Pathogenomics for accurate diagnosis, treatment, prognosis of oncology: a cutting edge overview
The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to unimodal data, leaving integrated approaches across modalities relati...
Saved in:
Published in | Journal of translational medicine Vol. 22; no. 1; pp. 131 - 14 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
03.02.2024
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to unimodal data, leaving integrated approaches across modalities relatively underdeveloped in computational pathology. Pathogenomics, as an invasive method to integrate advanced molecular diagnostics from genomic data, morphological information from histopathological imaging, and codified clinical data enable the discovery of new multimodal cancer biomarkers to propel the field of precision oncology in the coming decade. In this perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods in pathogenomics. It includes correlation between the pathological and genomic profile of cancer, fusion of histology, and genomics profile of cancer. We also present challenges, opportunities, and avenues for future work. |
---|---|
AbstractList | The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to unimodal data, leaving integrated approaches across modalities relatively underdeveloped in computational pathology. Pathogenomics, as an invasive method to integrate advanced molecular diagnostics from genomic data, morphological information from histopathological imaging, and codified clinical data enable the discovery of new multimodal cancer biomarkers to propel the field of precision oncology in the coming decade. In this perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods in pathogenomics. It includes correlation between the pathological and genomic profile of cancer, fusion of histology, and genomics profile of cancer. We also present challenges, opportunities, and avenues for future work.The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to unimodal data, leaving integrated approaches across modalities relatively underdeveloped in computational pathology. Pathogenomics, as an invasive method to integrate advanced molecular diagnostics from genomic data, morphological information from histopathological imaging, and codified clinical data enable the discovery of new multimodal cancer biomarkers to propel the field of precision oncology in the coming decade. In this perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods in pathogenomics. It includes correlation between the pathological and genomic profile of cancer, fusion of histology, and genomics profile of cancer. We also present challenges, opportunities, and avenues for future work. The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to unimodal data, leaving integrated approaches across modalities relatively underdeveloped in computational pathology. Pathogenomics, as an invasive method to integrate advanced molecular diagnostics from genomic data, morphological information from histopathological imaging, and codified clinical data enable the discovery of new multimodal cancer biomarkers to propel the field of precision oncology in the coming decade. In this perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods in pathogenomics. It includes correlation between the pathological and genomic profile of cancer, fusion of histology, and genomics profile of cancer. We also present challenges, opportunities, and avenues for future work. Abstract The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to unimodal data, leaving integrated approaches across modalities relatively underdeveloped in computational pathology. Pathogenomics, as an invasive method to integrate advanced molecular diagnostics from genomic data, morphological information from histopathological imaging, and codified clinical data enable the discovery of new multimodal cancer biomarkers to propel the field of precision oncology in the coming decade. In this perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods in pathogenomics. It includes correlation between the pathological and genomic profile of cancer, fusion of histology, and genomics profile of cancer. We also present challenges, opportunities, and avenues for future work. The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing multimodal data in the life sciences. However, most approaches are limited to unimodal data, leaving integrated approaches across modalities relatively underdeveloped in computational pathology. Pathogenomics, as an invasive method to integrate advanced molecular diagnostics from genomic data, morphological information from histopathological imaging, and codified clinical data enable the discovery of new multimodal cancer biomarkers to propel the field of precision oncology in the coming decade. In this perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods in pathogenomics. It includes correlation between the pathological and genomic profile of cancer, fusion of histology, and genomics profile of cancer. We also present challenges, opportunities, and avenues for future work. Keywords: Pathogenomics, Pathomics, Genomics, Computational pathology, Precision oncology |
ArticleNumber | 131 |
Audience | Academic |
Author | Shu, Wen Feng, Xiaobing Li, Mingya He, Min Li, Junyu Xu, Junyao |
Author_xml | – sequence: 1 givenname: Xiaobing surname: Feng fullname: Feng, Xiaobing – sequence: 2 givenname: Wen surname: Shu fullname: Shu, Wen – sequence: 3 givenname: Mingya surname: Li fullname: Li, Mingya – sequence: 4 givenname: Junyu surname: Li fullname: Li, Junyu – sequence: 5 givenname: Junyao surname: Xu fullname: Xu, Junyao – sequence: 6 givenname: Min orcidid: 0000-0003-1316-0153 surname: He fullname: He, Min |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38310237$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1rFjEQxxep2Bf9Ah4k4MVDt-Z1k_VWii-Fgh70HLLJZE3ZJ6lJtqXf3jx9atUikkMyw2_-k2H-h91eTBG67iXBJ4So4W0hdBxkjynvMR-J6NmT7oBwOfZCyWHvj_d-d1jKJW6k4OOzbp8pRjBl8qDTX0z9nmaIaRNsQT5lZKxds6mAXDBzTCWUY1QzmLqBWI_RVU67LEoepWjTkubbd8ggu9Ya4ozAzYDSNeTrADfPu6feLAVe3N9H3bcP77-efeovPn88Pzu96K3AqvYUW2kdVRgYDJIBVpO3I5ksGKfwwMFJZzyR2CtOJu-EoKCwH6wdrGwhO-rOd7oumUt9lcPG5FudTNB3iZRnbXINdgENWAoq7QjOO84Nm4gzIBiXoCYh2dS03uy02qg_VihVb0KxsCwmQlqLpiOlnCtGSUNfP0Iv05pjm3RLiUGNTLDf1Gxa_xB9qtnYrag-lYqSUQm6pU7-QbXjoO2mrd6Hlv-r4NV983XagHuY-td2G0B3gM2plAz-ASFYby2kdxbSzRj6zkJ6q6oeFdlQTQ0ptu-E5X-lPwEsI8nU |
CitedBy_id | crossref_primary_10_1002_VIW_20240092 crossref_primary_10_1039_D4TB02107J crossref_primary_10_3390_data9080100 crossref_primary_10_1111_exsy_70039 |
Cites_doi | 10.1053/j.gastro.2020.06.021 10.1109/TVCG.2019.2931299 10.1109/ICCV51070.2023.00371 10.18653/v1/D16-1011 10.1117/1.JMI.5.4.047501 10.1162/neco_a_01273 10.1038/s41592-023-01899-8 10.1038/s41525-020-0120-9 10.1109/IJCNN54540.2023.10191879 10.1038/s41591-021-01506-3 10.1038/s41591-019-0583-3 10.1109/TNNLS.2022.3190359 10.1038/s41467-021-21896-9 10.1098/rsos.140501 10.1109/TMI.2019.2919722 10.1038/s41586-021-03634-9 10.1038/s41591-019-0508-1 10.3389/fonc.2022.927426 10.1016/j.celrep.2018.03.086 10.1038/s41591-022-01798-z 10.1109/TMI.2021.3108802 10.1038/s41467-021-22801-0 10.1016/S1470-2045(19)30154-8 10.1038/s42256-022-00534-z 10.1109/ICCV.2017.74 10.1038/s41746-020-00323-1 10.1371/journal.pone.0130140 10.1109/TMI.2020.3046692 10.1007/978-3-030-59722-1_46 10.1158/2159-8290.CD-21-0090 10.1158/1078-0432.CCR-19-2659 10.1016/S2589-7500(21)00232-6 10.1186/s13073-021-00930-x 10.1038/s43018-020-0085-8 10.1186/s12920-020-00828-4 10.1038/s43018-020-0087-6 10.1038/s41467-021-26643-8 10.1016/j.ccell.2022.07.004 10.1109/IWSSIP.2019.8787328 10.1016/j.ejca.2021.07.012 10.1109/TCYB.2019.2935141 10.1038/s41591-019-0462-y 10.1038/nature10166 10.1001/jama.2017.14585 10.1038/s41467-020-17678-4 10.3390/cancers11030361 10.1109/CVPR52729.2023.01893 10.1002/path.5797 10.1038/s43018-022-00388-9 10.1038/s41587-023-01772-1 10.1038/s42256-023-00635-3 10.1164/rccm.201802-0350LE 10.1002/path.5590 10.1126/science.aaf2666 10.1038/s41551-023-01045-x 10.1109/TMI.2021.3066295 10.1158/1078-0432.CCR-18-2013 10.1038/s41598-019-42845-z 10.1371/journal.pone.0233678 10.18653/v1/W17-5221 10.14778/3415478.3415560 10.1109/TMI.2020.3021387 10.1093/bioinformatics/btaa462 10.1093/nargab/lqab015 10.1158/0008-5472.CAN-17-0313 10.1093/bioinformatics/btaa056 10.1038/s41551-020-0578-x 10.1016/j.ccr.2012.02.022 10.1073/pnas.1900654116 10.1038/s41576-019-0122-6 10.1038/s41586-023-06139-9 10.1136/gutjnl-2019-319866 10.1093/bioinformatics/btz342 10.1016/j.media.2019.101544 10.1038/s41746-022-00634-5 10.1007/s00530-010-0182-0 10.1073/pnas.1717139115 10.1038/s41568-021-00399-1 10.1038/s41568-021-00408-3 10.1038/s41591-018-0177-5 10.3322/caac.21660 10.1038/s41591-020-01174-9 10.1109/HORA52670.2021.9461293 10.1109/TMI.2019.2920608 10.1038/s41571-019-0252-y 10.1145/2939672.2939778 10.1038/nmeth.4391 10.1038/s41551-020-00682-w 10.1038/s42256-022-00516-1 10.1609/aaai.v32i1.11491 10.1038/s41598-020-75708-z 10.1016/j.cell.2020.10.026 10.1038/s41467-021-21674-7 10.1038/s41598-021-92799-4 10.1145/2993148.2993176 10.1038/s41467-021-25296-x 10.1126/scitranslmed.3002564 10.1016/j.media.2020.101830 10.1016/S2589-7500(22)00168-6 10.1038/s41591-022-01981-2 10.1016/S2589-7500(20)30018-2 10.1016/S0140-6736(19)32998-8 10.1038/s42256-019-0048-x 10.1109/TMI.2022.3186698 10.1093/bioinformatics/btz914 10.1609/aaai.v34i04.5749 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). COPYRIGHT 2024 BioMed Central Ltd. 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 3V. 7T5 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.1186/s12967-024-04915-3 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1479-5876 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_e07527c9edfd44a3b1dae5347e8b573b A782198523 38310237 10_1186_s12967_024_04915_3 |
Genre | Journal Article Review |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Zhejiang Province Soft Science Key Project grantid: 2022C25013 |
GroupedDBID | --- 0R~ 29L 2WC 53G 5VS 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M NPM PJZUB PPXIY PMFND 3V. 7T5 7XB 8FK AZQEC COVID DWQXO H94 K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c508t-20c7cd280e3e673e08bfc91bcead8064ed7daf170f841bfd552e80f6cc6c7fd53 |
IEDL.DBID | M48 |
ISSN | 1479-5876 |
IngestDate | Wed Aug 27 01:21:51 EDT 2025 Fri Jul 11 10:11:43 EDT 2025 Fri Jul 25 04:16:38 EDT 2025 Tue Jun 17 22:14:10 EDT 2025 Tue Jun 10 21:11:43 EDT 2025 Mon Jul 21 05:57:02 EDT 2025 Tue Jul 01 02:59:43 EDT 2025 Thu Apr 24 22:52:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Pathomics Pathogenomics Precision oncology Genomics Computational pathology |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-20c7cd280e3e673e08bfc91bcead8064ed7daf170f841bfd552e80f6cc6c7fd53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1316-0153 |
OpenAccessLink | https://doaj.org/article/e07527c9edfd44a3b1dae5347e8b573b |
PMID | 38310237 |
PQID | 2925689353 |
PQPubID | 43076 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e07527c9edfd44a3b1dae5347e8b573b proquest_miscellaneous_2922448321 proquest_journals_2925689353 gale_infotracmisc_A782198523 gale_infotracacademiconefile_A782198523 pubmed_primary_38310237 crossref_primary_10_1186_s12967_024_04915_3 crossref_citationtrail_10_1186_s12967_024_04915_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-03 |
PublicationDateYYYYMMDD | 2024-02-03 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of translational medicine |
PublicationTitleAlternate | J Transl Med |
PublicationYear | 2024 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | RB Puchalski (4915_CR17) 2018; 360 W Shao (4915_CR66) 2020; 39 Z Ning (4915_CR82) 2020; 36 H Pinckaers (4915_CR32) 2021; 40 4915_CR98 J Saltz (4915_CR47) 2018; 23 P Mobadersany (4915_CR48) 2018; 115 4915_CR94 X Tan (4915_CR15) 2020; 36 J Cheng (4915_CR64) 2017; 77 4915_CR109 4915_CR106 O Elemento (4915_CR8) 2021; 21 4915_CR107 MS Hosseini (4915_CR92) 2020; 39 Cancer Genome Atlas Research Network (4915_CR44) 2011; 474 E Wulczyn (4915_CR67) 2020; 15 X Wang (4915_CR35) 2020; 50 CN Jennings (4915_CR3) 2022; 28 Z Li (4915_CR99) 2021; 40 HK Bhargava (4915_CR69) 2020; 26 4915_CR88 G Campanella (4915_CR31) 2019; 25 Y Liu (4915_CR52) 2020; 183 Y Niu (4915_CR53) 2022; 12 4915_CR119 WJ Murdoch (4915_CR120) 2019; 116 4915_CR117 4915_CR118 4915_CR115 4915_CR116 4915_CR113 4915_CR114 4915_CR111 4915_CR112 A Cheerla (4915_CR63) 2019; 35 J Gao (4915_CR60) 2020; 32 4915_CR110 Z Zhan (4915_CR85) 2021; 3 4915_CR78 B Bhinder (4915_CR36) 2021; 11 4915_CR79 P Courtiol (4915_CR49) 2019; 25 4915_CR77 I Dayan (4915_CR95) 2021; 27 SR Mummadi (4915_CR100) 2018; 198 LA Vale-Silva (4915_CR51) 2021; 11 4915_CR72 RJ Chen (4915_CR5) 2022; 41 Y Zhao (4915_CR96) 2022 D Hanahan (4915_CR16) 2012; 21 J Ren (4915_CR65) 2018; 5 N Coudray (4915_CR33) 2018; 24 JN Kather (4915_CR38) 2019; 25 OB Poirion (4915_CR43) 2021; 13 4915_CR80 4915_CR68 C Rudin (4915_CR101) 2019; 1 D Schapiro (4915_CR19) 2017; 14 4915_CR62 MKK Niazi (4915_CR11) 2019; 20 MY Lu (4915_CR34) 2021; 5 Z Ning (4915_CR86) 2022; 41 S Bach (4915_CR108) 2015; 10 D Tellez (4915_CR90) 2019; 58 JA Diao (4915_CR9) 2021; 12 OJ Skrede (4915_CR25) 2020; 395 4915_CR57 H Sung (4915_CR1) 2021; 71 T Zhong (4915_CR50) 2019; 11 S Xu (4915_CR83) 2020; 13 F Wu (4915_CR21) 2021; 12 4915_CR59 K Bera (4915_CR2) 2019; 16 A Levy-Jurgenson (4915_CR42) 2020; 10 JN Kather (4915_CR104) 2022; 5 PK Atrey (4915_CR58) 2010; 16 A Echle (4915_CR37) 2020; 159 B Ehteshami Bejnordi (4915_CR27) 2017; 318 RS Savage (4915_CR46) 2016; 3 J Hao (4915_CR84) 2020; 25 S Cheng (4915_CR10) 2021; 12 Y Fu (4915_CR13) 2020; 1 AH Beck (4915_CR70) 2011; 3 A Rao (4915_CR18) 2021; 596 B He (4915_CR7) 2020; 4 JN Acosta (4915_CR56) 2022; 28 KM Boehm (4915_CR12) 2022; 22 Y Chen (4915_CR91) 2021; 253 HC Thorsen-Meyer (4915_CR102) 2020; 2 B Schmauch (4915_CR39) 2020; 11 A Somarakis (4915_CR20) 2021; 27 G Yu (4915_CR26) 2021; 12 J Boschman (4915_CR89) 2022; 256 W Lotter (4915_CR28) 2021; 27 G Eraslan (4915_CR61) 2019; 20 S Kim (4915_CR45) 2020; 36 H-Y Zhou (4915_CR81) 2023; 7 S Kuntz (4915_CR29) 2021; 155 CV Theodoris (4915_CR74) 2023; 618 KM Boehm (4915_CR41) 2022; 3 N Rieke (4915_CR93) 2020; 3 4915_CR121 T Brown (4915_CR71) 2020; 33 MW Lafarge (4915_CR22) 2021; 3 F Yang (4915_CR73) 2022; 4 K Sirinukunwattana (4915_CR24) 2021; 70 M Armbrust (4915_CR97) 2020; 13 X Wang (4915_CR30) 2021; 12 RJ Chen (4915_CR6) 2022; 40 X Luo (4915_CR40) 2019; 9 JN Kather (4915_CR14) 2020; 1 K Ding (4915_CR54) 2022; 4 J Liang (4915_CR23) 2023; 5 H Chen (4915_CR75) 2023 D Song (4915_CR76) 2023 G Corredor (4915_CR105) 2019; 25 XA Bi (4915_CR4) 2021; 67 W Liang (4915_CR87) 2022; 4 H Zheng (4915_CR55) 2020; 5 X Chen (4915_CR103) 2022; 41 |
References_xml | – volume: 159 start-page: 1406 year: 2020 ident: 4915_CR37 publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.06.021 – volume: 27 start-page: 98 year: 2021 ident: 4915_CR20 publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2019.2931299 – ident: 4915_CR77 doi: 10.1109/ICCV51070.2023.00371 – ident: 4915_CR116 doi: 10.18653/v1/D16-1011 – volume: 5 year: 2018 ident: 4915_CR65 publication-title: J Med Imaging doi: 10.1117/1.JMI.5.4.047501 – volume: 32 start-page: 829 year: 2020 ident: 4915_CR60 publication-title: Neural Comput doi: 10.1162/neco_a_01273 – year: 2023 ident: 4915_CR75 publication-title: Nat Methods doi: 10.1038/s41592-023-01899-8 – volume: 5 start-page: 11 year: 2020 ident: 4915_CR55 publication-title: NPJ Genom Med doi: 10.1038/s41525-020-0120-9 – ident: 4915_CR94 doi: 10.1109/IJCNN54540.2023.10191879 – volume: 27 start-page: 1735 year: 2021 ident: 4915_CR95 publication-title: Nat Med doi: 10.1038/s41591-021-01506-3 – volume: 25 start-page: 1519 year: 2019 ident: 4915_CR49 publication-title: Nat Med doi: 10.1038/s41591-019-0583-3 – year: 2022 ident: 4915_CR96 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2022.3190359 – volume: 12 start-page: 1613 year: 2021 ident: 4915_CR9 publication-title: Nat Commun doi: 10.1038/s41467-021-21896-9 – volume: 3 year: 2016 ident: 4915_CR46 publication-title: R Soc Open Sci doi: 10.1098/rsos.140501 – volume: 39 start-page: 62 year: 2020 ident: 4915_CR92 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2919722 – ident: 4915_CR57 – volume: 596 start-page: 211 year: 2021 ident: 4915_CR18 publication-title: Nature doi: 10.1038/s41586-021-03634-9 – volume: 25 start-page: 1301 year: 2019 ident: 4915_CR31 publication-title: Nat Med doi: 10.1038/s41591-019-0508-1 – volume: 12 year: 2022 ident: 4915_CR53 publication-title: Front Oncol doi: 10.3389/fonc.2022.927426 – ident: 4915_CR80 – volume: 23 start-page: 181 year: 2018 ident: 4915_CR47 publication-title: Cell Rep doi: 10.1016/j.celrep.2018.03.086 – volume: 28 start-page: 1107 year: 2022 ident: 4915_CR3 publication-title: Nat Med doi: 10.1038/s41591-022-01798-z – volume: 41 start-page: 186 year: 2022 ident: 4915_CR86 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3108802 – volume: 12 start-page: 2540 year: 2021 ident: 4915_CR21 publication-title: Nat Commun doi: 10.1038/s41467-021-22801-0 – volume: 20 start-page: e253 year: 2019 ident: 4915_CR11 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(19)30154-8 – volume: 4 start-page: 852 year: 2022 ident: 4915_CR73 publication-title: Nat Mach Intell doi: 10.1038/s42256-022-00534-z – ident: 4915_CR117 – ident: 4915_CR72 – ident: 4915_CR114 doi: 10.1109/ICCV.2017.74 – volume: 3 start-page: 119 year: 2020 ident: 4915_CR93 publication-title: NPJ Digit Med doi: 10.1038/s41746-020-00323-1 – volume: 10 year: 2015 ident: 4915_CR108 publication-title: PLoS ONE doi: 10.1371/journal.pone.0130140 – volume: 40 start-page: 1065 year: 2021 ident: 4915_CR99 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3046692 – ident: 4915_CR68 doi: 10.1007/978-3-030-59722-1_46 – volume: 11 start-page: 900 year: 2021 ident: 4915_CR36 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-21-0090 – volume: 26 start-page: 1915 year: 2020 ident: 4915_CR69 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-19-2659 – volume: 3 start-page: e752 year: 2021 ident: 4915_CR22 publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(21)00232-6 – volume: 13 start-page: 112 year: 2021 ident: 4915_CR43 publication-title: Genome Med doi: 10.1186/s13073-021-00930-x – volume: 1 start-page: 800 year: 2020 ident: 4915_CR13 publication-title: Nat Cancer doi: 10.1038/s43018-020-0085-8 – volume: 13 start-page: 195 year: 2020 ident: 4915_CR83 publication-title: BMC Med Genom doi: 10.1186/s12920-020-00828-4 – volume: 1 start-page: 789 year: 2020 ident: 4915_CR14 publication-title: Nat Cancer doi: 10.1038/s43018-020-0087-6 – volume: 12 start-page: 6311 year: 2021 ident: 4915_CR26 publication-title: Nat Commun doi: 10.1038/s41467-021-26643-8 – volume: 40 start-page: 865 year: 2022 ident: 4915_CR6 publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.07.004 – ident: 4915_CR88 doi: 10.1109/IWSSIP.2019.8787328 – volume: 155 start-page: 200 year: 2021 ident: 4915_CR29 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2021.07.012 – volume: 50 start-page: 3950 year: 2020 ident: 4915_CR35 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2935141 – volume: 25 start-page: 1054 year: 2019 ident: 4915_CR38 publication-title: Nat Med doi: 10.1038/s41591-019-0462-y – volume: 474 start-page: 609 year: 2011 ident: 4915_CR44 publication-title: Nature doi: 10.1038/nature10166 – volume: 318 start-page: 2199 year: 2017 ident: 4915_CR27 publication-title: JAMA doi: 10.1001/jama.2017.14585 – volume: 11 start-page: 3877 year: 2020 ident: 4915_CR39 publication-title: Nat Commun doi: 10.1038/s41467-020-17678-4 – volume: 11 start-page: 361 year: 2019 ident: 4915_CR50 publication-title: Cancers doi: 10.3390/cancers11030361 – ident: 4915_CR79 doi: 10.1109/CVPR52729.2023.01893 – volume: 256 start-page: 15 year: 2022 ident: 4915_CR89 publication-title: J Pathol doi: 10.1002/path.5797 – volume: 3 start-page: 723 year: 2022 ident: 4915_CR41 publication-title: Nat Cancer doi: 10.1038/s43018-022-00388-9 – year: 2023 ident: 4915_CR76 publication-title: Nat Biotechnol doi: 10.1038/s41587-023-01772-1 – ident: 4915_CR119 – volume: 5 start-page: 408 year: 2023 ident: 4915_CR23 publication-title: Nat Mach Intell doi: 10.1038/s42256-023-00635-3 – volume: 198 start-page: 544 year: 2018 ident: 4915_CR100 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201802-0350LE – volume: 253 start-page: 268 year: 2021 ident: 4915_CR91 publication-title: J Pathol doi: 10.1002/path.5590 – ident: 4915_CR111 – volume: 360 start-page: 660 year: 2018 ident: 4915_CR17 publication-title: Science doi: 10.1126/science.aaf2666 – volume: 7 start-page: 743 year: 2023 ident: 4915_CR81 publication-title: Nat Biomed Eng doi: 10.1038/s41551-023-01045-x – volume: 40 start-page: 1817 year: 2021 ident: 4915_CR32 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3066295 – volume: 25 start-page: 1526 year: 2019 ident: 4915_CR105 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-18-2013 – volume: 9 start-page: 6886 year: 2019 ident: 4915_CR40 publication-title: Sci Rep doi: 10.1038/s41598-019-42845-z – volume: 25 start-page: 355 year: 2020 ident: 4915_CR84 publication-title: Pac Symp Biocomput – ident: 4915_CR121 – volume: 15 year: 2020 ident: 4915_CR67 publication-title: PLoS ONE doi: 10.1371/journal.pone.0233678 – ident: 4915_CR107 doi: 10.18653/v1/W17-5221 – ident: 4915_CR78 – volume: 13 start-page: 3411 year: 2020 ident: 4915_CR97 publication-title: Proc VLDB Endow doi: 10.14778/3415478.3415560 – volume: 41 start-page: 757 year: 2022 ident: 4915_CR5 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3021387 – volume: 36 start-page: i389 year: 2020 ident: 4915_CR45 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa462 – volume: 3 year: 2021 ident: 4915_CR85 publication-title: NAR Genom Bioinform doi: 10.1093/nargab/lqab015 – volume: 77 start-page: e91 year: 2017 ident: 4915_CR64 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0313 – volume: 36 start-page: 2888 year: 2020 ident: 4915_CR82 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa056 – volume: 4 start-page: 827 year: 2020 ident: 4915_CR7 publication-title: Nat Biomed Eng doi: 10.1038/s41551-020-0578-x – volume: 21 start-page: 309 year: 2012 ident: 4915_CR16 publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.02.022 – ident: 4915_CR118 – volume: 116 start-page: 22071 year: 2019 ident: 4915_CR120 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1900654116 – ident: 4915_CR112 – volume: 20 start-page: 389 year: 2019 ident: 4915_CR61 publication-title: Nat Rev Genet doi: 10.1038/s41576-019-0122-6 – volume: 618 start-page: 616 year: 2023 ident: 4915_CR74 publication-title: Nature doi: 10.1038/s41586-023-06139-9 – volume: 70 start-page: 544 year: 2021 ident: 4915_CR24 publication-title: Gut doi: 10.1136/gutjnl-2019-319866 – ident: 4915_CR106 – volume: 35 start-page: i446 year: 2019 ident: 4915_CR63 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz342 – volume: 58 year: 2019 ident: 4915_CR90 publication-title: Med Image Anal doi: 10.1016/j.media.2019.101544 – volume: 5 start-page: 90 year: 2022 ident: 4915_CR104 publication-title: NPJ Digit Med doi: 10.1038/s41746-022-00634-5 – volume: 16 start-page: 345 year: 2010 ident: 4915_CR58 publication-title: Multimed Syst doi: 10.1007/s00530-010-0182-0 – volume: 115 start-page: E2970 year: 2018 ident: 4915_CR48 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1717139115 – volume: 21 start-page: 747 year: 2021 ident: 4915_CR8 publication-title: Nat Rev Cancer doi: 10.1038/s41568-021-00399-1 – volume: 22 start-page: 114 year: 2022 ident: 4915_CR12 publication-title: Nat Rev Cancer doi: 10.1038/s41568-021-00408-3 – volume: 24 start-page: 1559 year: 2018 ident: 4915_CR33 publication-title: Nat Med doi: 10.1038/s41591-018-0177-5 – volume: 71 start-page: 209 year: 2021 ident: 4915_CR1 publication-title: CA Cancer J Clin doi: 10.3322/caac.21660 – volume: 27 start-page: 244 year: 2021 ident: 4915_CR28 publication-title: Nat Med doi: 10.1038/s41591-020-01174-9 – ident: 4915_CR98 doi: 10.1109/HORA52670.2021.9461293 – volume: 39 start-page: 99 year: 2020 ident: 4915_CR66 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2920608 – volume: 16 start-page: 703 year: 2019 ident: 4915_CR2 publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-019-0252-y – ident: 4915_CR109 doi: 10.1145/2939672.2939778 – volume: 14 start-page: 873 year: 2017 ident: 4915_CR19 publication-title: Nat Methods doi: 10.1038/nmeth.4391 – volume: 5 start-page: 555 year: 2021 ident: 4915_CR34 publication-title: Nat Biomed Eng doi: 10.1038/s41551-020-00682-w – volume: 4 start-page: 669 year: 2022 ident: 4915_CR87 publication-title: Nat Mach Intell doi: 10.1038/s42256-022-00516-1 – ident: 4915_CR113 doi: 10.1609/aaai.v32i1.11491 – volume: 10 start-page: 18802 year: 2020 ident: 4915_CR42 publication-title: Sci Rep doi: 10.1038/s41598-020-75708-z – volume: 183 start-page: 1665 year: 2020 ident: 4915_CR52 publication-title: Cell doi: 10.1016/j.cell.2020.10.026 – volume: 12 start-page: 1637 year: 2021 ident: 4915_CR30 publication-title: Nat Commun doi: 10.1038/s41467-021-21674-7 – volume: 11 start-page: 13505 year: 2021 ident: 4915_CR51 publication-title: Sci Rep doi: 10.1038/s41598-021-92799-4 – ident: 4915_CR59 doi: 10.1145/2993148.2993176 – volume: 33 start-page: 1877 year: 2020 ident: 4915_CR71 publication-title: Adv Neural Inf Process Syst – ident: 4915_CR62 – volume: 12 start-page: 5639 year: 2021 ident: 4915_CR10 publication-title: Nat Commun doi: 10.1038/s41467-021-25296-x – volume: 3 start-page: 108ra113 year: 2011 ident: 4915_CR70 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3002564 – volume: 67 year: 2021 ident: 4915_CR4 publication-title: Med Image Anal doi: 10.1016/j.media.2020.101830 – volume: 4 start-page: e787 year: 2022 ident: 4915_CR54 publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(22)00168-6 – ident: 4915_CR110 – volume: 28 start-page: 1773 issue: 9 year: 2022 ident: 4915_CR56 publication-title: Nat Med doi: 10.1038/s41591-022-01981-2 – volume: 2 start-page: e179 year: 2020 ident: 4915_CR102 publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(20)30018-2 – volume: 395 start-page: 350 year: 2020 ident: 4915_CR25 publication-title: Lancet doi: 10.1016/S0140-6736(19)32998-8 – volume: 1 start-page: 206 year: 2019 ident: 4915_CR101 publication-title: Nat Mach Intell doi: 10.1038/s42256-019-0048-x – volume: 41 start-page: 3445 year: 2022 ident: 4915_CR103 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2022.3186698 – volume: 36 start-page: 2293 year: 2020 ident: 4915_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz914 – ident: 4915_CR115 doi: 10.1609/aaai.v34i04.5749 |
SSID | ssj0024549 |
Score | 2.426234 |
SecondaryResourceType | review_article |
Snippet | The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in harnessing... Abstract The capability to gather heterogeneous data, alongside the increasing power of artificial intelligence to examine it, leading a revolution in... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 131 |
SubjectTerms | Accuracy and precision Algorithms Analysis Artificial intelligence Biomarkers Cancer Care and treatment Computational pathology Deep learning Diagnosis DNA methylation DNA sequencing Gene expression Genomics Health aspects Histopathology Machine learning Medical diagnosis Medical prognosis Methods Morphology Mutation Nucleotide sequencing Oncology Pathogenomics Pathology Pathomics Precision medicine Precision oncology Prognosis Quantitative analysis Tumors |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yB_EiflvdlQiCBzds89Gk3dsqLouw4sGFvYVmksCCtuJ77-B_70z6gU9BLx6bTEsznWR-k0x_w9gr2RuMG3IjQs5KmCyNwLA5Cgg21QlcMGUz5_KjvbgyH66b619KfVFO2EQPPCnuJKFPUw66FHM0ptdBxj412rjUhsbpQKsv-rwlmFpY9jDsWX6Rae3JBr0aLgjYLhARy0boPTdU2Pr_XJN_Q5rF45zfY3dnqMjPple8z26l4QG7fTkfhj9k_hOit5FIVr_ewIYj-uQ9wI64H3icMuhuNsd8TSU_5pSMVVr5mPk4FMLqH6e857Ar6c-cNtc4JXXSgcEjdnX-_vO7CzHXSxCAMGuLBg8OomrrpJN1OtVtyNDJAGgtLUKPFF3ss3R1bo0MOTaNSm2dLYAFh5f6MTsYxiE9ZbwJkZjp8TlBGZ0QRPWmBmk720FIWlVMLurzMJOJU02LL74EFa31k8o9qtwXlXtdsTfrPd8mKo2_Sr-lr7JKEg12aUDj8LNx-H8ZR8Ve0zf1NFnx9aCf_znAQRLtlT9DfCS7FoPxih3uSeIkg_3uxSr8PMk3XnWIFxHvNdj9cu2mOylxbUjjrsgggKJyUBV7MlnTOiRNRd6Uds_-x1Cfszuq2LcStT5kB9vvu3SEeGkbXpSp8RNK9hEe priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9UwEA-6gngRv62uEkHw4JZtPtq0XmQVl0VY8eDCu4VmksjC2q7b9w7-986keV2ewh6bL9rJJPObdPIbxt6KXqPfEOvSxShLHYUu0W32JbgmVAGM0-kw5_Rbc3Kmv67qVT5wm3JY5XZPTBu1H4HOyA9lh8YZjWutPl7-LilrFP1dzSk0brM7RF1GIV1mde1waXR-thdl2uZwQtuG2wKWl4iLRV2qHWOUOPv_35n_wZvJ7hw_YPczYORH8ww_ZLfC8IjdPc2_xB8z-x0x3EhUq7_OYeKIQXkPsCEGCO7nOLrz6YAvAeUHnEKyUikfIx-HRFv95wPvOWxSEDSnIzZOoZ0kkifs7PjLj88nZc6aUAKCrTWqPRjwsq2CCo1RoWpdhE44QJ1pEYAEb3wfhaliq4WLvq5laKvYADRg8FE9ZXvDOITnjNfOEz89juOkVgGhVK8rEE3XdOCCkgUTW_FZyJTilNniwibXom3sLHKLIrdJ5FYV7P3S53Im1Lix9SealaUlkWGngvHqp81rywaEPdJAF3z0WvfKCd-HWmkTWlcb5Qr2jubU0pLF14M-3zzAjyTyK3uEKEl0LbrkBdvfaYlLDXart1ph81Kf7LViFuzNUk09KXxtCOMmtUEYRUmhCvZs1qblkxSlepPKvLh58JfsnkyaK8tK7bO99dUmvEI8tHavk9L_BUnOB9c priority: 102 providerName: ProQuest |
Title | Pathogenomics for accurate diagnosis, treatment, prognosis of oncology: a cutting edge overview |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38310237 https://www.proquest.com/docview/2925689353 https://www.proquest.com/docview/2922448321 https://doaj.org/article/e07527c9edfd44a3b1dae5347e8b573b |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9UwEA57AfFFvFtdDxEEH9xqc2tSQWSP7LIIZ1kWDxx8Cc1NFtZWzwXcf-8kvcjRRXwptElLM5npfJNOvkHoJak5xA1B5CYEmvNAeA5hs8utKX3hrTQ8LebMzsrTOf-0EIsdNJQ76gW4ujG0i_Wk5surNz9_XH8Ag3-fDF6Vb1fgs8DcwdvkgHeJyNku2gfPJKOhzrj6zb0nEhwmXFa5gM_AsInmxmdsOarE5__3V_sPLJp80slddKcHk_iom_17aMc399GtWf-7_AHS54Dv2kjD-u3SrjDgU1xbu4nsENh1OXaXq0M8Jpsf4piula7iNuC2SZTW1-9wje0mJUjjuPyGY9pn_KXwEM1Pjj9_PM37igq5BSC2BpOw0jqqCs98KZkvlAm2IsaCPikAJ95JVwcii6A4McEJQb0qQmltaSWcskdor2kb_wRhYVzkrofnGMqZB5hV88KSsiorazyjGSKD-LTt6cZj1YsrncIOVepO5BpErpPINcvQ6_Ge7x3Zxj97T-OsjD0jUXa60C6_6t7utAdIRKWtvAuO85oZ4movGJdeGSGZydCrOKc6Khi8nq37XQkwyEiMpY8AQZFKQbieoYOtnmCGdrt50Ao9aLGmFSBKQIQCml-MzfHOmNrW-HaT-gDEigWjMvS406ZxSCyWgaNMPv3vt3yGbtOkxDQv2AHaWy83_jnAprWZoF25kBO0Pz0-O7-YpMWHSbIPOF5Mv_wC8NEViA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiDeBAkYCcaBRE9t5ISHUQqst7a4q1Eq9mXhsV5XKpnR3hfqn-I3MOMlWC1JvPcZxnGQ8j2_s8Qxjb9Naod_gs9h4L2LlUxWj22xjMLlLHBRGhcWc0TgfHqlvx9nxCvvTn4WhsMpeJwZFbRugNfINUaFxRuOayc_nv2KqGkW7q30JjZYt9tzlb3TZpp92v-L8vhNiZ_vwyzDuqgrEgGBkhmwBBVhRJk66vJAuKY2HKjWANC3RQDtb2NqnReJLlRpvs0y4MvE5QA4FXkoc9xZbVRJdmQFb3doeH3y_yu6H7lZ_NKfMN6ZoTVERYXuMSDzNYrlk_kKVgP9twT8IN1i6nfvsXgdR-WbLUw_Yips8ZLdH3Sb8I6YPEDU2lNz15ylMOaJeXgPMKecEt23k3ul0nS9C2Nc5BYGFVt543kxCouzLj7zmMA9h15wW9TgFk9IkPGZHN0LRJ2wwaSbuGeOZsZQRH8cxQkmH4K1WCaR5lVdgnBQRS3vyaeiSmFMtjTMdnJky1y3JNZJcB5JrGbEPi2fO2xQe1_beollZ9KT026GhuTjRnTRrh0BLFFA5661StTSprV0mVeFKkxXSROw9zakmJYGfB3V31gF_ktJt6U3EZWlVZgJft7bUE4Ublm_3XKE75TLVV6IQsTeL2_QkBcxNXDMPfRC4URmqiD1tuWnxS5KKywlZPL9-8NfszvBwtK_3d8d7L9hdEbhYxIlcY4PZxdy9RDQ2M686EeDsx01L3V-OKEgm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathogenomics+for+accurate+diagnosis%2C+treatment%2C+prognosis+of+oncology%3A+a+cutting+edge+overview&rft.jtitle=Journal+of+translational+medicine&rft.au=Feng%2C+Xiaobing&rft.au=Shu%2C+Wen&rft.au=Li%2C+Mingya&rft.au=Li%2C+Junyu&rft.date=2024-02-03&rft.pub=BioMed+Central+Ltd&rft.issn=1479-5876&rft.eissn=1479-5876&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12967-024-04915-3&rft.externalDocID=A782198523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon |