Static Analysis of Information Systems for IoT Cyber Security: A Survey of Machine Learning Approaches

Ensuring security for modern IoT systems requires the use of complex methods to analyze their software. One of the most in-demand methods that has repeatedly been proven to be effective is static analysis. However, the progressive complication of the connections in IoT systems, the increase in their...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 4; p. 1335
Main Authors Kotenko, Igor, Izrailov, Konstantin, Buinevich, Mikhail
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.02.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ensuring security for modern IoT systems requires the use of complex methods to analyze their software. One of the most in-demand methods that has repeatedly been proven to be effective is static analysis. However, the progressive complication of the connections in IoT systems, the increase in their scale, and the heterogeneity of elements requires the automation and intellectualization of manual experts’ work. A hypothesis to this end is posed that assumes the applicability of machine-learning solutions for IoT system static analysis. A scheme of this research, which is aimed at confirming the hypothesis and reflecting the ontology of the study, is given. The main contributions to the work are as follows: systematization of static analysis stages for IoT systems and decisions of machine-learning problems in the form of formalized models; review of the entire subject area publications with analysis of the results; confirmation of the machine-learning instrumentaries applicability for each static analysis stage; and the proposal of an intelligent framework concept for the static analysis of IoT systems. The novelty of the results obtained is a consideration of the entire process of static analysis (from the beginning of IoT system research to the final delivery of the results), consideration of each stage from the entirely given set of machine-learning solutions perspective, as well as formalization of the stages and solutions in the form of “Form and Content” data transformations.
AbstractList Ensuring security for modern IoT systems requires the use of complex methods to analyze their software. One of the most in-demand methods that has repeatedly been proven to be effective is static analysis. However, the progressive complication of the connections in IoT systems, the increase in their scale, and the heterogeneity of elements requires the automation and intellectualization of manual experts’ work. A hypothesis to this end is posed that assumes the applicability of machine-learning solutions for IoT system static analysis. A scheme of this research, which is aimed at confirming the hypothesis and reflecting the ontology of the study, is given. The main contributions to the work are as follows: systematization of static analysis stages for IoT systems and decisions of machine-learning problems in the form of formalized models; review of the entire subject area publications with analysis of the results; confirmation of the machine-learning instrumentaries applicability for each static analysis stage; and the proposal of an intelligent framework concept for the static analysis of IoT systems. The novelty of the results obtained is a consideration of the entire process of static analysis (from the beginning of IoT system research to the final delivery of the results), consideration of each stage from the entirely given set of machine-learning solutions perspective, as well as formalization of the stages and solutions in the form of “Form and Content” data transformations.
Ensuring security for modern IoT systems requires the use of complex methods to analyze their software. One of the most in-demand methods that has repeatedly been proven to be effective is static analysis. However, the progressive complication of the connections in IoT systems, the increase in their scale, and the heterogeneity of elements requires the automation and intellectualization of manual experts' work. A hypothesis to this end is posed that assumes the applicability of machine-learning solutions for IoT system static analysis. A scheme of this research, which is aimed at confirming the hypothesis and reflecting the ontology of the study, is given. The main contributions to the work are as follows: systematization of static analysis stages for IoT systems and decisions of machine-learning problems in the form of formalized models; review of the entire subject area publications with analysis of the results; confirmation of the machine-learning instrumentaries applicability for each static analysis stage; and the proposal of an intelligent framework concept for the static analysis of IoT systems. The novelty of the results obtained is a consideration of the entire process of static analysis (from the beginning of IoT system research to the final delivery of the results), consideration of each stage from the entirely given set of machine-learning solutions perspective, as well as formalization of the stages and solutions in the form of "Form and Content" data transformations.Ensuring security for modern IoT systems requires the use of complex methods to analyze their software. One of the most in-demand methods that has repeatedly been proven to be effective is static analysis. However, the progressive complication of the connections in IoT systems, the increase in their scale, and the heterogeneity of elements requires the automation and intellectualization of manual experts' work. A hypothesis to this end is posed that assumes the applicability of machine-learning solutions for IoT system static analysis. A scheme of this research, which is aimed at confirming the hypothesis and reflecting the ontology of the study, is given. The main contributions to the work are as follows: systematization of static analysis stages for IoT systems and decisions of machine-learning problems in the form of formalized models; review of the entire subject area publications with analysis of the results; confirmation of the machine-learning instrumentaries applicability for each static analysis stage; and the proposal of an intelligent framework concept for the static analysis of IoT systems. The novelty of the results obtained is a consideration of the entire process of static analysis (from the beginning of IoT system research to the final delivery of the results), consideration of each stage from the entirely given set of machine-learning solutions perspective, as well as formalization of the stages and solutions in the form of "Form and Content" data transformations.
Audience Academic
Author Izrailov, Konstantin
Kotenko, Igor
Buinevich, Mikhail
AuthorAffiliation 2 Department of Secure Communication Systems, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 193232 Saint-Petersburg, Russia; konstantin.izrailov@mail.ru
3 Department of Applied Mathematics and Information Technologies, Saint-Petersburg University of State Fire Service of EMERCOM of Russia, 196105 Saint-Petersburg, Russia; bmv1958@yandex.ru
1 Computer Security Problems Laboratory, St. Petersburg Federal Research Center of the Russian Academy of Sciences, 199178 Saint-Petersburg, Russia
AuthorAffiliation_xml – name: 1 Computer Security Problems Laboratory, St. Petersburg Federal Research Center of the Russian Academy of Sciences, 199178 Saint-Petersburg, Russia
– name: 2 Department of Secure Communication Systems, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 193232 Saint-Petersburg, Russia; konstantin.izrailov@mail.ru
– name: 3 Department of Applied Mathematics and Information Technologies, Saint-Petersburg University of State Fire Service of EMERCOM of Russia, 196105 Saint-Petersburg, Russia; bmv1958@yandex.ru
Author_xml – sequence: 1
  givenname: Igor
  orcidid: 0000-0001-6859-7120
  surname: Kotenko
  fullname: Kotenko, Igor
– sequence: 2
  givenname: Konstantin
  orcidid: 0000-0002-9412-5693
  surname: Izrailov
  fullname: Izrailov, Konstantin
– sequence: 3
  givenname: Mikhail
  orcidid: 0000-0001-8146-0022
  surname: Buinevich
  fullname: Buinevich, Mikhail
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35214237$$D View this record in MEDLINE/PubMed
BookMark eNptkktrGzEQx5eS0jzaQ79AEfTSHpzosVqtegiY0IfBpQenZyHr4cjsSq60G9hv34mdmiQUHST--s1fM5o5r05iiq6q3hN8yZjEV4VSXBPG-KvqjNS0nrUgnDw5n1bnpWwxpoyx9k11yjiFOybOKr8a9BAMmkfdTSUUlDxaRJ9yD3KKaDWVwfUFgYIW6RbdTGuX0cqZMYdh-oLmaDXmezc9xP3U5i5Eh5ZO5xjiBs13u5xAdOVt9drrrrh3j_tF9fvb19ubH7Plr--Lm_lyZjhuhxlhUgqpmW-8qIUVXpp6bddUNEQ3zhJsWrr2lNjaeoFpwx2WNeWkJZZw-Ap2US0Ovjbprdrl0Os8qaSD2gspb5TOUG_nFMdUO2K590LWrTSaMe01p7xuiHWag9f1wWs3rntnjYtD1t0z0-c3MdypTbpXrWwYIRgMPj0a5PRndGVQfSjGdZ2OLo1F0Qa6wQVjAtCPL9BtGjP05ECRpmkxA-ryQG00FBCgTfCugWVdHwzMhA-gz0VLGizlPuDD0xKOuf_rPwCfD4DJqZTs_BEhWD3MljrOFrBXL1gThv2UQBah-0_EXxbHzgM
CitedBy_id crossref_primary_10_1016_j_comcom_2023_04_016
crossref_primary_10_3390_en16135111
crossref_primary_10_1016_j_infsof_2025_107709
crossref_primary_10_1016_j_measen_2022_100458
crossref_primary_10_31854_1813_324X_2024_10_1_86_96
crossref_primary_10_3390_axioms11050229
crossref_primary_10_1016_j_indic_2024_100485
crossref_primary_10_1109_ACCESS_2024_3355794
crossref_primary_10_32604_iasc_2024_058624
crossref_primary_10_3390_s22052017
crossref_primary_10_3390_jsan12010011
crossref_primary_10_31854_1813_324X_2023_9_2_95_111
crossref_primary_10_3390_electronics12102278
crossref_primary_10_37468_2307_1400_2024_1_35_45
crossref_primary_10_3390_app122010653
crossref_primary_10_31854_1813_324X_2023_9_5_79_90
crossref_primary_10_3390_fi17010030
crossref_primary_10_61260_2218_130X_2024_2023_4_159_168
crossref_primary_10_1080_00051144_2023_2218164
crossref_primary_10_37468_2307_1400_2023_1_86_92
crossref_primary_10_1109_ACCESS_2022_3205351
crossref_primary_10_1145_3648610
crossref_primary_10_1016_j_future_2022_08_004
crossref_primary_10_3390_app132111985
crossref_primary_10_1109_COMST_2023_3299519
Cites_doi 10.15514/ISPRAS-2018-30(5)-5
10.1145/2746194.2746198
10.1109/Metrisec.2011.18
10.1109/icABCD49160.2020.9183878
10.1109/ICST.2010.32
10.1145/1095430.1081754
10.1007/s10489-007-0111-x
10.1109/TSE.2008.24
10.1007/978-3-030-36614-8_11
10.1109/ICKII50300.2020.9318879
10.1109/AICT50176.2020.9368828
10.1109/ICMLA.2015.99
10.1145/1095430.1081755
10.1109/ICDAR.2011.214
10.1145/2970276.2970368
10.1109/ACCESS.2017.2696365
10.1109/ACCESS.2021.3091427
10.1109/ISACV.2018.8354060
10.1109/ICUMT.2018.8631225
10.1109/ISCC50000.2020.9219568
10.1145/2566486.2568024
10.1016/S1361-3723(13)70045-9
10.1145/2884781.2884804
10.1145/1988630.1988632
10.1016/j.procs.2015.02.149
10.1109/COMST.2021.3075439
10.1145/3195970.3196094
10.1109/ICCT50939.2020.9295714
10.1145/2351676.2351733
10.1109/MNET.2017.1700200
10.1109/ACCESS.2020.2966523
10.1145/1852786.1852798
10.1109/SYNASC.2017.00046
10.1109/ICET.2017.8281704
10.1109/CITSM50537.2020.9268794
10.1016/j.jnca.2020.102630
10.1007/978-3-642-01718-6
10.1007/978-3-319-99447-5_29
10.1145/1287624.1287632
10.1109/ICSPC51351.2021.9451740
10.1145/502059.502041
10.1145/2420950.2421003
10.1109/ICMLA.2011.59
10.31854/1813-324X-2020-6-3-48-57
10.1145/2857705.2857750
10.1109/ACCESS.2021.3103725
10.1109/ACCESS.2019.2917668
10.1145/2897795.2897813
10.1109/I-SMAC.2018.8653720
10.1109/ICMLA.2016.0158
10.31854/1813-324X-2020-6-2-104-112
10.1109/SYNASC49474.2019.00042
10.1109/ACCESS.2021.3090998
10.1109/38.788795
10.3390/fi12050082
10.1109/JIOT.2021.3086398
10.1109/SCM.2015.7190394
10.1109/ICCKE.2017.8167881
10.1109/SCM.2015.7190434
10.1145/1831708.1831723
10.1109/SYNASC.2008.7
10.1109/ACCESS.2019.2946482
10.1109/SP.2015.54
10.1109/ACSAC.2007.27
10.1109/HSI.2012.22
10.1109/ICMLC.2014.7009126
10.31854/1813-324X-2020-6-1-77-85
10.1109/TII.2019.2942800
10.1109/EMPDP.2019.8671571
10.1109/TR.2018.2884143
10.1109/ASE.2009.72
10.1145/2970276.2970341
10.1109/ICMLC.2011.6016774
10.1007/s10664-011-9190-8
10.3390/s22031017
10.1145/3092566
10.1109/TVCG.2017.2744685
10.1109/IJCNN.2014.6889875
10.1109/IMCSIT.2009.5352759
10.1016/j.infsof.2013.04.002
10.1145/2714064.2660226
10.1109/HPCC-SmartCity-DSS.2016.0213
10.1109/TSE.2014.2340398
10.1109/ICCCI50826.2021.9402622
10.1109/ICOMET.2019.8673480
10.1016/j.istr.2009.03.003
10.23919/ICACT.2018.8323719
10.1109/ACCESS.2020.2972358
10.1109/SIU.2018.8404472
10.1109/CCIS.2016.7790290
10.1109/CICYBS.2013.6597207
10.1109/SCM.2015.7190452
10.1109/TSE.2010.81
10.1109/CVPR.2007.383255
10.1109/ICSE.2013.6606610
10.1109/ACCESS.2020.3018170
10.1109/SIU.2018.8404373
10.23919/ICACT.2018.8323940
10.1109/ARES.2011.52
10.1109/BigData.2016.7841039
10.1145/2508859.2516665
10.1109/ACCESS.2021.3089681
10.1109/PDP.2010.30
10.1109/ISSRE.2014.32
10.1109/TDSC.2014.2373377
10.1109/MS.2008.130
10.1145/2857705.2857720
10.1145/1287624.1287630
10.1109/JIOT.2021.3099028
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s22041335
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_502ae1d5ff79489ca33afa525461dea5
PMC8963110
A781609903
35214237
10_3390_s22041335
Genre Journal Article
Review
GeographicLocations New York
GeographicLocations_xml – name: New York
GrantInformation_xml – fundername: Russian Science Foundation
  grantid: 21-71-20078
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c508t-139979a3f6f747d7f9c4bdb2761a6ed10c82bf21d4df70265e09425181d153393
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:03 EDT 2025
Thu Aug 21 18:32:12 EDT 2025
Thu Jul 10 20:02:57 EDT 2025
Fri Jul 25 20:15:00 EDT 2025
Tue Jun 10 21:12:58 EDT 2025
Wed Feb 19 02:26:37 EST 2025
Thu Apr 24 23:10:25 EDT 2025
Tue Jul 01 02:41:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords cyber security
IoT systems
static analysis
survey model
formalization
analytic model
machine learning
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-139979a3f6f747d7f9c4bdb2761a6ed10c82bf21d4df70265e09425181d153393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9412-5693
0000-0001-8146-0022
0000-0001-6859-7120
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22041335
PMID 35214237
PQID 2633166803
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_502ae1d5ff79489ca33afa525461dea5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8963110
proquest_miscellaneous_2633857337
proquest_journals_2633166803
gale_infotracacademiconefile_A781609903
pubmed_primary_35214237
crossref_primary_10_3390_s22041335
crossref_citationtrail_10_3390_s22041335
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220210
PublicationDateYYYYMMDD 2022-02-10
PublicationDate_xml – month: 2
  year: 2022
  text: 20220210
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
ref_93
ref_136
ref_92
ref_138
ref_90
ref_14
Sornil (ref_19) 2013; 4
ref_13
Tahsien (ref_137) 2020; 161
ref_12
ref_11
ref_99
ref_130
ref_10
ref_98
ref_133
ref_132
ref_96
ref_135
ref_134
Liu (ref_112) 2020; 16
Otsubo (ref_122) 2020; 8
ref_17
Li (ref_42) 2005; 30
ref_15
Moshtari (ref_35) 2013; 2013
Nguyen (ref_69) 2021; 23
ref_126
ref_125
ref_128
ref_129
ref_24
ref_23
ref_22
ref_21
ref_20
Yang (ref_123) 2019; 7
ref_29
ref_28
Singh (ref_120) 2021; 9
ref_27
ref_26
Grolinger (ref_79) 2017; 5
Kumar (ref_97) 2017; Volume 515
Zhang (ref_131) 2020; 8
ref_71
Chang (ref_47) 2008; 34
ref_70
Allamanis (ref_7) 2017; 51
Shar (ref_54) 2015; 12
ref_78
Aslanyan (ref_77) 2018; 30
Harbi (ref_67) 2021; 9
ref_74
ref_73
Hsiao (ref_25) 2014; 49
Raju (ref_16) 2021; 9
Alasmary (ref_121) 2021; 9
Hinneburg (ref_127) 1999; 19
Xue (ref_8) 2019; 7
Ghaffarian (ref_9) 2017; 50
Zaman (ref_68) 2021; 9
ref_89
ref_88
ref_87
ref_86
ref_85
Engler (ref_40) 2001; 35
Monjalet (ref_95) 2019; Volume 11887
Liu (ref_66) 2022; 9
Shar (ref_52) 2013; 55
ref_50
Buinevich (ref_82) 2020; 6
ref_58
Wilkinson (ref_124) 2018; 24
ref_57
ref_56
ref_53
Wu (ref_72) 2020; 8
ref_51
Shin (ref_34) 2011; 37
ref_59
ref_61
ref_60
Xu (ref_100) 2019; 68
Khammas (ref_116) 2015; 77
Scandariato (ref_55) 2014; 40
Wang (ref_80) 2018; 32
Abah (ref_113) 2015; 7
ref_65
ref_64
ref_63
ref_62
Asryan (ref_76) 2018; 30
Ayewah (ref_75) 2008; 25
Shabtai (ref_110) 2009; 14
Buinevich (ref_83) 2020; 6
Shin (ref_32) 2013; 18
ref_115
Shijo (ref_18) 2015; 46
ref_114
ref_117
ref_119
ref_118
ref_36
Livshits (ref_41) 2005; 30
ref_33
ref_111
ref_31
ref_30
ref_39
Buinevich (ref_84) 2020; 6
Zhang (ref_91) 2009; 31
ref_38
ref_37
ref_104
ref_103
ref_106
ref_105
ref_108
ref_107
Buinevich (ref_81) 2020; 1
ref_109
ref_46
ref_45
ref_44
ref_43
ref_102
ref_101
ref_1
ref_3
ref_2
ref_49
ref_48
ref_5
ref_4
ref_6
References_xml – volume: 30
  start-page: 89
  year: 2018
  ident: ref_77
  article-title: Platform for interprocedural static analysis of binary code
  publication-title: Proc. Inst. Syst. Program. RAS
  doi: 10.15514/ISPRAS-2018-30(5)-5
– ident: ref_37
  doi: 10.1145/2746194.2746198
– ident: ref_117
– ident: ref_31
  doi: 10.1109/Metrisec.2011.18
– ident: ref_109
  doi: 10.1109/icABCD49160.2020.9183878
– ident: ref_65
– ident: ref_108
– ident: ref_39
  doi: 10.1109/ICST.2010.32
– volume: 30
  start-page: 296
  year: 2005
  ident: ref_41
  article-title: DynaMine: Finding Common Error Patterns by Mining Software Revision Histories
  publication-title: SIGSOFT Softw. Eng. Notes
  doi: 10.1145/1095430.1081754
– volume: 31
  start-page: 47
  year: 2009
  ident: ref_91
  article-title: Multi-instance clustering with applications to multi-instance prediction
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-007-0111-x
– volume: 34
  start-page: 579
  year: 2008
  ident: ref_47
  article-title: Discovering Neglected Conditions in Software by Mining Dependence Graphs
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2008.24
– ident: ref_14
  doi: 10.1007/978-3-030-36614-8_11
– ident: ref_70
  doi: 10.1109/ICKII50300.2020.9318879
– ident: ref_132
  doi: 10.1109/AICT50176.2020.9368828
– ident: ref_57
  doi: 10.1109/ICMLA.2015.99
– ident: ref_27
– volume: 30
  start-page: 306
  year: 2005
  ident: ref_42
  article-title: PR-Miner: Automatically Extracting Implicit Programming Rules and Detecting Violations in Large Software Code
  publication-title: SIGSOFT Softw. Eng. Notes
  doi: 10.1145/1095430.1081755
– ident: ref_89
  doi: 10.1109/ICDAR.2011.214
– ident: ref_135
  doi: 10.1145/2970276.2970368
– volume: 5
  start-page: 7776
  year: 2017
  ident: ref_79
  article-title: Machine Learning With Big Data: Challenges and Approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2696365
– volume: 9
  start-page: 91686
  year: 2021
  ident: ref_16
  article-title: A Survey on Cross-Architectural IoT Malware Threat Hunting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3091427
– ident: ref_96
  doi: 10.1109/ISACV.2018.8354060
– volume: 1
  start-page: 34
  year: 2020
  ident: ref_81
  article-title: Method for classification of files based on machine learning technology
  publication-title: Bull. St. Petersburg State Univ. Technol. Des. Ser. Nat. Tech. Sci.
– volume: 7
  start-page: 15
  year: 2015
  ident: ref_113
  article-title: A Machine Learning Approach to Anomaly-Based Detection on Android Platforms
  publication-title: Int. J. Netw. Secur. Its Appl.
– ident: ref_13
  doi: 10.1109/ICUMT.2018.8631225
– ident: ref_129
  doi: 10.1109/ISCC50000.2020.9219568
– ident: ref_63
  doi: 10.1145/2566486.2568024
– volume: 2013
  start-page: 8
  year: 2013
  ident: ref_35
  article-title: Using complexity metrics to improve software security
  publication-title: Comput. Fraud. Secur.
  doi: 10.1016/S1361-3723(13)70045-9
– ident: ref_28
– ident: ref_23
  doi: 10.1145/2884781.2884804
– ident: ref_33
  doi: 10.1145/1988630.1988632
– volume: 46
  start-page: 804
  year: 2015
  ident: ref_18
  article-title: Integrated Static and Dynamic Analysis for Malware Detection
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.02.149
– volume: 23
  start-page: 1622
  year: 2021
  ident: ref_69
  article-title: Federated Learning for Internet of Things: A Comprehensive Survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2021.3075439
– ident: ref_134
– ident: ref_86
– ident: ref_105
  doi: 10.1145/3195970.3196094
– volume: Volume 515
  start-page: 107
  year: 2017
  ident: ref_97
  article-title: Text Document Classification with PCA and One-Class SVM
  publication-title: Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications
– ident: ref_99
  doi: 10.1109/ICCT50939.2020.9295714
– ident: ref_51
  doi: 10.1145/2351676.2351733
– volume: 32
  start-page: 92
  year: 2018
  ident: ref_80
  article-title: Machine Learning for Networking: Workflow, Advances and Opportunities
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2017.1700200
– volume: 8
  start-page: 13467
  year: 2020
  ident: ref_131
  article-title: The Effects of Depth of Field on Subjective Evaluation of Aesthetic Appeal and Image Quality of Photographs
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966523
– ident: ref_30
  doi: 10.1145/1852786.1852798
– ident: ref_103
  doi: 10.1109/SYNASC.2017.00046
– ident: ref_102
  doi: 10.1109/ICET.2017.8281704
– ident: ref_73
  doi: 10.1109/CITSM50537.2020.9268794
– volume: 161
  start-page: 102630
  year: 2020
  ident: ref_137
  article-title: Machine learning based solutions for security of Internet of Things (IoT): A survey
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2020.102630
– ident: ref_111
  doi: 10.1007/978-3-642-01718-6
– ident: ref_1
  doi: 10.1007/978-3-319-99447-5_29
– ident: ref_64
– volume: Volume 11887
  start-page: 288
  year: 2019
  ident: ref_95
  article-title: Predicting File Lifetimes with Machine Learning
  publication-title: International Conference on High Performance Computing
– ident: ref_43
  doi: 10.1145/1287624.1287632
– ident: ref_71
  doi: 10.1109/ICSPC51351.2021.9451740
– volume: 35
  start-page: 57
  year: 2001
  ident: ref_40
  article-title: Bugs as Deviant Behavior: A General Approach to Inferring Errors in Systems Code
  publication-title: ACM Sigops Oper. Syst. Rev.
  doi: 10.1145/502059.502041
– ident: ref_126
– ident: ref_101
– ident: ref_50
  doi: 10.1145/2420950.2421003
– ident: ref_88
  doi: 10.1109/ICMLA.2011.59
– ident: ref_22
– volume: 6
  start-page: 48
  year: 2020
  ident: ref_84
  article-title: Identification of Processor’s Architecture of Executable Code Based on Machine Learning. Part 3. Assessment Quality and Applicability Border
  publication-title: Proc. Telecommun. Univ.
  doi: 10.31854/1813-324X-2020-6-3-48-57
– ident: ref_38
  doi: 10.1145/2857705.2857750
– volume: 9
  start-page: 113292
  year: 2021
  ident: ref_67
  article-title: Recent Security Trends in Internet of Things: A Comprehensive Survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3103725
– volume: 7
  start-page: 65889
  year: 2019
  ident: ref_8
  article-title: Machine Learning-Based Analysis of Program Binaries: A Comprehensive Study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917668
– ident: ref_78
– volume: 30
  start-page: 25
  year: 2018
  ident: ref_76
  article-title: Combining dynamic symbolic execution, code static analysis and fuzzing
  publication-title: Proc. Inst. Syst. Program. RAS
– ident: ref_49
– ident: ref_130
  doi: 10.1145/2897795.2897813
– ident: ref_74
  doi: 10.1109/I-SMAC.2018.8653720
– ident: ref_128
  doi: 10.1109/ICMLA.2016.0158
– volume: 77
  start-page: 243
  year: 2015
  ident: ref_116
  article-title: Feature selection and machine learning classification for malware detection
  publication-title: J. Teknol.
– volume: 6
  start-page: 104
  year: 2020
  ident: ref_83
  article-title: Identification of Processor’s Architecture of Executable Code Based on Machine Learning. Part 2. Identification Method
  publication-title: Proc. Telecommun. Univ.
  doi: 10.31854/1813-324X-2020-6-2-104-112
– volume: 51
  start-page: 36
  year: 2017
  ident: ref_7
  article-title: A Survey of Machine Learning for Big Code and Naturalness
  publication-title: ACM Comput. Surv.
– volume: 4
  start-page: 59
  year: 2013
  ident: ref_19
  article-title: Malware Classification Using N-grams Sequential Pattern Features
  publication-title: Int. J. Inf. Process. Manag.
– ident: ref_118
  doi: 10.1109/SYNASC49474.2019.00042
– volume: 9
  start-page: 90102
  year: 2021
  ident: ref_120
  article-title: Classification and Analysis of Android Malware Images Using Feature Fusion Technique
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3090998
– volume: 19
  start-page: 22
  year: 1999
  ident: ref_127
  article-title: HD-Eye: Visual mining of high-dimensional data
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/38.788795
– ident: ref_11
  doi: 10.3390/fi12050082
– volume: 9
  start-page: 2485
  year: 2021
  ident: ref_121
  article-title: SHELLCORE: Automating Malicious IoT Software Detection Using Shell Commands Representation
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3086398
– ident: ref_4
  doi: 10.1109/SCM.2015.7190394
– ident: ref_61
– ident: ref_106
  doi: 10.1109/ICCKE.2017.8167881
– ident: ref_6
  doi: 10.1109/SCM.2015.7190434
– ident: ref_46
  doi: 10.1145/1831708.1831723
– ident: ref_136
  doi: 10.1109/SYNASC.2008.7
– volume: 7
  start-page: 148853
  year: 2019
  ident: ref_123
  article-title: A Novel Solutions for Malicious Code Detection and Family Clustering Based on Machine Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946482
– ident: ref_56
  doi: 10.1109/SP.2015.54
– ident: ref_59
  doi: 10.1109/ACSAC.2007.27
– ident: ref_60
  doi: 10.1109/HSI.2012.22
– ident: ref_114
  doi: 10.1109/ICMLC.2014.7009126
– volume: 6
  start-page: 77
  year: 2020
  ident: ref_82
  article-title: Identification of Processor’s Architecture of Executable Code Based on Machine Learning. Part 1. Frequency Byte Model
  publication-title: Proc. Telecommun. Univ.
  doi: 10.31854/1813-324X-2020-6-1-77-85
– volume: 16
  start-page: 2154
  year: 2020
  ident: ref_112
  article-title: Cyber Vulnerability Intelligence for Internet of Things Binary
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2942800
– ident: ref_17
– ident: ref_93
– ident: ref_10
  doi: 10.1109/EMPDP.2019.8671571
– volume: 68
  start-page: 893
  year: 2019
  ident: ref_100
  article-title: Type Learning for Binaries and Its Applications
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2018.2884143
– ident: ref_45
  doi: 10.1109/ASE.2009.72
– ident: ref_26
  doi: 10.1145/2970276.2970341
– ident: ref_92
  doi: 10.1109/ICMLC.2011.6016774
– volume: 18
  start-page: 25
  year: 2013
  ident: ref_32
  article-title: Can traditional fault prediction models be used for vulnerability prediction?
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-011-9190-8
– ident: ref_119
– ident: ref_138
  doi: 10.3390/s22031017
– ident: ref_24
– volume: 50
  start-page: 1
  year: 2017
  ident: ref_9
  article-title: Software Vulnerability Analysis and Discovery Using Machine-Learning and Data-Mining Techniques: A Survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3092566
– volume: 24
  start-page: 256
  year: 2018
  ident: ref_124
  article-title: Visualizing Big Data Outliers Through Distributed Aggregation
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2017.2744685
– ident: ref_12
  doi: 10.1109/IJCNN.2014.6889875
– ident: ref_20
  doi: 10.1109/IMCSIT.2009.5352759
– volume: 55
  start-page: 1767
  year: 2013
  ident: ref_52
  article-title: Predicting SQL injection and cross site scripting vulnerabilities through mining input sanitization patterns
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2013.04.002
– volume: 49
  start-page: 49
  year: 2014
  ident: ref_25
  article-title: Using Web Corpus Statistics for Program Analysis
  publication-title: Sigplan Not.
  doi: 10.1145/2714064.2660226
– ident: ref_107
  doi: 10.1109/HPCC-SmartCity-DSS.2016.0213
– ident: ref_125
– volume: 40
  start-page: 993
  year: 2014
  ident: ref_55
  article-title: Predicting Vulnerable Software Components via Text Mining
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2014.2340398
– ident: ref_98
  doi: 10.1109/ICCCI50826.2021.9402622
– ident: ref_87
  doi: 10.1109/ICOMET.2019.8673480
– ident: ref_21
– volume: 14
  start-page: 16
  year: 2009
  ident: ref_110
  article-title: Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey
  publication-title: Inf. Secur. Tech. Rep.
  doi: 10.1016/j.istr.2009.03.003
– ident: ref_15
  doi: 10.23919/ICACT.2018.8323719
– volume: 8
  start-page: 31753
  year: 2020
  ident: ref_122
  article-title: o-glasses: Visualizing X86 Code From Binary Using a 1D-CNN
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972358
– ident: ref_133
  doi: 10.1109/SIU.2018.8404472
– ident: ref_115
  doi: 10.1109/CCIS.2016.7790290
– ident: ref_62
  doi: 10.1109/CICYBS.2013.6597207
– ident: ref_5
  doi: 10.1109/SCM.2015.7190452
– volume: 37
  start-page: 772
  year: 2011
  ident: ref_34
  article-title: Evaluating Complexity, Code Churn, and Developer Activity Metrics as Indicators of Software Vulnerabilities
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2010.81
– ident: ref_90
  doi: 10.1109/CVPR.2007.383255
– ident: ref_29
– ident: ref_53
  doi: 10.1109/ICSE.2013.6606610
– volume: 8
  start-page: 153826
  year: 2020
  ident: ref_72
  article-title: Research on Artificial Intelligence Enhancing Internet of Things Security: A Survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3018170
– ident: ref_94
  doi: 10.1109/SIU.2018.8404373
– ident: ref_2
  doi: 10.23919/ICACT.2018.8323940
– ident: ref_85
  doi: 10.1109/ARES.2011.52
– ident: ref_104
  doi: 10.1109/BigData.2016.7841039
– ident: ref_48
  doi: 10.1145/2508859.2516665
– volume: 9
  start-page: 94668
  year: 2021
  ident: ref_68
  article-title: Security Threats and Artificial Intelligence Based Countermeasures for Internet of Things Networks: A Comprehensive Survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3089681
– ident: ref_3
  doi: 10.1109/PDP.2010.30
– ident: ref_36
  doi: 10.1109/ISSRE.2014.32
– volume: 12
  start-page: 688
  year: 2015
  ident: ref_54
  article-title: Web Application Vulnerability Prediction Using Hybrid Program Analysis and Machine Learning
  publication-title: IEEE Trans. Dependable Secur. Comput.
  doi: 10.1109/TDSC.2014.2373377
– volume: 25
  start-page: 22
  year: 2008
  ident: ref_75
  article-title: Experiences Using Static Analysis to Find Bugs
  publication-title: IEEE Softw.
  doi: 10.1109/MS.2008.130
– ident: ref_58
  doi: 10.1145/2857705.2857720
– ident: ref_44
  doi: 10.1145/1287624.1287630
– volume: 9
  start-page: 298
  year: 2022
  ident: ref_66
  article-title: Machine Learning for the Detection and Identification of Internet of Things Devices: A Survey
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3099028
SSID ssj0023338
Score 2.4492984
SecondaryResourceType review_article
Snippet Ensuring security for modern IoT systems requires the use of complex methods to analyze their software. One of the most in-demand methods that has repeatedly...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1335
SubjectTerms Algorithms
analytic model
Automation
cyber security
Cyberterrorism
Data security
Information systems
Internet of Things
Investment analysis
IoT systems
Machine learning
Performance evaluation
Review
Security management
Software
static analysis
survey model
Surveys
Taxonomy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSxwxFA7FUz2Uttp2WitRCu1lcPJjkom3rSgq2IsK3kImP1qhzJZdt-B_73sz2ekuFrx4nSSQ5L3kfR_z8j1CvmgTQhN1KJniQFB45UuIgqbUSsKNbIJPfVblxQ91ei3Pb-qblVJfmBM2yAMPG3dQV9xFFuqUwHMa450QLrkaZdxZiK5XL4WYtyRTmWoJYF6DjpAAUn8w57yC27qv6fYv-vQi_Y-v4pVYtJ4nuRJ4Tl6TVxkx0skw0zfkRezeks0VHcEtkhAy3nq6VBih00TzOyPcd5plySl8oWfTK3p038YZvcyl6w7phF4uZn_jPY676LMrI83Cqz_pJKuOx_k2uT45vjo6LXMBhdID7sIy88Zo40RSCVhD0Ml42YaWa8WcioFVvuFt4izIkDSQsToC2QPAAxgWYaAR78hGN-3iB0K1VMpwp6SKWsqYWhjimA6sbZKR3hfk23Jjrc_q4ljk4rcFloE2sKMNCrI_dv0zSGr8r9N3tM7YAVWw-w_gGzb7hn3KNwryFW1r8azCZLzLTw5gSah6ZSe6YQr_DIqC7CzNb_MhnluuhGBKNdi8NzbD8cN_Kq6L08XQp0FNSV2Q94O3jHMGbMsw66gges2P1ha13tLd_uolvhu4FwGYfXyOXfhEXnJ8s4FVbKodsnE3W8TPgKTu2t3-0DwAcg4cQQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyCAkuESN7cQPLmipWApSubSVerMcP9pKKCm7XaT-e2YSb7orEFfbiZyMZ-Ybe_wNIe-UCUFHFUomOQQovPIleEFTKlmDRTbBpyGr8vCHPDipv582p3nDbZnTKtc2cTDUofe4R77HpRBMSl2JT5e_SqwahaeruYTGbXKHgafBlC49_zoFXALir5FNSEBov7fkvAKbPVR2u_FBA1X_3wZ5wyNtZ0tuuJ_5A3I_40Y6GwX9kNyK3SNyb4NN8DFJCBwvPF3zjNA-0XzbCP8-zeTkFFrot_6Y7l-3cUGPcgG7j3RGj1aL3_EanzscciwjzfSrZ3SWucfj8gk5mX853j8ocxmF0gP6wmLzxijjRJIJYoegkvF1G1quJHMyBlZ5zdvEWahDUhCSNRFCPoA9gGQRDBrxlOx0fRefE6pqKQ13spZR1XVMLTzimAqs1cnU3hfkw_rHWp85xrHUxU8LsQbKwE4yKMjbaejlSKzxr0GfUTrTAOTCHhr6xZnNqmWbirvIQpMS2BZtvBPCJdcg0T8L0cFL3qNsLWosTMa7fPEAPgm5r-xMaSbxfFAUZHctfptVeWlvFl5B3kzdoIR4suK62K_GMRqZJVVBno2rZZozIFyGuUcFUVvraOujtnu6i_OB6FuDdQR49uL_03pJ7nK8k4FVaqpdsnO1WMVXgJSu2teDOvwBrPoTRQ
  priority: 102
  providerName: ProQuest
Title Static Analysis of Information Systems for IoT Cyber Security: A Survey of Machine Learning Approaches
URI https://www.ncbi.nlm.nih.gov/pubmed/35214237
https://www.proquest.com/docview/2633166803
https://www.proquest.com/docview/2633857337
https://pubmed.ncbi.nlm.nih.gov/PMC8963110
https://doaj.org/article/502ae1d5ff79489ca33afa525461dea5
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3da9swED_6AaN7GPteti5oY7C9ZI1kW7IGY6SlWTdIGWsDeTOyPrpCSdqkGct_vztHNjHrXvwgnYztO939zpJ-B_BOaedyr1yPS4EJiujbHkZB3VMyRY-snQ3VrsrRqTwZp98n2WQL6hqb8QMu7kztqJ7UeH718c_N6gtO-M-UcWLKfrAQoo--OMm2YRcDkqJCBqO0WUwQCaZha1Khtvge3EP4wWljSCsqVeT9_7rojRjV3j-5EZCGD-FBRJJssFb9I9jy08dwf4Nf8AkEgpKXltXMI2wWWDx_RPpgka6cYQv7NjtnR6vSz9lZLGn3iQ3Y2XL-269o3KjadelZJGS9YIPIRu4XT2E8PD4_OunFwgo9i3iMys9rrbRJggyYTTgVtE1LVwoluZHe8b7NRRkEd6kLCpO0zGMSiEAIsS3BQ508g53pbOpfAFOplFoYmUqv0tSHEocYrhwv86BTazvwof6whY2s41T84qrA7IPUUTTq6MDbRvR6TbVxl9AhaacRIHbsqmE2vyjiZCuyvjCeuywE9Da5tiZJTDAZUf9z5w3e5D3ptiCrwoexJh5FwFciNqxioHIuacUw6cB-rf6its1CyCThUubU_abpxmlJay1m6mfLtUxOXJOqA8_X1tI8c210HVAtO2q9VLtnevmrov7O0V8iYHv533u-gj1BBzSoZE1_H3Zu50v_GmHTbdmFbTVReM2HX7uwe3h8-uNnt_oF0a2my1_mtxjT
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqcgAOiG9SChgEgkvUxEnsBAmhpbDs0m4v3Uq9uY4_SiWUtLtd0P4pfiMziZPuCsStt1XsrJyMPfMmHr9HyGtRGJNbYcKYM0hQWKRDiIJFKHgKHrkw2jVVlZMDPjpKvx1nxxvkd3cWBssqO5_YOGpTa_xGvsN4ksSc51Hy8fwiRNUo3F3tJDTaabFnl78gZZt_GH8G-75hbPhlujsKvapAqAGMoPZ6UYhCJY47gNJGuEKnpSkZ5POKWxNHOmelY7FJjROQoWQWMiBAAQDsEBsh-RK4_Bsp_MRkLx9-7RO8BPK9lr0IGqOdOWMRxIhGSe4q5jXSAH8HgJUIuF6duRLuhnfJHY9T6aCdWPfIhq3uk9sr7IUPiEOgeqZpx2tCa0f96Sa0NvVk6BSu0HE9pbvL0s7ooRfMe08H9HAx-2mXeN-kqem01NO9ntKB5zq384fk6Fpe8COyWdWVfUKoSDkvmOIptyJNrSvhFhULE5e5K1KtA_Kue7FSe05zlNb4ISG3QRvI3gYBedV3PW-JPP7V6RNap--A3NvNhXp2Kv1SllnElI1N5hz4srzQKkmUUxkKC8TGKviTt2hbiR4CBqOVP-gAj4RcW3Ig8pjjfmQSkO3O_NK7jrm8mugBedk3w6LHnRxV2XrR9smRyVIE5HE7W_oxA6KOsdYpIGJtHq091HpLdfa9IRbPwRsDHNz6_7BekJuj6WRf7o8P9p6SWwzPg6BCTrRNNi9nC_sMUNpl-bxZGpScXPda_APlm06N
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB1VrYTgAXHHUGBBIHixYq-dXRsJofQSNZRGFW2lvpn1XkolFJekAeXX-Dpm7LWbCMRbX-11tPbMzpzJzp4D8FrmxmRWmjAWHAsUHukQs2AeSpFiRM6NdnVX5cFY7J2kn077p2vwuz0LQ22VbUysA7WpNP1H3uMiSWIhsijpOd8Wcbgz_HjxIyQFKdppbeU0GhfZt4tfWL7NPox20NZvOB_uHm_vhV5hINQITEiHPc9lrhInHMJqI12u09KUHGt7JayJI53x0vHYpMZJrFb6FqshRAQI8ggnEREThv8NSVXROmxs7Y4Pv3TlXoLVX8NlhCOj3ozzCDNGrSt3lQFroYC_08FSPlzt1VxKfsM7cNujVjZo3OwurNnJPbi1xGV4HxzB1nPNWpYTVjnmzzqR7ZmnRmd4hY2qY7a9KO2UHXn5vPdswI7m0592Qc8d1B2elnny1zM28MzndvYATq7lEz-E9Uk1sY-ByVSInCuRCivT1LoSH1GxNHGZuTzVOoB37YcttGc4J6GN7wVWOmSDorNBAK-6oRcNrce_Bm2RdboBxMRdX6imZ4Vf2EU_4srGpu8cRrYs1ypJlFN9khmIjVX4I2_JtgXFC5yMVv7YA74SMW8VA5nFgnYnkwA2W_MXPpDMiiu3D-BldxtDAO3rqImt5s2YjHgtZQCPGm_p5oz4OqbOpwDkih-tvNTqncn5t5pmPMPYjODwyf-n9QJu4DosPo_G-0_hJqfDISSXE23C-uV0bp8hZLssn_u1weDrdS_HPxJhVB8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Static+Analysis+of+Information+Systems+for+IoT+Cyber+Security%3A+A+Survey+of+Machine+Learning+Approaches&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kotenko%2C+Igor&rft.au=Izrailov%2C+Konstantin&rft.au=Buinevich%2C+Mikhail&rft.date=2022-02-10&rft.eissn=1424-8220&rft.volume=22&rft.issue=4&rft_id=info:doi/10.3390%2Fs22041335&rft_id=info%3Apmid%2F35214237&rft.externalDocID=35214237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon