High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8
A hydrophobic, hydrothermally stable metal-organic framework (MOF) - zeolitic imidazolate framework-8 (ZIF-8) was successfully incorporated into the selective polyamide (PA) layer of thin-film nanocomposite (TFN) membranes for water desalination. The potential advantages of ZIF-8 over classic hydrop...
Saved in:
Published in | Journal of membrane science Vol. 476; pp. 303 - 310 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A hydrophobic, hydrothermally stable metal-organic framework (MOF) - zeolitic imidazolate framework-8 (ZIF-8) was successfully incorporated into the selective polyamide (PA) layer of thin-film nanocomposite (TFN) membranes for water desalination. The potential advantages of ZIF-8 over classic hydrophilic zeolite used in TFNs include: i) theoretically faster water transport within the framework and ii) better compatibility with the PA matrix. The TFN membranes were characterized with SEM, TEM, AFM, XPS, water contact angle measurements and reverse osmosis tests under 15.5bar hydraulic pressure with 2000ppm NaCl solution. Lab-made, nano-sized (~200nm) ZIF-8 increased water permeance to 3.35±0.08L/m2·h·bar at 0.4% (w/v) loading, 162% higher than the pristine PA membranes; meanwhile, high NaCl rejection was maintained. The TFN surface was less crosslinked and more hydrophilic than that of the pristine PA. A filler encapsulation mechanism was proposed for the effects of filler on TFN membrane surface morphology and properties. This study experimentally verified the potential use of ZIF-8 in advanced TFN RO membranes.
[Display omitted]
•ZIF-8-based TFN membranes were successfully prepared.•Lab-made, nano-sized ZIF-8 increased water flux up to 162%.•ZIF-8 exhibited no adverse effect on NaCl rejection. |
---|---|
AbstractList | A hydrophobic, hydrothermally stable metal-organic framework (MOF) - zeolitic imidazolate framework-8 (ZIF-8) was successfully incorporated into the selective polyamide (PA) layer of thin-film nanocomposite (TFN) membranes for water desalination. The potential advantages of ZIF-8 over classic hydrophilic zeolite used in TFNs include: i) theoretically faster water transport within the framework and ii) better compatibility with the PA matrix. The TFN membranes were characterized with SEM, TEM, AFM, XPS, water contact angle measurements and reverse osmosis tests under 15.5 bar hydraulic pressure with 2000 ppm NaCl solution. Lab-made, nano-sized (~200 nm) ZIF-8 increased water permeance to 3.35 plus or minus 0.08 L/m super(2).h.bar at 0.4% (w/v) loading, 162% higher than the pristine PA membranes; meanwhile, high NaCl rejection was maintained. The TFN surface was less crosslinked and more hydrophilic than that of the pristine PA. A filler encapsulation mechanism was proposed for the effects of filler on TFN membrane surface morphology and properties. This study experimentally verified the potential use of ZIF-8 in advanced TFN RO membranes. A hydrophobic, hydrothermally stable metal-organic framework (MOF) - zeolitic imidazolate framework-8 (ZIF-8) was successfully incorporated into the selective polyamide (PA) layer of thin-film nanocomposite (TFN) membranes for water desalination. The potential advantages of ZIF-8 over classic hydrophilic zeolite used in TFNs include: i) theoretically faster water transport within the framework and ii) better compatibility with the PA matrix. The TFN membranes were characterized with SEM, TEM, AFM, XPS, water contact angle measurements and reverse osmosis tests under 15.5bar hydraulic pressure with 2000ppm NaCl solution. Lab-made, nano-sized (~200nm) ZIF-8 increased water permeance to 3.35±0.08L/m2·h·bar at 0.4% (w/v) loading, 162% higher than the pristine PA membranes; meanwhile, high NaCl rejection was maintained. The TFN surface was less crosslinked and more hydrophilic than that of the pristine PA. A filler encapsulation mechanism was proposed for the effects of filler on TFN membrane surface morphology and properties. This study experimentally verified the potential use of ZIF-8 in advanced TFN RO membranes. [Display omitted] •ZIF-8-based TFN membranes were successfully prepared.•Lab-made, nano-sized ZIF-8 increased water flux up to 162%.•ZIF-8 exhibited no adverse effect on NaCl rejection. A hydrophobic, hydrothermally stable metal-organic framework (MOF) - zeolitic imidazolate framework-8 (ZIF-8) was successfully incorporated into the selective polyamide (PA) layer of thin-film nanocomposite (TFN) membranes for water desalination. The potential advantages of ZIF-8 over classic hydrophilic zeolite used in TFNs include: i) theoretically faster water transport within the framework and ii) better compatibility with the PA matrix. The TFN membranes were characterized with SEM, TEM, AFM, XPS, water contact angle measurements and reverse osmosis tests under 15.5bar hydraulic pressure with 2000ppm NaCl solution. Lab-made, nano-sized (~200nm) ZIF-8 increased water permeance to 3.35±0.08L/m²·h·bar at 0.4% (w/v) loading, 162% higher than the pristine PA membranes; meanwhile, high NaCl rejection was maintained. The TFN surface was less crosslinked and more hydrophilic than that of the pristine PA. A filler encapsulation mechanism was proposed for the effects of filler on TFN membrane surface morphology and properties. This study experimentally verified the potential use of ZIF-8 in advanced TFN RO membranes. |
Author | Duan, Jintang Pacheco, Federico Pan, Yichang Pinnau, Ingo Lai, Zhiping Litwiller, Eric |
Author_xml | – sequence: 1 givenname: Jintang surname: Duan fullname: Duan, Jintang – sequence: 2 givenname: Yichang surname: Pan fullname: Pan, Yichang – sequence: 3 givenname: Federico surname: Pacheco fullname: Pacheco, Federico – sequence: 4 givenname: Eric surname: Litwiller fullname: Litwiller, Eric – sequence: 5 givenname: Zhiping surname: Lai fullname: Lai, Zhiping – sequence: 6 givenname: Ingo surname: Pinnau fullname: Pinnau, Ingo email: ingo.pinnau@kaust.edu.sa |
BookMark | eNqFkU9v1DAQxS3USmz_fAMOOXJJ8Ni7scMBCVWUIlXiQs-W40y6s8R2sNOi7ZkPjsty6qErH2yNfvNm_N4ZOwkxIGPvgDfAof2wazz67KgRHNYNQMOlfsNWoJWsJQh5wlZcqrZWUuu37CznHeeguO5W7M8N3W_rGdMYk7fBYTXHaW89DVgtWwr1SJOvgw3RRT_HTAtWCR8xZaxi9qWQqzK8TzZgrlwMi6VA4b7a7ocU523syVVPGCdayoOKrn2Kky0qY7Ief8f0s9YX7HS0U8bL__c5u7v-8uPqpr79_vXb1efb2m24XmoYxOgAxTCoFnnHO3SqXXcObdeXCvAeut6q8mHgum9Fa7lDp3vcaIF87OQ5e3_QnVP89YB5MZ6yw2kqy8eHbERxU2qpN3AUBbUBAVIU_CjaKtUpKKegHw-oSzHnhKNxtNiFim3J0mSAm-dAzc4cAjXPgRoAw__NWb9onhN5m_bH2j4d2rA4-0iYTCGwJD1QQreYIdLrAn8BWm3CXw |
CitedBy_id | crossref_primary_10_1039_D4NR00174E crossref_primary_10_1007_s40726_019_00121_8 crossref_primary_10_1002_cssc_202100335 crossref_primary_10_1016_j_memsci_2016_10_014 crossref_primary_10_5004_dwt_2018_21423 crossref_primary_10_1021_acsami_9b01237 crossref_primary_10_1016_j_memsci_2018_10_015 crossref_primary_10_1016_j_memsci_2022_120583 crossref_primary_10_1039_C7DT00197E crossref_primary_10_1016_j_memsci_2018_10_013 crossref_primary_10_1039_C6TA05175H crossref_primary_10_1039_C7RA13562A crossref_primary_10_1016_j_cjche_2020_05_030 crossref_primary_10_1039_C7EW00420F crossref_primary_10_1016_j_memsci_2021_119765 crossref_primary_10_1126_sciadv_adf6122 crossref_primary_10_1002_adsu_202000279 crossref_primary_10_1039_C6RA17522H crossref_primary_10_1021_acsapm_2c00843 crossref_primary_10_1016_j_memsci_2020_118039 crossref_primary_10_1016_j_memsci_2020_118952 crossref_primary_10_1016_j_rinma_2021_100234 crossref_primary_10_1016_j_progpolymsci_2016_06_004 crossref_primary_10_1021_acs_iecr_9b00029 crossref_primary_10_1016_j_ijbiomac_2023_127989 crossref_primary_10_1016_j_jece_2023_110444 crossref_primary_10_1021_acs_langmuir_4c02986 crossref_primary_10_1016_j_memsci_2018_06_040 crossref_primary_10_1021_acsami_9b01923 crossref_primary_10_1007_s43832_024_00119_4 crossref_primary_10_3390_w15081572 crossref_primary_10_1016_j_desal_2021_115338 crossref_primary_10_1016_j_jece_2017_09_004 crossref_primary_10_1016_j_memsci_2021_119095 crossref_primary_10_1021_acs_iecr_0c02327 crossref_primary_10_1002_app_48672 crossref_primary_10_1016_j_checat_2023_100692 crossref_primary_10_1016_j_colsurfa_2020_125971 crossref_primary_10_1016_j_desal_2022_116166 crossref_primary_10_1016_j_nxsust_2024_100097 crossref_primary_10_1016_j_jece_2018_08_034 crossref_primary_10_1038_natrevmats_2016_78 crossref_primary_10_1016_j_memsci_2020_119017 crossref_primary_10_1016_j_apmt_2017_04_002 crossref_primary_10_1016_j_cej_2023_143982 crossref_primary_10_1016_j_jcis_2020_11_092 crossref_primary_10_1016_j_memsci_2016_07_053 crossref_primary_10_1016_j_matchemphys_2018_06_022 crossref_primary_10_1016_j_memsci_2020_118045 crossref_primary_10_1016_j_jcis_2017_09_062 crossref_primary_10_1016_j_memsci_2017_04_043 crossref_primary_10_1016_j_carbpol_2020_116693 crossref_primary_10_1016_j_seppur_2020_116947 crossref_primary_10_1016_j_desal_2022_115729 crossref_primary_10_1002_ente_201600703 crossref_primary_10_1038_s41565_020_00833_9 crossref_primary_10_1021_acsanm_0c01860 crossref_primary_10_1039_C5RA17221G crossref_primary_10_1016_j_memsci_2016_07_052 crossref_primary_10_1021_acs_iecr_0c03648 crossref_primary_10_1021_acs_jpcc_7b11497 crossref_primary_10_1039_D3CP02075D crossref_primary_10_3390_membranes12070639 crossref_primary_10_1021_acsami_8b19121 crossref_primary_10_1016_j_jece_2024_113553 crossref_primary_10_1016_j_jiec_2019_04_057 crossref_primary_10_1007_s10311_019_00933_6 crossref_primary_10_1039_D4TA00578C crossref_primary_10_1016_j_memsci_2024_122418 crossref_primary_10_1021_acsami_0c10301 crossref_primary_10_1016_j_jiec_2019_01_039 crossref_primary_10_1021_acsami_6b01626 crossref_primary_10_1007_s10971_020_05238_7 crossref_primary_10_1016_j_cej_2022_140447 crossref_primary_10_1016_j_cjche_2022_01_027 crossref_primary_10_1039_C7CS00575J crossref_primary_10_5004_dwt_2019_23703 crossref_primary_10_1016_j_memsci_2019_117398 crossref_primary_10_1002_tcr_202300189 crossref_primary_10_1002_jctb_6963 crossref_primary_10_1016_j_desal_2016_02_009 crossref_primary_10_1016_j_desal_2020_114569 crossref_primary_10_1016_j_memsci_2020_118605 crossref_primary_10_1016_j_memsci_2019_04_016 crossref_primary_10_2139_ssrn_4076113 crossref_primary_10_5004_dwt_2019_23708 crossref_primary_10_1016_j_desal_2023_116566 crossref_primary_10_1038_s41565_020_00796_x crossref_primary_10_1016_j_memsci_2017_07_033 crossref_primary_10_1016_j_progpolymsci_2016_03_003 crossref_primary_10_1039_C6RA16896E crossref_primary_10_3390_membranes10080163 crossref_primary_10_1007_s10311_018_0717_8 crossref_primary_10_1016_j_surfin_2023_103607 crossref_primary_10_1016_j_memsci_2022_120269 crossref_primary_10_1016_j_jhazmat_2018_12_096 crossref_primary_10_1016_j_heliyon_2024_e33957 crossref_primary_10_1016_j_memsci_2023_122177 crossref_primary_10_1039_C5RA06185G crossref_primary_10_1016_j_desal_2017_10_018 crossref_primary_10_1016_j_desal_2023_116598 crossref_primary_10_1007_s00604_018_2904_5 crossref_primary_10_1016_j_colsurfa_2019_03_093 crossref_primary_10_1016_j_memsci_2016_11_015 crossref_primary_10_5004_dwt_2021_26729 crossref_primary_10_1039_D3EN00835E crossref_primary_10_1016_j_memsci_2015_10_061 crossref_primary_10_1039_D1TA06205K crossref_primary_10_1007_s42247_021_00336_w crossref_primary_10_1016_j_memsci_2022_120253 crossref_primary_10_1016_j_seppur_2020_116995 crossref_primary_10_1088_1361_6528_aa9773 crossref_primary_10_1016_j_desal_2018_01_037 crossref_primary_10_1016_j_desal_2020_114740 crossref_primary_10_1016_j_jece_2023_109415 crossref_primary_10_1016_j_memsci_2018_03_025 crossref_primary_10_1016_j_desal_2019_02_008 crossref_primary_10_3390_polym14051023 crossref_primary_10_1016_j_cjche_2021_05_002 crossref_primary_10_1016_j_desal_2020_114867 crossref_primary_10_1039_D4YA00332B crossref_primary_10_1016_j_seppur_2023_124435 crossref_primary_10_1016_j_seppur_2023_123469 crossref_primary_10_1016_j_jtice_2017_11_033 crossref_primary_10_1016_j_matpr_2021_02_245 crossref_primary_10_1016_j_memsci_2018_12_081 crossref_primary_10_3390_app8050759 crossref_primary_10_1016_j_memsci_2020_117830 crossref_primary_10_1021_acsanm_4c03368 crossref_primary_10_1016_j_compchemeng_2022_107709 crossref_primary_10_1016_j_jcis_2021_01_004 crossref_primary_10_1016_j_memsci_2020_118002 crossref_primary_10_1016_j_desal_2022_116184 crossref_primary_10_1039_D2CS00031H crossref_primary_10_1016_j_energy_2015_09_003 crossref_primary_10_1002_adv_22145 crossref_primary_10_1021_acs_est_0c07122 crossref_primary_10_3389_fchem_2020_00224 crossref_primary_10_1007_s13726_019_00732_4 crossref_primary_10_1016_j_memsci_2018_11_075 crossref_primary_10_1016_j_cis_2021_102524 crossref_primary_10_1016_j_memsci_2019_02_072 crossref_primary_10_1016_j_matlet_2019_126626 crossref_primary_10_1016_j_jssc_2019_04_034 crossref_primary_10_1007_s42114_024_00923_5 crossref_primary_10_1039_C9CS00829B crossref_primary_10_1016_j_memsci_2021_119863 crossref_primary_10_1016_j_memsci_2020_118911 crossref_primary_10_1002_app_49030 crossref_primary_10_1016_j_desal_2019_06_018 crossref_primary_10_1021_acs_iecr_1c00543 crossref_primary_10_5004_dwt_2021_26704 crossref_primary_10_1002_advs_202101882 crossref_primary_10_1016_j_desal_2023_116370 crossref_primary_10_1016_j_memsci_2020_118135 crossref_primary_10_1016_j_seppur_2019_05_018 crossref_primary_10_1007_s10118_019_2328_7 crossref_primary_10_1016_j_memsci_2020_118496 crossref_primary_10_1016_j_desal_2020_114408 crossref_primary_10_2139_ssrn_3972012 crossref_primary_10_1016_j_desal_2015_09_027 crossref_primary_10_1007_s11998_023_00848_6 crossref_primary_10_1007_s10971_021_05703_x crossref_primary_10_1016_j_desal_2017_07_002 crossref_primary_10_1016_j_jwpe_2022_102634 crossref_primary_10_1016_j_memsci_2018_08_016 crossref_primary_10_1016_j_molliq_2016_09_059 crossref_primary_10_1016_j_memsci_2018_08_015 crossref_primary_10_1016_j_desal_2020_114649 crossref_primary_10_1016_j_memsci_2019_117518 crossref_primary_10_1021_acsapm_0c01171 crossref_primary_10_1016_j_memsci_2018_05_070 crossref_primary_10_3390_polym14194246 crossref_primary_10_1016_j_polymer_2022_124988 crossref_primary_10_1002_app_50808 crossref_primary_10_1002_app_47519 crossref_primary_10_1016_j_memsci_2023_122403 crossref_primary_10_1007_s10904_024_03063_x crossref_primary_10_1016_j_cej_2016_04_033 crossref_primary_10_1016_j_memsci_2019_117565 crossref_primary_10_1021_acs_langmuir_5b03593 crossref_primary_10_3390_membranes9090111 crossref_primary_10_1016_j_molliq_2020_115209 crossref_primary_10_1021_acsami_0c22124 crossref_primary_10_5004_dwt_2021_26489 crossref_primary_10_1016_j_jwpe_2024_106171 crossref_primary_10_1002_adma_201802401 crossref_primary_10_1016_j_marpolbul_2024_116752 crossref_primary_10_1016_j_chemosphere_2019_06_008 crossref_primary_10_1016_j_jallcom_2025_178578 crossref_primary_10_1016_j_memsci_2016_04_026 crossref_primary_10_1016_j_cjche_2017_03_006 crossref_primary_10_1039_C8TA01200H crossref_primary_10_1016_j_ces_2020_115845 crossref_primary_10_3390_w12113030 crossref_primary_10_1016_j_memsci_2020_118433 crossref_primary_10_1016_j_desal_2021_115181 crossref_primary_10_1016_j_memsci_2021_119805 crossref_primary_10_1039_D1GC00236H crossref_primary_10_1016_j_desal_2024_118190 crossref_primary_10_3390_molecules26113392 crossref_primary_10_1016_j_memsci_2022_120612 crossref_primary_10_1016_j_desal_2016_05_017 crossref_primary_10_1021_acsami_5b07128 crossref_primary_10_1039_C6CC07329H crossref_primary_10_1016_j_memsci_2016_12_039 crossref_primary_10_1016_j_memsci_2017_06_027 crossref_primary_10_1016_j_memsci_2015_09_016 crossref_primary_10_1039_D3EW00852E crossref_primary_10_3389_fchem_2022_781372 crossref_primary_10_1016_j_memsci_2015_10_029 crossref_primary_10_3390_ma12223803 crossref_primary_10_1016_j_memsci_2019_03_042 crossref_primary_10_1016_j_chemosphere_2020_125956 crossref_primary_10_1016_j_cherd_2020_10_003 crossref_primary_10_1016_j_pmatsci_2017_10_006 crossref_primary_10_1016_j_jcis_2016_09_035 crossref_primary_10_1016_j_colsurfa_2021_127492 crossref_primary_10_1002_admi_202000251 crossref_primary_10_1016_j_jiec_2021_03_013 crossref_primary_10_14579_MEMBRANE_JOURNAL_2023_33_6_427 crossref_primary_10_1016_j_seppur_2022_121134 crossref_primary_10_3390_ma9110870 crossref_primary_10_1016_j_memsci_2022_120609 crossref_primary_10_1016_j_memsci_2018_01_034 crossref_primary_10_1016_j_seppur_2021_118567 crossref_primary_10_1016_j_memsci_2022_121133 crossref_primary_10_1088_2053_1591_aac920 crossref_primary_10_1016_j_jece_2023_111468 crossref_primary_10_1038_s41598_019_42235_5 crossref_primary_10_1016_j_watres_2020_115557 crossref_primary_10_1021_acsomega_8b01808 crossref_primary_10_1016_j_scitotenv_2022_156231 crossref_primary_10_1016_j_seppur_2018_06_057 crossref_primary_10_1007_s10965_016_1063_9 crossref_primary_10_1016_j_jiec_2022_05_028 crossref_primary_10_1016_j_memsci_2016_09_065 crossref_primary_10_1021_acs_chemmater_0c00851 crossref_primary_10_1038_s41428_022_00668_2 crossref_primary_10_3390_membranes8030066 crossref_primary_10_1002_admi_201901482 crossref_primary_10_1016_j_scitotenv_2021_149662 crossref_primary_10_1016_j_memsci_2020_118333 crossref_primary_10_2166_wst_2017_349 crossref_primary_10_1002_smll_201801563 crossref_primary_10_1016_j_cclet_2023_109022 crossref_primary_10_1016_j_memsci_2022_120952 crossref_primary_10_3390_membranes6010017 crossref_primary_10_1016_j_desal_2015_11_009 crossref_primary_10_1016_j_watres_2019_01_043 crossref_primary_10_1021_acsami_7b17477 crossref_primary_10_1016_j_memsci_2017_06_047 crossref_primary_10_1021_acs_chemmater_0c03692 crossref_primary_10_1016_j_seppur_2024_130031 crossref_primary_10_1016_j_cej_2021_129080 crossref_primary_10_1016_j_desal_2024_118407 crossref_primary_10_1021_acsami_6b14412 crossref_primary_10_1016_j_memsci_2020_118209 crossref_primary_10_1016_j_memsci_2021_119158 crossref_primary_10_1016_j_memsci_2020_118449 crossref_primary_10_1016_j_memsci_2022_120308 crossref_primary_10_1016_j_jece_2025_116215 crossref_primary_10_1016_j_seppur_2021_118383 crossref_primary_10_1016_j_desal_2023_116880 crossref_primary_10_5004_dwt_2020_25813 crossref_primary_10_1016_j_cjche_2019_04_004 crossref_primary_10_1016_j_memsci_2019_117482 crossref_primary_10_1016_j_desal_2018_12_016 crossref_primary_10_1016_j_memsci_2017_03_014 crossref_primary_10_1016_j_memsci_2017_05_026 crossref_primary_10_1016_j_memsci_2018_05_029 crossref_primary_10_1016_j_memsci_2018_01_015 crossref_primary_10_1016_j_memsci_2019_117249 crossref_primary_10_1016_j_memsci_2021_119680 crossref_primary_10_1039_C6RA09080J crossref_primary_10_1021_acsami_3c12756 crossref_primary_10_1021_acs_iecr_9b04810 crossref_primary_10_1039_D0CS01599G crossref_primary_10_1016_j_jece_2021_105722 crossref_primary_10_1002_aic_16970 crossref_primary_10_1039_C8TA01232F crossref_primary_10_1039_D1CP05571B crossref_primary_10_3390_membranes13050477 crossref_primary_10_1016_j_desal_2016_04_028 crossref_primary_10_1016_j_desal_2022_116235 crossref_primary_10_1016_j_desal_2020_114697 crossref_primary_10_1016_j_memsci_2021_119327 crossref_primary_10_1016_j_coche_2018_01_001 crossref_primary_10_1016_j_watres_2023_120774 crossref_primary_10_1002_adma_202202504 crossref_primary_10_1002_admt_202000862 crossref_primary_10_1021_acsami_6b08801 crossref_primary_10_1016_j_memsci_2018_01_023 crossref_primary_10_1002_adfm_202304790 crossref_primary_10_1007_s11270_019_4203_0 crossref_primary_10_1016_j_jiec_2017_09_053 crossref_primary_10_1016_j_jece_2025_115814 crossref_primary_10_1016_j_apsusc_2022_156181 crossref_primary_10_1016_j_memsci_2023_121494 crossref_primary_10_1016_j_seppur_2021_118719 crossref_primary_10_1016_j_desal_2022_115953 crossref_primary_10_1039_C9EW00201D crossref_primary_10_1088_1757_899X_773_1_012007 crossref_primary_10_1016_j_desal_2020_114461 crossref_primary_10_1021_acsami_7b07373 crossref_primary_10_1016_j_desal_2017_06_020 crossref_primary_10_1039_C7TA00492C crossref_primary_10_1016_j_desal_2023_116509 crossref_primary_10_1016_j_jwpe_2020_101806 crossref_primary_10_1021_acsami_9b11006 crossref_primary_10_1016_j_chemosphere_2022_136682 crossref_primary_10_1021_acs_iecr_0c05191 crossref_primary_10_1021_acs_iecr_3c03521 crossref_primary_10_1016_j_desal_2015_06_002 crossref_primary_10_1002_asia_202401544 crossref_primary_10_1021_acs_iecr_1c01919 crossref_primary_10_1088_2053_1591_aa5a84 crossref_primary_10_1016_j_ces_2015_12_029 crossref_primary_10_1007_s10853_025_10659_2 crossref_primary_10_1016_j_cherd_2020_08_001 crossref_primary_10_1016_j_memsci_2019_117468 crossref_primary_10_1016_j_matlet_2020_128292 crossref_primary_10_1016_j_memsci_2019_117227 crossref_primary_10_1039_C7CS00041C crossref_primary_10_1016_j_memsci_2016_08_069 crossref_primary_10_1021_acsami_0c21571 crossref_primary_10_1016_j_memsci_2021_119586 crossref_primary_10_1016_j_desal_2023_116650 crossref_primary_10_1016_j_seppur_2024_129818 crossref_primary_10_3390_membranes9070088 crossref_primary_10_1016_j_memsci_2021_119106 crossref_primary_10_1016_j_desal_2019_04_006 crossref_primary_10_1021_acsami_7b05504 crossref_primary_10_1016_j_mtener_2021_100856 crossref_primary_10_1016_j_memsci_2020_118412 crossref_primary_10_1016_j_memsci_2022_120637 crossref_primary_10_1021_acsami_1c08138 crossref_primary_10_1016_j_cherd_2021_12_031 crossref_primary_10_1016_j_desal_2017_05_011 crossref_primary_10_1016_j_jwpe_2019_101031 crossref_primary_10_1039_D1TA09371A crossref_primary_10_1016_j_compositesb_2018_12_034 crossref_primary_10_1016_j_seppur_2019_116258 crossref_primary_10_1016_j_desal_2019_114171 crossref_primary_10_1016_j_jiec_2018_05_032 crossref_primary_10_1016_j_memsci_2017_06_087 crossref_primary_10_1080_15422119_2017_1335214 crossref_primary_10_1016_j_cej_2023_145715 crossref_primary_10_1016_j_memsci_2015_12_031 crossref_primary_10_1016_j_mtsust_2024_100734 crossref_primary_10_1016_j_apsusc_2021_151093 crossref_primary_10_1016_j_memsci_2023_122320 crossref_primary_10_1016_j_seppur_2017_01_061 crossref_primary_10_1016_j_jtice_2020_06_014 crossref_primary_10_1016_j_memsci_2019_117474 crossref_primary_10_1016_j_gee_2022_03_005 crossref_primary_10_1039_C7RA11358G crossref_primary_10_1016_j_memsci_2021_119354 crossref_primary_10_1016_j_memsci_2021_119356 crossref_primary_10_1016_j_seppur_2019_116265 crossref_primary_10_1021_acsanm_0c02004 crossref_primary_10_1016_j_memsci_2020_118887 |
Cites_doi | 10.1016/j.memsci.2010.04.032 10.1016/j.desal.2007.06.003 10.1016/j.memsci.2011.01.041 10.1252/jcej.33.333 10.1038/35102535 10.1039/c0ee00541j 10.5004/dwt.2011.2801 10.1016/j.memsci.2013.09.014 10.1016/0376-7388(93)80014-O 10.1039/c3ra40960k 10.1016/j.memsci.2008.12.014 10.1016/j.memsci.2014.09.022 10.1039/c3cc39116g 10.1016/S0011-9164(98)00122-2 10.1002/smll.201303945 10.1016/0376-7388(94)80006-5 10.1038/nchem.1272 10.1016/j.memsci.2011.10.003 10.1002/adma.200903867 10.1039/c3ta12199b 10.1021/ja01269a023 10.1039/c0cc05002d 10.1021/la900938x 10.1021/ie071645b 10.1016/j.memsci.2007.02.025 10.1021/la0344682 10.1039/c2jm31941a 10.1016/j.memsci.2009.11.063 10.1016/j.memsci.2012.08.020 10.1039/C4RA06489E 10.1016/j.memsci.2012.02.038 10.1002/pat.918 10.1016/j.micromeso.2008.11.020 10.1016/j.memsci.2006.03.012 10.1021/la402895h 10.1063/1.3573902 10.1016/j.memsci.2014.07.018 10.1016/j.memsci.2010.12.023 10.1126/science.1200488 10.1021/ja407665w 10.1021/nn4011494 10.1016/j.memsci.2011.08.055 10.1021/la020920q 10.1126/science.1126298 10.1021/ar900116g |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION 7SR 7U5 8FD JG9 L7M 7QH 7UA C1K F1W H97 L.G 7S9 L.6 |
DOI | 10.1016/j.memsci.2014.11.038 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Aquatic Science & Fisheries Abstracts (ASFA) Professional Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3123 |
EndPage | 310 |
ExternalDocumentID | 10_1016_j_memsci_2014_11_038 S0376738814008825 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSM SSZ T5K XPP Y6R ZMT ~G- 29L AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ 7SR 7U5 8FD EFKBS JG9 L7M 7QH 7UA C1K F1W H97 L.G 7S9 L.6 |
ID | FETCH-LOGICAL-c508t-1d2fc1e2dd76e0909ec7649cea9b76e10b19ba7123108b626a0cec8be582e0f93 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Fri Jul 11 16:13:35 EDT 2025 Mon Jul 21 11:49:28 EDT 2025 Mon Jul 21 10:27:34 EDT 2025 Tue Jul 01 02:49:05 EDT 2025 Thu Apr 24 22:58:26 EDT 2025 Fri Feb 23 02:22:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Interfacial polymerization Reverse osmosis Thin-film-nanocomposite ZIF-8 Nanotechnology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-1d2fc1e2dd76e0909ec7649cea9b76e10b19ba7123108b626a0cec8be582e0f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1677971717 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2101383851 proquest_miscellaneous_1751213238 proquest_miscellaneous_1677971717 crossref_citationtrail_10_1016_j_memsci_2014_11_038 crossref_primary_10_1016_j_memsci_2014_11_038 elsevier_sciencedirect_doi_10_1016_j_memsci_2014_11_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-15 |
PublicationDateYYYYMMDD | 2015-02-15 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of membrane science |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zou, Vidalis, Steele, Michelmore, Low, Verberk (bib51) 2011; 369 Kusgens, Rose, Senkovska, Frode, Henschel, Siegle, Kaskel (bib32) 2009; 120 Kim, Deng (bib18) 2011; 375 Lind, Ghosh, Jawor, Huang, Hou, Yang, Hoek (bib11) 2009; 25 Jeong, Hoek, Yan, Subramani, Huang, Hurwitz, Ghosh, Jawor (bib10) 2007; 294 Lu, Li, Guo, Farha, Hauser, Qi, Wang, Wang, Han, Liu, DuChene, Zhang, Zhang, Chen, Ma, Loo, Wei, Yang, Hupp, Huo (bib39) 2012; 4 Zhang, Shi, Qiu, Cheng, Chen (bib43) 2011; 34 Zhao, Chang, Yen, Ho (bib8) 2013; 425 Kim, Baek, Choi, Kim, Kang, Choi, Yoon, Lee (bib29) 2014; 4 Zhang, Dai, Johnson, Karvan, Koros (bib44) 2012; 389 Dalwani, Zheng, Hempenius, Raaijmakers, Doherty, Hill, Wessling, Benes (bib24) 2012; 22 Liu, Yu, Zhou, Gao (bib7) 2006; 281 Marmur (bib45) 2003; 19 Turgman-Cohen, Araque, Hoek, Escobedo (bib19) 2013; 29 Lee, Kim, Patel, Im, Kim, Min (bib13) 2007; 18 Hu, Chen, Jiang (bib34) 2011; 134 Duan, Litwiller, Pinnau (bib38) 2014; 470 Brunauer, Emmett, Teller (bib40) 1938; 60 Hummer, Rasaiah, Noworyta (bib30) 2001; 414 Holt, Park, Wang, Stadermann, Artyukhin, Grigoropoulos, Noy, Bakajin (bib31) 2006; 312 Phan, Doonan, Uribe-Romo, Knobler, O׳Keeffe, Yaghi (bib33) 2010; 43 J.E. Cadotte, Interfacially synthesized reverse osmosis membrane, US Patent 4277344 1981. Glater (bib2) 1998; 117 Pacheco, Pinnau, Reinhard, Leckie (bib37) 2010; 358 Kumakiri, Yamaguchi, Nakao (bib20) 2000; 33 T.V. Ratto, J.K. Holt, A.W. Szmodis, Membranes with embedded nanotubes for selective permeability, US Patent 7993524 2011. Lee, Kim, Cho, Park (bib28) 2014; 10 Xie, Geise, Freeman, Lee, Byun, McGrath (bib49) 2012; 403 Huang, Qu, Dong, Zhang, Chen (bib12) 2013; 3 Chan, Chen, Surapathi, Taylor, Shao, Marand, Johnson (bib26) 2013; 7 Yin, Kim, Yang, Deng (bib50) 2012; 423 Duan, Litwiller, Pinnau (bib23) 2015; 473 Lee, Im, Kim, Kim, Kim, Min (bib14) 2008; 219 Elimelech, Phillip (bib1) 2011; 333 Hurwitz, Guillen, Hoek (bib46) 2010; 349 Pan, Liu, Zeng, Zhao, Lai (bib36) 2011; 47 Pendergast, Hoek (bib9) 2011; 4 C.J. Kurth, J.A. Koehler, B.A. Holmberg, R.L. Burk, Hybrid nanoparticle TFC membranes, US Patent application 2012/0261344 A1 2012. Ameloot, Gobechiya, Uji-i, Martens, Hofkens, Alaerts, Sels, De Vos (bib41) 2010; 22 Kong, Shintani, Kamada, Freger, Tsuru (bib6) 2011; 384 Zhang, Lively, Dose, Brown, Zhang, Chung, Nair, Koros, Chance (bib42) 2013; 49 Sorribas, Gorgojo, Tellez, Coronas, Livingston (bib35) 2013; 135 Freger (bib48) 2003; 19 Petersen (bib5) 1993; 83 Pera-Titus, Fite, Sebastian, Lorente, Llorens, Cunill (bib21) 2008; 47 Huang, Qu, Ji, Gao, Zhang, Chen, Hou (bib22) 2013; 1 International Desalination Association (bib3) 2011 Jadav, Singh (bib15) 2009; 328 Chai, Krantz (bib47) 1994; 93 Y.H. Na, R. Sooriyakumaran, A. Vora, J. Diep, Thin film composite membranes embedded with molecular cage compounds, US patent application US20130001153 A1 2011. Zhao, Qiu, Wu, Zhang, Chen, Gao (bib27) 2014; 450 Pendergast (10.1016/j.memsci.2014.11.038_bib9) 2011; 4 Zhao (10.1016/j.memsci.2014.11.038_bib8) 2013; 425 Pera-Titus (10.1016/j.memsci.2014.11.038_bib21) 2008; 47 Kong (10.1016/j.memsci.2014.11.038_bib6) 2011; 384 Kim (10.1016/j.memsci.2014.11.038_bib18) 2011; 375 Dalwani (10.1016/j.memsci.2014.11.038_bib24) 2012; 22 Ameloot (10.1016/j.memsci.2014.11.038_bib41) 2010; 22 Freger (10.1016/j.memsci.2014.11.038_bib48) 2003; 19 Turgman-Cohen (10.1016/j.memsci.2014.11.038_bib19) 2013; 29 Hummer (10.1016/j.memsci.2014.11.038_bib30) 2001; 414 Zhang (10.1016/j.memsci.2014.11.038_bib42) 2013; 49 Elimelech (10.1016/j.memsci.2014.11.038_bib1) 2011; 333 Lu (10.1016/j.memsci.2014.11.038_bib39) 2012; 4 Pacheco (10.1016/j.memsci.2014.11.038_bib37) 2010; 358 Duan (10.1016/j.memsci.2014.11.038_bib23) 2015; 473 Petersen (10.1016/j.memsci.2014.11.038_bib5) 1993; 83 Hu (10.1016/j.memsci.2014.11.038_bib34) 2011; 134 10.1016/j.memsci.2014.11.038_bib25 Zou (10.1016/j.memsci.2014.11.038_bib51) 2011; 369 Marmur (10.1016/j.memsci.2014.11.038_bib45) 2003; 19 Jeong (10.1016/j.memsci.2014.11.038_bib10) 2007; 294 Jadav (10.1016/j.memsci.2014.11.038_bib15) 2009; 328 Phan (10.1016/j.memsci.2014.11.038_bib33) 2010; 43 Huang (10.1016/j.memsci.2014.11.038_bib22) 2013; 1 Lee (10.1016/j.memsci.2014.11.038_bib13) 2007; 18 Zhao (10.1016/j.memsci.2014.11.038_bib27) 2014; 450 Pan (10.1016/j.memsci.2014.11.038_bib36) 2011; 47 Lee (10.1016/j.memsci.2014.11.038_bib14) 2008; 219 10.1016/j.memsci.2014.11.038_bib4 10.1016/j.memsci.2014.11.038_bib16 Chan (10.1016/j.memsci.2014.11.038_bib26) 2013; 7 10.1016/j.memsci.2014.11.038_bib17 Hurwitz (10.1016/j.memsci.2014.11.038_bib46) 2010; 349 Chai (10.1016/j.memsci.2014.11.038_bib47) 1994; 93 Xie (10.1016/j.memsci.2014.11.038_bib49) 2012; 403 Holt (10.1016/j.memsci.2014.11.038_bib31) 2006; 312 Duan (10.1016/j.memsci.2014.11.038_bib38) 2014; 470 Zhang (10.1016/j.memsci.2014.11.038_bib43) 2011; 34 International Desalination Association (10.1016/j.memsci.2014.11.038_bib3) 2011 Zhang (10.1016/j.memsci.2014.11.038_bib44) 2012; 389 Kumakiri (10.1016/j.memsci.2014.11.038_bib20) 2000; 33 Yin (10.1016/j.memsci.2014.11.038_bib50) 2012; 423 Brunauer (10.1016/j.memsci.2014.11.038_bib40) 1938; 60 Glater (10.1016/j.memsci.2014.11.038_bib2) 1998; 117 Sorribas (10.1016/j.memsci.2014.11.038_bib35) 2013; 135 Liu (10.1016/j.memsci.2014.11.038_bib7) 2006; 281 Huang (10.1016/j.memsci.2014.11.038_bib12) 2013; 3 Kim (10.1016/j.memsci.2014.11.038_bib29) 2014; 4 Kusgens (10.1016/j.memsci.2014.11.038_bib32) 2009; 120 Lee (10.1016/j.memsci.2014.11.038_bib28) 2014; 10 Lind (10.1016/j.memsci.2014.11.038_bib11) 2009; 25 |
References_xml | – volume: 450 start-page: 249 year: 2014 end-page: 256 ident: bib27 article-title: Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes publication-title: J. Membr. Sci. – volume: 219 start-page: 48 year: 2008 end-page: 56 ident: bib14 article-title: Polyamide thin-film nanofiltration membranes containing TiO publication-title: Desalination – reference: T.V. Ratto, J.K. Holt, A.W. Szmodis, Membranes with embedded nanotubes for selective permeability, US Patent 7993524 2011. – volume: 389 start-page: 34 year: 2012 end-page: 42 ident: bib44 article-title: High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations publication-title: J. Membr. Sci. – volume: 375 start-page: 46 year: 2011 end-page: 54 ident: bib18 article-title: Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications publication-title: J. Membr. Sci. – volume: 47 start-page: 2071 year: 2011 end-page: 2073 ident: bib36 article-title: Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system publication-title: Chem. Commun. – volume: 369 start-page: 420 year: 2011 end-page: 428 ident: bib51 article-title: Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling publication-title: J. Membr. Sci. – volume: 33 start-page: 333 year: 2000 end-page: 336 ident: bib20 article-title: Application of a zeolite A membrane to reverse osmosis process publication-title: J. Chem. Eng. Jpn. – volume: 19 start-page: 8343 year: 2003 end-page: 8348 ident: bib45 article-title: Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? publication-title: Langmuir – year: 2011 ident: bib3 article-title: IDA Desalination Yearbook 2011–2012 – volume: 4 start-page: 1946 year: 2011 end-page: 1971 ident: bib9 article-title: A review of water treatment membrane nanotechnologies publication-title: Energy Environ. Sci. – volume: 384 start-page: 10 year: 2011 end-page: 16 ident: bib6 article-title: Co-solvent-mediated synthesis of thin polyamide membranes publication-title: J. Membr. Sci. – volume: 29 start-page: 12389 year: 2013 end-page: 12399 ident: bib19 article-title: Molecular dynamics of equilibrium and pressure-driven transport properties of water through LTA-type zeolites publication-title: Langmuir – reference: J.E. Cadotte, Interfacially synthesized reverse osmosis membrane, US Patent 4277344 1981. – volume: 312 start-page: 1034 year: 2006 end-page: 1037 ident: bib31 article-title: Fast mass transport through sub-2-nanometer carbon nanotubes publication-title: Science – volume: 120 start-page: 325 year: 2009 end-page: 330 ident: bib32 article-title: Characterization of metal-organic frameworks by water adsorption publication-title: Microporous Mesoporous Mater. – volume: 358 start-page: 51 year: 2010 end-page: 59 ident: bib37 article-title: Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques publication-title: J. Membr. Sci. – reference: Y.H. Na, R. Sooriyakumaran, A. Vora, J. Diep, Thin film composite membranes embedded with molecular cage compounds, US patent application US20130001153 A1 2011. – volume: 328 start-page: 257 year: 2009 end-page: 267 ident: bib15 article-title: Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties publication-title: J. Membr. Sci. – volume: 10 start-page: 2653 year: 2014 end-page: 2660 ident: bib28 article-title: Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes publication-title: Small – volume: 7 start-page: 5308 year: 2013 end-page: 5319 ident: bib26 article-title: Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination publication-title: Acs Nano – volume: 22 start-page: 2685 year: 2010 end-page: 2688 ident: bib41 article-title: Direct patterning of oriented metal-organic framework crystals via control over crystallization kinetics in clear precursor solutions publication-title: Adv. Mater. – volume: 93 start-page: 175 year: 1994 end-page: 192 ident: bib47 article-title: Formation and characterization of polyamide membranes via interfacial polymerization publication-title: J. Membr. Sci. – volume: 403 start-page: 152 year: 2012 end-page: 161 ident: bib49 article-title: Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine publication-title: J. Membr. Sci. – volume: 349 start-page: 349 year: 2010 end-page: 357 ident: bib46 article-title: Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements publication-title: J. Membr. Sci. – volume: 18 start-page: 562 year: 2007 end-page: 568 ident: bib13 article-title: Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties publication-title: Polym. Adv. Technol. – volume: 294 start-page: 1 year: 2007 end-page: 7 ident: bib10 article-title: Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes publication-title: J. Membr. Sci. – volume: 25 start-page: 10139 year: 2009 end-page: 10145 ident: bib11 article-title: Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes publication-title: Langmuir – volume: 49 start-page: 3245 year: 2013 end-page: 3247 ident: bib42 article-title: Alcohol and water adsorption in zeolitic imidazolate frameworks publication-title: Chem. Commun. – volume: 43 start-page: 58 year: 2010 end-page: 67 ident: bib33 article-title: Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks publication-title: Acc. Chem. Res. – volume: 117 start-page: 297 year: 1998 end-page: 309 ident: bib2 article-title: The early history of reverse osmosis membrane development publication-title: Desalination – volume: 4 start-page: 310 year: 2012 end-page: 316 ident: bib39 article-title: Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation publication-title: Nat. Chem. – volume: 423 start-page: 238 year: 2012 end-page: 246 ident: bib50 article-title: Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification publication-title: J. Membr. Sci. – volume: 47 start-page: 3213 year: 2008 end-page: 3224 ident: bib21 article-title: Modeling pervaporation of ethanol/water mixtures within ‘Real’ zeolite NaA membranes publication-title: Ind. Eng. Chem. Res. – volume: 22 start-page: 14835 year: 2012 end-page: 14838 ident: bib24 article-title: Ultra-thin hybrid polyhedral silsesquioxane–polyamide films with potentially unlimited 2D dimensions publication-title: J. Mater. Chem. – volume: 473 start-page: 157 year: 2015 end-page: 164 ident: bib23 article-title: Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes publication-title: J. Membr. Sci. – reference: C.J. Kurth, J.A. Koehler, B.A. Holmberg, R.L. Burk, Hybrid nanoparticle TFC membranes, US Patent application 2012/0261344 A1 2012. – volume: 60 start-page: 309 year: 1938 end-page: 319 ident: bib40 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 15201 year: 2013 end-page: 15208 ident: bib35 article-title: High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 4791 year: 2003 end-page: 4797 ident: bib48 article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization publication-title: Langmuir – volume: 34 start-page: 19 year: 2011 end-page: 24 ident: bib43 article-title: Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes publication-title: Desalin. Water Treat. – volume: 4 start-page: 32802 year: 2014 end-page: 32810 ident: bib29 article-title: The improvement of antibiofouling properties of a reverse osmosis membrane by oxidized CNTs publication-title: RSC Adv. – volume: 414 start-page: 188 year: 2001 end-page: 190 ident: bib30 article-title: Water conduction through the hydrophobic channel of a carbon nanotube publication-title: Nature – volume: 83 start-page: 81 year: 1993 end-page: 150 ident: bib5 article-title: Composite reverse-osmosis and nanofiltration membranes publication-title: J. Membr. Sci. – volume: 3 start-page: 8203 year: 2013 end-page: 8207 ident: bib12 article-title: Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane publication-title: RSC Adv. – volume: 333 start-page: 712 year: 2011 end-page: 717 ident: bib1 article-title: The future of seawater desalination: energy, technology, and the environment publication-title: Science – volume: 1 start-page: 11343 year: 2013 end-page: 11349 ident: bib22 article-title: Acid and multivalent ion resistance of thin film nanocomposite RO membranes loaded with silicalite-1 nanozeolites publication-title: J. Mater. Chem. A – volume: 281 start-page: 88 year: 2006 end-page: 94 ident: bib7 article-title: Study on a novel polyamide-urea reverse osmosis composite membrane (ICIC-MPD) I. Preparation and characterization of ICIC-MPD membrane publication-title: J. Membr. Sci. – volume: 134 year: 2011 ident: bib34 article-title: Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: insight from molecular simulation publication-title: J. Chem. Phys. – volume: 425 start-page: 1 year: 2013 end-page: 10 ident: bib8 article-title: High-flux and fouling-resistant membranes for brackish water desalination publication-title: J. Membr. Sci. – volume: 470 start-page: 323 year: 2014 end-page: 333 ident: bib38 article-title: Solution–diffusion with defects model for pressure-assisted forward osmosis publication-title: J. Membr. Sci. – ident: 10.1016/j.memsci.2014.11.038_bib4 – volume: 358 start-page: 51 year: 2010 ident: 10.1016/j.memsci.2014.11.038_bib37 article-title: Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.04.032 – volume: 219 start-page: 48 year: 2008 ident: 10.1016/j.memsci.2014.11.038_bib14 article-title: Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles publication-title: Desalination doi: 10.1016/j.desal.2007.06.003 – ident: 10.1016/j.memsci.2014.11.038_bib16 – volume: 375 start-page: 46 year: 2011 ident: 10.1016/j.memsci.2014.11.038_bib18 article-title: Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.01.041 – volume: 33 start-page: 333 year: 2000 ident: 10.1016/j.memsci.2014.11.038_bib20 article-title: Application of a zeolite A membrane to reverse osmosis process publication-title: J. Chem. Eng. Jpn. doi: 10.1252/jcej.33.333 – volume: 414 start-page: 188 year: 2001 ident: 10.1016/j.memsci.2014.11.038_bib30 article-title: Water conduction through the hydrophobic channel of a carbon nanotube publication-title: Nature doi: 10.1038/35102535 – volume: 4 start-page: 1946 year: 2011 ident: 10.1016/j.memsci.2014.11.038_bib9 article-title: A review of water treatment membrane nanotechnologies publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00541j – volume: 34 start-page: 19 year: 2011 ident: 10.1016/j.memsci.2014.11.038_bib43 article-title: Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes publication-title: Desalin. Water Treat. doi: 10.5004/dwt.2011.2801 – volume: 450 start-page: 249 year: 2014 ident: 10.1016/j.memsci.2014.11.038_bib27 article-title: Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.09.014 – volume: 83 start-page: 81 year: 1993 ident: 10.1016/j.memsci.2014.11.038_bib5 article-title: Composite reverse-osmosis and nanofiltration membranes publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(93)80014-O – volume: 425 start-page: 1 year: 2013 ident: 10.1016/j.memsci.2014.11.038_bib8 article-title: High-flux and fouling-resistant membranes for brackish water desalination publication-title: J. Membr. Sci. – volume: 3 start-page: 8203 year: 2013 ident: 10.1016/j.memsci.2014.11.038_bib12 article-title: Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane publication-title: RSC Adv. doi: 10.1039/c3ra40960k – volume: 328 start-page: 257 year: 2009 ident: 10.1016/j.memsci.2014.11.038_bib15 article-title: Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.12.014 – ident: 10.1016/j.memsci.2014.11.038_bib17 – volume: 473 start-page: 157 year: 2015 ident: 10.1016/j.memsci.2014.11.038_bib23 article-title: Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.09.022 – volume: 49 start-page: 3245 year: 2013 ident: 10.1016/j.memsci.2014.11.038_bib42 article-title: Alcohol and water adsorption in zeolitic imidazolate frameworks publication-title: Chem. Commun. doi: 10.1039/c3cc39116g – volume: 117 start-page: 297 year: 1998 ident: 10.1016/j.memsci.2014.11.038_bib2 article-title: The early history of reverse osmosis membrane development publication-title: Desalination doi: 10.1016/S0011-9164(98)00122-2 – volume: 10 start-page: 2653 year: 2014 ident: 10.1016/j.memsci.2014.11.038_bib28 article-title: Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes publication-title: Small doi: 10.1002/smll.201303945 – volume: 93 start-page: 175 year: 1994 ident: 10.1016/j.memsci.2014.11.038_bib47 article-title: Formation and characterization of polyamide membranes via interfacial polymerization publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(94)80006-5 – volume: 4 start-page: 310 year: 2012 ident: 10.1016/j.memsci.2014.11.038_bib39 article-title: Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation publication-title: Nat. Chem. doi: 10.1038/nchem.1272 – volume: 389 start-page: 34 year: 2012 ident: 10.1016/j.memsci.2014.11.038_bib44 article-title: High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.10.003 – volume: 22 start-page: 2685 year: 2010 ident: 10.1016/j.memsci.2014.11.038_bib41 article-title: Direct patterning of oriented metal-organic framework crystals via control over crystallization kinetics in clear precursor solutions publication-title: Adv. Mater. doi: 10.1002/adma.200903867 – volume: 1 start-page: 11343 year: 2013 ident: 10.1016/j.memsci.2014.11.038_bib22 article-title: Acid and multivalent ion resistance of thin film nanocomposite RO membranes loaded with silicalite-1 nanozeolites publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12199b – volume: 60 start-page: 309 year: 1938 ident: 10.1016/j.memsci.2014.11.038_bib40 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01269a023 – volume: 47 start-page: 2071 year: 2011 ident: 10.1016/j.memsci.2014.11.038_bib36 article-title: Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system publication-title: Chem. Commun. doi: 10.1039/c0cc05002d – volume: 25 start-page: 10139 year: 2009 ident: 10.1016/j.memsci.2014.11.038_bib11 article-title: Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes publication-title: Langmuir doi: 10.1021/la900938x – volume: 47 start-page: 3213 year: 2008 ident: 10.1016/j.memsci.2014.11.038_bib21 article-title: Modeling pervaporation of ethanol/water mixtures within ‘Real’ zeolite NaA membranes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie071645b – volume: 294 start-page: 1 year: 2007 ident: 10.1016/j.memsci.2014.11.038_bib10 article-title: Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.02.025 – volume: 19 start-page: 8343 year: 2003 ident: 10.1016/j.memsci.2014.11.038_bib45 article-title: Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? publication-title: Langmuir doi: 10.1021/la0344682 – volume: 22 start-page: 14835 year: 2012 ident: 10.1016/j.memsci.2014.11.038_bib24 article-title: Ultra-thin hybrid polyhedral silsesquioxane–polyamide films with potentially unlimited 2D dimensions publication-title: J. Mater. Chem. doi: 10.1039/c2jm31941a – volume: 349 start-page: 349 year: 2010 ident: 10.1016/j.memsci.2014.11.038_bib46 article-title: Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.11.063 – volume: 423 start-page: 238 year: 2012 ident: 10.1016/j.memsci.2014.11.038_bib50 article-title: Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.08.020 – volume: 4 start-page: 32802 year: 2014 ident: 10.1016/j.memsci.2014.11.038_bib29 article-title: The improvement of antibiofouling properties of a reverse osmosis membrane by oxidized CNTs publication-title: RSC Adv. doi: 10.1039/C4RA06489E – volume: 403 start-page: 152 year: 2012 ident: 10.1016/j.memsci.2014.11.038_bib49 article-title: Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.02.038 – volume: 18 start-page: 562 year: 2007 ident: 10.1016/j.memsci.2014.11.038_bib13 article-title: Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties publication-title: Polym. Adv. Technol. doi: 10.1002/pat.918 – volume: 120 start-page: 325 year: 2009 ident: 10.1016/j.memsci.2014.11.038_bib32 article-title: Characterization of metal-organic frameworks by water adsorption publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2008.11.020 – volume: 281 start-page: 88 year: 2006 ident: 10.1016/j.memsci.2014.11.038_bib7 article-title: Study on a novel polyamide-urea reverse osmosis composite membrane (ICIC-MPD) I. Preparation and characterization of ICIC-MPD membrane publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.03.012 – volume: 29 start-page: 12389 year: 2013 ident: 10.1016/j.memsci.2014.11.038_bib19 article-title: Molecular dynamics of equilibrium and pressure-driven transport properties of water through LTA-type zeolites publication-title: Langmuir doi: 10.1021/la402895h – volume: 134 year: 2011 ident: 10.1016/j.memsci.2014.11.038_bib34 article-title: Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: insight from molecular simulation publication-title: J. Chem. Phys. doi: 10.1063/1.3573902 – volume: 470 start-page: 323 year: 2014 ident: 10.1016/j.memsci.2014.11.038_bib38 article-title: Solution–diffusion with defects model for pressure-assisted forward osmosis publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.07.018 – volume: 369 start-page: 420 year: 2011 ident: 10.1016/j.memsci.2014.11.038_bib51 article-title: Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.12.023 – volume: 333 start-page: 712 year: 2011 ident: 10.1016/j.memsci.2014.11.038_bib1 article-title: The future of seawater desalination: energy, technology, and the environment publication-title: Science doi: 10.1126/science.1200488 – volume: 135 start-page: 15201 year: 2013 ident: 10.1016/j.memsci.2014.11.038_bib35 article-title: High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407665w – volume: 7 start-page: 5308 year: 2013 ident: 10.1016/j.memsci.2014.11.038_bib26 article-title: Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination publication-title: Acs Nano doi: 10.1021/nn4011494 – ident: 10.1016/j.memsci.2014.11.038_bib25 – volume: 384 start-page: 10 year: 2011 ident: 10.1016/j.memsci.2014.11.038_bib6 article-title: Co-solvent-mediated synthesis of thin polyamide membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.08.055 – volume: 19 start-page: 4791 year: 2003 ident: 10.1016/j.memsci.2014.11.038_bib48 article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization publication-title: Langmuir doi: 10.1021/la020920q – year: 2011 ident: 10.1016/j.memsci.2014.11.038_bib3 – volume: 312 start-page: 1034 year: 2006 ident: 10.1016/j.memsci.2014.11.038_bib31 article-title: Fast mass transport through sub-2-nanometer carbon nanotubes publication-title: Science doi: 10.1126/science.1126298 – volume: 43 start-page: 58 year: 2010 ident: 10.1016/j.memsci.2014.11.038_bib33 article-title: Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks publication-title: Acc. Chem. Res. doi: 10.1021/ar900116g |
SSID | ssj0017089 |
Score | 2.6097856 |
Snippet | A hydrophobic, hydrothermally stable metal-organic framework (MOF) - zeolitic imidazolate framework-8 (ZIF-8) was successfully incorporated into the selective... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 303 |
SubjectTerms | artificial membranes atomic force microscopy Contact angle coordination polymers crosslinking desalination encapsulation Fillers hydrophilicity hydrophobicity Interfacial polymerization Membranes nanocomposites Nanostructure Nanotechnology Polyamide resins polyamides Reluctance Reverse osmosis scanning electron microscopy sodium chloride Thin films Thin-film-nanocomposite transmission electron microscopy X-ray photoelectron spectroscopy zeolites ZIF-8 |
Title | High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8 |
URI | https://dx.doi.org/10.1016/j.memsci.2014.11.038 https://www.proquest.com/docview/1677971717 https://www.proquest.com/docview/1751213238 https://www.proquest.com/docview/2101383851 |
Volume | 476 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvbSH0idNH0GFXpWVbNmyjiE0bFuaSxvIzegxZl3WD3Y3h-TQU394Z_xIH5QEerQYDUIjjWbwN98w9s5GK0FHKYJOo9CucsI6nQkHNhpZEcc5VSN_PsuX5_rjRXaxx07mWhiCVU6-f_Tpg7eeRhbTbi76ul58kUREkhZE2URxIhWaa23olB99v4F5KCOHNngkLEh6Lp8bMF4NNKiaAF76iLg8qUrl38_TX456eH1OH7GHU9jIj8eVPWZ70D5hD34jE3zKfhBkQ_S_CgF4362vXFNH4LtV3YqqXjeidW1HMHLCagEn_qbNFni3bXBgy3GlmD2j9-MEYR-bR_DVVdx0_arzdeDXMOLleI163TXmxailmgFeonjGzk_ffz1ZiqnHgggYmu2EikkVFCQxmhyklRaCybUN4KzHESW9st4ZRWFg4TH7cTJAKDxkRQKysulztt92LbxgHJRPILrca0qDbOJcTHy0YAuXh6DcAUvnrS3DREBOfTDW5Yw0-1aOBinJIJiblGiQAyZuZvUjAccd8ma2WvnHQSrxjbhj5tvZyCXeMfpxghveXW5LlRtjMe9V5hYZkxE7XnKbHkyvVVqkGOS-_O9VvmL38WuoqlfZa7a_21zCG4yLdv5wOPiH7N7xh0_Ls5-3thLu |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDI5KOQAHxFOUZ5C4ppvMK5MjqqgWaHuhlXqLMolHO9XOQ7vbQ3vg1B9eex7lIdRKXDOOFcWJY2s-f2bskwlGQhKk8EkcROJKJ4xLUuHABC1L4jinauTDo2x-knw7TU-32N5UC0OwytH3Dz6999bjyGzczVlXVbMfkohI4pwomyhOTO-x-wleX2pjsPvzBuehtOz74JG0IPGpfq4HedVQo25CeCW7ROZJZSr_fp_-8tT987P_hD0e40b-eVjaU7YFzTP26Dc2wefsijAbovtVCcC7dnnh6ioA3yyqRpTVshaNa1rCkRNYCzgROK3WwNt1jQNrjivF9BndHycM-9A9gi8uwqrtFm1ReX4JA2COV6jXXWJijFrKCeEl8hfsZP_L8d5cjE0WhMfYbCNUiEqvIApBZyCNNOB1lhgPzhQ4omShTOG0ojgwLzD9cdKDzwtI8whkaeKXbLtpG3jFOKgiguCyIqE8yETOhagIBkzuMu-V22HxtLXWjwzk1AhjaSeo2ZkdDGLJIJicWDTIDhM3s7qBgeMOeT1Zzf5xkiw-EnfM_DgZ2eIloz8nuOHt-dqqTGuDia_St8jolOjxotv0YH6t4jzGKPf1f6_yA3swPz48sAdfj76_YQ_xS19ir9K3bHuzOod3GCRtivf9JbgG1ZsUfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance+polyamide+thin-film-nanocomposite+reverse+osmosis+membranes+containing+hydrophobic+zeolitic+imidazolate+framework-8&rft.jtitle=Journal+of+membrane+science&rft.au=Duan%2C+Jintang&rft.au=Pan%2C+Yichang&rft.au=Pacheco%2C+Federico&rft.au=Litwiller%2C+Eric&rft.date=2015-02-15&rft.issn=0376-7388&rft.volume=476&rft.spage=303&rft.epage=310&rft_id=info:doi/10.1016%2Fj.memsci.2014.11.038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2014_11_038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |