Knowledge Extraction and Discovery about Web System Based on the Benchmark Application of Online Stock Trading System

Predicting workload characteristics could help web systems achieve elastic scaling and reliability by optimizing servers’ configuration and ensuring Quality of Service, such as increasing or decreasing used resources. However, a successful analysis using a simulation model and recognition and predic...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 4; p. 2274
Main Authors Borowiec, Marcin, Piszko, Rafał, Rak, Tomasz
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.02.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23042274

Cover

Loading…
Abstract Predicting workload characteristics could help web systems achieve elastic scaling and reliability by optimizing servers’ configuration and ensuring Quality of Service, such as increasing or decreasing used resources. However, a successful analysis using a simulation model and recognition and prediction of the behavior of the client presents a challenging task. Furthermore, the network traffic characteristic is a subject of frequent changes in modern web systems and the huge content of system logs makes it a difficult area for data mining research. In this work, we investigate prepared trace contents that are obtained from the benchmark of the web system. The article proposes traffic classification on the web system that is used to find the behavior of client classes. We present a case study involving workload analysis of an online stock trading application that is run in the cloud, and that processes requests from the designed generator. The results show that the proposed analysis could help us better understand the requests scenario and select the values of system and application parameters. Our work is useful for practitioners and researchers of log analysis to enhance service reliability.
AbstractList Predicting workload characteristics could help web systems achieve elastic scaling and reliability by optimizing servers’ configuration and ensuring Quality of Service, such as increasing or decreasing used resources. However, a successful analysis using a simulation model and recognition and prediction of the behavior of the client presents a challenging task. Furthermore, the network traffic characteristic is a subject of frequent changes in modern web systems and the huge content of system logs makes it a difficult area for data mining research. In this work, we investigate prepared trace contents that are obtained from the benchmark of the web system. The article proposes traffic classification on the web system that is used to find the behavior of client classes. We present a case study involving workload analysis of an online stock trading application that is run in the cloud, and that processes requests from the designed generator. The results show that the proposed analysis could help us better understand the requests scenario and select the values of system and application parameters. Our work is useful for practitioners and researchers of log analysis to enhance service reliability.
Predicting workload characteristics could help web systems achieve elastic scaling and reliability by optimizing servers' configuration and ensuring Quality of Service, such as increasing or decreasing used resources. However, a successful analysis using a simulation model and recognition and prediction of the behavior of the client presents a challenging task. Furthermore, the network traffic characteristic is a subject of frequent changes in modern web systems and the huge content of system logs makes it a difficult area for data mining research. In this work, we investigate prepared trace contents that are obtained from the benchmark of the web system. The article proposes traffic classification on the web system that is used to find the behavior of client classes. We present a case study involving workload analysis of an online stock trading application that is run in the cloud, and that processes requests from the designed generator. The results show that the proposed analysis could help us better understand the requests scenario and select the values of system and application parameters. Our work is useful for practitioners and researchers of log analysis to enhance service reliability.Predicting workload characteristics could help web systems achieve elastic scaling and reliability by optimizing servers' configuration and ensuring Quality of Service, such as increasing or decreasing used resources. However, a successful analysis using a simulation model and recognition and prediction of the behavior of the client presents a challenging task. Furthermore, the network traffic characteristic is a subject of frequent changes in modern web systems and the huge content of system logs makes it a difficult area for data mining research. In this work, we investigate prepared trace contents that are obtained from the benchmark of the web system. The article proposes traffic classification on the web system that is used to find the behavior of client classes. We present a case study involving workload analysis of an online stock trading application that is run in the cloud, and that processes requests from the designed generator. The results show that the proposed analysis could help us better understand the requests scenario and select the values of system and application parameters. Our work is useful for practitioners and researchers of log analysis to enhance service reliability.
Audience Academic
Author Borowiec, Marcin
Piszko, Rafał
Rak, Tomasz
AuthorAffiliation Department of Computer and Control Engineering, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland
AuthorAffiliation_xml – name: Department of Computer and Control Engineering, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland
Author_xml – sequence: 1
  givenname: Marcin
  surname: Borowiec
  fullname: Borowiec, Marcin
– sequence: 2
  givenname: Rafał
  surname: Piszko
  fullname: Piszko, Rafał
– sequence: 3
  givenname: Tomasz
  orcidid: 0000-0002-9299-2216
  surname: Rak
  fullname: Rak, Tomasz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36850870$$D View this record in MEDLINE/PubMed
BookMark eNplkktv1DAQgCNURB9w4A8gS1zgsK1jx459QdqWAhWVemgRR8uPya63WXtrJ4X-e9zdbdUWRVYs-5tP45nZr3ZCDFBV72t8SKnER5lQ3BDSNq-qvbohzUQQgnee7Her_ZwXGBNKqXhT7VIuGBYt3qvGnyH-6cHNAJ3-HZK2g48B6eDQV59tvIV0h7SJ44B-g0GXd3mAJTrWGRwq3DAHdAzBzpc6XaPpatV7q9eG2KGL0PsA6HKI9hpdJe18mG0Nb6vXne4zvNv-D6pf306vTn5Mzi--n51Mzye2pDdMameEFYLzjhhKWkltR4FK10rCKK8ls7WgtbRYGkFdDWWx2nBgHeFSMKAH1dnG66JeqFXyJc87FbVX64OYZkqnwdselKFCt7zRwjpouJSCaM0aYzi1jatNU1xfNq7VaJbgLIRSrv6Z9PlN8HM1i7dKSs5p2xbBp60gxZsR8qCWpcTQ9zpAHLMircAtp0yygn58gS7imEIpVaFayRjGUhbqcEPNdHmAD128b2D5HCy9LSPS-XI-bRta-i0YLQEfnj7hMfeHcSjA0QawKeacoFPWD-uGFrPvVY3V_cCpx4ErEZ9fRDxI_2f_AQq41A4
CitedBy_id crossref_primary_10_3390_electronics12214408
crossref_primary_10_3390_electronics13244938
Cites_doi 10.1109/COMST.2018.2798641
10.3390/s22207845
10.1109/ACCESS.2022.3152549
10.1016/j.peva.2020.102121
10.1016/j.future.2022.01.002
10.1145/3464298.3493396
10.3390/app12126115
10.1002/sys.21462
10.3390/systems10040101
10.3390/computers9010010
10.1155/2015/490835
10.15439/2014F366
10.1016/j.jnca.2017.12.015
10.1109/ICDCS.2018.00105
10.1016/j.asoc.2021.107895
10.1109/ACCESS.2021.3073859
10.1007/978-3-030-41705-5
10.1007/978-3-030-90528-6
10.1109/ICDIS50059.2020.00021
10.15439/2022F172
10.1145/3427796.3427808
10.1016/j.scico.2022.102847
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23042274
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

CrossRef
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_b38a764a8cde469982aa54bb63c4d1b4
PMC9966377
A743368853
36850870
10_3390_s23042274
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c508t-1db8c8866f2b32793cf3e39d792536195c18319c09b83d1e3d151b6e5f26985e3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:25:17 EDT 2025
Thu Aug 21 18:38:03 EDT 2025
Fri Sep 05 14:04:52 EDT 2025
Sat Aug 23 12:54:23 EDT 2025
Tue Jul 01 05:44:27 EDT 2025
Mon Jul 21 05:44:24 EDT 2025
Thu Apr 24 23:08:20 EDT 2025
Tue Jul 01 01:19:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords workload characterization
web benchmark
experimental analysis
web client classification
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-1db8c8866f2b32793cf3e39d792536195c18319c09b83d1e3d151b6e5f26985e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9299-2216
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23042274
PMID 36850870
PQID 2779550099
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_b38a764a8cde469982aa54bb63c4d1b4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9966377
proquest_miscellaneous_2780763595
proquest_journals_2779550099
gale_infotracacademiconefile_A743368853
pubmed_primary_36850870
crossref_citationtrail_10_3390_s23042274
crossref_primary_10_3390_s23042274
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230217
PublicationDateYYYYMMDD 2023-02-17
PublicationDate_xml – month: 2
  year: 2023
  text: 20230217
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Curiel (ref_15) 2018; 20
Korzeniowski (ref_2) 2022; 10
ref_36
ref_13
ref_35
ref_12
ref_11
Amiri (ref_26) 2018; 105
ref_10
Muhammad (ref_9) 2020; 142
Zhouxian (ref_23) 2020; 28
ref_30
Hegde (ref_17) 2014; 2
Zhang (ref_24) 2022; 130
Giebas (ref_31) 2022; 9
ref_19
ref_18
Said (ref_32) 2022; Volume 152
ref_16
Matoussi (ref_27) 2022; 34
Khan (ref_14) 2020; 13
Zhang (ref_28) 2018; 21
(ref_25) 2018; 13
Francalanza (ref_34) 2022; 222
Jitendra (ref_33) 2021; 113
ref_21
ref_20
ref_1
ref_3
ref_29
Rak (ref_4) 2015; 2015
Deshpande (ref_22) 2022; Volume 915
ref_8
ref_5
ref_7
ref_6
References_xml – volume: 20
  start-page: 1526
  year: 2018
  ident: ref_15
  article-title: Workload Generators for Web-Based Systems: Characteristics, Current Status, and Challenges
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2798641
– volume: 13
  start-page: 979
  year: 2018
  ident: ref_25
  article-title: Risk Scenarios on Web Applications
  publication-title: J. Comput.
– volume: 2
  start-page: 67
  year: 2014
  ident: ref_17
  article-title: Web Performance Testing: Methodologies, Tools and Challenges
  publication-title: Int. J. Sci. Eng. Res.
– ident: ref_8
  doi: 10.3390/s22207845
– volume: 10
  start-page: 21892
  year: 2022
  ident: ref_2
  article-title: Landscape of Automated Log Analysis: A Systematic Literature Review and Mapping Study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3152549
– ident: ref_11
– volume: 142
  start-page: 102121
  year: 2020
  ident: ref_9
  article-title: Analyzing the distribution fit for storage workload and Internet traffic traces
  publication-title: Perform. Eval.
  doi: 10.1016/j.peva.2020.102121
– ident: ref_16
– volume: 130
  start-page: 292
  year: 2022
  ident: ref_24
  article-title: A multi-output prediction model for physical machine resource usage in cloud data centers
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2022.01.002
– ident: ref_35
  doi: 10.1145/3464298.3493396
– ident: ref_1
– ident: ref_18
– ident: ref_10
  doi: 10.3390/app12126115
– volume: 34
  start-page: 3973
  year: 2022
  ident: ref_27
  article-title: A new temporal locality-based workload prediction approach for SaaS services in a cloud environment
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– volume: 21
  start-page: 576
  year: 2018
  ident: ref_28
  article-title: A systems engineering–based approach for framing reliability, availability, and maintainability: A case study for subsea design
  publication-title: Syst. Eng.
  doi: 10.1002/sys.21462
– volume: Volume 915
  start-page: 915
  year: 2022
  ident: ref_22
  article-title: A Comprehensive Performance Evaluation of Novel Big Data Log Analytic Framework
  publication-title: Advances in Computing, Renewable Energy and Communication, Lecture Notes in Electrical Engineering, Proceedings of 3rd International Conference on Machine Learning, Hyderabad, India, 28–29 March 2022
– ident: ref_29
  doi: 10.3390/systems10040101
– ident: ref_6
– ident: ref_5
  doi: 10.3390/computers9010010
– volume: 2015
  start-page: 490835
  year: 2015
  ident: ref_4
  article-title: Response Time Analysis of Distributed Web Systems Using QPNs
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2015/490835
– ident: ref_7
  doi: 10.15439/2014F366
– volume: 105
  start-page: 21
  year: 2018
  ident: ref_26
  article-title: A sequential pattern mining model for application workload prediction in cloud environment
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2017.12.015
– ident: ref_21
  doi: 10.1109/ICDCS.2018.00105
– volume: 113
  start-page: 107895
  year: 2021
  ident: ref_33
  article-title: Performance evaluation of metaheuristics algorithms for workload prediction in cloud environment
  publication-title: Appl. Soft Comput. Part A
  doi: 10.1016/j.asoc.2021.107895
– volume: 9
  start-page: 61298
  year: 2022
  ident: ref_31
  article-title: Detection of Concurrency Errors in Multithreaded Applications Based on Static Source Code Analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3073859
– ident: ref_12
  doi: 10.1007/978-3-030-41705-5
– ident: ref_30
  doi: 10.1007/978-3-030-90528-6
– ident: ref_13
  doi: 10.1109/ICDIS50059.2020.00021
– ident: ref_19
– ident: ref_3
  doi: 10.15439/2022F172
– ident: ref_20
– volume: 28
  start-page: 147
  year: 2020
  ident: ref_23
  article-title: Review of Software Reliability Testing Techniques
  publication-title: J. Comput. Inf. Technol.
– ident: ref_36
  doi: 10.1145/3427796.3427808
– volume: 13
  start-page: 4746
  year: 2020
  ident: ref_14
  article-title: Soak Testing of Web Applications Based on Automatic Test Cases
  publication-title: Int. J. Eng. Res. Technol.
– volume: Volume 152
  start-page: 152
  year: 2022
  ident: ref_32
  article-title: A Straggler Identification Model for Large-Scale Distributed Computing Systems Using Machine Learning
  publication-title: Lecture Notes on Data Engineering and Communications Technologies, Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 20–22 November 2022
– volume: 222
  start-page: 102847
  year: 2022
  ident: ref_34
  article-title: PSTMonitor: Monitor synthesis from probabilistic session types
  publication-title: Sci. Comput. Program.
  doi: 10.1016/j.scico.2022.102847
SSID ssj0023338
Score 2.403898
Snippet Predicting workload characteristics could help web systems achieve elastic scaling and reliability by optimizing servers’ configuration and ensuring Quality of...
Predicting workload characteristics could help web systems achieve elastic scaling and reliability by optimizing servers' configuration and ensuring Quality of...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2274
SubjectTerms Automation
Case studies
Data mining
Electronic trading (Securities)
experimental analysis
Generators
Machine learning
Software reliability
Stocks
Taxonomy
web benchmark
web client classification
Web sites
workload characterization
Workloads
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAKM9AQQYhwSVq4kdsH3ehVQWCC1T0ZvkVtQKyaDcrlX_POM6GjUDiwiGXZBTZnhnPfPb4M8BL0VhZ--hLjO6h5DYGdKlKlMFJxpzzOi_of_jYnJ3zdxfiYu-qr1QTlumB88AdO6asbLhVPkSEclpRawV3rmGeh9oNTKAY83ZgaoRaDJFX5hFiCOqPN2npk1LJZ9FnIOn_cyrei0XzOsm9wHN6B26PGSNZ5JYewo3Y3YVbezyC92D7frcyRk6u-3U-q0BsF8jbq41PRZo_yVCBTL5ERzJJOVli_AoE5TAFJEs01svvdv2VLH7vaJNVSzIVKfnU47xJMLClUDf-4T6cn558fnNWjvcplB7TsL6sg1NeqaZpqWMUHdO3LDIdpKaCIZASHv271r7STrFQR3xE7ZooWtpoJSJ7AAfdqouPgDjOI_cV9cpV3FXC6dr70IqKxparKAt4vRtn40ey8XTnxTeDoCOpxEwqKeDFJPojM2z8TWiZlDUJJFLs4QWaihlNxfzLVAp4lVRtkusmXdjxBAJ2KZFgmQVmU6xRmMAUcLSzBjP69MZQKTXiOUypC3g-fUZvTFsstourbZJRVaL406KAh9l4pjYnqv8Kp8cC5MysZp2af-muLgfG7wRKmZSP_8coPIGbFB0kVZ7X8ggO-vU2PsXEqnfPBh_6BRT9Ipk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4ED4k2gIIOQ4BI18SO2T2gXtqpAVAio6C2KH6EVkJTdrAT_npnEm24E4pBLMrLszHs8_kzIc1lUKnfBpeDdfSqq4EGlMpl6qzi31pmhoP_-uDg6EW9P5WksuK1jW-XWJvaG2rcOa-QHTCkD0TQENK8ufqZ4axTursYrNK6SPTDBWs7I3mJ5_OHjmHJxyMAGPCEOyf3BGkugjCkx8UI9WP_fJnnHJ037JXcc0OFNciNGjnQ-sPoWuRKa2-T6Dp7gHbJ5t62Q0eWvbjWcWaBV4-mb87XDZs3ftO9Epl-CpQNYOV2AH_MU6CAUpAsQ2rMf1eobnV_ubNO2pgMkKf3Ugf2k4ODQ5cUR7pKTw-Xn10dpvFchdRCOdWnurXZaF0XNLGegoK7mgRuvDJMcEirpQM9z4zJjNfd5gEfmtgiyZoXRMvB7ZNa0TXhAqBUiCJcxp20mbCatyZ3ztcxYqIUOKiEvt_-5dBF0HO---F5C8oEsKUeWJOTZSHoxIG38i2iBzBoJEBy7f9GuvpZR10rLdaUKUWnnA2T_RrOqksLagjvhcwuDvEBWl6jCyIsqnkSAJSEYVjmHqIoXGgKZhOxvpaGMur0uLyUxIU_Hz6CVuNVSNaHdII3OEOrPyITcH4RnnDNC_mdgJhOiJmI1WdT0S3N-1iN_Y3LKlXr4_2k9ItcYiD72ludqn8y61SY8htCps0-ifvwBaP8bFg
  priority: 102
  providerName: ProQuest
Title Knowledge Extraction and Discovery about Web System Based on the Benchmark Application of Online Stock Trading System
URI https://www.ncbi.nlm.nih.gov/pubmed/36850870
https://www.proquest.com/docview/2779550099
https://www.proquest.com/docview/2780763595
https://pubmed.ncbi.nlm.nih.gov/PMC9966377
https://doaj.org/article/b38a764a8cde469982aa54bb63c4d1b4
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB71cYED4k1KWRmEBJdA4ncOCO3CLhWoFQJW7C2KH6EVbRb2IbX_nnGSDRvRI4fkEI-s2DPjmc-PzwDPhSxUar2NMbq7mBfeoUslInZGMWaMzZoJ_eMTeTTlH2ditgObOzbbDlxeC-3CfVLTxfmry99Xb9Hh3wTEiZD99TJMbFKEV7uwjwFJBuM-5t1iAmUIwxpSob54LxTVjP3_jstbgam_aXIrCk1uw602fSTDRt93YMdXd-HmFqngPVh_2kyTkfHlatEcXCBF5cj7s6UNOzavSL0dmXz3hjSM5WSEwcwRlMN8kIzQck8visVPMvy7vE3mJWl4ScnXFQ6iBKNciHttDfdhOhl_e3cUt5crxBZzslWcOqOt1lKW1DCKXmpL5lnmVEYFQ1QlLDp7mtkkM5q51OMjUiO9KKnMtPDsAexV88o_AmI499wm1GqTcJMIk6XWulIk1JdcexXBy00_57ZlHg8XYJzniECCSvJOJRE860R_NXQb1wmNgrI6gcCQXX-YL37krcPlhulCSV5o6zyXCCppUQhujGSWu9RgJS-CqvNgWUEXRXscAZsUGLHyIaZWTGrMZiI43FhDvrHPnCqVIbjD_DqCp10xumZYbykqP18HGZ0Evr9MRPCwMZ7unwPvf4JjZQSqZ1a9RvVLqrPTmv47IFSm1MH_6IXHcIOig4Rt6Kk6hL3VYu2fYJa1MgPYVTOFbz35MID90fjk85dBPWMxqL3rD7h5LKQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOQAHxE6ggEEguERNvMTOAaEZ2mHKtL3Qit7SeAmtgKTMIuif4jfyXrbOCMSth1ziJyvx2-3n7xHyUia5iq23IXh3F4rcO1CpSIbOKM6NsWmzob-3n4wPxccjebRGfnd3YbCssrOJtaF2lcU98k2mVArRNAQ0785-hNg1Ck9XuxYajVhM_PlPSNlmb3e2gL-vGBttH7wfh21XgdBCMDIPY2e01TpJCmY4A_G0Bfc8dSplkkM6IS1IeZzaKDWau9jDI2OTeFmwJNXSc5j3CrkqOE8Rq1-PPvQJHod8r0EvgsFoc4YbrowpseLz6tYAfzuAJQ-4Wp255O5Gt8jNNk6lg0awbpM1X94hN5bQC--SxaTbj6Pbv-bT5oYEzUtHt05nFktDz2ld90w_e0MbaHQ6BK_pKNBB4EmHoCIn3_PpVzq4OEenVUEbAFT6aQ7WmoI7RQfbznCPHF7Ket8n62VV-oeEGiG8sBGz2kTCRNKksbWukBHzhdBeBeRNt86ZbSHOsdPGtwxSHWRJ1rMkIC960rMG1-NfRENkVk-AUNz1i2r6JWs1OzNc5yoRubbOiwSyV5bnUhiTcCtcbGCS18jqDA0G8iJv7z3ALyH0VjaAGI4nGsKmgGx00pC1lmSWXch9QJ73w2AD8GAnL321QBodIbBgKgPyoBGe_puxwUAERjkgakWsVn5qdaQ8PalxxjEV5ko9-v9nPSPXxgd7u9nuzv7kMbnOQA2wqj1WG2R9Pl34JxC0zc3TWlMoOb5s1fwDI9xUvg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qqYTggNgxFBgQCC5W7Fk84wNCCUnUEogqoGpvxrOYVoBTsgj61_h1vImXJgJx68EXz9PI47fPvPkewDOR5DI2zoTo3W3Ic2dRpSIRWi0Z09qk1Yb--0mye8DfHomjLfjd3IXxZZWNTVwZajs1fo-8S6VMMZrGgKZb1GUR-4PR69Mfoe8g5U9am3YalYiM3dlPTN_mr_YGyOvnlI6Gn97shnWHgdBgYLIIY6uVUSpJCqoZRVE1BXMstTKlgmFqIQxKfJyaKNWK2djhI2KdOFHQJFXCMZz3EmxL9IqqA9v94WT_Q5vuMcz-KiwjxtKoO_fbr5RKvuEBV40C_nYHa_5ws1ZzzfmNrsO1OmolvUrMbsCWK2_C1TUsw1uwHDe7c2T4azGr7kuQvLRkcDI3vlD0jKyqoMmh06QCSid99KGWIB2GoaSPCnP8PZ99Jb3zU3UyLUgFh0o-LtB2E3Su3t3WM9yGgwv543egU05Ldw-I5txxE1GjdMR1JHQaG2MLEVFXcOVkAC-b_5yZGvDc9934lmHi41mStSwJ4GlLelqhfPyLqO-Z1RJ4YO7Vi-nsS1breaaZymXCc2Ws4wnmsjTPBdc6YYbbWOMkLzyrM28-PC_y-hYELskDcWU9jOhYojCICmCnkYastivz7FwLAnjSDqNF8Mc8eemmS0-jIg8zmIoA7lbC036zbzcQoYkOQG6I1caiNkfKk-MV6rhPjJmU9___WY_hMqpl9m5vMn4AVyhqgS9xj-UOdBazpXuIEdxCP6pVhcDni9bOP8kHWlk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+Extraction+and+Discovery+about+Web+System+Based+on+the+Benchmark+Application+of+Online+Stock+Trading+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Marcin+Borowiec&rft.au=Rafa%C5%82+Piszko&rft.au=Tomasz+Rak&rft.date=2023-02-17&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=4&rft.spage=2274&rft_id=info:doi/10.3390%2Fs23042274&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b38a764a8cde469982aa54bb63c4d1b4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon