Static Analysis of Information Systems for IoT Cyber Security: A Survey of Machine Learning Approaches
Ensuring security for modern IoT systems requires the use of complex methods to analyze their software. One of the most in-demand methods that has repeatedly been proven to be effective is static analysis. However, the progressive complication of the connections in IoT systems, the increase in their...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 4; p. 1335 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
10.02.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ensuring security for modern IoT systems requires the use of complex methods to analyze their software. One of the most in-demand methods that has repeatedly been proven to be effective is static analysis. However, the progressive complication of the connections in IoT systems, the increase in their scale, and the heterogeneity of elements requires the automation and intellectualization of manual experts’ work. A hypothesis to this end is posed that assumes the applicability of machine-learning solutions for IoT system static analysis. A scheme of this research, which is aimed at confirming the hypothesis and reflecting the ontology of the study, is given. The main contributions to the work are as follows: systematization of static analysis stages for IoT systems and decisions of machine-learning problems in the form of formalized models; review of the entire subject area publications with analysis of the results; confirmation of the machine-learning instrumentaries applicability for each static analysis stage; and the proposal of an intelligent framework concept for the static analysis of IoT systems. The novelty of the results obtained is a consideration of the entire process of static analysis (from the beginning of IoT system research to the final delivery of the results), consideration of each stage from the entirely given set of machine-learning solutions perspective, as well as formalization of the stages and solutions in the form of “Form and Content” data transformations. |
---|---|
AbstractList | Ensuring security for modern IoT systems requires the use of complex methods to analyze their software. One of the most in-demand methods that has repeatedly been proven to be effective is static analysis. However, the progressive complication of the connections in IoT systems, the increase in their scale, and the heterogeneity of elements requires the automation and intellectualization of manual experts’ work. A hypothesis to this end is posed that assumes the applicability of machine-learning solutions for IoT system static analysis. A scheme of this research, which is aimed at confirming the hypothesis and reflecting the ontology of the study, is given. The main contributions to the work are as follows: systematization of static analysis stages for IoT systems and decisions of machine-learning problems in the form of formalized models; review of the entire subject area publications with analysis of the results; confirmation of the machine-learning instrumentaries applicability for each static analysis stage; and the proposal of an intelligent framework concept for the static analysis of IoT systems. The novelty of the results obtained is a consideration of the entire process of static analysis (from the beginning of IoT system research to the final delivery of the results), consideration of each stage from the entirely given set of machine-learning solutions perspective, as well as formalization of the stages and solutions in the form of “Form and Content” data transformations. Ensuring security for modern IoT systems requires the use of complex methods to analyze their software. One of the most in-demand methods that has repeatedly been proven to be effective is static analysis. However, the progressive complication of the connections in IoT systems, the increase in their scale, and the heterogeneity of elements requires the automation and intellectualization of manual experts' work. A hypothesis to this end is posed that assumes the applicability of machine-learning solutions for IoT system static analysis. A scheme of this research, which is aimed at confirming the hypothesis and reflecting the ontology of the study, is given. The main contributions to the work are as follows: systematization of static analysis stages for IoT systems and decisions of machine-learning problems in the form of formalized models; review of the entire subject area publications with analysis of the results; confirmation of the machine-learning instrumentaries applicability for each static analysis stage; and the proposal of an intelligent framework concept for the static analysis of IoT systems. The novelty of the results obtained is a consideration of the entire process of static analysis (from the beginning of IoT system research to the final delivery of the results), consideration of each stage from the entirely given set of machine-learning solutions perspective, as well as formalization of the stages and solutions in the form of "Form and Content" data transformations.Ensuring security for modern IoT systems requires the use of complex methods to analyze their software. One of the most in-demand methods that has repeatedly been proven to be effective is static analysis. However, the progressive complication of the connections in IoT systems, the increase in their scale, and the heterogeneity of elements requires the automation and intellectualization of manual experts' work. A hypothesis to this end is posed that assumes the applicability of machine-learning solutions for IoT system static analysis. A scheme of this research, which is aimed at confirming the hypothesis and reflecting the ontology of the study, is given. The main contributions to the work are as follows: systematization of static analysis stages for IoT systems and decisions of machine-learning problems in the form of formalized models; review of the entire subject area publications with analysis of the results; confirmation of the machine-learning instrumentaries applicability for each static analysis stage; and the proposal of an intelligent framework concept for the static analysis of IoT systems. The novelty of the results obtained is a consideration of the entire process of static analysis (from the beginning of IoT system research to the final delivery of the results), consideration of each stage from the entirely given set of machine-learning solutions perspective, as well as formalization of the stages and solutions in the form of "Form and Content" data transformations. |
Audience | Academic |
Author | Izrailov, Konstantin Kotenko, Igor Buinevich, Mikhail |
AuthorAffiliation | 2 Department of Secure Communication Systems, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 193232 Saint-Petersburg, Russia; konstantin.izrailov@mail.ru 3 Department of Applied Mathematics and Information Technologies, Saint-Petersburg University of State Fire Service of EMERCOM of Russia, 196105 Saint-Petersburg, Russia; bmv1958@yandex.ru 1 Computer Security Problems Laboratory, St. Petersburg Federal Research Center of the Russian Academy of Sciences, 199178 Saint-Petersburg, Russia |
AuthorAffiliation_xml | – name: 1 Computer Security Problems Laboratory, St. Petersburg Federal Research Center of the Russian Academy of Sciences, 199178 Saint-Petersburg, Russia – name: 2 Department of Secure Communication Systems, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 193232 Saint-Petersburg, Russia; konstantin.izrailov@mail.ru – name: 3 Department of Applied Mathematics and Information Technologies, Saint-Petersburg University of State Fire Service of EMERCOM of Russia, 196105 Saint-Petersburg, Russia; bmv1958@yandex.ru |
Author_xml | – sequence: 1 givenname: Igor orcidid: 0000-0001-6859-7120 surname: Kotenko fullname: Kotenko, Igor – sequence: 2 givenname: Konstantin orcidid: 0000-0002-9412-5693 surname: Izrailov fullname: Izrailov, Konstantin – sequence: 3 givenname: Mikhail orcidid: 0000-0001-8146-0022 surname: Buinevich fullname: Buinevich, Mikhail |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35214237$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktrGzEQx5eS0jzaQ79AEfTSHpzosVqtegiY0IfBpQenZyHr4cjsSq60G9hv34mdmiQUHST--s1fM5o5r05iiq6q3hN8yZjEV4VSXBPG-KvqjNS0nrUgnDw5n1bnpWwxpoyx9k11yjiFOybOKr8a9BAMmkfdTSUUlDxaRJ9yD3KKaDWVwfUFgYIW6RbdTGuX0cqZMYdh-oLmaDXmezc9xP3U5i5Eh5ZO5xjiBs13u5xAdOVt9drrrrh3j_tF9fvb19ubH7Plr--Lm_lyZjhuhxlhUgqpmW-8qIUVXpp6bddUNEQ3zhJsWrr2lNjaeoFpwx2WNeWkJZZw-Ap2US0Ovjbprdrl0Os8qaSD2gspb5TOUG_nFMdUO2K590LWrTSaMe01p7xuiHWag9f1wWs3rntnjYtD1t0z0-c3MdypTbpXrWwYIRgMPj0a5PRndGVQfSjGdZ2OLo1F0Qa6wQVjAtCPL9BtGjP05ECRpmkxA-ryQG00FBCgTfCugWVdHwzMhA-gz0VLGizlPuDD0xKOuf_rPwCfD4DJqZTs_BEhWD3MljrOFrBXL1gThv2UQBah-0_EXxbHzgM |
CitedBy_id | crossref_primary_10_1016_j_comcom_2023_04_016 crossref_primary_10_3390_en16135111 crossref_primary_10_1016_j_infsof_2025_107709 crossref_primary_10_1016_j_measen_2022_100458 crossref_primary_10_31854_1813_324X_2024_10_1_86_96 crossref_primary_10_3390_axioms11050229 crossref_primary_10_1016_j_indic_2024_100485 crossref_primary_10_1109_ACCESS_2024_3355794 crossref_primary_10_32604_iasc_2024_058624 crossref_primary_10_3390_s22052017 crossref_primary_10_3390_jsan12010011 crossref_primary_10_31854_1813_324X_2023_9_2_95_111 crossref_primary_10_3390_electronics12102278 crossref_primary_10_37468_2307_1400_2024_1_35_45 crossref_primary_10_3390_app122010653 crossref_primary_10_31854_1813_324X_2023_9_5_79_90 crossref_primary_10_3390_fi17010030 crossref_primary_10_61260_2218_130X_2024_2023_4_159_168 crossref_primary_10_1080_00051144_2023_2218164 crossref_primary_10_37468_2307_1400_2023_1_86_92 crossref_primary_10_1109_ACCESS_2022_3205351 crossref_primary_10_1145_3648610 crossref_primary_10_1016_j_future_2022_08_004 crossref_primary_10_3390_app132111985 crossref_primary_10_1109_COMST_2023_3299519 |
Cites_doi | 10.15514/ISPRAS-2018-30(5)-5 10.1145/2746194.2746198 10.1109/Metrisec.2011.18 10.1109/icABCD49160.2020.9183878 10.1109/ICST.2010.32 10.1145/1095430.1081754 10.1007/s10489-007-0111-x 10.1109/TSE.2008.24 10.1007/978-3-030-36614-8_11 10.1109/ICKII50300.2020.9318879 10.1109/AICT50176.2020.9368828 10.1109/ICMLA.2015.99 10.1145/1095430.1081755 10.1109/ICDAR.2011.214 10.1145/2970276.2970368 10.1109/ACCESS.2017.2696365 10.1109/ACCESS.2021.3091427 10.1109/ISACV.2018.8354060 10.1109/ICUMT.2018.8631225 10.1109/ISCC50000.2020.9219568 10.1145/2566486.2568024 10.1016/S1361-3723(13)70045-9 10.1145/2884781.2884804 10.1145/1988630.1988632 10.1016/j.procs.2015.02.149 10.1109/COMST.2021.3075439 10.1145/3195970.3196094 10.1109/ICCT50939.2020.9295714 10.1145/2351676.2351733 10.1109/MNET.2017.1700200 10.1109/ACCESS.2020.2966523 10.1145/1852786.1852798 10.1109/SYNASC.2017.00046 10.1109/ICET.2017.8281704 10.1109/CITSM50537.2020.9268794 10.1016/j.jnca.2020.102630 10.1007/978-3-642-01718-6 10.1007/978-3-319-99447-5_29 10.1145/1287624.1287632 10.1109/ICSPC51351.2021.9451740 10.1145/502059.502041 10.1145/2420950.2421003 10.1109/ICMLA.2011.59 10.31854/1813-324X-2020-6-3-48-57 10.1145/2857705.2857750 10.1109/ACCESS.2021.3103725 10.1109/ACCESS.2019.2917668 10.1145/2897795.2897813 10.1109/I-SMAC.2018.8653720 10.1109/ICMLA.2016.0158 10.31854/1813-324X-2020-6-2-104-112 10.1109/SYNASC49474.2019.00042 10.1109/ACCESS.2021.3090998 10.1109/38.788795 10.3390/fi12050082 10.1109/JIOT.2021.3086398 10.1109/SCM.2015.7190394 10.1109/ICCKE.2017.8167881 10.1109/SCM.2015.7190434 10.1145/1831708.1831723 10.1109/SYNASC.2008.7 10.1109/ACCESS.2019.2946482 10.1109/SP.2015.54 10.1109/ACSAC.2007.27 10.1109/HSI.2012.22 10.1109/ICMLC.2014.7009126 10.31854/1813-324X-2020-6-1-77-85 10.1109/TII.2019.2942800 10.1109/EMPDP.2019.8671571 10.1109/TR.2018.2884143 10.1109/ASE.2009.72 10.1145/2970276.2970341 10.1109/ICMLC.2011.6016774 10.1007/s10664-011-9190-8 10.3390/s22031017 10.1145/3092566 10.1109/TVCG.2017.2744685 10.1109/IJCNN.2014.6889875 10.1109/IMCSIT.2009.5352759 10.1016/j.infsof.2013.04.002 10.1145/2714064.2660226 10.1109/HPCC-SmartCity-DSS.2016.0213 10.1109/TSE.2014.2340398 10.1109/ICCCI50826.2021.9402622 10.1109/ICOMET.2019.8673480 10.1016/j.istr.2009.03.003 10.23919/ICACT.2018.8323719 10.1109/ACCESS.2020.2972358 10.1109/SIU.2018.8404472 10.1109/CCIS.2016.7790290 10.1109/CICYBS.2013.6597207 10.1109/SCM.2015.7190452 10.1109/TSE.2010.81 10.1109/CVPR.2007.383255 10.1109/ICSE.2013.6606610 10.1109/ACCESS.2020.3018170 10.1109/SIU.2018.8404373 10.23919/ICACT.2018.8323940 10.1109/ARES.2011.52 10.1109/BigData.2016.7841039 10.1145/2508859.2516665 10.1109/ACCESS.2021.3089681 10.1109/PDP.2010.30 10.1109/ISSRE.2014.32 10.1109/TDSC.2014.2373377 10.1109/MS.2008.130 10.1145/2857705.2857720 10.1145/1287624.1287630 10.1109/JIOT.2021.3099028 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s22041335 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_502ae1d5ff79489ca33afa525461dea5 PMC8963110 A781609903 35214237 10_3390_s22041335 |
Genre | Journal Article Review |
GeographicLocations | New York |
GeographicLocations_xml | – name: New York |
GrantInformation_xml | – fundername: Russian Science Foundation grantid: 21-71-20078 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c508t-139979a3f6f747d7f9c4bdb2761a6ed10c82bf21d4df70265e09425181d153393 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:03 EDT 2025 Thu Aug 21 18:32:12 EDT 2025 Thu Jul 10 20:02:57 EDT 2025 Fri Jul 25 20:15:00 EDT 2025 Tue Jun 10 21:12:58 EDT 2025 Wed Feb 19 02:26:37 EST 2025 Thu Apr 24 23:10:25 EDT 2025 Tue Jul 01 02:41:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | cyber security IoT systems static analysis survey model formalization analytic model machine learning |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-139979a3f6f747d7f9c4bdb2761a6ed10c82bf21d4df70265e09425181d153393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9412-5693 0000-0001-8146-0022 0000-0001-6859-7120 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22041335 |
PMID | 35214237 |
PQID | 2633166803 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_502ae1d5ff79489ca33afa525461dea5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8963110 proquest_miscellaneous_2633857337 proquest_journals_2633166803 gale_infotracacademiconefile_A781609903 pubmed_primary_35214237 crossref_primary_10_3390_s22041335 crossref_citationtrail_10_3390_s22041335 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220210 |
PublicationDateYYYYMMDD | 2022-02-10 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220210 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 ref_93 ref_136 ref_92 ref_138 ref_90 ref_14 Sornil (ref_19) 2013; 4 ref_13 Tahsien (ref_137) 2020; 161 ref_12 ref_11 ref_99 ref_130 ref_10 ref_98 ref_133 ref_132 ref_96 ref_135 ref_134 Liu (ref_112) 2020; 16 Otsubo (ref_122) 2020; 8 ref_17 Li (ref_42) 2005; 30 ref_15 Moshtari (ref_35) 2013; 2013 Nguyen (ref_69) 2021; 23 ref_126 ref_125 ref_128 ref_129 ref_24 ref_23 ref_22 ref_21 ref_20 Yang (ref_123) 2019; 7 ref_29 ref_28 Singh (ref_120) 2021; 9 ref_27 ref_26 Grolinger (ref_79) 2017; 5 Kumar (ref_97) 2017; Volume 515 Zhang (ref_131) 2020; 8 ref_71 Chang (ref_47) 2008; 34 ref_70 Allamanis (ref_7) 2017; 51 Shar (ref_54) 2015; 12 ref_78 Aslanyan (ref_77) 2018; 30 Harbi (ref_67) 2021; 9 ref_74 ref_73 Hsiao (ref_25) 2014; 49 Raju (ref_16) 2021; 9 Alasmary (ref_121) 2021; 9 Hinneburg (ref_127) 1999; 19 Xue (ref_8) 2019; 7 Ghaffarian (ref_9) 2017; 50 Zaman (ref_68) 2021; 9 ref_89 ref_88 ref_87 ref_86 ref_85 Engler (ref_40) 2001; 35 Monjalet (ref_95) 2019; Volume 11887 Liu (ref_66) 2022; 9 Shar (ref_52) 2013; 55 ref_50 Buinevich (ref_82) 2020; 6 ref_58 Wilkinson (ref_124) 2018; 24 ref_57 ref_56 ref_53 Wu (ref_72) 2020; 8 ref_51 Shin (ref_34) 2011; 37 ref_59 ref_61 ref_60 Xu (ref_100) 2019; 68 Khammas (ref_116) 2015; 77 Scandariato (ref_55) 2014; 40 Wang (ref_80) 2018; 32 Abah (ref_113) 2015; 7 ref_65 ref_64 ref_63 ref_62 Asryan (ref_76) 2018; 30 Ayewah (ref_75) 2008; 25 Shabtai (ref_110) 2009; 14 Buinevich (ref_83) 2020; 6 Shin (ref_32) 2013; 18 ref_115 Shijo (ref_18) 2015; 46 ref_114 ref_117 ref_119 ref_118 ref_36 Livshits (ref_41) 2005; 30 ref_33 ref_111 ref_31 ref_30 ref_39 Buinevich (ref_84) 2020; 6 Zhang (ref_91) 2009; 31 ref_38 ref_37 ref_104 ref_103 ref_106 ref_105 ref_108 ref_107 Buinevich (ref_81) 2020; 1 ref_109 ref_46 ref_45 ref_44 ref_43 ref_102 ref_101 ref_1 ref_3 ref_2 ref_49 ref_48 ref_5 ref_4 ref_6 |
References_xml | – volume: 30 start-page: 89 year: 2018 ident: ref_77 article-title: Platform for interprocedural static analysis of binary code publication-title: Proc. Inst. Syst. Program. RAS doi: 10.15514/ISPRAS-2018-30(5)-5 – ident: ref_37 doi: 10.1145/2746194.2746198 – ident: ref_117 – ident: ref_31 doi: 10.1109/Metrisec.2011.18 – ident: ref_109 doi: 10.1109/icABCD49160.2020.9183878 – ident: ref_65 – ident: ref_108 – ident: ref_39 doi: 10.1109/ICST.2010.32 – volume: 30 start-page: 296 year: 2005 ident: ref_41 article-title: DynaMine: Finding Common Error Patterns by Mining Software Revision Histories publication-title: SIGSOFT Softw. Eng. Notes doi: 10.1145/1095430.1081754 – volume: 31 start-page: 47 year: 2009 ident: ref_91 article-title: Multi-instance clustering with applications to multi-instance prediction publication-title: Appl. Intell. doi: 10.1007/s10489-007-0111-x – volume: 34 start-page: 579 year: 2008 ident: ref_47 article-title: Discovering Neglected Conditions in Software by Mining Dependence Graphs publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2008.24 – ident: ref_14 doi: 10.1007/978-3-030-36614-8_11 – ident: ref_70 doi: 10.1109/ICKII50300.2020.9318879 – ident: ref_132 doi: 10.1109/AICT50176.2020.9368828 – ident: ref_57 doi: 10.1109/ICMLA.2015.99 – ident: ref_27 – volume: 30 start-page: 306 year: 2005 ident: ref_42 article-title: PR-Miner: Automatically Extracting Implicit Programming Rules and Detecting Violations in Large Software Code publication-title: SIGSOFT Softw. Eng. Notes doi: 10.1145/1095430.1081755 – ident: ref_89 doi: 10.1109/ICDAR.2011.214 – ident: ref_135 doi: 10.1145/2970276.2970368 – volume: 5 start-page: 7776 year: 2017 ident: ref_79 article-title: Machine Learning With Big Data: Challenges and Approaches publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2696365 – volume: 9 start-page: 91686 year: 2021 ident: ref_16 article-title: A Survey on Cross-Architectural IoT Malware Threat Hunting publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3091427 – ident: ref_96 doi: 10.1109/ISACV.2018.8354060 – volume: 1 start-page: 34 year: 2020 ident: ref_81 article-title: Method for classification of files based on machine learning technology publication-title: Bull. St. Petersburg State Univ. Technol. Des. Ser. Nat. Tech. Sci. – volume: 7 start-page: 15 year: 2015 ident: ref_113 article-title: A Machine Learning Approach to Anomaly-Based Detection on Android Platforms publication-title: Int. J. Netw. Secur. Its Appl. – ident: ref_13 doi: 10.1109/ICUMT.2018.8631225 – ident: ref_129 doi: 10.1109/ISCC50000.2020.9219568 – ident: ref_63 doi: 10.1145/2566486.2568024 – volume: 2013 start-page: 8 year: 2013 ident: ref_35 article-title: Using complexity metrics to improve software security publication-title: Comput. Fraud. Secur. doi: 10.1016/S1361-3723(13)70045-9 – ident: ref_28 – ident: ref_23 doi: 10.1145/2884781.2884804 – ident: ref_33 doi: 10.1145/1988630.1988632 – volume: 46 start-page: 804 year: 2015 ident: ref_18 article-title: Integrated Static and Dynamic Analysis for Malware Detection publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.02.149 – volume: 23 start-page: 1622 year: 2021 ident: ref_69 article-title: Federated Learning for Internet of Things: A Comprehensive Survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2021.3075439 – ident: ref_134 – ident: ref_86 – ident: ref_105 doi: 10.1145/3195970.3196094 – volume: Volume 515 start-page: 107 year: 2017 ident: ref_97 article-title: Text Document Classification with PCA and One-Class SVM publication-title: Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications – ident: ref_99 doi: 10.1109/ICCT50939.2020.9295714 – ident: ref_51 doi: 10.1145/2351676.2351733 – volume: 32 start-page: 92 year: 2018 ident: ref_80 article-title: Machine Learning for Networking: Workflow, Advances and Opportunities publication-title: IEEE Netw. doi: 10.1109/MNET.2017.1700200 – volume: 8 start-page: 13467 year: 2020 ident: ref_131 article-title: The Effects of Depth of Field on Subjective Evaluation of Aesthetic Appeal and Image Quality of Photographs publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2966523 – ident: ref_30 doi: 10.1145/1852786.1852798 – ident: ref_103 doi: 10.1109/SYNASC.2017.00046 – ident: ref_102 doi: 10.1109/ICET.2017.8281704 – ident: ref_73 doi: 10.1109/CITSM50537.2020.9268794 – volume: 161 start-page: 102630 year: 2020 ident: ref_137 article-title: Machine learning based solutions for security of Internet of Things (IoT): A survey publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2020.102630 – ident: ref_111 doi: 10.1007/978-3-642-01718-6 – ident: ref_1 doi: 10.1007/978-3-319-99447-5_29 – ident: ref_64 – volume: Volume 11887 start-page: 288 year: 2019 ident: ref_95 article-title: Predicting File Lifetimes with Machine Learning publication-title: International Conference on High Performance Computing – ident: ref_43 doi: 10.1145/1287624.1287632 – ident: ref_71 doi: 10.1109/ICSPC51351.2021.9451740 – volume: 35 start-page: 57 year: 2001 ident: ref_40 article-title: Bugs as Deviant Behavior: A General Approach to Inferring Errors in Systems Code publication-title: ACM Sigops Oper. Syst. Rev. doi: 10.1145/502059.502041 – ident: ref_126 – ident: ref_101 – ident: ref_50 doi: 10.1145/2420950.2421003 – ident: ref_88 doi: 10.1109/ICMLA.2011.59 – ident: ref_22 – volume: 6 start-page: 48 year: 2020 ident: ref_84 article-title: Identification of Processor’s Architecture of Executable Code Based on Machine Learning. Part 3. Assessment Quality and Applicability Border publication-title: Proc. Telecommun. Univ. doi: 10.31854/1813-324X-2020-6-3-48-57 – ident: ref_38 doi: 10.1145/2857705.2857750 – volume: 9 start-page: 113292 year: 2021 ident: ref_67 article-title: Recent Security Trends in Internet of Things: A Comprehensive Survey publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3103725 – volume: 7 start-page: 65889 year: 2019 ident: ref_8 article-title: Machine Learning-Based Analysis of Program Binaries: A Comprehensive Study publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917668 – ident: ref_78 – volume: 30 start-page: 25 year: 2018 ident: ref_76 article-title: Combining dynamic symbolic execution, code static analysis and fuzzing publication-title: Proc. Inst. Syst. Program. RAS – ident: ref_49 – ident: ref_130 doi: 10.1145/2897795.2897813 – ident: ref_74 doi: 10.1109/I-SMAC.2018.8653720 – ident: ref_128 doi: 10.1109/ICMLA.2016.0158 – volume: 77 start-page: 243 year: 2015 ident: ref_116 article-title: Feature selection and machine learning classification for malware detection publication-title: J. Teknol. – volume: 6 start-page: 104 year: 2020 ident: ref_83 article-title: Identification of Processor’s Architecture of Executable Code Based on Machine Learning. Part 2. Identification Method publication-title: Proc. Telecommun. Univ. doi: 10.31854/1813-324X-2020-6-2-104-112 – volume: 51 start-page: 36 year: 2017 ident: ref_7 article-title: A Survey of Machine Learning for Big Code and Naturalness publication-title: ACM Comput. Surv. – volume: 4 start-page: 59 year: 2013 ident: ref_19 article-title: Malware Classification Using N-grams Sequential Pattern Features publication-title: Int. J. Inf. Process. Manag. – ident: ref_118 doi: 10.1109/SYNASC49474.2019.00042 – volume: 9 start-page: 90102 year: 2021 ident: ref_120 article-title: Classification and Analysis of Android Malware Images Using Feature Fusion Technique publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3090998 – volume: 19 start-page: 22 year: 1999 ident: ref_127 article-title: HD-Eye: Visual mining of high-dimensional data publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/38.788795 – ident: ref_11 doi: 10.3390/fi12050082 – volume: 9 start-page: 2485 year: 2021 ident: ref_121 article-title: SHELLCORE: Automating Malicious IoT Software Detection Using Shell Commands Representation publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3086398 – ident: ref_4 doi: 10.1109/SCM.2015.7190394 – ident: ref_61 – ident: ref_106 doi: 10.1109/ICCKE.2017.8167881 – ident: ref_6 doi: 10.1109/SCM.2015.7190434 – ident: ref_46 doi: 10.1145/1831708.1831723 – ident: ref_136 doi: 10.1109/SYNASC.2008.7 – volume: 7 start-page: 148853 year: 2019 ident: ref_123 article-title: A Novel Solutions for Malicious Code Detection and Family Clustering Based on Machine Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946482 – ident: ref_56 doi: 10.1109/SP.2015.54 – ident: ref_59 doi: 10.1109/ACSAC.2007.27 – ident: ref_60 doi: 10.1109/HSI.2012.22 – ident: ref_114 doi: 10.1109/ICMLC.2014.7009126 – volume: 6 start-page: 77 year: 2020 ident: ref_82 article-title: Identification of Processor’s Architecture of Executable Code Based on Machine Learning. Part 1. Frequency Byte Model publication-title: Proc. Telecommun. Univ. doi: 10.31854/1813-324X-2020-6-1-77-85 – volume: 16 start-page: 2154 year: 2020 ident: ref_112 article-title: Cyber Vulnerability Intelligence for Internet of Things Binary publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2942800 – ident: ref_17 – ident: ref_93 – ident: ref_10 doi: 10.1109/EMPDP.2019.8671571 – volume: 68 start-page: 893 year: 2019 ident: ref_100 article-title: Type Learning for Binaries and Its Applications publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2018.2884143 – ident: ref_45 doi: 10.1109/ASE.2009.72 – ident: ref_26 doi: 10.1145/2970276.2970341 – ident: ref_92 doi: 10.1109/ICMLC.2011.6016774 – volume: 18 start-page: 25 year: 2013 ident: ref_32 article-title: Can traditional fault prediction models be used for vulnerability prediction? publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-011-9190-8 – ident: ref_119 – ident: ref_138 doi: 10.3390/s22031017 – ident: ref_24 – volume: 50 start-page: 1 year: 2017 ident: ref_9 article-title: Software Vulnerability Analysis and Discovery Using Machine-Learning and Data-Mining Techniques: A Survey publication-title: ACM Comput. Surv. doi: 10.1145/3092566 – volume: 24 start-page: 256 year: 2018 ident: ref_124 article-title: Visualizing Big Data Outliers Through Distributed Aggregation publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2017.2744685 – ident: ref_12 doi: 10.1109/IJCNN.2014.6889875 – ident: ref_20 doi: 10.1109/IMCSIT.2009.5352759 – volume: 55 start-page: 1767 year: 2013 ident: ref_52 article-title: Predicting SQL injection and cross site scripting vulnerabilities through mining input sanitization patterns publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2013.04.002 – volume: 49 start-page: 49 year: 2014 ident: ref_25 article-title: Using Web Corpus Statistics for Program Analysis publication-title: Sigplan Not. doi: 10.1145/2714064.2660226 – ident: ref_107 doi: 10.1109/HPCC-SmartCity-DSS.2016.0213 – ident: ref_125 – volume: 40 start-page: 993 year: 2014 ident: ref_55 article-title: Predicting Vulnerable Software Components via Text Mining publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2014.2340398 – ident: ref_98 doi: 10.1109/ICCCI50826.2021.9402622 – ident: ref_87 doi: 10.1109/ICOMET.2019.8673480 – ident: ref_21 – volume: 14 start-page: 16 year: 2009 ident: ref_110 article-title: Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey publication-title: Inf. Secur. Tech. Rep. doi: 10.1016/j.istr.2009.03.003 – ident: ref_15 doi: 10.23919/ICACT.2018.8323719 – volume: 8 start-page: 31753 year: 2020 ident: ref_122 article-title: o-glasses: Visualizing X86 Code From Binary Using a 1D-CNN publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972358 – ident: ref_133 doi: 10.1109/SIU.2018.8404472 – ident: ref_115 doi: 10.1109/CCIS.2016.7790290 – ident: ref_62 doi: 10.1109/CICYBS.2013.6597207 – ident: ref_5 doi: 10.1109/SCM.2015.7190452 – volume: 37 start-page: 772 year: 2011 ident: ref_34 article-title: Evaluating Complexity, Code Churn, and Developer Activity Metrics as Indicators of Software Vulnerabilities publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2010.81 – ident: ref_90 doi: 10.1109/CVPR.2007.383255 – ident: ref_29 – ident: ref_53 doi: 10.1109/ICSE.2013.6606610 – volume: 8 start-page: 153826 year: 2020 ident: ref_72 article-title: Research on Artificial Intelligence Enhancing Internet of Things Security: A Survey publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3018170 – ident: ref_94 doi: 10.1109/SIU.2018.8404373 – ident: ref_2 doi: 10.23919/ICACT.2018.8323940 – ident: ref_85 doi: 10.1109/ARES.2011.52 – ident: ref_104 doi: 10.1109/BigData.2016.7841039 – ident: ref_48 doi: 10.1145/2508859.2516665 – volume: 9 start-page: 94668 year: 2021 ident: ref_68 article-title: Security Threats and Artificial Intelligence Based Countermeasures for Internet of Things Networks: A Comprehensive Survey publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3089681 – ident: ref_3 doi: 10.1109/PDP.2010.30 – ident: ref_36 doi: 10.1109/ISSRE.2014.32 – volume: 12 start-page: 688 year: 2015 ident: ref_54 article-title: Web Application Vulnerability Prediction Using Hybrid Program Analysis and Machine Learning publication-title: IEEE Trans. Dependable Secur. Comput. doi: 10.1109/TDSC.2014.2373377 – volume: 25 start-page: 22 year: 2008 ident: ref_75 article-title: Experiences Using Static Analysis to Find Bugs publication-title: IEEE Softw. doi: 10.1109/MS.2008.130 – ident: ref_58 doi: 10.1145/2857705.2857720 – ident: ref_44 doi: 10.1145/1287624.1287630 – volume: 9 start-page: 298 year: 2022 ident: ref_66 article-title: Machine Learning for the Detection and Identification of Internet of Things Devices: A Survey publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3099028 |
SSID | ssj0023338 |
Score | 2.4492984 |
SecondaryResourceType | review_article |
Snippet | Ensuring security for modern IoT systems requires the use of complex methods to analyze their software. One of the most in-demand methods that has repeatedly... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1335 |
SubjectTerms | Algorithms analytic model Automation cyber security Cyberterrorism Data security Information systems Internet of Things Investment analysis IoT systems Machine learning Performance evaluation Review Security management Software static analysis survey model Surveys Taxonomy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSxwxFA7FUz2Uttp2WitRCu1lcPJjkom3rSgq2IsK3kImP1qhzJZdt-B_73sz2ekuFrx4nSSQ5L3kfR_z8j1CvmgTQhN1KJniQFB45UuIgqbUSsKNbIJPfVblxQ91ei3Pb-qblVJfmBM2yAMPG3dQV9xFFuqUwHMa450QLrkaZdxZiK5XL4WYtyRTmWoJYF6DjpAAUn8w57yC27qv6fYv-vQi_Y-v4pVYtJ4nuRJ4Tl6TVxkx0skw0zfkRezeks0VHcEtkhAy3nq6VBih00TzOyPcd5plySl8oWfTK3p038YZvcyl6w7phF4uZn_jPY676LMrI83Cqz_pJKuOx_k2uT45vjo6LXMBhdID7sIy88Zo40RSCVhD0Ml42YaWa8WcioFVvuFt4izIkDSQsToC2QPAAxgWYaAR78hGN-3iB0K1VMpwp6SKWsqYWhjimA6sbZKR3hfk23Jjrc_q4ljk4rcFloE2sKMNCrI_dv0zSGr8r9N3tM7YAVWw-w_gGzb7hn3KNwryFW1r8azCZLzLTw5gSah6ZSe6YQr_DIqC7CzNb_MhnluuhGBKNdi8NzbD8cN_Kq6L08XQp0FNSV2Q94O3jHMGbMsw66gges2P1ha13tLd_uolvhu4FwGYfXyOXfhEXnJ8s4FVbKodsnE3W8TPgKTu2t3-0DwAcg4cQQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyCAkuESN7cQPLmipWApSubSVerMcP9pKKCm7XaT-e2YSb7orEFfbiZyMZ-Ybe_wNIe-UCUFHFUomOQQovPIleEFTKlmDRTbBpyGr8vCHPDipv582p3nDbZnTKtc2cTDUofe4R77HpRBMSl2JT5e_SqwahaeruYTGbXKHgafBlC49_zoFXALir5FNSEBov7fkvAKbPVR2u_FBA1X_3wZ5wyNtZ0tuuJ_5A3I_40Y6GwX9kNyK3SNyb4NN8DFJCBwvPF3zjNA-0XzbCP8-zeTkFFrot_6Y7l-3cUGPcgG7j3RGj1aL3_EanzscciwjzfSrZ3SWucfj8gk5mX853j8ocxmF0gP6wmLzxijjRJIJYoegkvF1G1quJHMyBlZ5zdvEWahDUhCSNRFCPoA9gGQRDBrxlOx0fRefE6pqKQ13spZR1XVMLTzimAqs1cnU3hfkw_rHWp85xrHUxU8LsQbKwE4yKMjbaejlSKzxr0GfUTrTAOTCHhr6xZnNqmWbirvIQpMS2BZtvBPCJdcg0T8L0cFL3qNsLWosTMa7fPEAPgm5r-xMaSbxfFAUZHctfptVeWlvFl5B3kzdoIR4suK62K_GMRqZJVVBno2rZZozIFyGuUcFUVvraOujtnu6i_OB6FuDdQR49uL_03pJ7nK8k4FVaqpdsnO1WMVXgJSu2teDOvwBrPoTRQ priority: 102 providerName: ProQuest |
Title | Static Analysis of Information Systems for IoT Cyber Security: A Survey of Machine Learning Approaches |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35214237 https://www.proquest.com/docview/2633166803 https://www.proquest.com/docview/2633857337 https://pubmed.ncbi.nlm.nih.gov/PMC8963110 https://doaj.org/article/502ae1d5ff79489ca33afa525461dea5 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3da9swED_6AaN7GPteti5oY7C9ZI1kW7IGY6SlWTdIGWsDeTOyPrpCSdqkGct_vztHNjHrXvwgnYztO939zpJ-B_BOaedyr1yPS4EJiujbHkZB3VMyRY-snQ3VrsrRqTwZp98n2WQL6hqb8QMu7kztqJ7UeH718c_N6gtO-M-UcWLKfrAQoo--OMm2YRcDkqJCBqO0WUwQCaZha1Khtvge3EP4wWljSCsqVeT9_7rojRjV3j-5EZCGD-FBRJJssFb9I9jy08dwf4Nf8AkEgpKXltXMI2wWWDx_RPpgka6cYQv7NjtnR6vSz9lZLGn3iQ3Y2XL-269o3KjadelZJGS9YIPIRu4XT2E8PD4_OunFwgo9i3iMys9rrbRJggyYTTgVtE1LVwoluZHe8b7NRRkEd6kLCpO0zGMSiEAIsS3BQ508g53pbOpfAFOplFoYmUqv0tSHEocYrhwv86BTazvwof6whY2s41T84qrA7IPUUTTq6MDbRvR6TbVxl9AhaacRIHbsqmE2vyjiZCuyvjCeuywE9Da5tiZJTDAZUf9z5w3e5D3ptiCrwoexJh5FwFciNqxioHIuacUw6cB-rf6its1CyCThUubU_abpxmlJay1m6mfLtUxOXJOqA8_X1tI8c210HVAtO2q9VLtnevmrov7O0V8iYHv533u-gj1BBzSoZE1_H3Zu50v_GmHTbdmFbTVReM2HX7uwe3h8-uNnt_oF0a2my1_mtxjT |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqcgAOiG9SChgEgkvUxEnsBAmhpbDs0m4v3Uq9uY4_SiWUtLtd0P4pfiMziZPuCsStt1XsrJyMPfMmHr9HyGtRGJNbYcKYM0hQWKRDiIJFKHgKHrkw2jVVlZMDPjpKvx1nxxvkd3cWBssqO5_YOGpTa_xGvsN4ksSc51Hy8fwiRNUo3F3tJDTaabFnl78gZZt_GH8G-75hbPhlujsKvapAqAGMoPZ6UYhCJY47gNJGuEKnpSkZ5POKWxNHOmelY7FJjROQoWQWMiBAAQDsEBsh-RK4_Bsp_MRkLx9-7RO8BPK9lr0IGqOdOWMRxIhGSe4q5jXSAH8HgJUIuF6duRLuhnfJHY9T6aCdWPfIhq3uk9sr7IUPiEOgeqZpx2tCa0f96Sa0NvVk6BSu0HE9pbvL0s7ooRfMe08H9HAx-2mXeN-kqem01NO9ntKB5zq384fk6Fpe8COyWdWVfUKoSDkvmOIptyJNrSvhFhULE5e5K1KtA_Kue7FSe05zlNb4ISG3QRvI3gYBedV3PW-JPP7V6RNap--A3NvNhXp2Kv1SllnElI1N5hz4srzQKkmUUxkKC8TGKviTt2hbiR4CBqOVP-gAj4RcW3Ig8pjjfmQSkO3O_NK7jrm8mugBedk3w6LHnRxV2XrR9smRyVIE5HE7W_oxA6KOsdYpIGJtHq091HpLdfa9IRbPwRsDHNz6_7BekJuj6WRf7o8P9p6SWwzPg6BCTrRNNi9nC_sMUNpl-bxZGpScXPda_APlm06N |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB1VrYTgAXHHUGBBIHixYq-dXRsJofQSNZRGFW2lvpn1XkolFJekAeXX-Dpm7LWbCMRbX-11tPbMzpzJzp4D8FrmxmRWmjAWHAsUHukQs2AeSpFiRM6NdnVX5cFY7J2kn077p2vwuz0LQ22VbUysA7WpNP1H3uMiSWIhsijpOd8Wcbgz_HjxIyQFKdppbeU0GhfZt4tfWL7NPox20NZvOB_uHm_vhV5hINQITEiHPc9lrhInHMJqI12u09KUHGt7JayJI53x0vHYpMZJrFb6FqshRAQI8ggnEREThv8NSVXROmxs7Y4Pv3TlXoLVX8NlhCOj3ozzCDNGrSt3lQFroYC_08FSPlzt1VxKfsM7cNujVjZo3OwurNnJPbi1xGV4HxzB1nPNWpYTVjnmzzqR7ZmnRmd4hY2qY7a9KO2UHXn5vPdswI7m0592Qc8d1B2elnny1zM28MzndvYATq7lEz-E9Uk1sY-ByVSInCuRCivT1LoSH1GxNHGZuTzVOoB37YcttGc4J6GN7wVWOmSDorNBAK-6oRcNrce_Bm2RdboBxMRdX6imZ4Vf2EU_4srGpu8cRrYs1ypJlFN9khmIjVX4I2_JtgXFC5yMVv7YA74SMW8VA5nFgnYnkwA2W_MXPpDMiiu3D-BldxtDAO3rqImt5s2YjHgtZQCPGm_p5oz4OqbOpwDkih-tvNTqncn5t5pmPMPYjODwyf-n9QJu4DosPo_G-0_hJqfDISSXE23C-uV0bp8hZLssn_u1weDrdS_HPxJhVB8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Static+Analysis+of+Information+Systems+for+IoT+Cyber+Security%3A+A+Survey+of+Machine+Learning+Approaches&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kotenko%2C+Igor&rft.au=Izrailov%2C+Konstantin&rft.au=Buinevich%2C+Mikhail&rft.date=2022-02-10&rft.eissn=1424-8220&rft.volume=22&rft.issue=4&rft_id=info:doi/10.3390%2Fs22041335&rft_id=info%3Apmid%2F35214237&rft.externalDocID=35214237 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |