnas.79.8.2554
10.1038/nature09108
10.1016/j.neuroimage.2013.05.039
10.1016/S1364-6613(99)01329-7
10.1523/JNEUROSCI.2922-12.2013
10.1016/j.tics.2017.09.002
10.1162/jocn_a_01580
10.1146/annurev.physiol.66.082602.092845
10.1038/nature09613
10.1038/nrn1076
10.1016/j.neuroimage.2020.117167
10.1016/j.neubiorev.2017.10.006
10.1038/s41593-019-0510-4
10.1073/pnas.071043098
10.1038/nrn1888
10.1016/j.neuroimage.2013.05.041
10.1038/s41467-018-04920-3
10.1016/j.neuroimage.2018.12.054
10.1038/nn.2842
ContentType Journal Article
Copyright Copyright © 2021 the authors.
Copyright Society for Neuroscience Mar 24, 2021
Copyright © 2021 the authors 2021
Copyright_xml – notice: Copyright © 2021 the authors.
– notice: Copyright Society for Neuroscience Mar 24, 2021
– notice: Copyright © 2021 the authors 2021
DBID AAYXX
CITATION
NPM
7QG
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
DOI 10.1523/JNEUROSCI.1713-20.2021
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
Animal Behavior Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 2702
ExternalDocumentID PMC8018740
33542083
10_1523_JNEUROSCI_1713_20_2021
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: NIMH NIH HHS
  grantid: R01 MH109520
– fundername: NIA NIH HHS
  grantid: R01 AG055556
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R01AG055556; R01MH109520
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
YBU
YHG
YKV
YNH
YSK
AFHIN
AIZTS
NPM
RHF
7QG
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
ID FETCH-LOGICAL-c508t-2975bee25bb21c353f3c54c52f5d76b38f8d7721e41f34dbdfc3cdd836d057c93
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 18:18:59 EDT 2025
Fri Jul 11 15:27:05 EDT 2025
Mon Jun 30 17:04:21 EDT 2025
Wed Feb 19 02:28:19 EST 2025
Tue Jul 01 04:15:55 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords network neuroscience
computational model
network coding models
machine learning
human connectome project
task connectivity
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
Copyright © 2021 the authors.
SfN exclusive license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c508t-2975bee25bb21c353f3c54c52f5d76b38f8d7721e41f34dbdfc3cdd836d057c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: M.W.C., T.I., and C.C. designed research; M.W.C. performed research; M.W.C. and T.I. contributed analytic tools; M.W.C., T.I., and C.C. analyzed data; M.W.C., T.I., C.C., and R.S.-R. wrote the paper
ORCID 0000-0003-4329-438X
OpenAccessLink https://www.jneurosci.org/content/jneuro/41/12/2684.full.pdf
PMID 33542083
PQID 2506752968
PQPubID 2049535
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8018740
proquest_miscellaneous_2487160156
proquest_journals_2506752968
pubmed_primary_33542083
crossref_citationtrail_10_1523_JNEUROSCI_1713_20_2021
crossref_primary_10_1523_JNEUROSCI_1713_20_2021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-24
PublicationDateYYYYMMDD 2021-03-24
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Baltimore
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2021
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041803455109000_41.12.2684.10
2023041803455109000_41.12.2684.51
2023041803455109000_41.12.2684.52
2023041803455109000_41.12.2684.50
2023041803455109000_41.12.2684.17
2023041803455109000_41.12.2684.18
2023041803455109000_41.12.2684.15
2023041803455109000_41.12.2684.16
2023041803455109000_41.12.2684.13
2023041803455109000_41.12.2684.14
2023041803455109000_41.12.2684.11
2023041803455109000_41.12.2684.12
2023041803455109000_41.12.2684.19
2023041803455109000_41.12.2684.20
2023041803455109000_41.12.2684.21
2023041803455109000_41.12.2684.28
2023041803455109000_41.12.2684.29
2023041803455109000_41.12.2684.26
2023041803455109000_41.12.2684.27
2023041803455109000_41.12.2684.24
2023041803455109000_41.12.2684.25
2023041803455109000_41.12.2684.22
2023041803455109000_41.12.2684.23
2023041803455109000_41.12.2684.31
2023041803455109000_41.12.2684.32
2023041803455109000_41.12.2684.30
2023041803455109000_41.12.2684.39
2023041803455109000_41.12.2684.37
2023041803455109000_41.12.2684.38
2023041803455109000_41.12.2684.35
2023041803455109000_41.12.2684.36
2023041803455109000_41.12.2684.33
2023041803455109000_41.12.2684.34
2023041803455109000_41.12.2684.9
2023041803455109000_41.12.2684.8
2023041803455109000_41.12.2684.5
2023041803455109000_41.12.2684.42
2023041803455109000_41.12.2684.4
2023041803455109000_41.12.2684.43
2023041803455109000_41.12.2684.7
2023041803455109000_41.12.2684.40
2023041803455109000_41.12.2684.6
2023041803455109000_41.12.2684.41
2023041803455109000_41.12.2684.1
2023041803455109000_41.12.2684.3
2023041803455109000_41.12.2684.2
2023041803455109000_41.12.2684.48
2023041803455109000_41.12.2684.49
2023041803455109000_41.12.2684.46
2023041803455109000_41.12.2684.47
2023041803455109000_41.12.2684.44
2023041803455109000_41.12.2684.45
References_xml – ident: 2023041803455109000_41.12.2684.28
  doi: 10.1126/science.272.5261.551
– ident: 2023041803455109000_41.12.2684.16
  doi: 10.1113/jphysiol.1952.sp004764
– ident: 2023041803455109000_41.12.2684.39
  doi: 10.1073/pnas.1720985115
– ident: 2023041803455109000_41.12.2684.27
  doi: 10.1038/35084005
– ident: 2023041803455109000_41.12.2684.4
  doi: 10.1016/j.neuroimage.2007.04.042
– ident: 2023041803455109000_41.12.2684.36
  doi: 10.1371/journal.pcbi.1003553
– ident: 2023041803455109000_41.12.2684.24
  doi: 10.1002/mrm.1910330602
– ident: 2023041803455109000_41.12.2684.50
  doi: 10.1016/j.tics.2015.03.009
– ident: 2023041803455109000_41.12.2684.11
  doi: 10.1038/nature18933
– ident: 2023041803455109000_41.12.2684.5
  doi: 10.1016/j.neuroimage.2017.03.020
– ident: 2023041803455109000_41.12.2684.51
  doi: 10.1016/S0006-3495(72)86068-5
– ident: 2023041803455109000_41.12.2684.19
  doi: 10.1371/journal.pcbi.1007983
– ident: 2023041803455109000_41.12.2684.42
  doi: 10.1523/JNEUROSCI.0358-16.2016
– ident: 2023041803455109000_41.12.2684.35
  doi: 10.1002/hbm.1058
– ident: 2023041803455109000_41.12.2684.12
  doi: 10.1016/j.neuron.2018.03.035
– ident: 2023041803455109000_41.12.2684.3
  doi: 10.1016/j.neuroimage.2013.05.033
– ident: 2023041803455109000_41.12.2684.29
  doi: 10.1093/cercor/bhs270
– ident: 2023041803455109000_41.12.2684.37
  doi: 10.1093/cercor/bhr118
– ident: 2023041803455109000_41.12.2684.18
  doi: 10.1038/s41467-017-01000-w
– ident: 2023041803455109000_41.12.2684.7
  doi: 10.1038/nn.2439
– ident: 2023041803455109000_41.12.2684.8
  doi: 10.1016/j.neuron.2014.05.014
– ident: 2023041803455109000_41.12.2684.22
  doi: 10.1038/nn.2303
– ident: 2023041803455109000_41.12.2684.44
  doi: 10.1016/j.neuroimage.2013.05.057
– ident: 2023041803455109000_41.12.2684.21
  doi: 10.1016/j.neuroimage.2018.10.006
– ident: 2023041803455109000_41.12.2684.20
  doi: 10.1016/j.tics.2019.10.005
– ident: 2023041803455109000_41.12.2684.23
  doi: 10.1098/rstb.2013.0526
– ident: 2023041803455109000_41.12.2684.45
  doi: 10.1371/journal.pone.0017832
– ident: 2023041803455109000_41.12.2684.33
  doi: 10.1016/j.neuroimage.2008.09.036
– ident: 2023041803455109000_41.12.2684.52
  doi: 10.1523/JNEUROSCI.2798-17.2017
– ident: 2023041803455109000_41.12.2684.49
  doi: 10.1371/journal.pcbi.1006565
– ident: 2023041803455109000_41.12.2684.9
  doi: 10.1038/nn.4406
– ident: 2023041803455109000_41.12.2684.34
  doi: 10.1016/j.neuroimage.2010.07.073
– ident: 2023041803455109000_41.12.2684.46
  doi: 10.1126/science.aad8127
– ident: 2023041803455109000_41.12.2684.17
  doi: 10.1073/pnas.79.8.2554
– ident: 2023041803455109000_41.12.2684.25
  doi: 10.1038/nature09108
– ident: 2023041803455109000_41.12.2684.43
  doi: 10.1016/j.neuroimage.2013.05.039
– ident: 2023041803455109000_41.12.2684.31
  doi: 10.1016/S1364-6613(99)01329-7
– ident: 2023041803455109000_41.12.2684.15
  doi: 10.1523/JNEUROSCI.2922-12.2013
– ident: 2023041803455109000_41.12.2684.38
  doi: 10.1016/j.tics.2017.09.002
– ident: 2023041803455109000_41.12.2684.41
  doi: 10.1162/jocn_a_01580
– ident: 2023041803455109000_41.12.2684.26
  doi: 10.1146/annurev.physiol.66.082602.092845
– ident: 2023041803455109000_41.12.2684.1
  doi: 10.1038/nature09613
– ident: 2023041803455109000_41.12.2684.30
  doi: 10.1038/nrn1076
– ident: 2023041803455109000_41.12.2684.32
  doi: 10.1016/j.neuroimage.2020.117167
– ident: 2023041803455109000_41.12.2684.47
  doi: 10.1016/j.neubiorev.2017.10.006
– ident: 2023041803455109000_41.12.2684.40
  doi: 10.1038/s41593-019-0510-4
– ident: 2023041803455109000_41.12.2684.14
  doi: 10.1073/pnas.071043098
– ident: 2023041803455109000_41.12.2684.2
  doi: 10.1038/nrn1888
– ident: 2023041803455109000_41.12.2684.48
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: 2023041803455109000_41.12.2684.13
  doi: 10.1038/s41467-018-04920-3
– ident: 2023041803455109000_41.12.2684.10
  doi: 10.1016/j.neuroimage.2018.12.054
– ident: 2023041803455109000_41.12.2684.6
  doi: 10.1038/nn.2842
SSID ssj0007017
Score 2.6019897
Snippet Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2684
SubjectTerms Brain
Brain architecture
Brain mapping
Cognitive ability
Cognitive tasks
Correlation analysis
Flow mapping
Functional magnetic resonance imaging
Functional morphology
Human performance
Neural networks
Title The Functional Relevance of Task-State Functional Connectivity
URI https://www.ncbi.nlm.nih.gov/pubmed/33542083
https://www.proquest.com/docview/2506752968
https://www.proquest.com/docview/2487160156
https://pubmed.ncbi.nlm.nih.gov/PMC8018740
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCCuURKChIiAtKmsR24r0gVQtVW6Qelq3oLfIrKipNUJscuv-Af83Y8TrZsgLKJYoSZ-JkxuMZ-5sZhN4WU660KGikDMqBMKojxgWNKixzTKqkSrkFyJ7kh6fk-IyeTSY_R6ilrhWxXG6MK_kfrsI14KuJkr0DZz1RuADnwF84Aofh-M88PoCJya3nzU2suA0BAAtwwa8vImtKjptYXIvsK0aM7dIhQszapqMsl57xs8Yhj3ug_fuvsRcrW4oJ3njR3QzAn0Z2yyV3oBKTytcv5kAXz_UymjeXuo-ymXfCRaS59YfMArD6sGenprICHFDS19qJtVOjmd23Scd6tk9wtZKnbKw1c0ZGM7AJkduo3anNMnF8YkCOX2ZHcQoeNghEbLo1zGerPfxb05wHHxq3ByiVnk5p6JRZUho699D9DDwOUwzj49FnP6kXiS3e7D_WBZsDnb3N_Vm3c35zXm5jcEdGzWIbPXQcD_d70XqEJrp-jHb2a942lzfhu9Dig-3Gyw76ADISDqIUemkLmyocpG3cZCxtT9DpwafF7DBy1TciCUZ7G5mQa6F1RoXIUokphuFLiaRZRVWRC8wqpuBHpZqkFSZKqEpiqRTDuQIfQE7xU7RVN7V-jkLFUlLxIhGpTInGlGOaV4xoTtJEcUYCRFf_qpQuNb2pkPK9_DOvArTnn_vRJ2f56xO7K1aUbiBfl-AFgNucTXMWoDf-NqhZs3fGa9100IaYlQWTdyBAz3rO-VdiTA1IBQeoWOOpb2BSuK_fqb-d21TurK-J-eLOH_ISPRgG4y7aaq86_QrM41a8toL7C5tHtcg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Functional+Relevance+of+Task-State+Functional+Connectivity&rft.jtitle=The+Journal+of+neuroscience&rft.au=Cole%2C+Michael+W.&rft.au=Ito%2C+Takuya&rft.au=Cocuzza%2C+Carrisa&rft.au=Sanchez-Romero%2C+Ruben&rft.date=2021-03-24&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=41&rft.issue=12&rft.spage=2684&rft.epage=2702&rft_id=info:doi/10.1523%2FJNEUROSCI.1713-20.2021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_1713_20_2021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon