Pathogenomics for accurate diagnosis, treatment, prognosis of oncology: a cutting edge overview

The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to unimodal data, leaving integrated approaches across modalities relati...

Full description

Saved in:
Bibliographic Details
Published inJournal of translational medicine Vol. 22; no. 1; pp. 131 - 14
Main Authors Feng, Xiaobing, Shu, Wen, Li, Mingya, Li, Junyu, Xu, Junyao, He, Min
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 03.02.2024
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to unimodal data, leaving integrated approaches across modalities relatively underdeveloped in computational pathology. Pathogenomics, as an invasive method to integrate advanced molecular diagnostics from genomic data, morphological information from histopathological imaging, and codified clinical data enable the discovery of new multimodal cancer biomarkers to propel the field of precision oncology in the coming decade. In this perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods in pathogenomics. It includes correlation between the pathological and genomic profile of cancer, fusion of histology, and genomics profile of cancer. We also present challenges, opportunities, and avenues for future work.
AbstractList The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to unimodal data, leaving integrated approaches across modalities relatively underdeveloped in computational pathology. Pathogenomics, as an invasive method to integrate advanced molecular diagnostics from genomic data, morphological information from histopathological imaging, and codified clinical data enable the discovery of new multimodal cancer biomarkers to propel the field of precision oncology in the coming decade. In this perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods in pathogenomics. It includes correlation between the pathological and genomic profile of cancer, fusion of histology, and genomics profile of cancer. We also present challenges, opportunities, and avenues for future work.The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to unimodal data, leaving integrated approaches across modalities relatively underdeveloped in computational pathology. Pathogenomics, as an invasive method to integrate advanced molecular diagnostics from genomic data, morphological information from histopathological imaging, and codified clinical data enable the discovery of new multimodal cancer biomarkers to propel the field of precision oncology in the coming decade. In this perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods in pathogenomics. It includes correlation between the pathological and genomic profile of cancer, fusion of histology, and genomics profile of cancer. We also present challenges, opportunities, and avenues for future work.
The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to unimodal data, leaving integrated approaches across modalities relatively underdeveloped in computational pathology. Pathogenomics, as an invasive method to integrate advanced molecular diagnostics from genomic data, morphological information from histopathological imaging, and codified clinical data enable the discovery of new multimodal cancer biomarkers to propel the field of precision oncology in the coming decade. In this perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods in pathogenomics. It includes correlation between the pathological and genomic profile of cancer, fusion of histology, and genomics profile of cancer. We also present challenges, opportunities, and avenues for future work.
Abstract The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to unimodal data, leaving integrated approaches across modalities relatively underdeveloped in computational pathology. Pathogenomics, as an invasive method to integrate advanced molecular diagnostics from genomic data, morphological information from histopathological imaging, and codified clinical data enable the discovery of new multimodal cancer biomarkers to propel the field of precision oncology in the coming decade. In this perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods in pathogenomics. It includes correlation between the pathological and genomic profile of cancer, fusion of histology, and genomics profile of cancer. We also present challenges, opportunities, and avenues for future work.
The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to unimodal data, leaving integrated approaches across modalities relatively underdeveloped in computational pathology. Pathogenomics, as an invasive method to integrate advanced molecular diagnostics from genomic data, morphological information from histopathological imaging, and codified clinical data enable the discovery of new multimodal cancer biomarkers to propel the field of precision oncology in the coming decade. In this perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods in pathogenomics. It includes correlation between the pathological and genomic profile of cancer, fusion of histology, and genomics profile of cancer. We also present challenges, opportunities, and avenues for future work. Keywords: Pathogenomics, Pathomics, Genomics, Computational pathology, Precision oncology
ArticleNumber 131
Audience Academic
Author Shu, Wen
Feng, Xiaobing
Li, Mingya
He, Min
Li, Junyu
Xu, Junyao
Author_xml – sequence: 1
  givenname: Xiaobing
  surname: Feng
  fullname: Feng, Xiaobing
– sequence: 2
  givenname: Wen
  surname: Shu
  fullname: Shu, Wen
– sequence: 3
  givenname: Mingya
  surname: Li
  fullname: Li, Mingya
– sequence: 4
  givenname: Junyu
  surname: Li
  fullname: Li, Junyu
– sequence: 5
  givenname: Junyao
  surname: Xu
  fullname: Xu, Junyao
– sequence: 6
  givenname: Min
  orcidid: 0000-0003-1316-0153
  surname: He
  fullname: He, Min
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38310237$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1rFjEQxxep2Bf9Ah4k4MVDt-Z1k_VWii-Fgh70HLLJZE3ZJ6lJtqXf3jx9atUikkMyw2_-k2H-h91eTBG67iXBJ4So4W0hdBxkjynvMR-J6NmT7oBwOfZCyWHvj_d-d1jKJW6k4OOzbp8pRjBl8qDTX0z9nmaIaRNsQT5lZKxds6mAXDBzTCWUY1QzmLqBWI_RVU67LEoepWjTkubbd8ggu9Ya4ozAzYDSNeTrADfPu6feLAVe3N9H3bcP77-efeovPn88Pzu96K3AqvYUW2kdVRgYDJIBVpO3I5ksGKfwwMFJZzyR2CtOJu-EoKCwH6wdrGwhO-rOd7oumUt9lcPG5FudTNB3iZRnbXINdgENWAoq7QjOO84Nm4gzIBiXoCYh2dS03uy02qg_VihVb0KxsCwmQlqLpiOlnCtGSUNfP0Iv05pjm3RLiUGNTLDf1Gxa_xB9qtnYrag-lYqSUQm6pU7-QbXjoO2mrd6Hlv-r4NV983XagHuY-td2G0B3gM2plAz-ASFYby2kdxbSzRj6zkJ6q6oeFdlQTQ0ptu-E5X-lPwEsI8nU
CitedBy_id crossref_primary_10_1002_VIW_20240092
crossref_primary_10_1039_D4TB02107J
crossref_primary_10_3390_data9080100
crossref_primary_10_1111_exsy_70039
Cites_doi 10.1053/j.gastro.2020.06.021
10.1109/TVCG.2019.2931299
10.1109/ICCV51070.2023.00371
10.18653/v1/D16-1011
10.1117/1.JMI.5.4.047501
10.1162/neco_a_01273
10.1038/s41592-023-01899-8
10.1038/s41525-020-0120-9
10.1109/IJCNN54540.2023.10191879
10.1038/s41591-021-01506-3
10.1038/s41591-019-0583-3
10.1109/TNNLS.2022.3190359
10.1038/s41467-021-21896-9
10.1098/rsos.140501
10.1109/TMI.2019.2919722
10.1038/s41586-021-03634-9
10.1038/s41591-019-0508-1
10.3389/fonc.2022.927426
10.1016/j.celrep.2018.03.086
10.1038/s41591-022-01798-z
10.1109/TMI.2021.3108802
10.1038/s41467-021-22801-0
10.1016/S1470-2045(19)30154-8
10.1038/s42256-022-00534-z
10.1109/ICCV.2017.74
10.1038/s41746-020-00323-1
10.1371/journal.pone.0130140
10.1109/TMI.2020.3046692
10.1007/978-3-030-59722-1_46
10.1158/2159-8290.CD-21-0090
10.1158/1078-0432.CCR-19-2659
10.1016/S2589-7500(21)00232-6
10.1186/s13073-021-00930-x
10.1038/s43018-020-0085-8
10.1186/s12920-020-00828-4
10.1038/s43018-020-0087-6
10.1038/s41467-021-26643-8
10.1016/j.ccell.2022.07.004
10.1109/IWSSIP.2019.8787328
10.1016/j.ejca.2021.07.012
10.1109/TCYB.2019.2935141
10.1038/s41591-019-0462-y
10.1038/nature10166
10.1001/jama.2017.14585
10.1038/s41467-020-17678-4
10.3390/cancers11030361
10.1109/CVPR52729.2023.01893
10.1002/path.5797
10.1038/s43018-022-00388-9
10.1038/s41587-023-01772-1
10.1038/s42256-023-00635-3
10.1164/rccm.201802-0350LE
10.1002/path.5590
10.1126/science.aaf2666
10.1038/s41551-023-01045-x
10.1109/TMI.2021.3066295
10.1158/1078-0432.CCR-18-2013
10.1038/s41598-019-42845-z
10.1371/journal.pone.0233678
10.18653/v1/W17-5221
10.14778/3415478.3415560
10.1109/TMI.2020.3021387
10.1093/bioinformatics/btaa462
10.1093/nargab/lqab015
10.1158/0008-5472.CAN-17-0313
10.1093/bioinformatics/btaa056
10.1038/s41551-020-0578-x
10.1016/j.ccr.2012.02.022
10.1073/pnas.1900654116
10.1038/s41576-019-0122-6
10.1038/s41586-023-06139-9
10.1136/gutjnl-2019-319866
10.1093/bioinformatics/btz342
10.1016/j.media.2019.101544
10.1038/s41746-022-00634-5
10.1007/s00530-010-0182-0
10.1073/pnas.1717139115
10.1038/s41568-021-00399-1
10.1038/s41568-021-00408-3
10.1038/s41591-018-0177-5
10.3322/caac.21660
10.1038/s41591-020-01174-9
10.1109/HORA52670.2021.9461293
10.1109/TMI.2019.2920608
10.1038/s41571-019-0252-y
10.1145/2939672.2939778
10.1038/nmeth.4391
10.1038/s41551-020-00682-w
10.1038/s42256-022-00516-1
10.1609/aaai.v32i1.11491
10.1038/s41598-020-75708-z
10.1016/j.cell.2020.10.026
10.1038/s41467-021-21674-7
10.1038/s41598-021-92799-4
10.1145/2993148.2993176
10.1038/s41467-021-25296-x
10.1126/scitranslmed.3002564
10.1016/j.media.2020.101830
10.1016/S2589-7500(22)00168-6
10.1038/s41591-022-01981-2
10.1016/S2589-7500(20)30018-2
10.1016/S0140-6736(19)32998-8
10.1038/s42256-019-0048-x
10.1109/TMI.2022.3186698
10.1093/bioinformatics/btz914
10.1609/aaai.v34i04.5749
ContentType Journal Article
Copyright 2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7T5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.1186/s12967-024-04915-3
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1479-5876
EndPage 14
ExternalDocumentID oai_doaj_org_article_e07527c9edfd44a3b1dae5347e8b573b
A782198523
38310237
10_1186_s12967_024_04915_3
Genre Journal Article
Review
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Zhejiang Province Soft Science Key Project
  grantid: 2022C25013
GroupedDBID ---
0R~
29L
2WC
53G
5VS
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
NPM
PJZUB
PPXIY
PMFND
3V.
7T5
7XB
8FK
AZQEC
COVID
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c508t-20c7cd280e3e673e08bfc91bcead8064ed7daf170f841bfd552e80f6cc6c7fd53
IEDL.DBID M48
ISSN 1479-5876
IngestDate Wed Aug 27 01:21:51 EDT 2025
Fri Jul 11 10:11:43 EDT 2025
Fri Jul 25 04:16:38 EDT 2025
Tue Jun 17 22:14:10 EDT 2025
Tue Jun 10 21:11:43 EDT 2025
Mon Jul 21 05:57:02 EDT 2025
Tue Jul 01 02:59:43 EDT 2025
Thu Apr 24 22:52:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Pathomics
Pathogenomics
Precision oncology
Genomics
Computational pathology
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-20c7cd280e3e673e08bfc91bcead8064ed7daf170f841bfd552e80f6cc6c7fd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1316-0153
OpenAccessLink https://doaj.org/article/e07527c9edfd44a3b1dae5347e8b573b
PMID 38310237
PQID 2925689353
PQPubID 43076
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_e07527c9edfd44a3b1dae5347e8b573b
proquest_miscellaneous_2922448321
proquest_journals_2925689353
gale_infotracmisc_A782198523
gale_infotracacademiconefile_A782198523
pubmed_primary_38310237
crossref_primary_10_1186_s12967_024_04915_3
crossref_citationtrail_10_1186_s12967_024_04915_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-03
PublicationDateYYYYMMDD 2024-02-03
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of translational medicine
PublicationTitleAlternate J Transl Med
PublicationYear 2024
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References RB Puchalski (4915_CR17) 2018; 360
W Shao (4915_CR66) 2020; 39
Z Ning (4915_CR82) 2020; 36
H Pinckaers (4915_CR32) 2021; 40
4915_CR98
J Saltz (4915_CR47) 2018; 23
P Mobadersany (4915_CR48) 2018; 115
4915_CR94
X Tan (4915_CR15) 2020; 36
J Cheng (4915_CR64) 2017; 77
4915_CR109
4915_CR106
O Elemento (4915_CR8) 2021; 21
4915_CR107
MS Hosseini (4915_CR92) 2020; 39
Cancer Genome Atlas Research Network (4915_CR44) 2011; 474
E Wulczyn (4915_CR67) 2020; 15
X Wang (4915_CR35) 2020; 50
CN Jennings (4915_CR3) 2022; 28
Z Li (4915_CR99) 2021; 40
HK Bhargava (4915_CR69) 2020; 26
4915_CR88
G Campanella (4915_CR31) 2019; 25
Y Liu (4915_CR52) 2020; 183
Y Niu (4915_CR53) 2022; 12
4915_CR119
WJ Murdoch (4915_CR120) 2019; 116
4915_CR117
4915_CR118
4915_CR115
4915_CR116
4915_CR113
4915_CR114
4915_CR111
4915_CR112
A Cheerla (4915_CR63) 2019; 35
J Gao (4915_CR60) 2020; 32
4915_CR110
Z Zhan (4915_CR85) 2021; 3
4915_CR78
B Bhinder (4915_CR36) 2021; 11
4915_CR79
P Courtiol (4915_CR49) 2019; 25
4915_CR77
I Dayan (4915_CR95) 2021; 27
SR Mummadi (4915_CR100) 2018; 198
LA Vale-Silva (4915_CR51) 2021; 11
4915_CR72
RJ Chen (4915_CR5) 2022; 41
Y Zhao (4915_CR96) 2022
D Hanahan (4915_CR16) 2012; 21
J Ren (4915_CR65) 2018; 5
N Coudray (4915_CR33) 2018; 24
JN Kather (4915_CR38) 2019; 25
OB Poirion (4915_CR43) 2021; 13
4915_CR80
4915_CR68
C Rudin (4915_CR101) 2019; 1
D Schapiro (4915_CR19) 2017; 14
4915_CR62
MKK Niazi (4915_CR11) 2019; 20
MY Lu (4915_CR34) 2021; 5
Z Ning (4915_CR86) 2022; 41
S Bach (4915_CR108) 2015; 10
D Tellez (4915_CR90) 2019; 58
JA Diao (4915_CR9) 2021; 12
OJ Skrede (4915_CR25) 2020; 395
4915_CR57
H Sung (4915_CR1) 2021; 71
T Zhong (4915_CR50) 2019; 11
S Xu (4915_CR83) 2020; 13
F Wu (4915_CR21) 2021; 12
4915_CR59
K Bera (4915_CR2) 2019; 16
A Levy-Jurgenson (4915_CR42) 2020; 10
JN Kather (4915_CR104) 2022; 5
PK Atrey (4915_CR58) 2010; 16
A Echle (4915_CR37) 2020; 159
B Ehteshami Bejnordi (4915_CR27) 2017; 318
RS Savage (4915_CR46) 2016; 3
J Hao (4915_CR84) 2020; 25
S Cheng (4915_CR10) 2021; 12
Y Fu (4915_CR13) 2020; 1
AH Beck (4915_CR70) 2011; 3
A Rao (4915_CR18) 2021; 596
B He (4915_CR7) 2020; 4
JN Acosta (4915_CR56) 2022; 28
KM Boehm (4915_CR12) 2022; 22
Y Chen (4915_CR91) 2021; 253
HC Thorsen-Meyer (4915_CR102) 2020; 2
B Schmauch (4915_CR39) 2020; 11
A Somarakis (4915_CR20) 2021; 27
G Yu (4915_CR26) 2021; 12
J Boschman (4915_CR89) 2022; 256
W Lotter (4915_CR28) 2021; 27
G Eraslan (4915_CR61) 2019; 20
S Kim (4915_CR45) 2020; 36
H-Y Zhou (4915_CR81) 2023; 7
S Kuntz (4915_CR29) 2021; 155
CV Theodoris (4915_CR74) 2023; 618
KM Boehm (4915_CR41) 2022; 3
N Rieke (4915_CR93) 2020; 3
4915_CR121
T Brown (4915_CR71) 2020; 33
MW Lafarge (4915_CR22) 2021; 3
F Yang (4915_CR73) 2022; 4
K Sirinukunwattana (4915_CR24) 2021; 70
M Armbrust (4915_CR97) 2020; 13
X Wang (4915_CR30) 2021; 12
RJ Chen (4915_CR6) 2022; 40
X Luo (4915_CR40) 2019; 9
JN Kather (4915_CR14) 2020; 1
K Ding (4915_CR54) 2022; 4
J Liang (4915_CR23) 2023; 5
H Chen (4915_CR75) 2023
D Song (4915_CR76) 2023
G Corredor (4915_CR105) 2019; 25
XA Bi (4915_CR4) 2021; 67
W Liang (4915_CR87) 2022; 4
H Zheng (4915_CR55) 2020; 5
X Chen (4915_CR103) 2022; 41
References_xml – volume: 159
  start-page: 1406
  year: 2020
  ident: 4915_CR37
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2020.06.021
– volume: 27
  start-page: 98
  year: 2021
  ident: 4915_CR20
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2019.2931299
– ident: 4915_CR77
  doi: 10.1109/ICCV51070.2023.00371
– ident: 4915_CR116
  doi: 10.18653/v1/D16-1011
– volume: 5
  year: 2018
  ident: 4915_CR65
  publication-title: J Med Imaging
  doi: 10.1117/1.JMI.5.4.047501
– volume: 32
  start-page: 829
  year: 2020
  ident: 4915_CR60
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01273
– year: 2023
  ident: 4915_CR75
  publication-title: Nat Methods
  doi: 10.1038/s41592-023-01899-8
– volume: 5
  start-page: 11
  year: 2020
  ident: 4915_CR55
  publication-title: NPJ Genom Med
  doi: 10.1038/s41525-020-0120-9
– ident: 4915_CR94
  doi: 10.1109/IJCNN54540.2023.10191879
– volume: 27
  start-page: 1735
  year: 2021
  ident: 4915_CR95
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01506-3
– volume: 25
  start-page: 1519
  year: 2019
  ident: 4915_CR49
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0583-3
– year: 2022
  ident: 4915_CR96
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2022.3190359
– volume: 12
  start-page: 1613
  year: 2021
  ident: 4915_CR9
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21896-9
– volume: 3
  year: 2016
  ident: 4915_CR46
  publication-title: R Soc Open Sci
  doi: 10.1098/rsos.140501
– volume: 39
  start-page: 62
  year: 2020
  ident: 4915_CR92
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2919722
– ident: 4915_CR57
– volume: 596
  start-page: 211
  year: 2021
  ident: 4915_CR18
  publication-title: Nature
  doi: 10.1038/s41586-021-03634-9
– volume: 25
  start-page: 1301
  year: 2019
  ident: 4915_CR31
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0508-1
– volume: 12
  year: 2022
  ident: 4915_CR53
  publication-title: Front Oncol
  doi: 10.3389/fonc.2022.927426
– ident: 4915_CR80
– volume: 23
  start-page: 181
  year: 2018
  ident: 4915_CR47
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.03.086
– volume: 28
  start-page: 1107
  year: 2022
  ident: 4915_CR3
  publication-title: Nat Med
  doi: 10.1038/s41591-022-01798-z
– volume: 41
  start-page: 186
  year: 2022
  ident: 4915_CR86
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3108802
– volume: 12
  start-page: 2540
  year: 2021
  ident: 4915_CR21
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22801-0
– volume: 20
  start-page: e253
  year: 2019
  ident: 4915_CR11
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30154-8
– volume: 4
  start-page: 852
  year: 2022
  ident: 4915_CR73
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-022-00534-z
– ident: 4915_CR117
– ident: 4915_CR72
– ident: 4915_CR114
  doi: 10.1109/ICCV.2017.74
– volume: 3
  start-page: 119
  year: 2020
  ident: 4915_CR93
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-020-00323-1
– volume: 10
  year: 2015
  ident: 4915_CR108
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0130140
– volume: 40
  start-page: 1065
  year: 2021
  ident: 4915_CR99
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3046692
– ident: 4915_CR68
  doi: 10.1007/978-3-030-59722-1_46
– volume: 11
  start-page: 900
  year: 2021
  ident: 4915_CR36
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-21-0090
– volume: 26
  start-page: 1915
  year: 2020
  ident: 4915_CR69
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-19-2659
– volume: 3
  start-page: e752
  year: 2021
  ident: 4915_CR22
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(21)00232-6
– volume: 13
  start-page: 112
  year: 2021
  ident: 4915_CR43
  publication-title: Genome Med
  doi: 10.1186/s13073-021-00930-x
– volume: 1
  start-page: 800
  year: 2020
  ident: 4915_CR13
  publication-title: Nat Cancer
  doi: 10.1038/s43018-020-0085-8
– volume: 13
  start-page: 195
  year: 2020
  ident: 4915_CR83
  publication-title: BMC Med Genom
  doi: 10.1186/s12920-020-00828-4
– volume: 1
  start-page: 789
  year: 2020
  ident: 4915_CR14
  publication-title: Nat Cancer
  doi: 10.1038/s43018-020-0087-6
– volume: 12
  start-page: 6311
  year: 2021
  ident: 4915_CR26
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-26643-8
– volume: 40
  start-page: 865
  year: 2022
  ident: 4915_CR6
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2022.07.004
– ident: 4915_CR88
  doi: 10.1109/IWSSIP.2019.8787328
– volume: 155
  start-page: 200
  year: 2021
  ident: 4915_CR29
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2021.07.012
– volume: 50
  start-page: 3950
  year: 2020
  ident: 4915_CR35
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2935141
– volume: 25
  start-page: 1054
  year: 2019
  ident: 4915_CR38
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0462-y
– volume: 474
  start-page: 609
  year: 2011
  ident: 4915_CR44
  publication-title: Nature
  doi: 10.1038/nature10166
– volume: 318
  start-page: 2199
  year: 2017
  ident: 4915_CR27
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
– volume: 11
  start-page: 3877
  year: 2020
  ident: 4915_CR39
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17678-4
– volume: 11
  start-page: 361
  year: 2019
  ident: 4915_CR50
  publication-title: Cancers
  doi: 10.3390/cancers11030361
– ident: 4915_CR79
  doi: 10.1109/CVPR52729.2023.01893
– volume: 256
  start-page: 15
  year: 2022
  ident: 4915_CR89
  publication-title: J Pathol
  doi: 10.1002/path.5797
– volume: 3
  start-page: 723
  year: 2022
  ident: 4915_CR41
  publication-title: Nat Cancer
  doi: 10.1038/s43018-022-00388-9
– year: 2023
  ident: 4915_CR76
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-023-01772-1
– ident: 4915_CR119
– volume: 5
  start-page: 408
  year: 2023
  ident: 4915_CR23
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-023-00635-3
– volume: 198
  start-page: 544
  year: 2018
  ident: 4915_CR100
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201802-0350LE
– volume: 253
  start-page: 268
  year: 2021
  ident: 4915_CR91
  publication-title: J Pathol
  doi: 10.1002/path.5590
– ident: 4915_CR111
– volume: 360
  start-page: 660
  year: 2018
  ident: 4915_CR17
  publication-title: Science
  doi: 10.1126/science.aaf2666
– volume: 7
  start-page: 743
  year: 2023
  ident: 4915_CR81
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-023-01045-x
– volume: 40
  start-page: 1817
  year: 2021
  ident: 4915_CR32
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3066295
– volume: 25
  start-page: 1526
  year: 2019
  ident: 4915_CR105
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-18-2013
– volume: 9
  start-page: 6886
  year: 2019
  ident: 4915_CR40
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-42845-z
– volume: 25
  start-page: 355
  year: 2020
  ident: 4915_CR84
  publication-title: Pac Symp Biocomput
– ident: 4915_CR121
– volume: 15
  year: 2020
  ident: 4915_CR67
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0233678
– ident: 4915_CR107
  doi: 10.18653/v1/W17-5221
– ident: 4915_CR78
– volume: 13
  start-page: 3411
  year: 2020
  ident: 4915_CR97
  publication-title: Proc VLDB Endow
  doi: 10.14778/3415478.3415560
– volume: 41
  start-page: 757
  year: 2022
  ident: 4915_CR5
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3021387
– volume: 36
  start-page: i389
  year: 2020
  ident: 4915_CR45
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa462
– volume: 3
  year: 2021
  ident: 4915_CR85
  publication-title: NAR Genom Bioinform
  doi: 10.1093/nargab/lqab015
– volume: 77
  start-page: e91
  year: 2017
  ident: 4915_CR64
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0313
– volume: 36
  start-page: 2888
  year: 2020
  ident: 4915_CR82
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa056
– volume: 4
  start-page: 827
  year: 2020
  ident: 4915_CR7
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-020-0578-x
– volume: 21
  start-page: 309
  year: 2012
  ident: 4915_CR16
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.02.022
– ident: 4915_CR118
– volume: 116
  start-page: 22071
  year: 2019
  ident: 4915_CR120
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1900654116
– ident: 4915_CR112
– volume: 20
  start-page: 389
  year: 2019
  ident: 4915_CR61
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0122-6
– volume: 618
  start-page: 616
  year: 2023
  ident: 4915_CR74
  publication-title: Nature
  doi: 10.1038/s41586-023-06139-9
– volume: 70
  start-page: 544
  year: 2021
  ident: 4915_CR24
  publication-title: Gut
  doi: 10.1136/gutjnl-2019-319866
– ident: 4915_CR106
– volume: 35
  start-page: i446
  year: 2019
  ident: 4915_CR63
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz342
– volume: 58
  year: 2019
  ident: 4915_CR90
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101544
– volume: 5
  start-page: 90
  year: 2022
  ident: 4915_CR104
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-022-00634-5
– volume: 16
  start-page: 345
  year: 2010
  ident: 4915_CR58
  publication-title: Multimed Syst
  doi: 10.1007/s00530-010-0182-0
– volume: 115
  start-page: E2970
  year: 2018
  ident: 4915_CR48
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1717139115
– volume: 21
  start-page: 747
  year: 2021
  ident: 4915_CR8
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-021-00399-1
– volume: 22
  start-page: 114
  year: 2022
  ident: 4915_CR12
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-021-00408-3
– volume: 24
  start-page: 1559
  year: 2018
  ident: 4915_CR33
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0177-5
– volume: 71
  start-page: 209
  year: 2021
  ident: 4915_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21660
– volume: 27
  start-page: 244
  year: 2021
  ident: 4915_CR28
  publication-title: Nat Med
  doi: 10.1038/s41591-020-01174-9
– ident: 4915_CR98
  doi: 10.1109/HORA52670.2021.9461293
– volume: 39
  start-page: 99
  year: 2020
  ident: 4915_CR66
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2920608
– volume: 16
  start-page: 703
  year: 2019
  ident: 4915_CR2
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/s41571-019-0252-y
– ident: 4915_CR109
  doi: 10.1145/2939672.2939778
– volume: 14
  start-page: 873
  year: 2017
  ident: 4915_CR19
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4391
– volume: 5
  start-page: 555
  year: 2021
  ident: 4915_CR34
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-020-00682-w
– volume: 4
  start-page: 669
  year: 2022
  ident: 4915_CR87
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-022-00516-1
– ident: 4915_CR113
  doi: 10.1609/aaai.v32i1.11491
– volume: 10
  start-page: 18802
  year: 2020
  ident: 4915_CR42
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-75708-z
– volume: 183
  start-page: 1665
  year: 2020
  ident: 4915_CR52
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.026
– volume: 12
  start-page: 1637
  year: 2021
  ident: 4915_CR30
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21674-7
– volume: 11
  start-page: 13505
  year: 2021
  ident: 4915_CR51
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-92799-4
– ident: 4915_CR59
  doi: 10.1145/2993148.2993176
– volume: 33
  start-page: 1877
  year: 2020
  ident: 4915_CR71
  publication-title: Adv Neural Inf Process Syst
– ident: 4915_CR62
– volume: 12
  start-page: 5639
  year: 2021
  ident: 4915_CR10
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25296-x
– volume: 3
  start-page: 108ra113
  year: 2011
  ident: 4915_CR70
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3002564
– volume: 67
  year: 2021
  ident: 4915_CR4
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101830
– volume: 4
  start-page: e787
  year: 2022
  ident: 4915_CR54
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(22)00168-6
– ident: 4915_CR110
– volume: 28
  start-page: 1773
  issue: 9
  year: 2022
  ident: 4915_CR56
  publication-title: Nat Med
  doi: 10.1038/s41591-022-01981-2
– volume: 2
  start-page: e179
  year: 2020
  ident: 4915_CR102
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30018-2
– volume: 395
  start-page: 350
  year: 2020
  ident: 4915_CR25
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)32998-8
– volume: 1
  start-page: 206
  year: 2019
  ident: 4915_CR101
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0048-x
– volume: 41
  start-page: 3445
  year: 2022
  ident: 4915_CR103
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2022.3186698
– volume: 36
  start-page: 2293
  year: 2020
  ident: 4915_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz914
– ident: 4915_CR115
  doi: 10.1609/aaai.v34i04.5749
SSID ssj0024549
Score 2.426234
SecondaryResourceType review_article
Snippet The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing...
Abstract The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 131
SubjectTerms Accuracy and precision
Algorithms
Analysis
Artificial intelligence
Biomarkers
Cancer
Care and treatment
Computational pathology
Deep learning
Diagnosis
DNA methylation
DNA sequencing
Gene expression
Genomics
Health aspects
Histopathology
Machine learning
Medical diagnosis
Medical prognosis
Methods
Morphology
Mutation
Nucleotide sequencing
Oncology
Pathogenomics
Pathology
Pathomics
Precision medicine
Precision oncology
Prognosis
Quantitative analysis
Tumors
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yB_EiflvdlQiCBzds89Gk3dsqLouw4sGFvYVmksCCtuJ77-B_70z6gU9BLx6bTEsznWR-k0x_w9gr2RuMG3IjQs5KmCyNwLA5Cgg21QlcMGUz5_KjvbgyH66b619KfVFO2EQPPCnuJKFPUw66FHM0ptdBxj412rjUhsbpQKsv-rwlmFpY9jDsWX6Rae3JBr0aLgjYLhARy0boPTdU2Pr_XJN_Q5rF45zfY3dnqMjPple8z26l4QG7fTkfhj9k_hOit5FIVr_ewIYj-uQ9wI64H3icMuhuNsd8TSU_5pSMVVr5mPk4FMLqH6e857Ar6c-cNtc4JXXSgcEjdnX-_vO7CzHXSxCAMGuLBg8OomrrpJN1OtVtyNDJAGgtLUKPFF3ss3R1bo0MOTaNSm2dLYAFh5f6MTsYxiE9ZbwJkZjp8TlBGZ0QRPWmBmk720FIWlVMLurzMJOJU02LL74EFa31k8o9qtwXlXtdsTfrPd8mKo2_Sr-lr7JKEg12aUDj8LNx-H8ZR8Ve0zf1NFnx9aCf_znAQRLtlT9DfCS7FoPxih3uSeIkg_3uxSr8PMk3XnWIFxHvNdj9cu2mOylxbUjjrsgggKJyUBV7MlnTOiRNRd6Uds_-x1Cfszuq2LcStT5kB9vvu3SEeGkbXpSp8RNK9hEe
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9UwEA-6gngRv62uEkHw4JZtPtq0XmQVl0VY8eDCu4VmksjC2q7b9w7-986keV2ewh6bL9rJJPObdPIbxt6KXqPfEOvSxShLHYUu0W32JbgmVAGM0-kw5_Rbc3Kmv67qVT5wm3JY5XZPTBu1H4HOyA9lh8YZjWutPl7-LilrFP1dzSk0brM7RF1GIV1mde1waXR-thdl2uZwQtuG2wKWl4iLRV2qHWOUOPv_35n_wZvJ7hw_YPczYORH8ww_ZLfC8IjdPc2_xB8z-x0x3EhUq7_OYeKIQXkPsCEGCO7nOLrz6YAvAeUHnEKyUikfIx-HRFv95wPvOWxSEDSnIzZOoZ0kkifs7PjLj88nZc6aUAKCrTWqPRjwsq2CCo1RoWpdhE44QJ1pEYAEb3wfhaliq4WLvq5laKvYADRg8FE9ZXvDOITnjNfOEz89juOkVgGhVK8rEE3XdOCCkgUTW_FZyJTilNniwibXom3sLHKLIrdJ5FYV7P3S53Im1Lix9SealaUlkWGngvHqp81rywaEPdJAF3z0WvfKCd-HWmkTWlcb5Qr2jubU0pLF14M-3zzAjyTyK3uEKEl0LbrkBdvfaYlLDXart1ph81Kf7LViFuzNUk09KXxtCOMmtUEYRUmhCvZs1qblkxSlepPKvLh58JfsnkyaK8tK7bO99dUmvEI8tHavk9L_BUnOB9c
  priority: 102
  providerName: ProQuest
Title Pathogenomics for accurate diagnosis, treatment, prognosis of oncology: a cutting edge overview
URI https://www.ncbi.nlm.nih.gov/pubmed/38310237
https://www.proquest.com/docview/2925689353
https://www.proquest.com/docview/2922448321
https://doaj.org/article/e07527c9edfd44a3b1dae5347e8b573b
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9UwEA57AfFFvFtdDxEEH9xqc2tSQWSP7LIIZ1kWDxx8Cc1NFtZWzwXcf-8kvcjRRXwptElLM5npfJNOvkHoJak5xA1B5CYEmvNAeA5hs8utKX3hrTQ8LebMzsrTOf-0EIsdNJQ76gW4ujG0i_Wk5surNz9_XH8Ag3-fDF6Vb1fgs8DcwdvkgHeJyNku2gfPJKOhzrj6zb0nEhwmXFa5gM_AsInmxmdsOarE5__3V_sPLJp80slddKcHk_iom_17aMc399GtWf-7_AHS54Dv2kjD-u3SrjDgU1xbu4nsENh1OXaXq0M8Jpsf4piula7iNuC2SZTW1-9wje0mJUjjuPyGY9pn_KXwEM1Pjj9_PM37igq5BSC2BpOw0jqqCs98KZkvlAm2IsaCPikAJ95JVwcii6A4McEJQb0qQmltaSWcskdor2kb_wRhYVzkrofnGMqZB5hV88KSsiorazyjGSKD-LTt6cZj1YsrncIOVepO5BpErpPINcvQ6_Ge7x3Zxj97T-OsjD0jUXa60C6_6t7utAdIRKWtvAuO85oZ4movGJdeGSGZydCrOKc6Khi8nq37XQkwyEiMpY8AQZFKQbieoYOtnmCGdrt50Ao9aLGmFSBKQIQCml-MzfHOmNrW-HaT-gDEigWjMvS406ZxSCyWgaNMPv3vt3yGbtOkxDQv2AHaWy83_jnAprWZoF25kBO0Pz0-O7-YpMWHSbIPOF5Mv_wC8NEViA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiDeBAkYCcaBRE9t5ISHUQqst7a4q1Eq9mXhsV5XKpnR3hfqn-I3MOMlWC1JvPcZxnGQ8j2_s8Qxjb9Naod_gs9h4L2LlUxWj22xjMLlLHBRGhcWc0TgfHqlvx9nxCvvTn4WhsMpeJwZFbRugNfINUaFxRuOayc_nv2KqGkW7q30JjZYt9tzlb3TZpp92v-L8vhNiZ_vwyzDuqgrEgGBkhmwBBVhRJk66vJAuKY2HKjWANC3RQDtb2NqnReJLlRpvs0y4MvE5QA4FXkoc9xZbVRJdmQFb3doeH3y_yu6H7lZ_NKfMN6ZoTVERYXuMSDzNYrlk_kKVgP9twT8IN1i6nfvsXgdR-WbLUw_Yips8ZLdH3Sb8I6YPEDU2lNz15ylMOaJeXgPMKecEt23k3ul0nS9C2Nc5BYGFVt543kxCouzLj7zmMA9h15wW9TgFk9IkPGZHN0LRJ2wwaSbuGeOZsZQRH8cxQkmH4K1WCaR5lVdgnBQRS3vyaeiSmFMtjTMdnJky1y3JNZJcB5JrGbEPi2fO2xQe1_beollZ9KT026GhuTjRnTRrh0BLFFA5661StTSprV0mVeFKkxXSROw9zakmJYGfB3V31gF_ktJt6U3EZWlVZgJft7bUE4Ublm_3XKE75TLVV6IQsTeL2_QkBcxNXDMPfRC4URmqiD1tuWnxS5KKywlZPL9-8NfszvBwtK_3d8d7L9hdEbhYxIlcY4PZxdy9RDQ2M686EeDsx01L3V-OKEgm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathogenomics+for+accurate+diagnosis%2C+treatment%2C+prognosis+of+oncology%3A+a+cutting+edge+overview&rft.jtitle=Journal+of+translational+medicine&rft.au=Feng%2C+Xiaobing&rft.au=Shu%2C+Wen&rft.au=Li%2C+Mingya&rft.au=Li%2C+Junyu&rft.date=2024-02-03&rft.pub=BioMed+Central+Ltd&rft.issn=1479-5876&rft.eissn=1479-5876&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12967-024-04915-3&rft.externalDocID=A782198523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon