The Functional Relevance of Task-State Functional Connectivity
Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they ma...
Saved in:
Published in | The Journal of neuroscience Vol. 41; no. 12; pp. 2684 - 2702 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
24.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they may have only minimal functional relevance. Alternatively, despite their small amplitude, these task-related changes may be essential for the ability of the human brain to adaptively alter its functionality via rapid changes in inter-regional relationships. We used activity flow mapping—an approach for building empirically derived network models—to quantify the functional importance of task-state functional connectivity (above and beyond resting-state functional connectivity) in shaping cognitive task activations in the (female and male) human brain. We found that task-state functional connectivity could be used to better predict independent fMRI activations across all 24 task conditions and all 360 cortical regions tested. Further, we found that prediction accuracy was strongly driven by individual-specific functional connectivity patterns, while functional connectivity patterns from other tasks (task-general functional connectivity) still improved predictions beyond resting-state functional connectivity. Additionally, since activity flow models simulate how task-evoked activations (which underlie behavior) are generated, these results may provide mechanistic insight into why prior studies found correlations between task-state functional connectivity and individual differences in behavior. These findings suggest that task-related changes to functional connections play an important role in dynamically reshaping brain network organization, shifting the flow of neural activity during task performance.
SIGNIFICANCE STATEMENT
Human cognition is highly dynamic, yet the functional network organization of the human brain is highly similar across rest and task states. We hypothesized that, despite this overall network stability, task-related changes from the intrinsic (resting-state) network organization of the brain strongly contribute to brain activations during cognitive task performance. Given that cognitive task activations emerge through network interactions, we leveraged connectivity-based models to predict independent cognitive task activations using resting-state versus task-state functional connectivity. This revealed that task-related changes in functional network organization increased prediction accuracy of cognitive task activations substantially, demonstrating their likely functional relevance for dynamic cognitive processes despite the small size of these task-related network changes. |
---|---|
AbstractList | Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they may have only minimal functional relevance. Alternatively, despite their small amplitude, these task-related changes may be essential for the ability of the human brain to adaptively alter its functionality via rapid changes in inter-regional relationships. We used activity flow mapping—an approach for building empirically derived network models—to quantify the functional importance of task-state functional connectivity (above and beyond resting-state functional connectivity) in shaping cognitive task activations in the (female and male) human brain. We found that task-state functional connectivity could be used to better predict independent fMRI activations across all 24 task conditions and all 360 cortical regions tested. Further, we found that prediction accuracy was strongly driven by individual-specific functional connectivity patterns, while functional connectivity patterns from other tasks (task-general functional connectivity) still improved predictions beyond resting-state functional connectivity. Additionally, since activity flow models simulate how task-evoked activations (which underlie behavior) are generated, these results may provide mechanistic insight into why prior studies found correlations between task-state functional connectivity and individual differences in behavior. These findings suggest that task-related changes to functional connections play an important role in dynamically reshaping brain network organization, shifting the flow of neural activity during task performance.
SIGNIFICANCE STATEMENT
Human cognition is highly dynamic, yet the functional network organization of the human brain is highly similar across rest and task states. We hypothesized that, despite this overall network stability, task-related changes from the intrinsic (resting-state) network organization of the brain strongly contribute to brain activations during cognitive task performance. Given that cognitive task activations emerge through network interactions, we leveraged connectivity-based models to predict independent cognitive task activations using resting-state versus task-state functional connectivity. This revealed that task-related changes in functional network organization increased prediction accuracy of cognitive task activations substantially, demonstrating their likely functional relevance for dynamic cognitive processes despite the small size of these task-related network changes. Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they may have only minimal functional relevance. Alternatively, despite their small amplitude, these task-related changes may be essential for the ability of the human brain to adaptively alter its functionality via rapid changes in inter-regional relationships. We used activity flow mapping-an approach for building empirically derived network models-to quantify the functional importance of task-state functional connectivity (above and beyond resting-state functional connectivity) in shaping cognitive task activations in the (female and male) human brain. We found that task-state functional connectivity could be used to better predict independent fMRI activations across all 24 task conditions and all 360 cortical regions tested. Further, we found that prediction accuracy was strongly driven by individual-specific functional connectivity patterns, while functional connectivity patterns from other tasks (task-general functional connectivity) still improved predictions beyond resting-state functional connectivity. Additionally, since activity flow models simulate how task-evoked activations (which underlie behavior) are generated, these results may provide mechanistic insight into why prior studies found correlations between task-state functional connectivity and individual differences in behavior. These findings suggest that task-related changes to functional connections play an important role in dynamically reshaping brain network organization, shifting the flow of neural activity during task performance. Human cognition is highly dynamic, yet the functional network organization of the human brain is highly similar across rest and task states. We hypothesized that, despite this overall network stability, task-related changes from the intrinsic (resting-state) network organization of the brain strongly contribute to brain activations during cognitive task performance. Given that cognitive task activations emerge through network interactions, we leveraged connectivity-based models to predict independent cognitive task activations using resting-state versus task-state functional connectivity. This revealed that task-related changes in functional network organization increased prediction accuracy of cognitive task activations substantially, demonstrating their likely functional relevance for dynamic cognitive processes despite the small size of these task-related network changes. Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they may have only minimal functional relevance. Alternatively, despite their small amplitude, these task-related changes may be essential for the ability of the human brain to adaptively alter its functionality via rapid changes in inter-regional relationships. We used activity flow mapping-an approach for building empirically derived network models-to quantify the functional importance of task-state functional connectivity (above and beyond resting-state functional connectivity) in shaping cognitive task activations in the (female and male) human brain. We found that task-state functional connectivity could be used to better predict independent fMRI activations across all 24 task conditions and all 360 cortical regions tested. Further, we found that prediction accuracy was strongly driven by individual-specific functional connectivity patterns, while functional connectivity patterns from other tasks (task-general functional connectivity) still improved predictions beyond resting-state functional connectivity. Additionally, since activity flow models simulate how task-evoked activations (which underlie behavior) are generated, these results may provide mechanistic insight into why prior studies found correlations between task-state functional connectivity and individual differences in behavior. These findings suggest that task-related changes to functional connections play an important role in dynamically reshaping brain network organization, shifting the flow of neural activity during task performance.SIGNIFICANCE STATEMENT Human cognition is highly dynamic, yet the functional network organization of the human brain is highly similar across rest and task states. We hypothesized that, despite this overall network stability, task-related changes from the intrinsic (resting-state) network organization of the brain strongly contribute to brain activations during cognitive task performance. Given that cognitive task activations emerge through network interactions, we leveraged connectivity-based models to predict independent cognitive task activations using resting-state versus task-state functional connectivity. This revealed that task-related changes in functional network organization increased prediction accuracy of cognitive task activations substantially, demonstrating their likely functional relevance for dynamic cognitive processes despite the small size of these task-related network changes.Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they may have only minimal functional relevance. Alternatively, despite their small amplitude, these task-related changes may be essential for the ability of the human brain to adaptively alter its functionality via rapid changes in inter-regional relationships. We used activity flow mapping-an approach for building empirically derived network models-to quantify the functional importance of task-state functional connectivity (above and beyond resting-state functional connectivity) in shaping cognitive task activations in the (female and male) human brain. We found that task-state functional connectivity could be used to better predict independent fMRI activations across all 24 task conditions and all 360 cortical regions tested. Further, we found that prediction accuracy was strongly driven by individual-specific functional connectivity patterns, while functional connectivity patterns from other tasks (task-general functional connectivity) still improved predictions beyond resting-state functional connectivity. Additionally, since activity flow models simulate how task-evoked activations (which underlie behavior) are generated, these results may provide mechanistic insight into why prior studies found correlations between task-state functional connectivity and individual differences in behavior. These findings suggest that task-related changes to functional connections play an important role in dynamically reshaping brain network organization, shifting the flow of neural activity during task performance.SIGNIFICANCE STATEMENT Human cognition is highly dynamic, yet the functional network organization of the human brain is highly similar across rest and task states. We hypothesized that, despite this overall network stability, task-related changes from the intrinsic (resting-state) network organization of the brain strongly contribute to brain activations during cognitive task performance. Given that cognitive task activations emerge through network interactions, we leveraged connectivity-based models to predict independent cognitive task activations using resting-state versus task-state functional connectivity. This revealed that task-related changes in functional network organization increased prediction accuracy of cognitive task activations substantially, demonstrating their likely functional relevance for dynamic cognitive processes despite the small size of these task-related network changes. Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they may have only minimal functional relevance. Alternatively, despite their small amplitude, these task-related changes may be essential for the ability of the human brain to adaptively alter its functionality via rapid changes in inter-regional relationships. We used activity flow mapping-an approach for building empirically derived network models-to quantify the functional importance of task-state functional connectivity (above and beyond resting-state functional connectivity) in shaping cognitive task activations in the (female and male) human brain. We found that task-state functional connectivity could be used to better predict independent fMRI activations across all 24 task conditions and all 360 cortical regions tested. Further, we found that prediction accuracy was strongly driven by individual-specific functional connectivity patterns, while functional connectivity patterns from other tasks (task-general functional connectivity) still improved predictions beyond resting-state functional connectivity. Additionally, since activity flow models simulate how task-evoked activations (which underlie behavior) are generated, these results may provide mechanistic insight into why prior studies found correlations between task-state functional connectivity and individual differences in behavior. These findings suggest that task-related changes to functional connections play an important role in dynamically reshaping brain network organization, shifting the flow of neural activity during task performance. |
Author | Ito, Takuya Cole, Michael W. Sanchez-Romero, Ruben Cocuzza, Carrisa |
Author_xml | – sequence: 1 givenname: Michael W. orcidid: 0000-0003-4329-438X surname: Cole fullname: Cole, Michael W. – sequence: 2 givenname: Takuya surname: Ito fullname: Ito, Takuya – sequence: 3 givenname: Carrisa surname: Cocuzza fullname: Cocuzza, Carrisa – sequence: 4 givenname: Ruben surname: Sanchez-Romero fullname: Sanchez-Romero, Ruben |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33542083$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9LwzAUxYNMdJt-hTHwxZfOm39NBiLIcDoZCjqfQ5qmWu2S2bQDv70ZbqK--BTC_Z2bk3N6qOO8swgNMIwwJ_Ts9u7q6eH-cTIbYYFpQmBEgOA91I3TcUIY4A7qAhGQpEywQ9QL4RUABGBxgA4p5YyApF10sXixw2nrTFN6p6vhg63sWjtjh74YLnR4Sx4b3fxCJt45Gy_rsvk4QvuFroI93p599DS9Wkxukvn99WxyOU8MB9kkZCx4Zi3hWUawoZwW1HBmOCl4LtKMykLmQhBsGS4oy7O8MNTkuaRpDlyYMe2ji6-9qzZb2txY19S6Uqu6XOr6Q3ldqt8TV76oZ79WErAUDOKC0-2C2r-3NjRqWQZjq0o769ugCJMCp4B5GtGTP-irb-v480hxSEUMOJWRGvx09G1lF20Ezr8AU_sQalsoU8YoY4bRYFkpDGrTpPpuUm2aVATUpskoT__Idy_8I_wEcTujAg |
CitedBy_id | crossref_primary_10_1016_j_jaac_2024_04_018 crossref_primary_10_1016_j_neuroimage_2024_120552 crossref_primary_10_1016_j_pnpbp_2024_110991 crossref_primary_10_1093_cercor_bhac295 crossref_primary_10_1002_hbm_26044 crossref_primary_10_1093_scan_nsae095 crossref_primary_10_1007_s11427_022_2206_3 crossref_primary_10_1016_j_xpro_2021_101094 crossref_primary_10_7554_eLife_96386 crossref_primary_10_1016_j_neuroimage_2021_118836 crossref_primary_10_1364_BOE_541820 crossref_primary_10_1371_journal_pcbi_1012870 crossref_primary_10_1016_j_nlm_2022_107701 crossref_primary_10_1089_brain_2024_0043 crossref_primary_10_1093_cercor_bhac457 crossref_primary_10_3389_fnagi_2022_1060734 crossref_primary_10_1162_imag_a_00443 crossref_primary_10_3389_fnagi_2025_1536658 crossref_primary_10_3389_fnins_2022_872036 crossref_primary_10_1016_j_biopsych_2021_09_007 crossref_primary_10_1016_j_neuroimage_2024_120983 crossref_primary_10_1371_journal_pbio_3002937 crossref_primary_10_1093_scan_nsac020 crossref_primary_10_1177_15500594211052208 crossref_primary_10_1016_j_neubiorev_2023_105193 crossref_primary_10_1016_j_neuropsychologia_2024_109034 crossref_primary_10_1038_s41467_022_32644_y crossref_primary_10_1523_JNEUROSCI_1701_23_2024 crossref_primary_10_1016_j_neuroimage_2025_121096 crossref_primary_10_1186_s12984_024_01523_6 crossref_primary_10_1038_s41591_023_02317_4 crossref_primary_10_1007_s12264_024_01312_0 crossref_primary_10_1038_s41598_021_97960_7 crossref_primary_10_1016_j_dcn_2022_101079 crossref_primary_10_1016_j_neuroimage_2023_120237 crossref_primary_10_1162_imag_a_00015 crossref_primary_10_1002_hbm_26667 crossref_primary_10_1371_journal_pcbi_1012507 crossref_primary_10_1002_hbm_70064 crossref_primary_10_1016_j_neuropsychologia_2024_108815 crossref_primary_10_3389_fnagi_2024_1449276 crossref_primary_10_1016_j_cobeha_2024_101384 crossref_primary_10_7554_eLife_96386_3 crossref_primary_10_1016_j_neurad_2023_10_005 crossref_primary_10_1162_jocn_a_02153 crossref_primary_10_1162_netn_a_00225 crossref_primary_10_1016_j_brainres_2024_149265 crossref_primary_10_1016_j_clinph_2023_09_005 crossref_primary_10_1016_j_neuroimage_2023_119946 crossref_primary_10_1080_10400419_2023_2192563 crossref_primary_10_1016_j_neuroimage_2021_118656 crossref_primary_10_1016_j_yebeh_2023_109407 crossref_primary_10_3389_fnut_2022_827182 crossref_primary_10_1088_1361_6668_ada114 crossref_primary_10_1002_hbm_26813 crossref_primary_10_1126_sciadv_abf2513 crossref_primary_10_3389_fnhum_2023_1170419 crossref_primary_10_1016_j_jneuroling_2023_101162 crossref_primary_10_1016_j_neuroimage_2024_120761 crossref_primary_10_3389_fnsys_2021_642225 crossref_primary_10_1093_cercor_bhab473 crossref_primary_10_3389_fneur_2023_1143955 crossref_primary_10_1016_j_neuroimage_2023_120300 crossref_primary_10_1162_netn_a_00213 crossref_primary_10_1371_journal_pbio_3002239 crossref_primary_10_1073_pnas_2221533120 crossref_primary_10_1089_brain_2023_0048 crossref_primary_10_1162_netn_a_00374 crossref_primary_10_1016_j_neuroimage_2022_119418 crossref_primary_10_1093_scan_nsab118 crossref_primary_10_1016_j_biopsych_2023_04_001 crossref_primary_10_1038_s41598_024_52443_3 crossref_primary_10_1016_j_heliyon_2023_e21074 crossref_primary_10_1016_j_brainres_2024_148831 crossref_primary_10_1016_j_biopsych_2025_01_022 crossref_primary_10_3390_biomimetics7040231 crossref_primary_10_3389_fnhum_2021_713692 crossref_primary_10_3389_fnagi_2025_1535657 crossref_primary_10_3389_fnins_2024_1337976 |
Cites_doi | 10.1126/science.272.5261.551 10.1113/jphysiol.1952.sp004764 10.1073/pnas.1720985115 10.1038/35084005 10.1016/j.neuroimage.2007.04.042 10.1371/journal.pcbi.1003553 10.1002/mrm.1910330602 10.1016/j.tics.2015.03.009 10.1038/nature18933 10.1016/j.neuroimage.2017.03.020 10.1016/S0006-3495(72)86068-5 10.1371/journal.pcbi.1007983 10.1523/JNEUROSCI.0358-16.2016 10.1002/hbm.1058 10.1016/j.neuron.2018.03.035 10.1016/j.neuroimage.2013.05.033 10.1093/cercor/bhs270 10.1093/cercor/bhr118 10.1038/s41467-017-01000-w 10.1038/nn.2439 10.1016/j.neuron.2014.05.014 10.1038/nn.2303 10.1016/j.neuroimage.2013.05.057 10.1016/j.neuroimage.2018.10.006 10.1016/j.tics.2019.10.005 10.1098/rstb.2013.0526 10.1371/journal.pone.0017832 10.1016/j.neuroimage.2008.09.036 10.1523/JNEUROSCI.2798-17.2017 10.1371/journal.pcbi.1006565 10.1038/nn.4406 10.1016/j.neuroimage.2010.07.073 10.1126/science.aad8127 10.1073/pnas.79.8.2554 10.1038/nature09108 10.1016/j.neuroimage.2013.05.039 10.1016/S1364-6613(99)01329-7 10.1523/JNEUROSCI.2922-12.2013 10.1016/j.tics.2017.09.002 10.1162/jocn_a_01580 10.1146/annurev.physiol.66.082602.092845 10.1038/nature09613 10.1038/nrn1076 10.1016/j.neuroimage.2020.117167 10.1016/j.neubiorev.2017.10.006 10.1038/s41593-019-0510-4 10.1073/pnas.071043098 10.1038/nrn1888 10.1016/j.neuroimage.2013.05.041 10.1038/s41467-018-04920-3 10.1016/j.neuroimage.2018.12.054 10.1038/nn.2842 |
ContentType | Journal Article |
Copyright | Copyright © 2021 the authors. Copyright Society for Neuroscience Mar 24, 2021 Copyright © 2021 the authors 2021 |
Copyright_xml | – notice: Copyright © 2021 the authors. – notice: Copyright Society for Neuroscience Mar 24, 2021 – notice: Copyright © 2021 the authors 2021 |
DBID | AAYXX CITATION NPM 7QG 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
DOI | 10.1523/JNEUROSCI.1713-20.2021 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts Animal Behavior Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 2702 |
ExternalDocumentID | PMC8018740 33542083 10_1523_JNEUROSCI_1713_20_2021 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: NIMH NIH HHS grantid: R01 MH109520 – fundername: NIA NIH HHS grantid: R01 AG055556 – fundername: HHS | National Institutes of Health (NIH) grantid: R01AG055556; R01MH109520 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M YBU YHG YKV YNH YSK AFHIN AIZTS NPM RHF 7QG 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
ID | FETCH-LOGICAL-c508t-2975bee25bb21c353f3c54c52f5d76b38f8d7721e41f34dbdfc3cdd836d057c93 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:18:59 EDT 2025 Fri Jul 11 15:27:05 EDT 2025 Mon Jun 30 17:04:21 EDT 2025 Wed Feb 19 02:28:19 EST 2025 Tue Jul 01 04:15:55 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | network neuroscience computational model network coding models machine learning human connectome project task connectivity |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 Copyright © 2021 the authors. SfN exclusive license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c508t-2975bee25bb21c353f3c54c52f5d76b38f8d7721e41f34dbdfc3cdd836d057c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: M.W.C., T.I., and C.C. designed research; M.W.C. performed research; M.W.C. and T.I. contributed analytic tools; M.W.C., T.I., and C.C. analyzed data; M.W.C., T.I., C.C., and R.S.-R. wrote the paper |
ORCID | 0000-0003-4329-438X |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/41/12/2684.full.pdf |
PMID | 33542083 |
PQID | 2506752968 |
PQPubID | 2049535 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8018740 proquest_miscellaneous_2487160156 proquest_journals_2506752968 pubmed_primary_33542083 crossref_citationtrail_10_1523_JNEUROSCI_1713_20_2021 crossref_primary_10_1523_JNEUROSCI_1713_20_2021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-24 |
PublicationDateYYYYMMDD | 2021-03-24 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2021 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041803455109000_41.12.2684.10 2023041803455109000_41.12.2684.51 2023041803455109000_41.12.2684.52 2023041803455109000_41.12.2684.50 2023041803455109000_41.12.2684.17 2023041803455109000_41.12.2684.18 2023041803455109000_41.12.2684.15 2023041803455109000_41.12.2684.16 2023041803455109000_41.12.2684.13 2023041803455109000_41.12.2684.14 2023041803455109000_41.12.2684.11 2023041803455109000_41.12.2684.12 2023041803455109000_41.12.2684.19 2023041803455109000_41.12.2684.20 2023041803455109000_41.12.2684.21 2023041803455109000_41.12.2684.28 2023041803455109000_41.12.2684.29 2023041803455109000_41.12.2684.26 2023041803455109000_41.12.2684.27 2023041803455109000_41.12.2684.24 2023041803455109000_41.12.2684.25 2023041803455109000_41.12.2684.22 2023041803455109000_41.12.2684.23 2023041803455109000_41.12.2684.31 2023041803455109000_41.12.2684.32 2023041803455109000_41.12.2684.30 2023041803455109000_41.12.2684.39 2023041803455109000_41.12.2684.37 2023041803455109000_41.12.2684.38 2023041803455109000_41.12.2684.35 2023041803455109000_41.12.2684.36 2023041803455109000_41.12.2684.33 2023041803455109000_41.12.2684.34 2023041803455109000_41.12.2684.9 2023041803455109000_41.12.2684.8 2023041803455109000_41.12.2684.5 2023041803455109000_41.12.2684.42 2023041803455109000_41.12.2684.4 2023041803455109000_41.12.2684.43 2023041803455109000_41.12.2684.7 2023041803455109000_41.12.2684.40 2023041803455109000_41.12.2684.6 2023041803455109000_41.12.2684.41 2023041803455109000_41.12.2684.1 2023041803455109000_41.12.2684.3 2023041803455109000_41.12.2684.2 2023041803455109000_41.12.2684.48 2023041803455109000_41.12.2684.49 2023041803455109000_41.12.2684.46 2023041803455109000_41.12.2684.47 2023041803455109000_41.12.2684.44 2023041803455109000_41.12.2684.45 |
References_xml | – ident: 2023041803455109000_41.12.2684.28 doi: 10.1126/science.272.5261.551 – ident: 2023041803455109000_41.12.2684.16 doi: 10.1113/jphysiol.1952.sp004764 – ident: 2023041803455109000_41.12.2684.39 doi: 10.1073/pnas.1720985115 – ident: 2023041803455109000_41.12.2684.27 doi: 10.1038/35084005 – ident: 2023041803455109000_41.12.2684.4 doi: 10.1016/j.neuroimage.2007.04.042 – ident: 2023041803455109000_41.12.2684.36 doi: 10.1371/journal.pcbi.1003553 – ident: 2023041803455109000_41.12.2684.24 doi: 10.1002/mrm.1910330602 – ident: 2023041803455109000_41.12.2684.50 doi: 10.1016/j.tics.2015.03.009 – ident: 2023041803455109000_41.12.2684.11 doi: 10.1038/nature18933 – ident: 2023041803455109000_41.12.2684.5 doi: 10.1016/j.neuroimage.2017.03.020 – ident: 2023041803455109000_41.12.2684.51 doi: 10.1016/S0006-3495(72)86068-5 – ident: 2023041803455109000_41.12.2684.19 doi: 10.1371/journal.pcbi.1007983 – ident: 2023041803455109000_41.12.2684.42 doi: 10.1523/JNEUROSCI.0358-16.2016 – ident: 2023041803455109000_41.12.2684.35 doi: 10.1002/hbm.1058 – ident: 2023041803455109000_41.12.2684.12 doi: 10.1016/j.neuron.2018.03.035 – ident: 2023041803455109000_41.12.2684.3 doi: 10.1016/j.neuroimage.2013.05.033 – ident: 2023041803455109000_41.12.2684.29 doi: 10.1093/cercor/bhs270 – ident: 2023041803455109000_41.12.2684.37 doi: 10.1093/cercor/bhr118 – ident: 2023041803455109000_41.12.2684.18 doi: 10.1038/s41467-017-01000-w – ident: 2023041803455109000_41.12.2684.7 doi: 10.1038/nn.2439 – ident: 2023041803455109000_41.12.2684.8 doi: 10.1016/j.neuron.2014.05.014 – ident: 2023041803455109000_41.12.2684.22 doi: 10.1038/nn.2303 – ident: 2023041803455109000_41.12.2684.44 doi: 10.1016/j.neuroimage.2013.05.057 – ident: 2023041803455109000_41.12.2684.21 doi: 10.1016/j.neuroimage.2018.10.006 – ident: 2023041803455109000_41.12.2684.20 doi: 10.1016/j.tics.2019.10.005 – ident: 2023041803455109000_41.12.2684.23 doi: 10.1098/rstb.2013.0526 – ident: 2023041803455109000_41.12.2684.45 doi: 10.1371/journal.pone.0017832 – ident: 2023041803455109000_41.12.2684.33 doi: 10.1016/j.neuroimage.2008.09.036 – ident: 2023041803455109000_41.12.2684.52 doi: 10.1523/JNEUROSCI.2798-17.2017 – ident: 2023041803455109000_41.12.2684.49 doi: 10.1371/journal.pcbi.1006565 – ident: 2023041803455109000_41.12.2684.9 doi: 10.1038/nn.4406 – ident: 2023041803455109000_41.12.2684.34 doi: 10.1016/j.neuroimage.2010.07.073 – ident: 2023041803455109000_41.12.2684.46 doi: 10.1126/science.aad8127 – ident: 2023041803455109000_41.12.2684.17 doi: 10.1073/pnas.79.8.2554 – ident: 2023041803455109000_41.12.2684.25 doi: 10.1038/nature09108 – ident: 2023041803455109000_41.12.2684.43 doi: 10.1016/j.neuroimage.2013.05.039 – ident: 2023041803455109000_41.12.2684.31 doi: 10.1016/S1364-6613(99)01329-7 – ident: 2023041803455109000_41.12.2684.15 doi: 10.1523/JNEUROSCI.2922-12.2013 – ident: 2023041803455109000_41.12.2684.38 doi: 10.1016/j.tics.2017.09.002 – ident: 2023041803455109000_41.12.2684.41 doi: 10.1162/jocn_a_01580 – ident: 2023041803455109000_41.12.2684.26 doi: 10.1146/annurev.physiol.66.082602.092845 – ident: 2023041803455109000_41.12.2684.1 doi: 10.1038/nature09613 – ident: 2023041803455109000_41.12.2684.30 doi: 10.1038/nrn1076 – ident: 2023041803455109000_41.12.2684.32 doi: 10.1016/j.neuroimage.2020.117167 – ident: 2023041803455109000_41.12.2684.47 doi: 10.1016/j.neubiorev.2017.10.006 – ident: 2023041803455109000_41.12.2684.40 doi: 10.1038/s41593-019-0510-4 – ident: 2023041803455109000_41.12.2684.14 doi: 10.1073/pnas.071043098 – ident: 2023041803455109000_41.12.2684.2 doi: 10.1038/nrn1888 – ident: 2023041803455109000_41.12.2684.48 doi: 10.1016/j.neuroimage.2013.05.041 – ident: 2023041803455109000_41.12.2684.13 doi: 10.1038/s41467-018-04920-3 – ident: 2023041803455109000_41.12.2684.10 doi: 10.1016/j.neuroimage.2018.12.054 – ident: 2023041803455109000_41.12.2684.6 doi: 10.1038/nn.2842 |
SSID | ssj0007017 |
Score | 2.6019897 |
Snippet | Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2684 |
SubjectTerms | Brain Brain architecture Brain mapping Cognitive ability Cognitive tasks Correlation analysis Flow mapping Functional magnetic resonance imaging Functional morphology Human performance Neural networks |
Title | The Functional Relevance of Task-State Functional Connectivity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33542083 https://www.proquest.com/docview/2506752968 https://www.proquest.com/docview/2487160156 https://pubmed.ncbi.nlm.nih.gov/PMC8018740 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCCuURKChIiAtKmsR24r0gVQtVW6Qelq3oLfIrKipNUJscuv-Af83Y8TrZsgLKJYoSZ-JkxuMZ-5sZhN4WU660KGikDMqBMKojxgWNKixzTKqkSrkFyJ7kh6fk-IyeTSY_R6ilrhWxXG6MK_kfrsI14KuJkr0DZz1RuADnwF84Aofh-M88PoCJya3nzU2suA0BAAtwwa8vImtKjptYXIvsK0aM7dIhQszapqMsl57xs8Yhj3ug_fuvsRcrW4oJ3njR3QzAn0Z2yyV3oBKTytcv5kAXz_UymjeXuo-ymXfCRaS59YfMArD6sGenprICHFDS19qJtVOjmd23Scd6tk9wtZKnbKw1c0ZGM7AJkduo3anNMnF8YkCOX2ZHcQoeNghEbLo1zGerPfxb05wHHxq3ByiVnk5p6JRZUho699D9DDwOUwzj49FnP6kXiS3e7D_WBZsDnb3N_Vm3c35zXm5jcEdGzWIbPXQcD_d70XqEJrp-jHb2a942lzfhu9Dig-3Gyw76ADISDqIUemkLmyocpG3cZCxtT9DpwafF7DBy1TciCUZ7G5mQa6F1RoXIUokphuFLiaRZRVWRC8wqpuBHpZqkFSZKqEpiqRTDuQIfQE7xU7RVN7V-jkLFUlLxIhGpTInGlGOaV4xoTtJEcUYCRFf_qpQuNb2pkPK9_DOvArTnn_vRJ2f56xO7K1aUbiBfl-AFgNucTXMWoDf-NqhZs3fGa9100IaYlQWTdyBAz3rO-VdiTA1IBQeoWOOpb2BSuK_fqb-d21TurK-J-eLOH_ISPRgG4y7aaq86_QrM41a8toL7C5tHtcg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Functional+Relevance+of+Task-State+Functional+Connectivity&rft.jtitle=The+Journal+of+neuroscience&rft.au=Cole%2C+Michael+W.&rft.au=Ito%2C+Takuya&rft.au=Cocuzza%2C+Carrisa&rft.au=Sanchez-Romero%2C+Ruben&rft.date=2021-03-24&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=41&rft.issue=12&rft.spage=2684&rft.epage=2702&rft_id=info:doi/10.1523%2FJNEUROSCI.1713-20.2021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_1713_20_2021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |