High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8

A hydrophobic, hydrothermally stable metal-organic framework (MOF) - zeolitic imidazolate framework-8 (ZIF-8) was successfully incorporated into the selective polyamide (PA) layer of thin-film nanocomposite (TFN) membranes for water desalination. The potential advantages of ZIF-8 over classic hydrop...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 476; pp. 303 - 310
Main Authors Duan, Jintang, Pan, Yichang, Pacheco, Federico, Litwiller, Eric, Lai, Zhiping, Pinnau, Ingo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A hydrophobic, hydrothermally stable metal-organic framework (MOF) - zeolitic imidazolate framework-8 (ZIF-8) was successfully incorporated into the selective polyamide (PA) layer of thin-film nanocomposite (TFN) membranes for water desalination. The potential advantages of ZIF-8 over classic hydrophilic zeolite used in TFNs include: i) theoretically faster water transport within the framework and ii) better compatibility with the PA matrix. The TFN membranes were characterized with SEM, TEM, AFM, XPS, water contact angle measurements and reverse osmosis tests under 15.5bar hydraulic pressure with 2000ppm NaCl solution. Lab-made, nano-sized (~200nm) ZIF-8 increased water permeance to 3.35±0.08L/m2·h·bar at 0.4% (w/v) loading, 162% higher than the pristine PA membranes; meanwhile, high NaCl rejection was maintained. The TFN surface was less crosslinked and more hydrophilic than that of the pristine PA. A filler encapsulation mechanism was proposed for the effects of filler on TFN membrane surface morphology and properties. This study experimentally verified the potential use of ZIF-8 in advanced TFN RO membranes. [Display omitted] •ZIF-8-based TFN membranes were successfully prepared.•Lab-made, nano-sized ZIF-8 increased water flux up to 162%.•ZIF-8 exhibited no adverse effect on NaCl rejection.
AbstractList A hydrophobic, hydrothermally stable metal-organic framework (MOF) - zeolitic imidazolate framework-8 (ZIF-8) was successfully incorporated into the selective polyamide (PA) layer of thin-film nanocomposite (TFN) membranes for water desalination. The potential advantages of ZIF-8 over classic hydrophilic zeolite used in TFNs include: i) theoretically faster water transport within the framework and ii) better compatibility with the PA matrix. The TFN membranes were characterized with SEM, TEM, AFM, XPS, water contact angle measurements and reverse osmosis tests under 15.5 bar hydraulic pressure with 2000 ppm NaCl solution. Lab-made, nano-sized (~200 nm) ZIF-8 increased water permeance to 3.35 plus or minus 0.08 L/m super(2).h.bar at 0.4% (w/v) loading, 162% higher than the pristine PA membranes; meanwhile, high NaCl rejection was maintained. The TFN surface was less crosslinked and more hydrophilic than that of the pristine PA. A filler encapsulation mechanism was proposed for the effects of filler on TFN membrane surface morphology and properties. This study experimentally verified the potential use of ZIF-8 in advanced TFN RO membranes.
A hydrophobic, hydrothermally stable metal-organic framework (MOF) - zeolitic imidazolate framework-8 (ZIF-8) was successfully incorporated into the selective polyamide (PA) layer of thin-film nanocomposite (TFN) membranes for water desalination. The potential advantages of ZIF-8 over classic hydrophilic zeolite used in TFNs include: i) theoretically faster water transport within the framework and ii) better compatibility with the PA matrix. The TFN membranes were characterized with SEM, TEM, AFM, XPS, water contact angle measurements and reverse osmosis tests under 15.5bar hydraulic pressure with 2000ppm NaCl solution. Lab-made, nano-sized (~200nm) ZIF-8 increased water permeance to 3.35±0.08L/m2·h·bar at 0.4% (w/v) loading, 162% higher than the pristine PA membranes; meanwhile, high NaCl rejection was maintained. The TFN surface was less crosslinked and more hydrophilic than that of the pristine PA. A filler encapsulation mechanism was proposed for the effects of filler on TFN membrane surface morphology and properties. This study experimentally verified the potential use of ZIF-8 in advanced TFN RO membranes. [Display omitted] •ZIF-8-based TFN membranes were successfully prepared.•Lab-made, nano-sized ZIF-8 increased water flux up to 162%.•ZIF-8 exhibited no adverse effect on NaCl rejection.
A hydrophobic, hydrothermally stable metal-organic framework (MOF) - zeolitic imidazolate framework-8 (ZIF-8) was successfully incorporated into the selective polyamide (PA) layer of thin-film nanocomposite (TFN) membranes for water desalination. The potential advantages of ZIF-8 over classic hydrophilic zeolite used in TFNs include: i) theoretically faster water transport within the framework and ii) better compatibility with the PA matrix. The TFN membranes were characterized with SEM, TEM, AFM, XPS, water contact angle measurements and reverse osmosis tests under 15.5bar hydraulic pressure with 2000ppm NaCl solution. Lab-made, nano-sized (~200nm) ZIF-8 increased water permeance to 3.35±0.08L/m²·h·bar at 0.4% (w/v) loading, 162% higher than the pristine PA membranes; meanwhile, high NaCl rejection was maintained. The TFN surface was less crosslinked and more hydrophilic than that of the pristine PA. A filler encapsulation mechanism was proposed for the effects of filler on TFN membrane surface morphology and properties. This study experimentally verified the potential use of ZIF-8 in advanced TFN RO membranes.
Author Duan, Jintang
Pacheco, Federico
Pan, Yichang
Pinnau, Ingo
Lai, Zhiping
Litwiller, Eric
Author_xml – sequence: 1
  givenname: Jintang
  surname: Duan
  fullname: Duan, Jintang
– sequence: 2
  givenname: Yichang
  surname: Pan
  fullname: Pan, Yichang
– sequence: 3
  givenname: Federico
  surname: Pacheco
  fullname: Pacheco, Federico
– sequence: 4
  givenname: Eric
  surname: Litwiller
  fullname: Litwiller, Eric
– sequence: 5
  givenname: Zhiping
  surname: Lai
  fullname: Lai, Zhiping
– sequence: 6
  givenname: Ingo
  surname: Pinnau
  fullname: Pinnau, Ingo
  email: ingo.pinnau@kaust.edu.sa
BookMark eNqFkU9v1DAQxS3USmz_fAMOOXJJ8Ni7scMBCVWUIlXiQs-W40y6s8R2sNOi7ZkPjsty6qErH2yNfvNm_N4ZOwkxIGPvgDfAof2wazz67KgRHNYNQMOlfsNWoJWsJQh5wlZcqrZWUuu37CznHeeguO5W7M8N3W_rGdMYk7fBYTXHaW89DVgtWwr1SJOvgw3RRT_HTAtWCR8xZaxi9qWQqzK8TzZgrlwMi6VA4b7a7ocU523syVVPGCdayoOKrn2Kky0qY7Ief8f0s9YX7HS0U8bL__c5u7v-8uPqpr79_vXb1efb2m24XmoYxOgAxTCoFnnHO3SqXXcObdeXCvAeut6q8mHgum9Fa7lDp3vcaIF87OQ5e3_QnVP89YB5MZ6yw2kqy8eHbERxU2qpN3AUBbUBAVIU_CjaKtUpKKegHw-oSzHnhKNxtNiFim3J0mSAm-dAzc4cAjXPgRoAw__NWb9onhN5m_bH2j4d2rA4-0iYTCGwJD1QQreYIdLrAn8BWm3CXw
CitedBy_id crossref_primary_10_1039_D4NR00174E
crossref_primary_10_1007_s40726_019_00121_8
crossref_primary_10_1002_cssc_202100335
crossref_primary_10_1016_j_memsci_2016_10_014
crossref_primary_10_5004_dwt_2018_21423
crossref_primary_10_1021_acsami_9b01237
crossref_primary_10_1016_j_memsci_2018_10_015
crossref_primary_10_1016_j_memsci_2022_120583
crossref_primary_10_1039_C7DT00197E
crossref_primary_10_1016_j_memsci_2018_10_013
crossref_primary_10_1039_C6TA05175H
crossref_primary_10_1039_C7RA13562A
crossref_primary_10_1016_j_cjche_2020_05_030
crossref_primary_10_1039_C7EW00420F
crossref_primary_10_1016_j_memsci_2021_119765
crossref_primary_10_1126_sciadv_adf6122
crossref_primary_10_1002_adsu_202000279
crossref_primary_10_1039_C6RA17522H
crossref_primary_10_1021_acsapm_2c00843
crossref_primary_10_1016_j_memsci_2020_118039
crossref_primary_10_1016_j_memsci_2020_118952
crossref_primary_10_1016_j_rinma_2021_100234
crossref_primary_10_1016_j_progpolymsci_2016_06_004
crossref_primary_10_1021_acs_iecr_9b00029
crossref_primary_10_1016_j_ijbiomac_2023_127989
crossref_primary_10_1016_j_jece_2023_110444
crossref_primary_10_1021_acs_langmuir_4c02986
crossref_primary_10_1016_j_memsci_2018_06_040
crossref_primary_10_1021_acsami_9b01923
crossref_primary_10_1007_s43832_024_00119_4
crossref_primary_10_3390_w15081572
crossref_primary_10_1016_j_desal_2021_115338
crossref_primary_10_1016_j_jece_2017_09_004
crossref_primary_10_1016_j_memsci_2021_119095
crossref_primary_10_1021_acs_iecr_0c02327
crossref_primary_10_1002_app_48672
crossref_primary_10_1016_j_checat_2023_100692
crossref_primary_10_1016_j_colsurfa_2020_125971
crossref_primary_10_1016_j_desal_2022_116166
crossref_primary_10_1016_j_nxsust_2024_100097
crossref_primary_10_1016_j_jece_2018_08_034
crossref_primary_10_1038_natrevmats_2016_78
crossref_primary_10_1016_j_memsci_2020_119017
crossref_primary_10_1016_j_apmt_2017_04_002
crossref_primary_10_1016_j_cej_2023_143982
crossref_primary_10_1016_j_jcis_2020_11_092
crossref_primary_10_1016_j_memsci_2016_07_053
crossref_primary_10_1016_j_matchemphys_2018_06_022
crossref_primary_10_1016_j_memsci_2020_118045
crossref_primary_10_1016_j_jcis_2017_09_062
crossref_primary_10_1016_j_memsci_2017_04_043
crossref_primary_10_1016_j_carbpol_2020_116693
crossref_primary_10_1016_j_seppur_2020_116947
crossref_primary_10_1016_j_desal_2022_115729
crossref_primary_10_1002_ente_201600703
crossref_primary_10_1038_s41565_020_00833_9
crossref_primary_10_1021_acsanm_0c01860
crossref_primary_10_1039_C5RA17221G
crossref_primary_10_1016_j_memsci_2016_07_052
crossref_primary_10_1021_acs_iecr_0c03648
crossref_primary_10_1021_acs_jpcc_7b11497
crossref_primary_10_1039_D3CP02075D
crossref_primary_10_3390_membranes12070639
crossref_primary_10_1021_acsami_8b19121
crossref_primary_10_1016_j_jece_2024_113553
crossref_primary_10_1016_j_jiec_2019_04_057
crossref_primary_10_1007_s10311_019_00933_6
crossref_primary_10_1039_D4TA00578C
crossref_primary_10_1016_j_memsci_2024_122418
crossref_primary_10_1021_acsami_0c10301
crossref_primary_10_1016_j_jiec_2019_01_039
crossref_primary_10_1021_acsami_6b01626
crossref_primary_10_1007_s10971_020_05238_7
crossref_primary_10_1016_j_cej_2022_140447
crossref_primary_10_1016_j_cjche_2022_01_027
crossref_primary_10_1039_C7CS00575J
crossref_primary_10_5004_dwt_2019_23703
crossref_primary_10_1016_j_memsci_2019_117398
crossref_primary_10_1002_tcr_202300189
crossref_primary_10_1002_jctb_6963
crossref_primary_10_1016_j_desal_2016_02_009
crossref_primary_10_1016_j_desal_2020_114569
crossref_primary_10_1016_j_memsci_2020_118605
crossref_primary_10_1016_j_memsci_2019_04_016
crossref_primary_10_2139_ssrn_4076113
crossref_primary_10_5004_dwt_2019_23708
crossref_primary_10_1016_j_desal_2023_116566
crossref_primary_10_1038_s41565_020_00796_x
crossref_primary_10_1016_j_memsci_2017_07_033
crossref_primary_10_1016_j_progpolymsci_2016_03_003
crossref_primary_10_1039_C6RA16896E
crossref_primary_10_3390_membranes10080163
crossref_primary_10_1007_s10311_018_0717_8
crossref_primary_10_1016_j_surfin_2023_103607
crossref_primary_10_1016_j_memsci_2022_120269
crossref_primary_10_1016_j_jhazmat_2018_12_096
crossref_primary_10_1016_j_heliyon_2024_e33957
crossref_primary_10_1016_j_memsci_2023_122177
crossref_primary_10_1039_C5RA06185G
crossref_primary_10_1016_j_desal_2017_10_018
crossref_primary_10_1016_j_desal_2023_116598
crossref_primary_10_1007_s00604_018_2904_5
crossref_primary_10_1016_j_colsurfa_2019_03_093
crossref_primary_10_1016_j_memsci_2016_11_015
crossref_primary_10_5004_dwt_2021_26729
crossref_primary_10_1039_D3EN00835E
crossref_primary_10_1016_j_memsci_2015_10_061
crossref_primary_10_1039_D1TA06205K
crossref_primary_10_1007_s42247_021_00336_w
crossref_primary_10_1016_j_memsci_2022_120253
crossref_primary_10_1016_j_seppur_2020_116995
crossref_primary_10_1088_1361_6528_aa9773
crossref_primary_10_1016_j_desal_2018_01_037
crossref_primary_10_1016_j_desal_2020_114740
crossref_primary_10_1016_j_jece_2023_109415
crossref_primary_10_1016_j_memsci_2018_03_025
crossref_primary_10_1016_j_desal_2019_02_008
crossref_primary_10_3390_polym14051023
crossref_primary_10_1016_j_cjche_2021_05_002
crossref_primary_10_1016_j_desal_2020_114867
crossref_primary_10_1039_D4YA00332B
crossref_primary_10_1016_j_seppur_2023_124435
crossref_primary_10_1016_j_seppur_2023_123469
crossref_primary_10_1016_j_jtice_2017_11_033
crossref_primary_10_1016_j_matpr_2021_02_245
crossref_primary_10_1016_j_memsci_2018_12_081
crossref_primary_10_3390_app8050759
crossref_primary_10_1016_j_memsci_2020_117830
crossref_primary_10_1021_acsanm_4c03368
crossref_primary_10_1016_j_compchemeng_2022_107709
crossref_primary_10_1016_j_jcis_2021_01_004
crossref_primary_10_1016_j_memsci_2020_118002
crossref_primary_10_1016_j_desal_2022_116184
crossref_primary_10_1039_D2CS00031H
crossref_primary_10_1016_j_energy_2015_09_003
crossref_primary_10_1002_adv_22145
crossref_primary_10_1021_acs_est_0c07122
crossref_primary_10_3389_fchem_2020_00224
crossref_primary_10_1007_s13726_019_00732_4
crossref_primary_10_1016_j_memsci_2018_11_075
crossref_primary_10_1016_j_cis_2021_102524
crossref_primary_10_1016_j_memsci_2019_02_072
crossref_primary_10_1016_j_matlet_2019_126626
crossref_primary_10_1016_j_jssc_2019_04_034
crossref_primary_10_1007_s42114_024_00923_5
crossref_primary_10_1039_C9CS00829B
crossref_primary_10_1016_j_memsci_2021_119863
crossref_primary_10_1016_j_memsci_2020_118911
crossref_primary_10_1002_app_49030
crossref_primary_10_1016_j_desal_2019_06_018
crossref_primary_10_1021_acs_iecr_1c00543
crossref_primary_10_5004_dwt_2021_26704
crossref_primary_10_1002_advs_202101882
crossref_primary_10_1016_j_desal_2023_116370
crossref_primary_10_1016_j_memsci_2020_118135
crossref_primary_10_1016_j_seppur_2019_05_018
crossref_primary_10_1007_s10118_019_2328_7
crossref_primary_10_1016_j_memsci_2020_118496
crossref_primary_10_1016_j_desal_2020_114408
crossref_primary_10_2139_ssrn_3972012
crossref_primary_10_1016_j_desal_2015_09_027
crossref_primary_10_1007_s11998_023_00848_6
crossref_primary_10_1007_s10971_021_05703_x
crossref_primary_10_1016_j_desal_2017_07_002
crossref_primary_10_1016_j_jwpe_2022_102634
crossref_primary_10_1016_j_memsci_2018_08_016
crossref_primary_10_1016_j_molliq_2016_09_059
crossref_primary_10_1016_j_memsci_2018_08_015
crossref_primary_10_1016_j_desal_2020_114649
crossref_primary_10_1016_j_memsci_2019_117518
crossref_primary_10_1021_acsapm_0c01171
crossref_primary_10_1016_j_memsci_2018_05_070
crossref_primary_10_3390_polym14194246
crossref_primary_10_1016_j_polymer_2022_124988
crossref_primary_10_1002_app_50808
crossref_primary_10_1002_app_47519
crossref_primary_10_1016_j_memsci_2023_122403
crossref_primary_10_1007_s10904_024_03063_x
crossref_primary_10_1016_j_cej_2016_04_033
crossref_primary_10_1016_j_memsci_2019_117565
crossref_primary_10_1021_acs_langmuir_5b03593
crossref_primary_10_3390_membranes9090111
crossref_primary_10_1016_j_molliq_2020_115209
crossref_primary_10_1021_acsami_0c22124
crossref_primary_10_5004_dwt_2021_26489
crossref_primary_10_1016_j_jwpe_2024_106171
crossref_primary_10_1002_adma_201802401
crossref_primary_10_1016_j_marpolbul_2024_116752
crossref_primary_10_1016_j_chemosphere_2019_06_008
crossref_primary_10_1016_j_jallcom_2025_178578
crossref_primary_10_1016_j_memsci_2016_04_026
crossref_primary_10_1016_j_cjche_2017_03_006
crossref_primary_10_1039_C8TA01200H
crossref_primary_10_1016_j_ces_2020_115845
crossref_primary_10_3390_w12113030
crossref_primary_10_1016_j_memsci_2020_118433
crossref_primary_10_1016_j_desal_2021_115181
crossref_primary_10_1016_j_memsci_2021_119805
crossref_primary_10_1039_D1GC00236H
crossref_primary_10_1016_j_desal_2024_118190
crossref_primary_10_3390_molecules26113392
crossref_primary_10_1016_j_memsci_2022_120612
crossref_primary_10_1016_j_desal_2016_05_017
crossref_primary_10_1021_acsami_5b07128
crossref_primary_10_1039_C6CC07329H
crossref_primary_10_1016_j_memsci_2016_12_039
crossref_primary_10_1016_j_memsci_2017_06_027
crossref_primary_10_1016_j_memsci_2015_09_016
crossref_primary_10_1039_D3EW00852E
crossref_primary_10_3389_fchem_2022_781372
crossref_primary_10_1016_j_memsci_2015_10_029
crossref_primary_10_3390_ma12223803
crossref_primary_10_1016_j_memsci_2019_03_042
crossref_primary_10_1016_j_chemosphere_2020_125956
crossref_primary_10_1016_j_cherd_2020_10_003
crossref_primary_10_1016_j_pmatsci_2017_10_006
crossref_primary_10_1016_j_jcis_2016_09_035
crossref_primary_10_1016_j_colsurfa_2021_127492
crossref_primary_10_1002_admi_202000251
crossref_primary_10_1016_j_jiec_2021_03_013
crossref_primary_10_14579_MEMBRANE_JOURNAL_2023_33_6_427
crossref_primary_10_1016_j_seppur_2022_121134
crossref_primary_10_3390_ma9110870
crossref_primary_10_1016_j_memsci_2022_120609
crossref_primary_10_1016_j_memsci_2018_01_034
crossref_primary_10_1016_j_seppur_2021_118567
crossref_primary_10_1016_j_memsci_2022_121133
crossref_primary_10_1088_2053_1591_aac920
crossref_primary_10_1016_j_jece_2023_111468
crossref_primary_10_1038_s41598_019_42235_5
crossref_primary_10_1016_j_watres_2020_115557
crossref_primary_10_1021_acsomega_8b01808
crossref_primary_10_1016_j_scitotenv_2022_156231
crossref_primary_10_1016_j_seppur_2018_06_057
crossref_primary_10_1007_s10965_016_1063_9
crossref_primary_10_1016_j_jiec_2022_05_028
crossref_primary_10_1016_j_memsci_2016_09_065
crossref_primary_10_1021_acs_chemmater_0c00851
crossref_primary_10_1038_s41428_022_00668_2
crossref_primary_10_3390_membranes8030066
crossref_primary_10_1002_admi_201901482
crossref_primary_10_1016_j_scitotenv_2021_149662
crossref_primary_10_1016_j_memsci_2020_118333
crossref_primary_10_2166_wst_2017_349
crossref_primary_10_1002_smll_201801563
crossref_primary_10_1016_j_cclet_2023_109022
crossref_primary_10_1016_j_memsci_2022_120952
crossref_primary_10_3390_membranes6010017
crossref_primary_10_1016_j_desal_2015_11_009
crossref_primary_10_1016_j_watres_2019_01_043
crossref_primary_10_1021_acsami_7b17477
crossref_primary_10_1016_j_memsci_2017_06_047
crossref_primary_10_1021_acs_chemmater_0c03692
crossref_primary_10_1016_j_seppur_2024_130031
crossref_primary_10_1016_j_cej_2021_129080
crossref_primary_10_1016_j_desal_2024_118407
crossref_primary_10_1021_acsami_6b14412
crossref_primary_10_1016_j_memsci_2020_118209
crossref_primary_10_1016_j_memsci_2021_119158
crossref_primary_10_1016_j_memsci_2020_118449
crossref_primary_10_1016_j_memsci_2022_120308
crossref_primary_10_1016_j_jece_2025_116215
crossref_primary_10_1016_j_seppur_2021_118383
crossref_primary_10_1016_j_desal_2023_116880
crossref_primary_10_5004_dwt_2020_25813
crossref_primary_10_1016_j_cjche_2019_04_004
crossref_primary_10_1016_j_memsci_2019_117482
crossref_primary_10_1016_j_desal_2018_12_016
crossref_primary_10_1016_j_memsci_2017_03_014
crossref_primary_10_1016_j_memsci_2017_05_026
crossref_primary_10_1016_j_memsci_2018_05_029
crossref_primary_10_1016_j_memsci_2018_01_015
crossref_primary_10_1016_j_memsci_2019_117249
crossref_primary_10_1016_j_memsci_2021_119680
crossref_primary_10_1039_C6RA09080J
crossref_primary_10_1021_acsami_3c12756
crossref_primary_10_1021_acs_iecr_9b04810
crossref_primary_10_1039_D0CS01599G
crossref_primary_10_1016_j_jece_2021_105722
crossref_primary_10_1002_aic_16970
crossref_primary_10_1039_C8TA01232F
crossref_primary_10_1039_D1CP05571B
crossref_primary_10_3390_membranes13050477
crossref_primary_10_1016_j_desal_2016_04_028
crossref_primary_10_1016_j_desal_2022_116235
crossref_primary_10_1016_j_desal_2020_114697
crossref_primary_10_1016_j_memsci_2021_119327
crossref_primary_10_1016_j_coche_2018_01_001
crossref_primary_10_1016_j_watres_2023_120774
crossref_primary_10_1002_adma_202202504
crossref_primary_10_1002_admt_202000862
crossref_primary_10_1021_acsami_6b08801
crossref_primary_10_1016_j_memsci_2018_01_023
crossref_primary_10_1002_adfm_202304790
crossref_primary_10_1007_s11270_019_4203_0
crossref_primary_10_1016_j_jiec_2017_09_053
crossref_primary_10_1016_j_jece_2025_115814
crossref_primary_10_1016_j_apsusc_2022_156181
crossref_primary_10_1016_j_memsci_2023_121494
crossref_primary_10_1016_j_seppur_2021_118719
crossref_primary_10_1016_j_desal_2022_115953
crossref_primary_10_1039_C9EW00201D
crossref_primary_10_1088_1757_899X_773_1_012007
crossref_primary_10_1016_j_desal_2020_114461
crossref_primary_10_1021_acsami_7b07373
crossref_primary_10_1016_j_desal_2017_06_020
crossref_primary_10_1039_C7TA00492C
crossref_primary_10_1016_j_desal_2023_116509
crossref_primary_10_1016_j_jwpe_2020_101806
crossref_primary_10_1021_acsami_9b11006
crossref_primary_10_1016_j_chemosphere_2022_136682
crossref_primary_10_1021_acs_iecr_0c05191
crossref_primary_10_1021_acs_iecr_3c03521
crossref_primary_10_1016_j_desal_2015_06_002
crossref_primary_10_1002_asia_202401544
crossref_primary_10_1021_acs_iecr_1c01919
crossref_primary_10_1088_2053_1591_aa5a84
crossref_primary_10_1016_j_ces_2015_12_029
crossref_primary_10_1007_s10853_025_10659_2
crossref_primary_10_1016_j_cherd_2020_08_001
crossref_primary_10_1016_j_memsci_2019_117468
crossref_primary_10_1016_j_matlet_2020_128292
crossref_primary_10_1016_j_memsci_2019_117227
crossref_primary_10_1039_C7CS00041C
crossref_primary_10_1016_j_memsci_2016_08_069
crossref_primary_10_1021_acsami_0c21571
crossref_primary_10_1016_j_memsci_2021_119586
crossref_primary_10_1016_j_desal_2023_116650
crossref_primary_10_1016_j_seppur_2024_129818
crossref_primary_10_3390_membranes9070088
crossref_primary_10_1016_j_memsci_2021_119106
crossref_primary_10_1016_j_desal_2019_04_006
crossref_primary_10_1021_acsami_7b05504
crossref_primary_10_1016_j_mtener_2021_100856
crossref_primary_10_1016_j_memsci_2020_118412
crossref_primary_10_1016_j_memsci_2022_120637
crossref_primary_10_1021_acsami_1c08138
crossref_primary_10_1016_j_cherd_2021_12_031
crossref_primary_10_1016_j_desal_2017_05_011
crossref_primary_10_1016_j_jwpe_2019_101031
crossref_primary_10_1039_D1TA09371A
crossref_primary_10_1016_j_compositesb_2018_12_034
crossref_primary_10_1016_j_seppur_2019_116258
crossref_primary_10_1016_j_desal_2019_114171
crossref_primary_10_1016_j_jiec_2018_05_032
crossref_primary_10_1016_j_memsci_2017_06_087
crossref_primary_10_1080_15422119_2017_1335214
crossref_primary_10_1016_j_cej_2023_145715
crossref_primary_10_1016_j_memsci_2015_12_031
crossref_primary_10_1016_j_mtsust_2024_100734
crossref_primary_10_1016_j_apsusc_2021_151093
crossref_primary_10_1016_j_memsci_2023_122320
crossref_primary_10_1016_j_seppur_2017_01_061
crossref_primary_10_1016_j_jtice_2020_06_014
crossref_primary_10_1016_j_memsci_2019_117474
crossref_primary_10_1016_j_gee_2022_03_005
crossref_primary_10_1039_C7RA11358G
crossref_primary_10_1016_j_memsci_2021_119354
crossref_primary_10_1016_j_memsci_2021_119356
crossref_primary_10_1016_j_seppur_2019_116265
crossref_primary_10_1021_acsanm_0c02004
crossref_primary_10_1016_j_memsci_2020_118887
Cites_doi 10.1016/j.memsci.2010.04.032
10.1016/j.desal.2007.06.003
10.1016/j.memsci.2011.01.041
10.1252/jcej.33.333
10.1038/35102535
10.1039/c0ee00541j
10.5004/dwt.2011.2801
10.1016/j.memsci.2013.09.014
10.1016/0376-7388(93)80014-O
10.1039/c3ra40960k
10.1016/j.memsci.2008.12.014
10.1016/j.memsci.2014.09.022
10.1039/c3cc39116g
10.1016/S0011-9164(98)00122-2
10.1002/smll.201303945
10.1016/0376-7388(94)80006-5
10.1038/nchem.1272
10.1016/j.memsci.2011.10.003
10.1002/adma.200903867
10.1039/c3ta12199b
10.1021/ja01269a023
10.1039/c0cc05002d
10.1021/la900938x
10.1021/ie071645b
10.1016/j.memsci.2007.02.025
10.1021/la0344682
10.1039/c2jm31941a
10.1016/j.memsci.2009.11.063
10.1016/j.memsci.2012.08.020
10.1039/C4RA06489E
10.1016/j.memsci.2012.02.038
10.1002/pat.918
10.1016/j.micromeso.2008.11.020
10.1016/j.memsci.2006.03.012
10.1021/la402895h
10.1063/1.3573902
10.1016/j.memsci.2014.07.018
10.1016/j.memsci.2010.12.023
10.1126/science.1200488
10.1021/ja407665w
10.1021/nn4011494
10.1016/j.memsci.2011.08.055
10.1021/la020920q
10.1126/science.1126298
10.1021/ar900116g
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7SR
7U5
8FD
JG9
L7M
7QH
7UA
C1K
F1W
H97
L.G
7S9
L.6
DOI 10.1016/j.memsci.2014.11.038
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Materials Research Database

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3123
EndPage 310
ExternalDocumentID 10_1016_j_memsci_2014_11_038
S0376738814008825
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
7SR
7U5
8FD
EFKBS
JG9
L7M
7QH
7UA
C1K
F1W
H97
L.G
7S9
L.6
ID FETCH-LOGICAL-c508t-1d2fc1e2dd76e0909ec7649cea9b76e10b19ba7123108b626a0cec8be582e0f93
IEDL.DBID .~1
ISSN 0376-7388
IngestDate Fri Jul 11 16:13:35 EDT 2025
Mon Jul 21 11:49:28 EDT 2025
Mon Jul 21 10:27:34 EDT 2025
Tue Jul 01 02:49:05 EDT 2025
Thu Apr 24 22:58:26 EDT 2025
Fri Feb 23 02:22:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Interfacial polymerization
Reverse osmosis
Thin-film-nanocomposite
ZIF-8
Nanotechnology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-1d2fc1e2dd76e0909ec7649cea9b76e10b19ba7123108b626a0cec8be582e0f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1677971717
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_2101383851
proquest_miscellaneous_1751213238
proquest_miscellaneous_1677971717
crossref_citationtrail_10_1016_j_memsci_2014_11_038
crossref_primary_10_1016_j_memsci_2014_11_038
elsevier_sciencedirect_doi_10_1016_j_memsci_2014_11_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-15
PublicationDateYYYYMMDD 2015-02-15
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of membrane science
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zou, Vidalis, Steele, Michelmore, Low, Verberk (bib51) 2011; 369
Kusgens, Rose, Senkovska, Frode, Henschel, Siegle, Kaskel (bib32) 2009; 120
Kim, Deng (bib18) 2011; 375
Lind, Ghosh, Jawor, Huang, Hou, Yang, Hoek (bib11) 2009; 25
Jeong, Hoek, Yan, Subramani, Huang, Hurwitz, Ghosh, Jawor (bib10) 2007; 294
Lu, Li, Guo, Farha, Hauser, Qi, Wang, Wang, Han, Liu, DuChene, Zhang, Zhang, Chen, Ma, Loo, Wei, Yang, Hupp, Huo (bib39) 2012; 4
Zhang, Shi, Qiu, Cheng, Chen (bib43) 2011; 34
Zhao, Chang, Yen, Ho (bib8) 2013; 425
Kim, Baek, Choi, Kim, Kang, Choi, Yoon, Lee (bib29) 2014; 4
Zhang, Dai, Johnson, Karvan, Koros (bib44) 2012; 389
Dalwani, Zheng, Hempenius, Raaijmakers, Doherty, Hill, Wessling, Benes (bib24) 2012; 22
Liu, Yu, Zhou, Gao (bib7) 2006; 281
Marmur (bib45) 2003; 19
Turgman-Cohen, Araque, Hoek, Escobedo (bib19) 2013; 29
Lee, Kim, Patel, Im, Kim, Min (bib13) 2007; 18
Hu, Chen, Jiang (bib34) 2011; 134
Duan, Litwiller, Pinnau (bib38) 2014; 470
Brunauer, Emmett, Teller (bib40) 1938; 60
Hummer, Rasaiah, Noworyta (bib30) 2001; 414
Holt, Park, Wang, Stadermann, Artyukhin, Grigoropoulos, Noy, Bakajin (bib31) 2006; 312
Phan, Doonan, Uribe-Romo, Knobler, O׳Keeffe, Yaghi (bib33) 2010; 43
J.E. Cadotte, Interfacially synthesized reverse osmosis membrane, US Patent 4277344 1981.
Glater (bib2) 1998; 117
Pacheco, Pinnau, Reinhard, Leckie (bib37) 2010; 358
Kumakiri, Yamaguchi, Nakao (bib20) 2000; 33
T.V. Ratto, J.K. Holt, A.W. Szmodis, Membranes with embedded nanotubes for selective permeability, US Patent 7993524 2011.
Lee, Kim, Cho, Park (bib28) 2014; 10
Xie, Geise, Freeman, Lee, Byun, McGrath (bib49) 2012; 403
Huang, Qu, Dong, Zhang, Chen (bib12) 2013; 3
Chan, Chen, Surapathi, Taylor, Shao, Marand, Johnson (bib26) 2013; 7
Yin, Kim, Yang, Deng (bib50) 2012; 423
Duan, Litwiller, Pinnau (bib23) 2015; 473
Lee, Im, Kim, Kim, Kim, Min (bib14) 2008; 219
Elimelech, Phillip (bib1) 2011; 333
Hurwitz, Guillen, Hoek (bib46) 2010; 349
Pan, Liu, Zeng, Zhao, Lai (bib36) 2011; 47
Pendergast, Hoek (bib9) 2011; 4
C.J. Kurth, J.A. Koehler, B.A. Holmberg, R.L. Burk, Hybrid nanoparticle TFC membranes, US Patent application 2012/0261344 A1 2012.
Ameloot, Gobechiya, Uji-i, Martens, Hofkens, Alaerts, Sels, De Vos (bib41) 2010; 22
Kong, Shintani, Kamada, Freger, Tsuru (bib6) 2011; 384
Zhang, Lively, Dose, Brown, Zhang, Chung, Nair, Koros, Chance (bib42) 2013; 49
Sorribas, Gorgojo, Tellez, Coronas, Livingston (bib35) 2013; 135
Freger (bib48) 2003; 19
Petersen (bib5) 1993; 83
Pera-Titus, Fite, Sebastian, Lorente, Llorens, Cunill (bib21) 2008; 47
Huang, Qu, Ji, Gao, Zhang, Chen, Hou (bib22) 2013; 1
International Desalination Association (bib3) 2011
Jadav, Singh (bib15) 2009; 328
Chai, Krantz (bib47) 1994; 93
Y.H. Na, R. Sooriyakumaran, A. Vora, J. Diep, Thin film composite membranes embedded with molecular cage compounds, US patent application US20130001153 A1 2011.
Zhao, Qiu, Wu, Zhang, Chen, Gao (bib27) 2014; 450
Pendergast (10.1016/j.memsci.2014.11.038_bib9) 2011; 4
Zhao (10.1016/j.memsci.2014.11.038_bib8) 2013; 425
Pera-Titus (10.1016/j.memsci.2014.11.038_bib21) 2008; 47
Kong (10.1016/j.memsci.2014.11.038_bib6) 2011; 384
Kim (10.1016/j.memsci.2014.11.038_bib18) 2011; 375
Dalwani (10.1016/j.memsci.2014.11.038_bib24) 2012; 22
Ameloot (10.1016/j.memsci.2014.11.038_bib41) 2010; 22
Freger (10.1016/j.memsci.2014.11.038_bib48) 2003; 19
Turgman-Cohen (10.1016/j.memsci.2014.11.038_bib19) 2013; 29
Hummer (10.1016/j.memsci.2014.11.038_bib30) 2001; 414
Zhang (10.1016/j.memsci.2014.11.038_bib42) 2013; 49
Elimelech (10.1016/j.memsci.2014.11.038_bib1) 2011; 333
Lu (10.1016/j.memsci.2014.11.038_bib39) 2012; 4
Pacheco (10.1016/j.memsci.2014.11.038_bib37) 2010; 358
Duan (10.1016/j.memsci.2014.11.038_bib23) 2015; 473
Petersen (10.1016/j.memsci.2014.11.038_bib5) 1993; 83
Hu (10.1016/j.memsci.2014.11.038_bib34) 2011; 134
10.1016/j.memsci.2014.11.038_bib25
Zou (10.1016/j.memsci.2014.11.038_bib51) 2011; 369
Marmur (10.1016/j.memsci.2014.11.038_bib45) 2003; 19
Jeong (10.1016/j.memsci.2014.11.038_bib10) 2007; 294
Jadav (10.1016/j.memsci.2014.11.038_bib15) 2009; 328
Phan (10.1016/j.memsci.2014.11.038_bib33) 2010; 43
Huang (10.1016/j.memsci.2014.11.038_bib22) 2013; 1
Lee (10.1016/j.memsci.2014.11.038_bib13) 2007; 18
Zhao (10.1016/j.memsci.2014.11.038_bib27) 2014; 450
Pan (10.1016/j.memsci.2014.11.038_bib36) 2011; 47
Lee (10.1016/j.memsci.2014.11.038_bib14) 2008; 219
10.1016/j.memsci.2014.11.038_bib4
10.1016/j.memsci.2014.11.038_bib16
Chan (10.1016/j.memsci.2014.11.038_bib26) 2013; 7
10.1016/j.memsci.2014.11.038_bib17
Hurwitz (10.1016/j.memsci.2014.11.038_bib46) 2010; 349
Chai (10.1016/j.memsci.2014.11.038_bib47) 1994; 93
Xie (10.1016/j.memsci.2014.11.038_bib49) 2012; 403
Holt (10.1016/j.memsci.2014.11.038_bib31) 2006; 312
Duan (10.1016/j.memsci.2014.11.038_bib38) 2014; 470
Zhang (10.1016/j.memsci.2014.11.038_bib43) 2011; 34
International Desalination Association (10.1016/j.memsci.2014.11.038_bib3) 2011
Zhang (10.1016/j.memsci.2014.11.038_bib44) 2012; 389
Kumakiri (10.1016/j.memsci.2014.11.038_bib20) 2000; 33
Yin (10.1016/j.memsci.2014.11.038_bib50) 2012; 423
Brunauer (10.1016/j.memsci.2014.11.038_bib40) 1938; 60
Glater (10.1016/j.memsci.2014.11.038_bib2) 1998; 117
Sorribas (10.1016/j.memsci.2014.11.038_bib35) 2013; 135
Liu (10.1016/j.memsci.2014.11.038_bib7) 2006; 281
Huang (10.1016/j.memsci.2014.11.038_bib12) 2013; 3
Kim (10.1016/j.memsci.2014.11.038_bib29) 2014; 4
Kusgens (10.1016/j.memsci.2014.11.038_bib32) 2009; 120
Lee (10.1016/j.memsci.2014.11.038_bib28) 2014; 10
Lind (10.1016/j.memsci.2014.11.038_bib11) 2009; 25
References_xml – volume: 450
  start-page: 249
  year: 2014
  end-page: 256
  ident: bib27
  article-title: Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes
  publication-title: J. Membr. Sci.
– volume: 219
  start-page: 48
  year: 2008
  end-page: 56
  ident: bib14
  article-title: Polyamide thin-film nanofiltration membranes containing TiO
  publication-title: Desalination
– reference: T.V. Ratto, J.K. Holt, A.W. Szmodis, Membranes with embedded nanotubes for selective permeability, US Patent 7993524 2011.
– volume: 389
  start-page: 34
  year: 2012
  end-page: 42
  ident: bib44
  article-title: High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations
  publication-title: J. Membr. Sci.
– volume: 375
  start-page: 46
  year: 2011
  end-page: 54
  ident: bib18
  article-title: Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications
  publication-title: J. Membr. Sci.
– volume: 47
  start-page: 2071
  year: 2011
  end-page: 2073
  ident: bib36
  article-title: Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system
  publication-title: Chem. Commun.
– volume: 369
  start-page: 420
  year: 2011
  end-page: 428
  ident: bib51
  article-title: Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling
  publication-title: J. Membr. Sci.
– volume: 33
  start-page: 333
  year: 2000
  end-page: 336
  ident: bib20
  article-title: Application of a zeolite A membrane to reverse osmosis process
  publication-title: J. Chem. Eng. Jpn.
– volume: 19
  start-page: 8343
  year: 2003
  end-page: 8348
  ident: bib45
  article-title: Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?
  publication-title: Langmuir
– year: 2011
  ident: bib3
  article-title: IDA Desalination Yearbook 2011–2012
– volume: 4
  start-page: 1946
  year: 2011
  end-page: 1971
  ident: bib9
  article-title: A review of water treatment membrane nanotechnologies
  publication-title: Energy Environ. Sci.
– volume: 384
  start-page: 10
  year: 2011
  end-page: 16
  ident: bib6
  article-title: Co-solvent-mediated synthesis of thin polyamide membranes
  publication-title: J. Membr. Sci.
– volume: 29
  start-page: 12389
  year: 2013
  end-page: 12399
  ident: bib19
  article-title: Molecular dynamics of equilibrium and pressure-driven transport properties of water through LTA-type zeolites
  publication-title: Langmuir
– reference: J.E. Cadotte, Interfacially synthesized reverse osmosis membrane, US Patent 4277344 1981.
– volume: 312
  start-page: 1034
  year: 2006
  end-page: 1037
  ident: bib31
  article-title: Fast mass transport through sub-2-nanometer carbon nanotubes
  publication-title: Science
– volume: 120
  start-page: 325
  year: 2009
  end-page: 330
  ident: bib32
  article-title: Characterization of metal-organic frameworks by water adsorption
  publication-title: Microporous Mesoporous Mater.
– volume: 358
  start-page: 51
  year: 2010
  end-page: 59
  ident: bib37
  article-title: Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques
  publication-title: J. Membr. Sci.
– reference: Y.H. Na, R. Sooriyakumaran, A. Vora, J. Diep, Thin film composite membranes embedded with molecular cage compounds, US patent application US20130001153 A1 2011.
– volume: 328
  start-page: 257
  year: 2009
  end-page: 267
  ident: bib15
  article-title: Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties
  publication-title: J. Membr. Sci.
– volume: 10
  start-page: 2653
  year: 2014
  end-page: 2660
  ident: bib28
  article-title: Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes
  publication-title: Small
– volume: 7
  start-page: 5308
  year: 2013
  end-page: 5319
  ident: bib26
  article-title: Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination
  publication-title: Acs Nano
– volume: 22
  start-page: 2685
  year: 2010
  end-page: 2688
  ident: bib41
  article-title: Direct patterning of oriented metal-organic framework crystals via control over crystallization kinetics in clear precursor solutions
  publication-title: Adv. Mater.
– volume: 93
  start-page: 175
  year: 1994
  end-page: 192
  ident: bib47
  article-title: Formation and characterization of polyamide membranes via interfacial polymerization
  publication-title: J. Membr. Sci.
– volume: 403
  start-page: 152
  year: 2012
  end-page: 161
  ident: bib49
  article-title: Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine
  publication-title: J. Membr. Sci.
– volume: 349
  start-page: 349
  year: 2010
  end-page: 357
  ident: bib46
  article-title: Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements
  publication-title: J. Membr. Sci.
– volume: 18
  start-page: 562
  year: 2007
  end-page: 568
  ident: bib13
  article-title: Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties
  publication-title: Polym. Adv. Technol.
– volume: 294
  start-page: 1
  year: 2007
  end-page: 7
  ident: bib10
  article-title: Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes
  publication-title: J. Membr. Sci.
– volume: 25
  start-page: 10139
  year: 2009
  end-page: 10145
  ident: bib11
  article-title: Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes
  publication-title: Langmuir
– volume: 49
  start-page: 3245
  year: 2013
  end-page: 3247
  ident: bib42
  article-title: Alcohol and water adsorption in zeolitic imidazolate frameworks
  publication-title: Chem. Commun.
– volume: 43
  start-page: 58
  year: 2010
  end-page: 67
  ident: bib33
  article-title: Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks
  publication-title: Acc. Chem. Res.
– volume: 117
  start-page: 297
  year: 1998
  end-page: 309
  ident: bib2
  article-title: The early history of reverse osmosis membrane development
  publication-title: Desalination
– volume: 4
  start-page: 310
  year: 2012
  end-page: 316
  ident: bib39
  article-title: Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation
  publication-title: Nat. Chem.
– volume: 423
  start-page: 238
  year: 2012
  end-page: 246
  ident: bib50
  article-title: Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification
  publication-title: J. Membr. Sci.
– volume: 47
  start-page: 3213
  year: 2008
  end-page: 3224
  ident: bib21
  article-title: Modeling pervaporation of ethanol/water mixtures within ‘Real’ zeolite NaA membranes
  publication-title: Ind. Eng. Chem. Res.
– volume: 22
  start-page: 14835
  year: 2012
  end-page: 14838
  ident: bib24
  article-title: Ultra-thin hybrid polyhedral silsesquioxane–polyamide films with potentially unlimited 2D dimensions
  publication-title: J. Mater. Chem.
– volume: 473
  start-page: 157
  year: 2015
  end-page: 164
  ident: bib23
  article-title: Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes
  publication-title: J. Membr. Sci.
– reference: C.J. Kurth, J.A. Koehler, B.A. Holmberg, R.L. Burk, Hybrid nanoparticle TFC membranes, US Patent application 2012/0261344 A1 2012.
– volume: 60
  start-page: 309
  year: 1938
  end-page: 319
  ident: bib40
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 15201
  year: 2013
  end-page: 15208
  ident: bib35
  article-title: High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 4791
  year: 2003
  end-page: 4797
  ident: bib48
  article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization
  publication-title: Langmuir
– volume: 34
  start-page: 19
  year: 2011
  end-page: 24
  ident: bib43
  article-title: Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes
  publication-title: Desalin. Water Treat.
– volume: 4
  start-page: 32802
  year: 2014
  end-page: 32810
  ident: bib29
  article-title: The improvement of antibiofouling properties of a reverse osmosis membrane by oxidized CNTs
  publication-title: RSC Adv.
– volume: 414
  start-page: 188
  year: 2001
  end-page: 190
  ident: bib30
  article-title: Water conduction through the hydrophobic channel of a carbon nanotube
  publication-title: Nature
– volume: 83
  start-page: 81
  year: 1993
  end-page: 150
  ident: bib5
  article-title: Composite reverse-osmosis and nanofiltration membranes
  publication-title: J. Membr. Sci.
– volume: 3
  start-page: 8203
  year: 2013
  end-page: 8207
  ident: bib12
  article-title: Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane
  publication-title: RSC Adv.
– volume: 333
  start-page: 712
  year: 2011
  end-page: 717
  ident: bib1
  article-title: The future of seawater desalination: energy, technology, and the environment
  publication-title: Science
– volume: 1
  start-page: 11343
  year: 2013
  end-page: 11349
  ident: bib22
  article-title: Acid and multivalent ion resistance of thin film nanocomposite RO membranes loaded with silicalite-1 nanozeolites
  publication-title: J. Mater. Chem. A
– volume: 281
  start-page: 88
  year: 2006
  end-page: 94
  ident: bib7
  article-title: Study on a novel polyamide-urea reverse osmosis composite membrane (ICIC-MPD) I. Preparation and characterization of ICIC-MPD membrane
  publication-title: J. Membr. Sci.
– volume: 134
  year: 2011
  ident: bib34
  article-title: Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: insight from molecular simulation
  publication-title: J. Chem. Phys.
– volume: 425
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib8
  article-title: High-flux and fouling-resistant membranes for brackish water desalination
  publication-title: J. Membr. Sci.
– volume: 470
  start-page: 323
  year: 2014
  end-page: 333
  ident: bib38
  article-title: Solution–diffusion with defects model for pressure-assisted forward osmosis
  publication-title: J. Membr. Sci.
– ident: 10.1016/j.memsci.2014.11.038_bib4
– volume: 358
  start-page: 51
  year: 2010
  ident: 10.1016/j.memsci.2014.11.038_bib37
  article-title: Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.04.032
– volume: 219
  start-page: 48
  year: 2008
  ident: 10.1016/j.memsci.2014.11.038_bib14
  article-title: Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles
  publication-title: Desalination
  doi: 10.1016/j.desal.2007.06.003
– ident: 10.1016/j.memsci.2014.11.038_bib16
– volume: 375
  start-page: 46
  year: 2011
  ident: 10.1016/j.memsci.2014.11.038_bib18
  article-title: Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.01.041
– volume: 33
  start-page: 333
  year: 2000
  ident: 10.1016/j.memsci.2014.11.038_bib20
  article-title: Application of a zeolite A membrane to reverse osmosis process
  publication-title: J. Chem. Eng. Jpn.
  doi: 10.1252/jcej.33.333
– volume: 414
  start-page: 188
  year: 2001
  ident: 10.1016/j.memsci.2014.11.038_bib30
  article-title: Water conduction through the hydrophobic channel of a carbon nanotube
  publication-title: Nature
  doi: 10.1038/35102535
– volume: 4
  start-page: 1946
  year: 2011
  ident: 10.1016/j.memsci.2014.11.038_bib9
  article-title: A review of water treatment membrane nanotechnologies
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00541j
– volume: 34
  start-page: 19
  year: 2011
  ident: 10.1016/j.memsci.2014.11.038_bib43
  article-title: Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes
  publication-title: Desalin. Water Treat.
  doi: 10.5004/dwt.2011.2801
– volume: 450
  start-page: 249
  year: 2014
  ident: 10.1016/j.memsci.2014.11.038_bib27
  article-title: Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.09.014
– volume: 83
  start-page: 81
  year: 1993
  ident: 10.1016/j.memsci.2014.11.038_bib5
  article-title: Composite reverse-osmosis and nanofiltration membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(93)80014-O
– volume: 425
  start-page: 1
  year: 2013
  ident: 10.1016/j.memsci.2014.11.038_bib8
  article-title: High-flux and fouling-resistant membranes for brackish water desalination
  publication-title: J. Membr. Sci.
– volume: 3
  start-page: 8203
  year: 2013
  ident: 10.1016/j.memsci.2014.11.038_bib12
  article-title: Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane
  publication-title: RSC Adv.
  doi: 10.1039/c3ra40960k
– volume: 328
  start-page: 257
  year: 2009
  ident: 10.1016/j.memsci.2014.11.038_bib15
  article-title: Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.12.014
– ident: 10.1016/j.memsci.2014.11.038_bib17
– volume: 473
  start-page: 157
  year: 2015
  ident: 10.1016/j.memsci.2014.11.038_bib23
  article-title: Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.09.022
– volume: 49
  start-page: 3245
  year: 2013
  ident: 10.1016/j.memsci.2014.11.038_bib42
  article-title: Alcohol and water adsorption in zeolitic imidazolate frameworks
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc39116g
– volume: 117
  start-page: 297
  year: 1998
  ident: 10.1016/j.memsci.2014.11.038_bib2
  article-title: The early history of reverse osmosis membrane development
  publication-title: Desalination
  doi: 10.1016/S0011-9164(98)00122-2
– volume: 10
  start-page: 2653
  year: 2014
  ident: 10.1016/j.memsci.2014.11.038_bib28
  article-title: Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes
  publication-title: Small
  doi: 10.1002/smll.201303945
– volume: 93
  start-page: 175
  year: 1994
  ident: 10.1016/j.memsci.2014.11.038_bib47
  article-title: Formation and characterization of polyamide membranes via interfacial polymerization
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(94)80006-5
– volume: 4
  start-page: 310
  year: 2012
  ident: 10.1016/j.memsci.2014.11.038_bib39
  article-title: Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1272
– volume: 389
  start-page: 34
  year: 2012
  ident: 10.1016/j.memsci.2014.11.038_bib44
  article-title: High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.10.003
– volume: 22
  start-page: 2685
  year: 2010
  ident: 10.1016/j.memsci.2014.11.038_bib41
  article-title: Direct patterning of oriented metal-organic framework crystals via control over crystallization kinetics in clear precursor solutions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903867
– volume: 1
  start-page: 11343
  year: 2013
  ident: 10.1016/j.memsci.2014.11.038_bib22
  article-title: Acid and multivalent ion resistance of thin film nanocomposite RO membranes loaded with silicalite-1 nanozeolites
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12199b
– volume: 60
  start-page: 309
  year: 1938
  ident: 10.1016/j.memsci.2014.11.038_bib40
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01269a023
– volume: 47
  start-page: 2071
  year: 2011
  ident: 10.1016/j.memsci.2014.11.038_bib36
  article-title: Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc05002d
– volume: 25
  start-page: 10139
  year: 2009
  ident: 10.1016/j.memsci.2014.11.038_bib11
  article-title: Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes
  publication-title: Langmuir
  doi: 10.1021/la900938x
– volume: 47
  start-page: 3213
  year: 2008
  ident: 10.1016/j.memsci.2014.11.038_bib21
  article-title: Modeling pervaporation of ethanol/water mixtures within ‘Real’ zeolite NaA membranes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie071645b
– volume: 294
  start-page: 1
  year: 2007
  ident: 10.1016/j.memsci.2014.11.038_bib10
  article-title: Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.02.025
– volume: 19
  start-page: 8343
  year: 2003
  ident: 10.1016/j.memsci.2014.11.038_bib45
  article-title: Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?
  publication-title: Langmuir
  doi: 10.1021/la0344682
– volume: 22
  start-page: 14835
  year: 2012
  ident: 10.1016/j.memsci.2014.11.038_bib24
  article-title: Ultra-thin hybrid polyhedral silsesquioxane–polyamide films with potentially unlimited 2D dimensions
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31941a
– volume: 349
  start-page: 349
  year: 2010
  ident: 10.1016/j.memsci.2014.11.038_bib46
  article-title: Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.11.063
– volume: 423
  start-page: 238
  year: 2012
  ident: 10.1016/j.memsci.2014.11.038_bib50
  article-title: Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.08.020
– volume: 4
  start-page: 32802
  year: 2014
  ident: 10.1016/j.memsci.2014.11.038_bib29
  article-title: The improvement of antibiofouling properties of a reverse osmosis membrane by oxidized CNTs
  publication-title: RSC Adv.
  doi: 10.1039/C4RA06489E
– volume: 403
  start-page: 152
  year: 2012
  ident: 10.1016/j.memsci.2014.11.038_bib49
  article-title: Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.02.038
– volume: 18
  start-page: 562
  year: 2007
  ident: 10.1016/j.memsci.2014.11.038_bib13
  article-title: Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.918
– volume: 120
  start-page: 325
  year: 2009
  ident: 10.1016/j.memsci.2014.11.038_bib32
  article-title: Characterization of metal-organic frameworks by water adsorption
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2008.11.020
– volume: 281
  start-page: 88
  year: 2006
  ident: 10.1016/j.memsci.2014.11.038_bib7
  article-title: Study on a novel polyamide-urea reverse osmosis composite membrane (ICIC-MPD) I. Preparation and characterization of ICIC-MPD membrane
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.03.012
– volume: 29
  start-page: 12389
  year: 2013
  ident: 10.1016/j.memsci.2014.11.038_bib19
  article-title: Molecular dynamics of equilibrium and pressure-driven transport properties of water through LTA-type zeolites
  publication-title: Langmuir
  doi: 10.1021/la402895h
– volume: 134
  year: 2011
  ident: 10.1016/j.memsci.2014.11.038_bib34
  article-title: Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: insight from molecular simulation
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3573902
– volume: 470
  start-page: 323
  year: 2014
  ident: 10.1016/j.memsci.2014.11.038_bib38
  article-title: Solution–diffusion with defects model for pressure-assisted forward osmosis
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.07.018
– volume: 369
  start-page: 420
  year: 2011
  ident: 10.1016/j.memsci.2014.11.038_bib51
  article-title: Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.12.023
– volume: 333
  start-page: 712
  year: 2011
  ident: 10.1016/j.memsci.2014.11.038_bib1
  article-title: The future of seawater desalination: energy, technology, and the environment
  publication-title: Science
  doi: 10.1126/science.1200488
– volume: 135
  start-page: 15201
  year: 2013
  ident: 10.1016/j.memsci.2014.11.038_bib35
  article-title: High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407665w
– volume: 7
  start-page: 5308
  year: 2013
  ident: 10.1016/j.memsci.2014.11.038_bib26
  article-title: Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination
  publication-title: Acs Nano
  doi: 10.1021/nn4011494
– ident: 10.1016/j.memsci.2014.11.038_bib25
– volume: 384
  start-page: 10
  year: 2011
  ident: 10.1016/j.memsci.2014.11.038_bib6
  article-title: Co-solvent-mediated synthesis of thin polyamide membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.08.055
– volume: 19
  start-page: 4791
  year: 2003
  ident: 10.1016/j.memsci.2014.11.038_bib48
  article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization
  publication-title: Langmuir
  doi: 10.1021/la020920q
– year: 2011
  ident: 10.1016/j.memsci.2014.11.038_bib3
– volume: 312
  start-page: 1034
  year: 2006
  ident: 10.1016/j.memsci.2014.11.038_bib31
  article-title: Fast mass transport through sub-2-nanometer carbon nanotubes
  publication-title: Science
  doi: 10.1126/science.1126298
– volume: 43
  start-page: 58
  year: 2010
  ident: 10.1016/j.memsci.2014.11.038_bib33
  article-title: Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar900116g
SSID ssj0017089
Score 2.6097856
Snippet A hydrophobic, hydrothermally stable metal-organic framework (MOF) - zeolitic imidazolate framework-8 (ZIF-8) was successfully incorporated into the selective...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 303
SubjectTerms artificial membranes
atomic force microscopy
Contact angle
coordination polymers
crosslinking
desalination
encapsulation
Fillers
hydrophilicity
hydrophobicity
Interfacial polymerization
Membranes
nanocomposites
Nanostructure
Nanotechnology
Polyamide resins
polyamides
Reluctance
Reverse osmosis
scanning electron microscopy
sodium chloride
Thin films
Thin-film-nanocomposite
transmission electron microscopy
X-ray photoelectron spectroscopy
zeolites
ZIF-8
Title High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8
URI https://dx.doi.org/10.1016/j.memsci.2014.11.038
https://www.proquest.com/docview/1677971717
https://www.proquest.com/docview/1751213238
https://www.proquest.com/docview/2101383851
Volume 476
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvbSH0idNH0GFXpWVbNmyjiE0bFuaSxvIzegxZl3WD3Y3h-TQU394Z_xIH5QEerQYDUIjjWbwN98w9s5GK0FHKYJOo9CucsI6nQkHNhpZEcc5VSN_PsuX5_rjRXaxx07mWhiCVU6-f_Tpg7eeRhbTbi76ul58kUREkhZE2URxIhWaa23olB99v4F5KCOHNngkLEh6Lp8bMF4NNKiaAF76iLg8qUrl38_TX456eH1OH7GHU9jIj8eVPWZ70D5hD34jE3zKfhBkQ_S_CgF4362vXFNH4LtV3YqqXjeidW1HMHLCagEn_qbNFni3bXBgy3GlmD2j9-MEYR-bR_DVVdx0_arzdeDXMOLleI163TXmxailmgFeonjGzk_ffz1ZiqnHgggYmu2EikkVFCQxmhyklRaCybUN4KzHESW9st4ZRWFg4TH7cTJAKDxkRQKysulztt92LbxgHJRPILrca0qDbOJcTHy0YAuXh6DcAUvnrS3DREBOfTDW5Yw0-1aOBinJIJiblGiQAyZuZvUjAccd8ma2WvnHQSrxjbhj5tvZyCXeMfpxghveXW5LlRtjMe9V5hYZkxE7XnKbHkyvVVqkGOS-_O9VvmL38WuoqlfZa7a_21zCG4yLdv5wOPiH7N7xh0_Ls5-3thLu
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDI5KOQAHxFOUZ5C4ppvMK5MjqqgWaHuhlXqLMolHO9XOQ7vbQ3vg1B9eex7lIdRKXDOOFcWJY2s-f2bskwlGQhKk8EkcROJKJ4xLUuHABC1L4jinauTDo2x-knw7TU-32N5UC0OwytH3Dz6999bjyGzczVlXVbMfkohI4pwomyhOTO-x-wleX2pjsPvzBuehtOz74JG0IPGpfq4HedVQo25CeCW7ROZJZSr_fp_-8tT987P_hD0e40b-eVjaU7YFzTP26Dc2wefsijAbovtVCcC7dnnh6ioA3yyqRpTVshaNa1rCkRNYCzgROK3WwNt1jQNrjivF9BndHycM-9A9gi8uwqrtFm1ReX4JA2COV6jXXWJijFrKCeEl8hfsZP_L8d5cjE0WhMfYbCNUiEqvIApBZyCNNOB1lhgPzhQ4omShTOG0ojgwLzD9cdKDzwtI8whkaeKXbLtpG3jFOKgiguCyIqE8yETOhagIBkzuMu-V22HxtLXWjwzk1AhjaSeo2ZkdDGLJIJicWDTIDhM3s7qBgeMOeT1Zzf5xkiw-EnfM_DgZ2eIloz8nuOHt-dqqTGuDia_St8jolOjxotv0YH6t4jzGKPf1f6_yA3swPz48sAdfj76_YQ_xS19ir9K3bHuzOod3GCRtivf9JbgG1ZsUfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance+polyamide+thin-film-nanocomposite+reverse+osmosis+membranes+containing+hydrophobic+zeolitic+imidazolate+framework-8&rft.jtitle=Journal+of+membrane+science&rft.au=Duan%2C+Jintang&rft.au=Pan%2C+Yichang&rft.au=Pacheco%2C+Federico&rft.au=Litwiller%2C+Eric&rft.date=2015-02-15&rft.issn=0376-7388&rft.volume=476&rft.spage=303&rft.epage=310&rft_id=info:doi/10.1016%2Fj.memsci.2014.11.038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2014_11_038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon