Knowledge Extraction and Discovery about Web System Based on the Benchmark Application of Online Stock Trading System
Predicting workload characteristics could help web systems achieve elastic scaling and reliability by optimizing servers’ configuration and ensuring Quality of Service, such as increasing or decreasing used resources. However, a successful analysis using a simulation model and recognition and predic...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 4; p. 2274 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
17.02.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s23042274 |
Cover
Loading…
Abstract | Predicting workload characteristics could help web systems achieve elastic scaling and reliability by optimizing servers’ configuration and ensuring Quality of Service, such as increasing or decreasing used resources. However, a successful analysis using a simulation model and recognition and prediction of the behavior of the client presents a challenging task. Furthermore, the network traffic characteristic is a subject of frequent changes in modern web systems and the huge content of system logs makes it a difficult area for data mining research. In this work, we investigate prepared trace contents that are obtained from the benchmark of the web system. The article proposes traffic classification on the web system that is used to find the behavior of client classes. We present a case study involving workload analysis of an online stock trading application that is run in the cloud, and that processes requests from the designed generator. The results show that the proposed analysis could help us better understand the requests scenario and select the values of system and application parameters. Our work is useful for practitioners and researchers of log analysis to enhance service reliability. |
---|---|
AbstractList | Predicting workload characteristics could help web systems achieve elastic scaling and reliability by optimizing servers’ configuration and ensuring Quality of Service, such as increasing or decreasing used resources. However, a successful analysis using a simulation model and recognition and prediction of the behavior of the client presents a challenging task. Furthermore, the network traffic characteristic is a subject of frequent changes in modern web systems and the huge content of system logs makes it a difficult area for data mining research. In this work, we investigate prepared trace contents that are obtained from the benchmark of the web system. The article proposes traffic classification on the web system that is used to find the behavior of client classes. We present a case study involving workload analysis of an online stock trading application that is run in the cloud, and that processes requests from the designed generator. The results show that the proposed analysis could help us better understand the requests scenario and select the values of system and application parameters. Our work is useful for practitioners and researchers of log analysis to enhance service reliability. Predicting workload characteristics could help web systems achieve elastic scaling and reliability by optimizing servers' configuration and ensuring Quality of Service, such as increasing or decreasing used resources. However, a successful analysis using a simulation model and recognition and prediction of the behavior of the client presents a challenging task. Furthermore, the network traffic characteristic is a subject of frequent changes in modern web systems and the huge content of system logs makes it a difficult area for data mining research. In this work, we investigate prepared trace contents that are obtained from the benchmark of the web system. The article proposes traffic classification on the web system that is used to find the behavior of client classes. We present a case study involving workload analysis of an online stock trading application that is run in the cloud, and that processes requests from the designed generator. The results show that the proposed analysis could help us better understand the requests scenario and select the values of system and application parameters. Our work is useful for practitioners and researchers of log analysis to enhance service reliability.Predicting workload characteristics could help web systems achieve elastic scaling and reliability by optimizing servers' configuration and ensuring Quality of Service, such as increasing or decreasing used resources. However, a successful analysis using a simulation model and recognition and prediction of the behavior of the client presents a challenging task. Furthermore, the network traffic characteristic is a subject of frequent changes in modern web systems and the huge content of system logs makes it a difficult area for data mining research. In this work, we investigate prepared trace contents that are obtained from the benchmark of the web system. The article proposes traffic classification on the web system that is used to find the behavior of client classes. We present a case study involving workload analysis of an online stock trading application that is run in the cloud, and that processes requests from the designed generator. The results show that the proposed analysis could help us better understand the requests scenario and select the values of system and application parameters. Our work is useful for practitioners and researchers of log analysis to enhance service reliability. |
Audience | Academic |
Author | Borowiec, Marcin Piszko, Rafał Rak, Tomasz |
AuthorAffiliation | Department of Computer and Control Engineering, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland |
AuthorAffiliation_xml | – name: Department of Computer and Control Engineering, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland |
Author_xml | – sequence: 1 givenname: Marcin surname: Borowiec fullname: Borowiec, Marcin – sequence: 2 givenname: Rafał surname: Piszko fullname: Piszko, Rafał – sequence: 3 givenname: Tomasz orcidid: 0000-0002-9299-2216 surname: Rak fullname: Rak, Tomasz |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36850870$$D View this record in MEDLINE/PubMed |
BookMark | eNplkktv1DAQgCNURB9w4A8gS1zgsK1jx459QdqWAhWVemgRR8uPya63WXtrJ4X-e9zdbdUWRVYs-5tP45nZr3ZCDFBV72t8SKnER5lQ3BDSNq-qvbohzUQQgnee7Her_ZwXGBNKqXhT7VIuGBYt3qvGnyH-6cHNAJ3-HZK2g48B6eDQV59tvIV0h7SJ44B-g0GXd3mAJTrWGRwq3DAHdAzBzpc6XaPpatV7q9eG2KGL0PsA6HKI9hpdJe18mG0Nb6vXne4zvNv-D6pf306vTn5Mzi--n51Mzye2pDdMameEFYLzjhhKWkltR4FK10rCKK8ls7WgtbRYGkFdDWWx2nBgHeFSMKAH1dnG66JeqFXyJc87FbVX64OYZkqnwdselKFCt7zRwjpouJSCaM0aYzi1jatNU1xfNq7VaJbgLIRSrv6Z9PlN8HM1i7dKSs5p2xbBp60gxZsR8qCWpcTQ9zpAHLMircAtp0yygn58gS7imEIpVaFayRjGUhbqcEPNdHmAD128b2D5HCy9LSPS-XI-bRta-i0YLQEfnj7hMfeHcSjA0QawKeacoFPWD-uGFrPvVY3V_cCpx4ErEZ9fRDxI_2f_AQq41A4 |
CitedBy_id | crossref_primary_10_3390_electronics12214408 crossref_primary_10_3390_electronics13244938 |
Cites_doi | 10.1109/COMST.2018.2798641 10.3390/s22207845 10.1109/ACCESS.2022.3152549 10.1016/j.peva.2020.102121 10.1016/j.future.2022.01.002 10.1145/3464298.3493396 10.3390/app12126115 10.1002/sys.21462 10.3390/systems10040101 10.3390/computers9010010 10.1155/2015/490835 10.15439/2014F366 10.1016/j.jnca.2017.12.015 10.1109/ICDCS.2018.00105 10.1016/j.asoc.2021.107895 10.1109/ACCESS.2021.3073859 10.1007/978-3-030-41705-5 10.1007/978-3-030-90528-6 10.1109/ICDIS50059.2020.00021 10.15439/2022F172 10.1145/3427796.3427808 10.1016/j.scico.2022.102847 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23042274 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_b38a764a8cde469982aa54bb63c4d1b4 PMC9966377 A743368853 36850870 10_3390_s23042274 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c508t-1db8c8866f2b32793cf3e39d792536195c18319c09b83d1e3d151b6e5f26985e3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:25:17 EDT 2025 Thu Aug 21 18:38:03 EDT 2025 Fri Sep 05 14:04:52 EDT 2025 Sat Aug 23 12:54:23 EDT 2025 Tue Jul 01 05:44:27 EDT 2025 Mon Jul 21 05:44:24 EDT 2025 Thu Apr 24 23:08:20 EDT 2025 Tue Jul 01 01:19:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | workload characterization web benchmark experimental analysis web client classification |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-1db8c8866f2b32793cf3e39d792536195c18319c09b83d1e3d151b6e5f26985e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9299-2216 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23042274 |
PMID | 36850870 |
PQID | 2779550099 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b38a764a8cde469982aa54bb63c4d1b4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9966377 proquest_miscellaneous_2780763595 proquest_journals_2779550099 gale_infotracacademiconefile_A743368853 pubmed_primary_36850870 crossref_citationtrail_10_3390_s23042274 crossref_primary_10_3390_s23042274 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230217 |
PublicationDateYYYYMMDD | 2023-02-17 |
PublicationDate_xml | – month: 2 year: 2023 text: 20230217 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Curiel (ref_15) 2018; 20 Korzeniowski (ref_2) 2022; 10 ref_36 ref_13 ref_35 ref_12 ref_11 Amiri (ref_26) 2018; 105 ref_10 Muhammad (ref_9) 2020; 142 Zhouxian (ref_23) 2020; 28 ref_30 Hegde (ref_17) 2014; 2 Zhang (ref_24) 2022; 130 Giebas (ref_31) 2022; 9 ref_19 ref_18 Said (ref_32) 2022; Volume 152 ref_16 Matoussi (ref_27) 2022; 34 Khan (ref_14) 2020; 13 Zhang (ref_28) 2018; 21 (ref_25) 2018; 13 Francalanza (ref_34) 2022; 222 Jitendra (ref_33) 2021; 113 ref_21 ref_20 ref_1 ref_3 ref_29 Rak (ref_4) 2015; 2015 Deshpande (ref_22) 2022; Volume 915 ref_8 ref_5 ref_7 ref_6 |
References_xml | – volume: 20 start-page: 1526 year: 2018 ident: ref_15 article-title: Workload Generators for Web-Based Systems: Characteristics, Current Status, and Challenges publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2798641 – volume: 13 start-page: 979 year: 2018 ident: ref_25 article-title: Risk Scenarios on Web Applications publication-title: J. Comput. – volume: 2 start-page: 67 year: 2014 ident: ref_17 article-title: Web Performance Testing: Methodologies, Tools and Challenges publication-title: Int. J. Sci. Eng. Res. – ident: ref_8 doi: 10.3390/s22207845 – volume: 10 start-page: 21892 year: 2022 ident: ref_2 article-title: Landscape of Automated Log Analysis: A Systematic Literature Review and Mapping Study publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3152549 – ident: ref_11 – volume: 142 start-page: 102121 year: 2020 ident: ref_9 article-title: Analyzing the distribution fit for storage workload and Internet traffic traces publication-title: Perform. Eval. doi: 10.1016/j.peva.2020.102121 – ident: ref_16 – volume: 130 start-page: 292 year: 2022 ident: ref_24 article-title: A multi-output prediction model for physical machine resource usage in cloud data centers publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2022.01.002 – ident: ref_35 doi: 10.1145/3464298.3493396 – ident: ref_1 – ident: ref_18 – ident: ref_10 doi: 10.3390/app12126115 – volume: 34 start-page: 3973 year: 2022 ident: ref_27 article-title: A new temporal locality-based workload prediction approach for SaaS services in a cloud environment publication-title: J. King Saud Univ. Comput. Inf. Sci. – volume: 21 start-page: 576 year: 2018 ident: ref_28 article-title: A systems engineering–based approach for framing reliability, availability, and maintainability: A case study for subsea design publication-title: Syst. Eng. doi: 10.1002/sys.21462 – volume: Volume 915 start-page: 915 year: 2022 ident: ref_22 article-title: A Comprehensive Performance Evaluation of Novel Big Data Log Analytic Framework publication-title: Advances in Computing, Renewable Energy and Communication, Lecture Notes in Electrical Engineering, Proceedings of 3rd International Conference on Machine Learning, Hyderabad, India, 28–29 March 2022 – ident: ref_29 doi: 10.3390/systems10040101 – ident: ref_6 – ident: ref_5 doi: 10.3390/computers9010010 – volume: 2015 start-page: 490835 year: 2015 ident: ref_4 article-title: Response Time Analysis of Distributed Web Systems Using QPNs publication-title: Math. Probl. Eng. doi: 10.1155/2015/490835 – ident: ref_7 doi: 10.15439/2014F366 – volume: 105 start-page: 21 year: 2018 ident: ref_26 article-title: A sequential pattern mining model for application workload prediction in cloud environment publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2017.12.015 – ident: ref_21 doi: 10.1109/ICDCS.2018.00105 – volume: 113 start-page: 107895 year: 2021 ident: ref_33 article-title: Performance evaluation of metaheuristics algorithms for workload prediction in cloud environment publication-title: Appl. Soft Comput. Part A doi: 10.1016/j.asoc.2021.107895 – volume: 9 start-page: 61298 year: 2022 ident: ref_31 article-title: Detection of Concurrency Errors in Multithreaded Applications Based on Static Source Code Analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3073859 – ident: ref_12 doi: 10.1007/978-3-030-41705-5 – ident: ref_30 doi: 10.1007/978-3-030-90528-6 – ident: ref_13 doi: 10.1109/ICDIS50059.2020.00021 – ident: ref_19 – ident: ref_3 doi: 10.15439/2022F172 – ident: ref_20 – volume: 28 start-page: 147 year: 2020 ident: ref_23 article-title: Review of Software Reliability Testing Techniques publication-title: J. Comput. Inf. Technol. – ident: ref_36 doi: 10.1145/3427796.3427808 – volume: 13 start-page: 4746 year: 2020 ident: ref_14 article-title: Soak Testing of Web Applications Based on Automatic Test Cases publication-title: Int. J. Eng. Res. Technol. – volume: Volume 152 start-page: 152 year: 2022 ident: ref_32 article-title: A Straggler Identification Model for Large-Scale Distributed Computing Systems Using Machine Learning publication-title: Lecture Notes on Data Engineering and Communications Technologies, Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 20–22 November 2022 – volume: 222 start-page: 102847 year: 2022 ident: ref_34 article-title: PSTMonitor: Monitor synthesis from probabilistic session types publication-title: Sci. Comput. Program. doi: 10.1016/j.scico.2022.102847 |
SSID | ssj0023338 |
Score | 2.403898 |
Snippet | Predicting workload characteristics could help web systems achieve elastic scaling and reliability by optimizing servers’ configuration and ensuring Quality of... Predicting workload characteristics could help web systems achieve elastic scaling and reliability by optimizing servers' configuration and ensuring Quality of... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2274 |
SubjectTerms | Automation Case studies Data mining Electronic trading (Securities) experimental analysis Generators Machine learning Software reliability Stocks Taxonomy web benchmark web client classification Web sites workload characterization Workloads |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAKM9AQQYhwSVq4kdsH3ehVQWCC1T0ZvkVtQKyaDcrlX_POM6GjUDiwiGXZBTZnhnPfPb4M8BL0VhZ--hLjO6h5DYGdKlKlMFJxpzzOi_of_jYnJ3zdxfiYu-qr1QTlumB88AdO6asbLhVPkSEclpRawV3rmGeh9oNTKAY83ZgaoRaDJFX5hFiCOqPN2npk1LJZ9FnIOn_cyrei0XzOsm9wHN6B26PGSNZ5JYewo3Y3YVbezyC92D7frcyRk6u-3U-q0BsF8jbq41PRZo_yVCBTL5ERzJJOVli_AoE5TAFJEs01svvdv2VLH7vaJNVSzIVKfnU47xJMLClUDf-4T6cn558fnNWjvcplB7TsL6sg1NeqaZpqWMUHdO3LDIdpKaCIZASHv271r7STrFQR3xE7ZooWtpoJSJ7AAfdqouPgDjOI_cV9cpV3FXC6dr70IqKxparKAt4vRtn40ey8XTnxTeDoCOpxEwqKeDFJPojM2z8TWiZlDUJJFLs4QWaihlNxfzLVAp4lVRtkusmXdjxBAJ2KZFgmQVmU6xRmMAUcLSzBjP69MZQKTXiOUypC3g-fUZvTFsstourbZJRVaL406KAh9l4pjYnqv8Kp8cC5MysZp2af-muLgfG7wRKmZSP_8coPIGbFB0kVZ7X8ggO-vU2PsXEqnfPBh_6BRT9Ipk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4k2gIIOQ4BI18SO2T2gXtqpAVAio6C2KH6EVkJTdrAT_npnEm24E4pBLMrLszHs8_kzIc1lUKnfBpeDdfSqq4EGlMpl6qzi31pmhoP_-uDg6EW9P5WksuK1jW-XWJvaG2rcOa-QHTCkD0TQENK8ufqZ4axTursYrNK6SPTDBWs7I3mJ5_OHjmHJxyMAGPCEOyf3BGkugjCkx8UI9WP_fJnnHJ037JXcc0OFNciNGjnQ-sPoWuRKa2-T6Dp7gHbJ5t62Q0eWvbjWcWaBV4-mb87XDZs3ftO9Epl-CpQNYOV2AH_MU6CAUpAsQ2rMf1eobnV_ubNO2pgMkKf3Ugf2k4ODQ5cUR7pKTw-Xn10dpvFchdRCOdWnurXZaF0XNLGegoK7mgRuvDJMcEirpQM9z4zJjNfd5gEfmtgiyZoXRMvB7ZNa0TXhAqBUiCJcxp20mbCatyZ3ztcxYqIUOKiEvt_-5dBF0HO---F5C8oEsKUeWJOTZSHoxIG38i2iBzBoJEBy7f9GuvpZR10rLdaUKUWnnA2T_RrOqksLagjvhcwuDvEBWl6jCyIsqnkSAJSEYVjmHqIoXGgKZhOxvpaGMur0uLyUxIU_Hz6CVuNVSNaHdII3OEOrPyITcH4RnnDNC_mdgJhOiJmI1WdT0S3N-1iN_Y3LKlXr4_2k9ItcYiD72ludqn8y61SY8htCps0-ifvwBaP8bFg priority: 102 providerName: ProQuest |
Title | Knowledge Extraction and Discovery about Web System Based on the Benchmark Application of Online Stock Trading System |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36850870 https://www.proquest.com/docview/2779550099 https://www.proquest.com/docview/2780763595 https://pubmed.ncbi.nlm.nih.gov/PMC9966377 https://doaj.org/article/b38a764a8cde469982aa54bb63c4d1b4 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB71cYED4k1KWRmEBJdA4ncOCO3CLhWoFQJW7C2KH6EVbRb2IbX_nnGSDRvRI4fkEI-s2DPjmc-PzwDPhSxUar2NMbq7mBfeoUslInZGMWaMzZoJ_eMTeTTlH2ditgObOzbbDlxeC-3CfVLTxfmry99Xb9Hh3wTEiZD99TJMbFKEV7uwjwFJBuM-5t1iAmUIwxpSob54LxTVjP3_jstbgam_aXIrCk1uw602fSTDRt93YMdXd-HmFqngPVh_2kyTkfHlatEcXCBF5cj7s6UNOzavSL0dmXz3hjSM5WSEwcwRlMN8kIzQck8visVPMvy7vE3mJWl4ScnXFQ6iBKNciHttDfdhOhl_e3cUt5crxBZzslWcOqOt1lKW1DCKXmpL5lnmVEYFQ1QlLDp7mtkkM5q51OMjUiO9KKnMtPDsAexV88o_AmI499wm1GqTcJMIk6XWulIk1JdcexXBy00_57ZlHg8XYJzniECCSvJOJRE860R_NXQb1wmNgrI6gcCQXX-YL37krcPlhulCSV5o6zyXCCppUQhujGSWu9RgJS-CqvNgWUEXRXscAZsUGLHyIaZWTGrMZiI43FhDvrHPnCqVIbjD_DqCp10xumZYbykqP18HGZ0Evr9MRPCwMZ7unwPvf4JjZQSqZ1a9RvVLqrPTmv47IFSm1MH_6IXHcIOig4Rt6Kk6hL3VYu2fYJa1MgPYVTOFbz35MID90fjk85dBPWMxqL3rD7h5LKQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOQAHxE6ggEEguERNvMTOAaEZ2mHKtL3Qit7SeAmtgKTMIuif4jfyXrbOCMSth1ziJyvx2-3n7xHyUia5iq23IXh3F4rcO1CpSIbOKM6NsWmzob-3n4wPxccjebRGfnd3YbCssrOJtaF2lcU98k2mVArRNAQ0785-hNg1Ck9XuxYajVhM_PlPSNlmb3e2gL-vGBttH7wfh21XgdBCMDIPY2e01TpJCmY4A_G0Bfc8dSplkkM6IS1IeZzaKDWau9jDI2OTeFmwJNXSc5j3CrkqOE8Rq1-PPvQJHod8r0EvgsFoc4YbrowpseLz6tYAfzuAJQ-4Wp255O5Gt8jNNk6lg0awbpM1X94hN5bQC--SxaTbj6Pbv-bT5oYEzUtHt05nFktDz2ld90w_e0MbaHQ6BK_pKNBB4EmHoCIn3_PpVzq4OEenVUEbAFT6aQ7WmoI7RQfbznCPHF7Ket8n62VV-oeEGiG8sBGz2kTCRNKksbWukBHzhdBeBeRNt86ZbSHOsdPGtwxSHWRJ1rMkIC960rMG1-NfRENkVk-AUNz1i2r6JWs1OzNc5yoRubbOiwSyV5bnUhiTcCtcbGCS18jqDA0G8iJv7z3ALyH0VjaAGI4nGsKmgGx00pC1lmSWXch9QJ73w2AD8GAnL321QBodIbBgKgPyoBGe_puxwUAERjkgakWsVn5qdaQ8PalxxjEV5ko9-v9nPSPXxgd7u9nuzv7kMbnOQA2wqj1WG2R9Pl34JxC0zc3TWlMoOb5s1fwDI9xUvg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qqYTggNgxFBgQCC5W7Fk84wNCCUnUEogqoGpvxrOYVoBTsgj61_h1vImXJgJx68EXz9PI47fPvPkewDOR5DI2zoTo3W3Ic2dRpSIRWi0Z09qk1Yb--0mye8DfHomjLfjd3IXxZZWNTVwZajs1fo-8S6VMMZrGgKZb1GUR-4PR69Mfoe8g5U9am3YalYiM3dlPTN_mr_YGyOvnlI6Gn97shnWHgdBgYLIIY6uVUSpJCqoZRVE1BXMstTKlgmFqIQxKfJyaKNWK2djhI2KdOFHQJFXCMZz3EmxL9IqqA9v94WT_Q5vuMcz-KiwjxtKoO_fbr5RKvuEBV40C_nYHa_5ws1ZzzfmNrsO1OmolvUrMbsCWK2_C1TUsw1uwHDe7c2T4azGr7kuQvLRkcDI3vlD0jKyqoMmh06QCSid99KGWIB2GoaSPCnP8PZ99Jb3zU3UyLUgFh0o-LtB2E3Su3t3WM9yGgwv543egU05Ldw-I5txxE1GjdMR1JHQaG2MLEVFXcOVkAC-b_5yZGvDc9934lmHi41mStSwJ4GlLelqhfPyLqO-Z1RJ4YO7Vi-nsS1breaaZymXCc2Ws4wnmsjTPBdc6YYbbWOMkLzyrM28-PC_y-hYELskDcWU9jOhYojCICmCnkYastivz7FwLAnjSDqNF8Mc8eemmS0-jIg8zmIoA7lbC036zbzcQoYkOQG6I1caiNkfKk-MV6rhPjJmU9___WY_hMqpl9m5vMn4AVyhqgS9xj-UOdBazpXuIEdxCP6pVhcDni9bOP8kHWlk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+Extraction+and+Discovery+about+Web+System+Based+on+the+Benchmark+Application+of+Online+Stock+Trading+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Marcin+Borowiec&rft.au=Rafa%C5%82+Piszko&rft.au=Tomasz+Rak&rft.date=2023-02-17&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=4&rft.spage=2274&rft_id=info:doi/10.3390%2Fs23042274&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b38a764a8cde469982aa54bb63c4d1b4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |