Resilience to Pain: A Peripheral Component Identified Using Induced Pluripotent Stem Cells and Dynamic Clamp

Pain is a complex process that involves both detection in the peripheral nervous system and perception in the CNS. Individual-to-individual differences in pain are well documented, but not well understood. Here we capitalized on inherited erythromelalgia (IEM), a well characterized human genetic mod...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 39; no. 3; pp. 382 - 392
Main Authors Mis, Malgorzata A., Yang, Yang, Tanaka, Brian S., Gomis-Perez, Carolina, Liu, Shujun, Dib-Hajj, Fadia, Adi, Talia, Garcia-Milian, Rolando, Schulman, Betsy R., Dib-Hajj, Sulayman D., Waxman, Stephen G.
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 16.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pain is a complex process that involves both detection in the peripheral nervous system and perception in the CNS. Individual-to-individual differences in pain are well documented, but not well understood. Here we capitalized on inherited erythromelalgia (IEM), a well characterized human genetic model of chronic pain, and studied a unique family containing related IEM subjects with the same disease-causing Na V 1.7 mutation, which is known to make dorsal root ganglion (DRG) neurons hyperexcitable, but different pain profiles (affected son with severe pain, affected mother with moderate pain, and an unaffected father). We show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell (iPSC)-derived sensory neurons in vitro ; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing (WES) and dynamic clamp, we show that it is possible to pinpoint a specific variant of another gene, KCNQ in this particular kindred, that modulates the excitability of iPSC-derived sensory neurons in this family. While different gene variants may modulate DRG neuron excitability and thereby contribute to interindividual differences in pain in other families, this study shows that subject-specific iPSCs can be used to model interindividual differences in pain. We further provide proof-of-principle that iPSCs, WES, and dynamic clamp can be used to investigate peripheral mechanisms and pinpoint specific gene variants that modulate pain signaling and contribute to interindividual differences in pain. SIGNIFICANCE STATEMENT Individual-to-individual differences in pain are well documented, but not well understood. In this study, we show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell-derived sensory neurons in vitro ; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing and dynamic clamp, we show that it is possible to pinpoint a specific gene variant that modulates pain signaling and contributes to interindividual differences in pain.
AbstractList Pain is a complex process that involves both detection in the peripheral nervous system and perception in the CNS. Individual-to-individual differences in pain are well documented, but not well understood. Here we capitalized on inherited erythromelalgia (IEM), a well characterized human genetic model of chronic pain, and studied a unique family containing related IEM subjects with the same disease-causing NaV1.7 mutation, which is known to make dorsal root ganglion (DRG) neurons hyperexcitable, but different pain profiles (affected son with severe pain, affected mother with moderate pain, and an unaffected father). We show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell (iPSC)-derived sensory neurons in vitro; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing (WES) and dynamic clamp, we show that it is possible to pinpoint a specific variant of another gene, KCNQ in this particular kindred, that modulates the excitability of iPSC-derived sensory neurons in this family. While different gene variants may modulate DRG neuron excitability and thereby contribute to interindividual differences in pain in other families, this study shows that subject-specific iPSCs can be used to model interindividual differences in pain. We further provide proof-of-principle that iPSCs, WES, and dynamic clamp can be used to investigate peripheral mechanisms and pinpoint specific gene variants that modulate pain signaling and contribute to interindividual differences in pain.SIGNIFICANCE STATEMENT Individual-to-individual differences in pain are well documented, but not well understood. In this study, we show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell-derived sensory neurons in vitro; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing and dynamic clamp, we show that it is possible to pinpoint a specific gene variant that modulates pain signaling and contributes to interindividual differences in pain.Pain is a complex process that involves both detection in the peripheral nervous system and perception in the CNS. Individual-to-individual differences in pain are well documented, but not well understood. Here we capitalized on inherited erythromelalgia (IEM), a well characterized human genetic model of chronic pain, and studied a unique family containing related IEM subjects with the same disease-causing NaV1.7 mutation, which is known to make dorsal root ganglion (DRG) neurons hyperexcitable, but different pain profiles (affected son with severe pain, affected mother with moderate pain, and an unaffected father). We show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell (iPSC)-derived sensory neurons in vitro; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing (WES) and dynamic clamp, we show that it is possible to pinpoint a specific variant of another gene, KCNQ in this particular kindred, that modulates the excitability of iPSC-derived sensory neurons in this family. While different gene variants may modulate DRG neuron excitability and thereby contribute to interindividual differences in pain in other families, this study shows that subject-specific iPSCs can be used to model interindividual differences in pain. We further provide proof-of-principle that iPSCs, WES, and dynamic clamp can be used to investigate peripheral mechanisms and pinpoint specific gene variants that modulate pain signaling and contribute to interindividual differences in pain.SIGNIFICANCE STATEMENT Individual-to-individual differences in pain are well documented, but not well understood. In this study, we show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell-derived sensory neurons in vitro; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing and dynamic clamp, we show that it is possible to pinpoint a specific gene variant that modulates pain signaling and contributes to interindividual differences in pain.
Pain is a complex process that involves both detection in the peripheral nervous system and perception in the CNS. Individual-to-individual differences in pain are well documented, but not well understood. Here we capitalized on inherited erythromelalgia (IEM), a well characterized human genetic model of chronic pain, and studied a unique family containing related IEM subjects with the same disease-causing Na V 1.7 mutation, which is known to make dorsal root ganglion (DRG) neurons hyperexcitable, but different pain profiles (affected son with severe pain, affected mother with moderate pain, and an unaffected father). We show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell (iPSC)-derived sensory neurons in vitro ; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing (WES) and dynamic clamp, we show that it is possible to pinpoint a specific variant of another gene, KCNQ in this particular kindred, that modulates the excitability of iPSC-derived sensory neurons in this family. While different gene variants may modulate DRG neuron excitability and thereby contribute to interindividual differences in pain in other families, this study shows that subject-specific iPSCs can be used to model interindividual differences in pain. We further provide proof-of-principle that iPSCs, WES, and dynamic clamp can be used to investigate peripheral mechanisms and pinpoint specific gene variants that modulate pain signaling and contribute to interindividual differences in pain. SIGNIFICANCE STATEMENT Individual-to-individual differences in pain are well documented, but not well understood. In this study, we show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell-derived sensory neurons in vitro ; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing and dynamic clamp, we show that it is possible to pinpoint a specific gene variant that modulates pain signaling and contributes to interindividual differences in pain.
Pain is a complex process that involves both detection in the peripheral nervous system and perception in the CNS. Individual-to-individual differences in pain are well documented, but not well understood. Here we capitalized on inherited erythromelalgia (IEM), a well characterized human genetic model of chronic pain, and studied a unique family containing related IEM subjects with the same disease-causing Na 1.7 mutation, which is known to make dorsal root ganglion (DRG) neurons hyperexcitable, but different pain profiles (affected son with severe pain, affected mother with moderate pain, and an unaffected father). We show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell (iPSC)-derived sensory neurons ; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing (WES) and dynamic clamp, we show that it is possible to pinpoint a specific variant of another gene, in this particular kindred, that modulates the excitability of iPSC-derived sensory neurons in this family. While different gene variants may modulate DRG neuron excitability and thereby contribute to interindividual differences in pain in other families, this study shows that subject-specific iPSCs can be used to model interindividual differences in pain. We further provide proof-of-principle that iPSCs, WES, and dynamic clamp can be used to investigate peripheral mechanisms and pinpoint specific gene variants that modulate pain signaling and contribute to interindividual differences in pain. Individual-to-individual differences in pain are well documented, but not well understood. In this study, we show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell-derived sensory neurons ; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing and dynamic clamp, we show that it is possible to pinpoint a specific gene variant that modulates pain signaling and contributes to interindividual differences in pain.
Pain is a complex process that involves both detection in the peripheral nervous system and perception in the CNS. Individual-to-individual differences in pain are well documented, but not well understood. Here we capitalized on inherited erythromelalgia (IEM), a well characterized human genetic model of chronic pain, and studied a unique family containing related IEM subjects with the same disease-causing NaV1.7 mutation, which is known to make dorsal root ganglion (DRG) neurons hyperexcitable, but different pain profiles (affected son with severe pain, affected mother with moderate pain, and an unaffected father). We show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell (iPSC)-derived sensory neurons in vitro; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing (WES) and dynamic clamp, we show that it is possible to pinpoint a specific variant of another gene, KCNQ in this particular kindred, that modulates the excitability of iPSC-derived sensory neurons in this family. While different gene variants may modulate DRG neuron excitability and thereby contribute to interindividual differences in pain in other families, this study shows that subject-specific iPSCs can be used to model interindividual differences in pain. We further provide proof-of-principle that iPSCs, WES, and dynamic clamp can be used to investigate peripheral mechanisms and pinpoint specific gene variants that modulate pain signaling and contribute to interindividual differences in pain. SIGNIFICANCE STATEMENT Individual-to-individual differences in pain are well documented, but not well understood. In this study, we show, first, that, at least in some cases, relative sensitivity to pain can be modeled in subject-specific induced pluripotent stem cell-derived sensory neurons in vitro; second, that, in some cases, mechanisms operating in peripheral sensory neurons contribute to interindividual differences in pain; and third, using whole exome sequencing and dynamic clamp, we show that it is possible to pinpoint a specific gene variant that modulates pain signaling and contributes to interindividual differences in pain.
Author Schulman, Betsy R.
Dib-Hajj, Fadia
Liu, Shujun
Gomis-Perez, Carolina
Adi, Talia
Garcia-Milian, Rolando
Waxman, Stephen G.
Yang, Yang
Dib-Hajj, Sulayman D.
Tanaka, Brian S.
Mis, Malgorzata A.
Author_xml – sequence: 1
  givenname: Malgorzata A.
  orcidid: 0000-0001-9476-5466
  surname: Mis
  fullname: Mis, Malgorzata A.
– sequence: 2
  givenname: Yang
  orcidid: 0000-0001-6417-3654
  surname: Yang
  fullname: Yang, Yang
– sequence: 3
  givenname: Brian S.
  orcidid: 0000-0002-6678-6478
  surname: Tanaka
  fullname: Tanaka, Brian S.
– sequence: 4
  givenname: Carolina
  orcidid: 0000-0002-6818-4403
  surname: Gomis-Perez
  fullname: Gomis-Perez, Carolina
– sequence: 5
  givenname: Shujun
  surname: Liu
  fullname: Liu, Shujun
– sequence: 6
  givenname: Fadia
  orcidid: 0000-0002-5026-1351
  surname: Dib-Hajj
  fullname: Dib-Hajj, Fadia
– sequence: 7
  givenname: Talia
  orcidid: 0000-0002-3423-3318
  surname: Adi
  fullname: Adi, Talia
– sequence: 8
  givenname: Rolando
  orcidid: 0000-0003-1557-566X
  surname: Garcia-Milian
  fullname: Garcia-Milian, Rolando
– sequence: 9
  givenname: Betsy R.
  orcidid: 0000-0002-9368-9091
  surname: Schulman
  fullname: Schulman, Betsy R.
– sequence: 10
  givenname: Sulayman D.
  orcidid: 0000-0002-4137-1655
  surname: Dib-Hajj
  fullname: Dib-Hajj, Sulayman D.
– sequence: 11
  givenname: Stephen G.
  orcidid: 0000-0001-5718-7177
  surname: Waxman
  fullname: Waxman, Stephen G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30459225$$D View this record in MEDLINE/PubMed
BookMark eNqFkVtv1DAQhS1URLeFv1BZ4oWXLL47QQipCgUWVXTVss-W15m0rhI7xAlS_z2OehH0hRePrPlm5hydI3QQYgCETihZU8n4--8_znaXF1f1Zs0E5wUt14zQ8gVa5W5VMEHoAVoRpkmhhBaH6CilW0KIJlS_QoecCFkxJleou4TkOw_BAZ4i3lofPuBTvIXRDzcw2g7XsR_y7TDhTZNf33po8C75cI03oZld_m27OeNxWqCrCXpcQ9clbEODP98F23uH6872w2v0srVdgjcP9Rjtvpz9rL8V5xdfN_XpeeEkKaeCVZqBLjkoybVtNXeiFI0Cy4gAzW1FrRItuL2wTmVCNa20VkMFTQnO7vkx-nS_d5j3PTQu68pOzDD63o53Jlpv_u0Ef2Ou42-jOJdakrzg3cOCMf6aIU2m98llUzZAnJNhlCsplSxZRt8-Q2_jPIZsL1OacCFIqTN18reiJymPQWTg4z3gxpjSCK1xfrKTj4tA3xlKzJK7ecrdLLkbWpol9zyuno0_XvjP4B9hx7Ps
CitedBy_id crossref_primary_10_1186_s13287_024_03696_2
crossref_primary_10_3390_ijms24098278
crossref_primary_10_1016_j_tiv_2021_105233
crossref_primary_10_2217_bem_2019_0018
crossref_primary_10_1007_s00424_024_02945_w
crossref_primary_10_3389_fphar_2020_607780
crossref_primary_10_1038_s41583_020_00418_4
crossref_primary_10_1016_j_tips_2019_04_003
crossref_primary_10_1523_JNEUROSCI_0564_21_2021
crossref_primary_10_1016_j_neuron_2019_02_016
crossref_primary_10_3390_ijms23137190
crossref_primary_10_1038_s41598_021_03608_x
crossref_primary_10_1073_pnas_2119630119
crossref_primary_10_1016_j_phrs_2022_106598
crossref_primary_10_3390_bioengineering11080794
crossref_primary_10_1021_acs_analchem_1c04641
crossref_primary_10_1038_s41582_022_00741_7
crossref_primary_10_1093_brain_awac031
crossref_primary_10_1016_j_neulet_2021_135844
crossref_primary_10_1038_s41573_024_01108_x
crossref_primary_10_1016_j_molmed_2020_03_007
crossref_primary_10_1016_j_jatmed_2024_08_003
crossref_primary_10_3389_fncel_2023_1239069
crossref_primary_10_1038_s41582_020_00415_2
crossref_primary_10_1016_j_cophys_2019_05_015
crossref_primary_10_1016_j_expneurol_2022_114223
crossref_primary_10_1038_s41583_022_00673_7
crossref_primary_10_1097_ALN_0000000000003447
crossref_primary_10_1038_s41467_024_49340_8
crossref_primary_10_1016_j_molmed_2021_11_005
crossref_primary_10_3389_fcell_2023_1011145
crossref_primary_10_1073_pnas_2110932119
crossref_primary_10_1016_j_crmeth_2022_100385
crossref_primary_10_3390_brainsci10060344
crossref_primary_10_1016_j_bioactmat_2022_10_007
crossref_primary_10_1073_pnas_2215417120
crossref_primary_10_1016_j_physbeh_2025_114880
crossref_primary_10_1016_j_neuron_2019_09_018
crossref_primary_10_1097_j_pain_0000000000002860
crossref_primary_10_1016_j_neuropharm_2024_109967
crossref_primary_10_1016_j_ynpai_2020_100051
crossref_primary_10_1097_j_pain_0000000000003479
crossref_primary_10_3389_fnins_2019_00918
crossref_primary_10_1016_j_ynpai_2020_100055
crossref_primary_10_3389_fphar_2023_1138556
crossref_primary_10_1093_brain_awab048
crossref_primary_10_3389_fcell_2023_1203503
crossref_primary_10_3390_biomedicines11102680
crossref_primary_10_1093_braincomms_fcab212
crossref_primary_10_1097_j_pain_0000000000001492
crossref_primary_10_1093_braincomms_fcae095
crossref_primary_10_1093_brain_awab482
crossref_primary_10_1242_dmm_039396
crossref_primary_10_1016_j_phrs_2024_107111
crossref_primary_10_1038_s41401_025_01494_x
crossref_primary_10_1097_j_pain_0000000000001527
crossref_primary_10_1016_j_celrep_2020_107941
crossref_primary_10_1146_annurev_neuro_070918_050144
crossref_primary_10_1016_j_ynpai_2021_100063
crossref_primary_10_1016_j_jpain_2024_01_001
crossref_primary_10_1126_scitranslmed_abj9837
crossref_primary_10_1007_s11095_021_03075_z
crossref_primary_10_2147_JPR_S287603
Cites_doi 10.1126/scitranslmed.aad7653
10.1097/j.pain.0000000000000229
10.1172/JCI33297
10.1371/journal.pone.0030402
10.1038/nbt.2249
10.1093/brain/awg060
10.1038/ng.3970
10.1016/j.stem.2015.06.013
10.1016/j.pain.2014.04.018
10.1523/JNEUROSCI.3424-06.2006
10.1038/ncomms2184
10.1113/jphysiol.1982.sp014357
10.1038/nnano.2012.265
10.1038/nature12141
10.1523/JNEUROSCI.0462-16.2016
10.1016/j.pain.2014.08.025
10.1073/pnas.94.4.1527
10.1152/jn.00763.2013
10.1016/j.pain.2012.05.017
10.1074/jbc.M607637200
10.1126/science.282.5395.1890
10.1016/j.pain.2010.12.028
10.1038/nrc3640
10.1038/mt.2014.86
10.1073/pnas.0802805105
10.1093/brain/aww007
10.1172/JCI92373
10.1016/j.tins.2004.02.004
10.1113/jphysiol.1989.sp017737
10.1001/jamaneurol.2016.0389
10.1016/j.ceb.2015.10.008
10.1016/j.pain.2014.03.022
10.1523/JNEUROSCI.4206-13.2014
10.1523/JNEUROSCI.23-18-07227.2003
10.1038/mp.2017.40
10.1016/j.ajhg.2013.09.016
10.1007/7651_2013_59
10.1111/bph.13935
10.1113/jphysiol.1982.sp014412
10.1002/embj.201387098
ContentType Journal Article
Copyright Copyright © 2019 the authors 0270-6474/19/390382-11$15.00/0.
Copyright Society for Neuroscience Jan 16, 2019
Copyright © 2019 the authors 0270-6474/19/390382-11$15.00/0 2019
Copyright_xml – notice: Copyright © 2019 the authors 0270-6474/19/390382-11$15.00/0.
– notice: Copyright Society for Neuroscience Jan 16, 2019
– notice: Copyright © 2019 the authors 0270-6474/19/390382-11$15.00/0 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
DOI 10.1523/JNEUROSCI.2433-18.2018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
Animal Behavior Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 392
ExternalDocumentID PMC6335750
30459225
10_1523_JNEUROSCI_2433_18_2018
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIH HHS
  grantid: S10 OD018521
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
YBU
YHG
YKV
YNH
YSK
AFHIN
AIZTS
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7QG
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
ID FETCH-LOGICAL-c508t-2972e783e6537af73c484d6ea204e73a91a64fecb4ac637a6df5aa7e9ed8ecab3
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 13:53:01 EDT 2025
Fri Jul 11 11:18:41 EDT 2025
Mon Jun 30 16:47:44 EDT 2025
Wed Feb 19 02:30:35 EST 2025
Tue Jul 01 04:15:40 EDT 2025
Thu Apr 24 23:03:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords potassium channel
pain
induced pluripotent stem cells
dynamic clamp
voltage-gated sodium channel
whole exome sequencing
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
Copyright © 2019 the authors 0270-6474/19/390382-11$15.00/0.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c508t-2972e783e6537af73c484d6ea204e73a91a64fecb4ac637a6df5aa7e9ed8ecab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
M.A.M. and Y.Y. contributed equally to this work.
Author contributions: M.A.M., Y.Y., S.D.D.-H., and S.G.W. designed research; M.A.M., Y.Y., B.S.T., C.G.-P., S.L., F.D.-H., T.A., and B.R.S. performed research; M.A.M., Y.Y., C.G.-P., R.G.-M., S.D.D.-H., and S.G.W. analyzed data; M.A.M., Y.Y., S.D.D.-H., and S.G.W. wrote the paper.
ORCID 0000-0002-4137-1655
0000-0002-6818-4403
0000-0001-6417-3654
0000-0002-3423-3318
0000-0003-1557-566X
0000-0002-5026-1351
0000-0002-9368-9091
0000-0001-9476-5466
0000-0002-6678-6478
0000-0001-5718-7177
OpenAccessLink https://www.jneurosci.org/content/jneuro/39/3/382.full.pdf
PMID 30459225
PQID 2170344087
PQPubID 2049535
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6335750
proquest_miscellaneous_2136556582
proquest_journals_2170344087
pubmed_primary_30459225
crossref_citationtrail_10_1523_JNEUROSCI_2433_18_2018
crossref_primary_10_1523_JNEUROSCI_2433_18_2018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-16
PublicationDateYYYYMMDD 2019-01-16
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Baltimore
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2019
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041803343029000_39.3.382.27
2023041803343029000_39.3.382.28
2023041803343029000_39.3.382.29
2023041803343029000_39.3.382.23
2023041803343029000_39.3.382.24
2023041803343029000_39.3.382.25
2023041803343029000_39.3.382.26
2023041803343029000_39.3.382.41
2023041803343029000_39.3.382.20
2023041803343029000_39.3.382.21
2023041803343029000_39.3.382.22
2023041803343029000_39.3.382.40
2023041803343029000_39.3.382.3
2023041803343029000_39.3.382.4
2023041803343029000_39.3.382.5
2023041803343029000_39.3.382.6
2023041803343029000_39.3.382.7
2023041803343029000_39.3.382.8
2023041803343029000_39.3.382.9
2023041803343029000_39.3.382.16
2023041803343029000_39.3.382.38
2023041803343029000_39.3.382.17
2023041803343029000_39.3.382.39
2023041803343029000_39.3.382.1
2023041803343029000_39.3.382.18
2023041803343029000_39.3.382.2
2023041803343029000_39.3.382.19
2023041803343029000_39.3.382.12
2023041803343029000_39.3.382.34
2023041803343029000_39.3.382.13
2023041803343029000_39.3.382.35
2023041803343029000_39.3.382.14
2023041803343029000_39.3.382.36
2023041803343029000_39.3.382.15
2023041803343029000_39.3.382.37
2023041803343029000_39.3.382.30
2023041803343029000_39.3.382.31
2023041803343029000_39.3.382.10
2023041803343029000_39.3.382.32
2023041803343029000_39.3.382.11
2023041803343029000_39.3.382.33
31292212 - J Neurosci. 2019 Jul 10;39(28):5422-5423
References_xml – ident: 2023041803343029000_39.3.382.4
  doi: 10.1126/scitranslmed.aad7653
– ident: 2023041803343029000_39.3.382.21
  doi: 10.1097/j.pain.0000000000000229
– ident: 2023041803343029000_39.3.382.9
  doi: 10.1172/JCI33297
– ident: 2023041803343029000_39.3.382.25
  doi: 10.1371/journal.pone.0030402
– ident: 2023041803343029000_39.3.382.5
  doi: 10.1038/nbt.2249
– ident: 2023041803343029000_39.3.382.23
  doi: 10.1093/brain/awg060
– ident: 2023041803343029000_39.3.382.16
  doi: 10.1038/ng.3970
– ident: 2023041803343029000_39.3.382.20
  doi: 10.1016/j.stem.2015.06.013
– ident: 2023041803343029000_39.3.382.32
  doi: 10.1016/j.pain.2014.04.018
– ident: 2023041803343029000_39.3.382.13
  doi: 10.1523/JNEUROSCI.3424-06.2006
– ident: 2023041803343029000_39.3.382.35
  doi: 10.1038/ncomms2184
– ident: 2023041803343029000_39.3.382.2
  doi: 10.1113/jphysiol.1982.sp014357
– ident: 2023041803343029000_39.3.382.30
  doi: 10.1038/nnano.2012.265
– ident: 2023041803343029000_39.3.382.39
  doi: 10.1038/nature12141
– ident: 2023041803343029000_39.3.382.36
  doi: 10.1523/JNEUROSCI.0462-16.2016
– ident: 2023041803343029000_39.3.382.10
  doi: 10.1016/j.pain.2014.08.025
– ident: 2023041803343029000_39.3.382.31
  doi: 10.1073/pnas.94.4.1527
– ident: 2023041803343029000_39.3.382.33
  doi: 10.1152/jn.00763.2013
– ident: 2023041803343029000_39.3.382.7
– ident: 2023041803343029000_39.3.382.17
  doi: 10.1016/j.pain.2012.05.017
– ident: 2023041803343029000_39.3.382.18
  doi: 10.1074/jbc.M607637200
– ident: 2023041803343029000_39.3.382.34
  doi: 10.1126/science.282.5395.1890
– ident: 2023041803343029000_39.3.382.27
  doi: 10.1016/j.pain.2010.12.028
– ident: 2023041803343029000_39.3.382.8
  doi: 10.1038/nrc3640
– ident: 2023041803343029000_39.3.382.38
  doi: 10.1038/mt.2014.86
– ident: 2023041803343029000_39.3.382.28
  doi: 10.1073/pnas.0802805105
– ident: 2023041803343029000_39.3.382.19
  doi: 10.1093/brain/aww007
– ident: 2023041803343029000_39.3.382.14
  doi: 10.1172/JCI92373
– ident: 2023041803343029000_39.3.382.26
  doi: 10.1016/j.tins.2004.02.004
– ident: 2023041803343029000_39.3.382.22
  doi: 10.1113/jphysiol.1989.sp017737
– ident: 2023041803343029000_39.3.382.11
  doi: 10.1001/jamaneurol.2016.0389
– ident: 2023041803343029000_39.3.382.40
  doi: 10.1016/j.ceb.2015.10.008
– ident: 2023041803343029000_39.3.382.12
  doi: 10.1016/j.pain.2014.03.022
– ident: 2023041803343029000_39.3.382.3
  doi: 10.1523/JNEUROSCI.4206-13.2014
– ident: 2023041803343029000_39.3.382.24
  doi: 10.1523/JNEUROSCI.23-18-07227.2003
– ident: 2023041803343029000_39.3.382.29
  doi: 10.1038/mp.2017.40
– ident: 2023041803343029000_39.3.382.41
  doi: 10.1016/j.ajhg.2013.09.016
– ident: 2023041803343029000_39.3.382.6
  doi: 10.1007/7651_2013_59
– ident: 2023041803343029000_39.3.382.37
  doi: 10.1111/bph.13935
– ident: 2023041803343029000_39.3.382.1
  doi: 10.1113/jphysiol.1982.sp014412
– ident: 2023041803343029000_39.3.382.15
  doi: 10.1002/embj.201387098
– reference: 31292212 - J Neurosci. 2019 Jul 10;39(28):5422-5423
SSID ssj0007017
Score 2.5237908
Snippet Pain is a complex process that involves both detection in the peripheral nervous system and perception in the CNS. Individual-to-individual differences in pain...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 382
SubjectTerms Adult
Central nervous system
Child
Chronic pain
Chronic Pain - genetics
Chronic Pain - physiopathology
Dorsal root ganglia
Erythromelalgia - genetics
Erythromelalgia - physiopathology
Excitability
Excitatory Postsynaptic Potentials
Exome - genetics
Female
Ganglia, Spinal - cytology
Ganglia, Spinal - physiopathology
Humans
Immunohistochemistry
Individuality
Induced Pluripotent Stem Cells
Inhibitory postsynaptic potentials
KCNQ Potassium Channels - genetics
KCNQ Potassium Channels - metabolism
Male
Membrane Potentials
Mutation
NAV1.7 Voltage-Gated Sodium Channel - genetics
Neurons
Pain
Pain Measurement
Pain sensitivity
Patch-Clamp Techniques
Peripheral nervous system
Pluripotency
Potassium channels (voltage-gated)
Resilience, Psychological
Sensitivity
Sensory neurons
Sensory Receptor Cells
Signaling
Sodium channels (voltage-gated)
Stem cells
Title Resilience to Pain: A Peripheral Component Identified Using Induced Pluripotent Stem Cells and Dynamic Clamp
URI https://www.ncbi.nlm.nih.gov/pubmed/30459225
https://www.proquest.com/docview/2170344087
https://www.proquest.com/docview/2136556582
https://pubmed.ncbi.nlm.nih.gov/PMC6335750
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFMcalMJCREC8oXRontru3qmwaYyuFtVJ5ipzEgYk0mbr0gf0Yfivn2GmSbhM3VUqrxKndfp9PzrHPhZDXQnMpFE-dWAeR4_tCONFAJE4SwwsY5aUmvuJ0zI9m_vE8mHc6P1teS6sy6sVXt8aV_A-qcA5wxSjZf0C2_lI4AZ8BXzgCwnD8K4w_68vzzM5NUCEnaOSbQPMJdG7SBWRmvhc5bvjbkNwUVc61n0Cywt3_SbaC5kWJjc5KvXg70llmUze_s_XqsXTm4qKtxzYRZUaXbWXFbHxpbfaCU5V9LZZXqlTNsumXapEa35ulg1x9t3Wgl0bo1J5BBVDRgZ9k17pHVZ2h9nIFRkjZQtTr5cqWL-r4-tis2PMEGLS-rd3T05VY9sw-UL8tt20SpIqfrCWEmS1ndOPhEJgkFcdj9JE8G73veT5jTt_498nmcbh2ARh_DA9nJyfh9GA-vUPuemCGoBz98KnJRi9cU9G5HnEVgQ797N3ey6byc8Oiue6Y29J0pg_I_QpWOrR82yYdnT8kO8NclcXiB31DjdOw2Y3ZIVlDQVoWFCm4T4e0ISCtCUgbAlJDQFoRkLYISJGA1BCQAgFpRUBqCPiIzA4PpqMjpyrg4cSg95eONxCeFpJpHjChUsFiX_oJ18pzfS2YGvQV91MdR76KObTgSRooJfRAJ1LHKmKPyVYOQ3xKaJpwqTSL3DiIfaaCSGhMbcc9VyWRdGWXBOt_Noyr7PZYZCUL0coFRMIakRARCfsyRES6ZK--78Lmd_njHbtr4MJKFlyGYNhj7kxXii55VV-G6YHbbyrXxQrbMA5jDqTXJU8sznWX6K8wgEdrl4gNBtQNMAv85pX8_JvJBs8ZA5PLffb7YT0n95rZuEu2yuVKvwB1uoxeGk7_As5wzW4
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resilience+to+Pain%3A+A+Peripheral+Component+Identified+Using+Induced+Pluripotent+Stem+Cells+and+Dynamic+Clamp&rft.jtitle=The+Journal+of+neuroscience&rft.au=Mis%2C+Malgorzata+A&rft.au=Yang%2C+Yang&rft.au=Tanaka%2C+Brian+S&rft.au=Gomis-Perez%2C+Carolina&rft.date=2019-01-16&rft.pub=Society+for+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=39&rft.issue=3&rft.spage=382&rft_id=info:doi/10.1523%2FJNEUROSCI.2433-18.2018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon