An EGFR targeting nanoparticle self assembled from a thermoresponsive polymer
BACKGROUND Decorating nanoparticles with proteins, antibodies and antibody fragments allows highly specific targeting to selected cells for improved delivery of therapeutics and diagnostics. A range of particles have previously been trialled in drug delivery including liposomes, dendrimers, hydrogel...
Saved in:
Published in | Journal of chemical technology and biotechnology (1986) Vol. 90; no. 7; pp. 1222 - 1229 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.07.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND
Decorating nanoparticles with proteins, antibodies and antibody fragments allows highly specific targeting to selected cells for improved delivery of therapeutics and diagnostics. A range of particles have previously been trialled in drug delivery including liposomes, dendrimers, hydrogels and inorganic particles. Polymer nanoparticles can be rationally designed and self‐assembled with control over particle size, morphology, charge and shape, allowing for optimization of drug delivery. However, post‐functionalization of particles with antibodies or proteins can influence the self‐assembly process and creates challenges in maintaining bioactivity.
RESULTS
An EGFR‐targeting scFv antibody fragment has been integrated as a hydrophilic moiety, and through self‐assembly driven by a thermoresponsive polymer, formed antibody‐targeted polymeric nanoparticles (immunoparticles) of approximately 320 nm in diameter. The binding of the scFv to native EGFR on MDA MB 468 cells and to recombinant EGFR was determined using flow cytometry and surface plasmon resonance respectively. Conjugation of the scFv to the thermoresponsive polymer did not compromise the binding to EGFR. Furthermore, cross‐linking the scFv with glutaraldehyde to stabilize the immunoparticle did not impact the binding of the particle to EGFR.
CONCLUSION
The temperature‐induced self‐assembly of immunoparticles from antibody‐conjugated polymers provides a novel method to prepare targeted nanoparticles. This methodology further provides a rapid and versatile way to build immunoparticles with multi‐targeting capability by combining different types of scFv‐PNIPAM conjugates targeting different receptors. © 2014 Society of Chemical Industry |
---|---|
AbstractList | BACKGROUND Decorating nanoparticles with proteins, antibodies and antibody fragments allows highly specific targeting to selected cells for improved delivery of therapeutics and diagnostics. A range of particles have previously been trialled in drug delivery including liposomes, dendrimers, hydrogels and inorganic particles. Polymer nanoparticles can be rationally designed and self-assembled with control over particle size, morphology, charge and shape, allowing for optimization of drug delivery. However, post-functionalization of particles with antibodies or proteins can influence the self-assembly process and creates challenges in maintaining bioactivity. RESULTS An EGFR-targeting scFv antibody fragment has been integrated as a hydrophilic moiety, and through self-assembly driven by a thermoresponsive polymer, formed antibody-targeted polymeric nanoparticles (immunoparticles) of approximately 320nm in diameter. The binding of the scFv to native EGFR on MDA MB 468 cells and to recombinant EGFR was determined using flow cytometry and surface plasmon resonance respectively. Conjugation of the scFv to the thermoresponsive polymer did not compromise the binding to EGFR. Furthermore, cross-linking the scFv with glutaraldehyde to stabilize the immunoparticle did not impact the binding of the particle to EGFR. CONCLUSION The temperature-induced self-assembly of immunoparticles from antibody-conjugated polymers provides a novel method to prepare targeted nanoparticles. This methodology further provides a rapid and versatile way to build immunoparticles with multi-targeting capability by combining different types of scFv-PNIPAM conjugates targeting different receptors. © 2014 Society of Chemical Industry BACKGROUND Decorating nanoparticles with proteins, antibodies and antibody fragments allows highly specific targeting to selected cells for improved delivery of therapeutics and diagnostics. A range of particles have previously been trialled in drug delivery including liposomes, dendrimers, hydrogels and inorganic particles. Polymer nanoparticles can be rationally designed and self-assembled with control over particle size, morphology, charge and shape, allowing for optimization of drug delivery. However, post-functionalization of particles with antibodies or proteins can influence the self-assembly process and creates challenges in maintaining bioactivity. RESULTS An EGFR-targeting scFv antibody fragment has been integrated as a hydrophilic moiety, and through self-assembly driven by a thermoresponsive polymer, formed antibody-targeted polymeric nanoparticles (immunoparticles) of approximately 320nm in diameter. The binding of the scFv to native EGFR on MDA MB 468 cells and to recombinant EGFR was determined using flow cytometry and surface plasmon resonance respectively. Conjugation of the scFv to the thermoresponsive polymer did not compromise the binding to EGFR. Furthermore, cross-linking the scFv with glutaraldehyde to stabilize the immunoparticle did not impact the binding of the particle to EGFR. CONCLUSION The temperature-induced self-assembly of immunoparticles from antibody-conjugated polymers provides a novel method to prepare targeted nanoparticles. This methodology further provides a rapid and versatile way to build immunoparticles with multi-targeting capability by combining different types of scFv-PNIPAM conjugates targeting different receptors. BACKGROUND Decorating nanoparticles with proteins, antibodies and antibody fragments allows highly specific targeting to selected cells for improved delivery of therapeutics and diagnostics. A range of particles have previously been trialled in drug delivery including liposomes, dendrimers, hydrogels and inorganic particles. Polymer nanoparticles can be rationally designed and self‐assembled with control over particle size, morphology, charge and shape, allowing for optimization of drug delivery. However, post‐functionalization of particles with antibodies or proteins can influence the self‐assembly process and creates challenges in maintaining bioactivity. RESULTS An EGFR‐targeting scFv antibody fragment has been integrated as a hydrophilic moiety, and through self‐assembly driven by a thermoresponsive polymer, formed antibody‐targeted polymeric nanoparticles (immunoparticles) of approximately 320 nm in diameter. The binding of the scFv to native EGFR on MDA MB 468 cells and to recombinant EGFR was determined using flow cytometry and surface plasmon resonance respectively. Conjugation of the scFv to the thermoresponsive polymer did not compromise the binding to EGFR. Furthermore, cross‐linking the scFv with glutaraldehyde to stabilize the immunoparticle did not impact the binding of the particle to EGFR. CONCLUSION The temperature‐induced self‐assembly of immunoparticles from antibody‐conjugated polymers provides a novel method to prepare targeted nanoparticles. This methodology further provides a rapid and versatile way to build immunoparticles with multi‐targeting capability by combining different types of scFv‐PNIPAM conjugates targeting different receptors. © 2014 Society of Chemical Industry |
Author | Jia, Zhongfan Monteiro, Michael J. Goodall, Stephen Jones, Martina L. Munro, Trent Mahler, Stephen Howard, Christopher B. |
Author_xml | – sequence: 1 givenname: Stephen surname: Goodall fullname: Goodall, Stephen email: Stephen.goodall@uqconnect.edu.au organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia – sequence: 2 givenname: Christopher B. surname: Howard fullname: Howard, Christopher B. organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia – sequence: 3 givenname: Martina L. surname: Jones fullname: Jones, Martina L. organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia – sequence: 4 givenname: Trent surname: Munro fullname: Munro, Trent organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia – sequence: 5 givenname: Zhongfan surname: Jia fullname: Jia, Zhongfan organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia – sequence: 6 givenname: Michael J. surname: Monteiro fullname: Monteiro, Michael J. organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia – sequence: 7 givenname: Stephen surname: Mahler fullname: Mahler, Stephen organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia |
BookMark | eNqF0c1OGzEUBWCrolJDYMEbWOqmXQzYnvHfkqYQikIrUKBLy_Fc00ln7Kk9oeTtO1FQF5UqVnfzHcv3nkN0EGIAhE4oOaWEsLO1G1anFSf6DZpQomVRCUEO0IQwoQrGJX-HDnNeE0KEYmKCbs4Dvphf3uHBpkcYmvCIgw2xt2loXAs4Q-uxzRm6VQs19il22OLhB6QuJsh9DLl5AtzHdttBOkJvvW0zHL_MKbq_vFjOrorFt_mX2fmicJwoXZSCg_R1yZmX1HnHVxS4Z3XlhHDUrZivRSU806CEV7KUpeJl7T14R7kr63KKPuzf7VP8tYE8mK7JDtrWBoibbKgcV2eCUfE6FbrSUiqqR_r-H7qOmxTGRUalFGdEj_-Yoo975VLMOYE3fWo6m7aGErPrwOw6MLsORnu2t7-bFrb_h-Z6tvz0kij2iSYP8Pw3YdNPI8ZDcPP969xUmj9cLT8vzG35ByA5mVs |
CitedBy_id | crossref_primary_10_4161_19420862_2014_985952 crossref_primary_10_1016_j_ijpharm_2020_120082 crossref_primary_10_1021_acsnano_7b03375 crossref_primary_10_1002_wnan_1689 crossref_primary_10_1002_adhm_201700607 crossref_primary_10_1002_jctb_4555 crossref_primary_10_1016_j_ymeth_2016_11_010 crossref_primary_10_1002_jctb_4689 crossref_primary_10_1007_s12274_018_2121_x |
Cites_doi | 10.1016/S1040-8428(00)00134-7 10.1016/j.ijpharm.2011.12.039 10.1021/ma9804951 10.1039/b9py00362b 10.1021/ja0430999 10.1186/1477-3155-10-31 10.1016/S0378-5173(00)00501-9 10.1152/physrev.00049.2010 10.1158/1078-0432.CCR-07-0065 10.1021/ma0519617 10.1016/j.jconrel.2011.09.063 10.1007/BF00665957 10.1021/cr990119u 10.1016/S0168-3659(97)00124-7 10.1021/mz200176g 10.1016/0079-6700(92)90023-R 10.1002/pola.25041 10.1021/ma00127a042 10.1021/ja065484z 10.1080/08977190902843565 10.1016/0006-291X(85)90131-7 10.1021/ar400162w 10.1016/j.addr.2012.08.012 10.2217/nnm.12.160 10.1039/C0SM00412J 10.1016/0142-9612(90)90019-M 10.2217/fon.12.139 10.1021/bc00030a013 |
ContentType | Journal Article |
Copyright | 2014 Society of Chemical Industry 2015 Society of Chemical Industry |
Copyright_xml | – notice: 2014 Society of Chemical Industry – notice: 2015 Society of Chemical Industry |
DBID | BSCLL AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
DOI | 10.1002/jctb.4509 |
DatabaseName | Istex CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database Engineering Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4660 |
EndPage | 1229 |
ExternalDocumentID | 3716250361 10_1002_jctb_4509 JCTB4509 ark_67375_WNG_495VHTDL_Q |
Genre | article |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29K 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F D-I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TUS UAO UB1 V2E V8K W8V W99 WBFHL WBKPD WIB WIH WIK WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 XXG ZXP ZZTAW ~02 ~IA ~KM ~WT AAMNL AAYXX ACRPL ACYXJ CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
ID | FETCH-LOGICAL-c5089-365e7fd352f71cfc5b1e5f2d4c66c1cb2fd646f29e86f87373853dffefc15c3d3 |
IEDL.DBID | DR2 |
ISSN | 0268-2575 |
IngestDate | Wed Dec 04 08:44:24 EST 2024 Wed Dec 04 05:22:18 EST 2024 Thu Oct 10 18:26:27 EDT 2024 Fri Dec 06 02:33:36 EST 2024 Sat Aug 24 01:04:08 EDT 2024 Wed Oct 30 09:58:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5089-365e7fd352f71cfc5b1e5f2d4c66c1cb2fd646f29e86f87373853dffefc15c3d3 |
Notes | ark:/67375/WNG-495VHTDL-Q ArticleID:JCTB4509 istex:26E39EF1614450B1AB8ACABACEF74F3794F93437 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1688520985 |
PQPubID | 2034149 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1709726216 proquest_miscellaneous_1694977819 proquest_journals_1688520985 crossref_primary_10_1002_jctb_4509 wiley_primary_10_1002_jctb_4509_JCTB4509 istex_primary_ark_67375_WNG_495VHTDL_Q |
PublicationCentury | 2000 |
PublicationDate | July 2015 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: July 2015 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
PublicationTitle | Journal of chemical technology and biotechnology (1986) |
PublicationTitleAlternate | J. Chem. Technol. Biotechnol |
PublicationYear | 2015 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | Elvin JG, Couston RG and Van Der Walle CF, Therapeutic antibodies: market considerations, disease targets and bioprocessing. Int J Pharmaceut 440:83-98 (2013). Hawker CJ, Bosman AW and Harth E, New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661-3688 (2001). Kim IS, Jeong YI, Cho CS and Kim SH, Thermo-responsive self-assembled polymeric micelles for drug delivery in vitro. Int J Pharmaceut 205:165-172 (2000). Chen JP, Yang HJ and Hoffman AS, Polymer-protein conjugates. I. Effect of protein conjugation on the cloud point of poly(N-isopropylacrylamide). Biomaterials 11:625-630 (1990). Schild HG, Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polymer Sci (Oxford) 17:163-249 (1992). Filmus J, Pollak MN, Cailleau R and Buick RN, MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF. Biochem Biophys Res Commun 128:898-905 (1985). Velonia K, Protein-polymer amphiphilic chimeras: recent advances and future challenges. Polym Chem 1:944-952 (2010). Messersmith WA and Hidalgo M, Panitumumab, a monoclonal anti-epidermal growth factor receptor antibody in colorectal cancer: another one or the one? Clin Cancer Res 13:4664-4666 (2007). Sumerlin BS, Proteins as initiators of controlled radical polymerization: grafting from via ATRP and RAFT. ACS Macro Lett 1:141-145 (2012). Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E and Thang SH, Living free-radical polymerization by reversible addition - fragmentation chain transfer: the RAFT process. Macromolecules 31:5559-5562 (1998). Master AM and Sen Gupta A, EGF receptor-targeted nanocarriers for enhanced cancer treatment. Nanomedicine 7:1895-1906 (2012). Lammers T, Kiessling F, Hennink WE and Storm G, Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Controlled Release 161:175-187 (2012). Yang XD, Jia XC, Corvalan JRF, Wang P and Davis CG, Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Critic Rev Oncol/Hematol 38:17-23 (2001). Wang JS and Matyjaszewski K, Controlled/'living' radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 28:7901-7910 (1995). Mantovani G, Lecolley F, Tao L, Haddleton DM, Clerx J, Cornelissen JJLM and Velonia K, Design and synthesis of N-maleimido-functionalized hydrophilic polymers via copper-mediated living radical polymerization: a suitable alternative to pegylation chemistry. J Am Chem Soc 127:2966-2973 (2005). James ML and Gambhir SS, A molecular imaging primer: modalities, imaging agents, and applications. Physiolog Rev 92:897-965 (2012). Cao P and Bae Y, Polymer nanoparticulate drug delivery and combination cancer therapy. Future Oncol 8:1471-1480 (2012). Khazaie K, Schirrmacher V and Lichtner RB, EGF receptor in neoplasia and metastasis. Cancer Metastasis Rev 12:255-274 (1993). Mu B, Zhang J, McNicholas TP, Reuel NF, Kruss S and Strano MS, Recent advances in molecular recognition based on nanoengineered platforms. Acct Chem Res 47:979-988 (2014). Kim SY, Shin IG, Lee YM, Cho CS and Sung YK, Methoxy poly(ethylene glycol) and ε-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours. J Controlled Release 51:13-22 (1998). Duncan R and Vicent MJ, Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev 65:60-70 (2013). Takei YG, Matsukata M, Aoki T, Sanui K, Ogata N, Kikuchi A, Sakurai Y and Okano T, Temperature-responsive bioconjugates. 3. Antibody-poly(N-isopropylacrylamide) conjugates for temperature-modulated precipitations and affinity bioseparations. Bioconjugate Chem 5:577-582 (1994). Boyer C, Huang X, Whittaker MR, Bulmus V and Davis TP, An overview of protein-polymer particles. Soft Matter 7:1599-1614 (2011). Percec V, Guliashvili T, Ladislaw JS, Wistrand A, Stjerndahl A, Sienkowska MJ, Monteiro MJ and Sahoo S, Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C. J Am Chem Soc 128:14156-14165 (2006). Appel EA, Del Barrio J, Loh XJ, Dyson J and Scherman OA, High molecular weight polyacrylamides by atom transfer radical polymerization: enabling advancements in water-based applications. J Polym Sci Part A: Polym Chem 50:181-186 (2012). Yang XD, Jia XC, Corvalan JRF, Wang P, Davis CG and Jakobovits A, Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res 59:1236-1243 (1999). Adams T, Koziolek EJ, Hoyne PH, Bentley JD, Lu L, Lovrecz G, Ward CW, Lee FT, Scott AM, Nash AD, Rothacker J, Nice EC, Burgess AW and Johns TG, A truncated soluble epidermal growth factor receptor-Fc fusion ligand trap displays anti-tumour activity in vivo. Growth Factors 27:141-154 (2009). Xia Y, Burke NAD and Stöver HDH, End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 39:2275-2283 (2006). Fakruddin M, Hossain Z and Afroz H, Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10:31 (2012). 2012; 161 2001; 101 1990; 11 2013; 65 2006; 39 1992; 17 2014; 47 1985; 128 2013; 440 2007; 13 2012; 10 2009; 27 2011; 7 2012; 50 2012; 92 1993; 12 2010; 1 2012; 1 1995; 28 2000; 205 2005; 127 1999; 59 2001; 38 2012; 7 1998; 51 1998; 31 2006; 128 1994; 5 2012; 8 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 Yang XD (e_1_2_7_29_1) 1999; 59 |
References_xml | – volume: 1 start-page: 141 year: 2012 end-page: 145 article-title: Proteins as initiators of controlled radical polymerization: grafting from via ATRP and RAFT publication-title: ACS Macro Lett – volume: 440 start-page: 83 year: 2013 end-page: 98 article-title: Therapeutic antibodies: market considerations, disease targets and bioprocessing publication-title: Int J Pharmaceut – volume: 50 start-page: 181 year: 2012 end-page: 186 article-title: High molecular weight polyacrylamides by atom transfer radical polymerization: enabling advancements in water‐based applications publication-title: J Polym Sci Part A: Polym Chem – volume: 27 start-page: 141 year: 2009 end-page: 154 article-title: A truncated soluble epidermal growth factor receptor‐Fc fusion ligand trap displays anti‐tumour activity publication-title: Growth Factors – volume: 31 start-page: 5559 year: 1998 end-page: 5562 article-title: Living free‐radical polymerization by reversible addition ‐ fragmentation chain transfer: the RAFT process publication-title: Macromolecules – volume: 92 start-page: 897 year: 2012 end-page: 965 article-title: A molecular imaging primer: modalities, imaging agents, and applications publication-title: Physiolog Rev – volume: 101 start-page: 3661 year: 2001 end-page: 3688 article-title: New polymer synthesis by nitroxide mediated living radical polymerizations publication-title: Chem Rev – volume: 8 start-page: 1471 year: 2012 end-page: 1480 article-title: Polymer nanoparticulate drug delivery and combination cancer therapy publication-title: Future Oncol – volume: 59 start-page: 1236 year: 1999 end-page: 1243 article-title: Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy publication-title: Cancer Res – volume: 39 start-page: 2275 year: 2006 end-page: 2283 article-title: End group effect on the thermal response of narrow‐disperse poly(N‐isopropylacrylamide) prepared by atom transfer radical polymerization publication-title: Macromolecules – volume: 28 start-page: 7901 year: 1995 end-page: 7910 article-title: Controlled/'living' radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process publication-title: Macromolecules – volume: 10 start-page: 31 year: 2012 article-title: Prospects and applications of nanobiotechnology: a medical perspective publication-title: J Nanobiotechnol – volume: 51 start-page: 13 year: 1998 end-page: 22 article-title: Methoxy poly(ethylene glycol) and ε‐caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours publication-title: J Controlled Release – volume: 1 start-page: 944 year: 2010 end-page: 952 article-title: Protein‐polymer amphiphilic chimeras: recent advances and future challenges publication-title: Polym Chem – volume: 205 start-page: 165 year: 2000 end-page: 172 article-title: Thermo‐responsive self‐assembled polymeric micelles for drug delivery publication-title: Int J Pharmaceut – volume: 65 start-page: 60 year: 2013 end-page: 70 article-title: Polymer therapeutics‐prospects for 21st century: the end of the beginning publication-title: Adv Drug Deliv Rev – volume: 13 start-page: 4664 year: 2007 end-page: 4666 article-title: Panitumumab, a monoclonal anti‐epidermal growth factor receptor antibody in colorectal cancer: another one or the one? publication-title: Clin Cancer Res – volume: 17 start-page: 163 year: 1992 end-page: 249 article-title: Poly(N‐isopropylacrylamide): experiment, theory and application publication-title: Prog Polymer Sci (Oxford) – volume: 5 start-page: 577 year: 1994 end-page: 582 article-title: Temperature‐responsive bioconjugates. 3. Antibody‐poly(N‐isopropylacrylamide) conjugates for temperature‐modulated precipitations and affinity bioseparations publication-title: Bioconjugate Chem – volume: 12 start-page: 255 year: 1993 end-page: 274 article-title: EGF receptor in neoplasia and metastasis publication-title: Cancer Metastasis Rev – volume: 38 start-page: 17 year: 2001 end-page: 23 article-title: Development of ABX‐EGF, a fully human anti‐EGF receptor monoclonal antibody, for cancer therapy publication-title: Critic Rev Oncol/Hematol – volume: 128 start-page: 14156 year: 2006 end-page: 14165 article-title: Ultrafast synthesis of ultrahigh molar mass polymers by metal‐catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C publication-title: J Am Chem Soc – volume: 7 start-page: 1895 year: 2012 end-page: 1906 article-title: EGF receptor‐targeted nanocarriers for enhanced cancer treatment publication-title: Nanomedicine – volume: 161 start-page: 175 year: 2012 end-page: 187 article-title: Drug targeting to tumors: principles, pitfalls and (pre‐) clinical progress publication-title: J Controlled Release – volume: 7 start-page: 1599 year: 2011 end-page: 1614 article-title: An overview of protein‐polymer particles publication-title: Soft Matter – volume: 47 start-page: 979 year: 2014 end-page: 988 article-title: Recent advances in molecular recognition based on nanoengineered platforms publication-title: Acct Chem Res – volume: 11 start-page: 625 year: 1990 end-page: 630 article-title: Polymer‐protein conjugates. I. Effect of protein conjugation on the cloud point of poly(N‐isopropylacrylamide) publication-title: Biomaterials – volume: 127 start-page: 2966 year: 2005 end-page: 2973 article-title: Design and synthesis of N‐maleimido‐functionalized hydrophilic polymers via copper‐mediated living radical polymerization: a suitable alternative to pegylation chemistry publication-title: J Am Chem Soc – volume: 128 start-page: 898 year: 1985 end-page: 905 article-title: MDA‐468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF publication-title: Biochem Biophys Res Commun – ident: e_1_2_7_24_1 doi: 10.1016/S1040-8428(00)00134-7 – ident: e_1_2_7_2_1 doi: 10.1016/j.ijpharm.2011.12.039 – ident: e_1_2_7_8_1 doi: 10.1021/ma9804951 – ident: e_1_2_7_18_1 doi: 10.1039/b9py00362b – ident: e_1_2_7_25_1 doi: 10.1021/ja0430999 – ident: e_1_2_7_6_1 doi: 10.1186/1477-3155-10-31 – ident: e_1_2_7_21_1 doi: 10.1016/S0378-5173(00)00501-9 – ident: e_1_2_7_13_1 doi: 10.1152/physrev.00049.2010 – ident: e_1_2_7_4_1 doi: 10.1158/1078-0432.CCR-07-0065 – ident: e_1_2_7_30_1 doi: 10.1021/ma0519617 – volume: 59 start-page: 1236 year: 1999 ident: e_1_2_7_29_1 article-title: Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy publication-title: Cancer Res contributor: fullname: Yang XD – ident: e_1_2_7_7_1 doi: 10.1016/j.jconrel.2011.09.063 – ident: e_1_2_7_3_1 doi: 10.1007/BF00665957 – ident: e_1_2_7_11_1 doi: 10.1021/cr990119u – ident: e_1_2_7_12_1 doi: 10.1016/S0168-3659(97)00124-7 – ident: e_1_2_7_19_1 doi: 10.1021/mz200176g – ident: e_1_2_7_20_1 doi: 10.1016/0079-6700(92)90023-R – ident: e_1_2_7_26_1 doi: 10.1002/pola.25041 – ident: e_1_2_7_9_1 doi: 10.1021/ma00127a042 – ident: e_1_2_7_10_1 doi: 10.1021/ja065484z – ident: e_1_2_7_27_1 doi: 10.1080/08977190902843565 – ident: e_1_2_7_28_1 doi: 10.1016/0006-291X(85)90131-7 – ident: e_1_2_7_15_1 doi: 10.1021/ar400162w – ident: e_1_2_7_16_1 doi: 10.1016/j.addr.2012.08.012 – ident: e_1_2_7_5_1 doi: 10.2217/nnm.12.160 – ident: e_1_2_7_17_1 doi: 10.1039/C0SM00412J – ident: e_1_2_7_22_1 doi: 10.1016/0142-9612(90)90019-M – ident: e_1_2_7_14_1 doi: 10.2217/fon.12.139 – ident: e_1_2_7_23_1 doi: 10.1021/bc00030a013 |
SSID | ssj0006826 |
Score | 2.2325163 |
Snippet | BACKGROUND
Decorating nanoparticles with proteins, antibodies and antibody fragments allows highly specific targeting to selected cells for improved delivery... BACKGROUND Decorating nanoparticles with proteins, antibodies and antibody fragments allows highly specific targeting to selected cells for improved delivery... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 1222 |
SubjectTerms | Antibodies Binding Construction drug delivery Drug delivery systems EGFR Fragments immunomicelle immunoparticle Nanoparticles PNIPAM Proteins scFv Self assembly |
Title | An EGFR targeting nanoparticle self assembled from a thermoresponsive polymer |
URI | https://api.istex.fr/ark:/67375/WNG-495VHTDL-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjctb.4509 https://www.proquest.com/docview/1688520985 https://search.proquest.com/docview/1694977819 https://search.proquest.com/docview/1709726216 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V5QIHoHyIQFsZhBCXtMSOnax6Km23q4pWotpCD0iW7YwPdJut9gMBv56ZZLNtkUCIW5SMI8fjid8kb54BXkeUVY6eq9u9SnNacSnmFKYEdV3lEGXwnCgen5jBWX50rs9XYKerhWn1IZYf3Dgymvc1B7jz0-1r0dCvYea3ct0U72WqYDrf_um1dJQpm63WKMWgmUCYpFMVeie3ly1vrUV3eFi_3wKaN-Fqs970H8CXrqctzeRia043Cz9_E3H8z0d5CPcXOFTsthNnDVawfgT3bqgTPobj3VocHPZPRcsWp3OidjUl2W0bMcVRFIS98dKPsBJcqCKcYEDJ5N2WevsNxdV49OMSJ0_grH8w3Buki90X0kCgrZcqo7GIFQG0WGQhBu0z1JE8G4wJWfAyViY3UfawNJH8y7I4qooRY8h0UJV6Cqv1uMZnIIoyd06rwuUEGKLnyj8lndRVDKEXMp_Aq84P9qoV2bCtnLK0PDaWxyaBN42HlhZucsGstELbzyeHlhK9T4Ph_gf7MYH1zoV2EZBTm5myZMZPqRN4ubxMocT_R1yN4znb9HKCw4SR_mJTsN6RkZlJ4G3j0z_32B7tDd_zwfN_N30BdwmS6ZYQvA6rs8kcNwj2zPxmM79_AapGACg |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5N2wPwwG9ExgCDEOIlG3FiJ5V4Gdu6MtpKTB3sBVm2c37YunTqWgT89dwlTbchgRBvUXKOEp8v_s757jPAq4CyzNBxdbtL44xmXIq5FGOCura0iNI7ThQHQ907yg6O1fEKvGtrYRp9iOWCG0dG_b3mAOcF6a1L1dATP3ObmeLqvTUK94QJXbuHl-JRuqg3W6Mkg8YCoZJWV-it3Fo2vTYbrXHHfr8GNa8C1nrG6d6Br-2zNkST08053cz__E3G8X9f5i7cXkBRsd2MnXuwgtV9uHVFoPABDLYrsbffPRQNYZzOicpWlGc3bcQFjoMg-I1nboyl4FoVYQVjSubvNuzbbyjOJ-MfZzh9CEfdvdFOL15swBB7wm2dONUK81ASRgt54oNXLkEVyLlea594J0OpMx1kBwsdyMWsjJOWIWDwifJpmT6C1WpS4WMQeZFZq9LcZoQZguPiv1RaqcrgfccnLoKXrSPMeaOzYRpFZWm4bwz3TQSvaxctLez0lIlpuTJfhvuGcr3PvdFu33yKYKP1oVnE5IVJdFEw6adQEbxYXqZo4l8ktsLJnG06GSFigkl_sclZ8kjLREfwpnbqn5_YHOyM3vPB-r-bPocbvdGgb_ofhh-fwE1CaKrhB2_A6mw6x6eEgmbuWT3YfwGsmQRJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NmzTBA78RgTEMQoiXbMSxnUQ8beu6MrYKpo7tAcmyHfuBdWnVtQj467lLmm5DGkK8Rck5cny--Lvku88Ar4PnpfCWqtttGgtccTHmUh8j1DWl8Z47S4niYV_1jsX-qTxdgvdtLUyjD7H44EaRUb-vKcDHZdi8FA395qZ2Q0gq3lsRihcknN85utSOUnm91xrmGDgVEJS0skLv-Oai6bXFaIXG9cc1pHkVr9YLTvcufG272vBMzjZmeDP36w8Vx_98lntwZw5E2VYzc-7Dkq8ewO0r8oQP4XCrYrt73SPW0MXxHKtMhVl204Zd-GFgCL79uR36klGlCjOMECWxdxvu7XfPxqPhz3M_eQTH3d3BTi-eb78QO0RtRZwq6bNQIkILWeKCkzbxMqBrnVIucZaHUgkVeOFzFdDBpIuTliH44BLp0jJ9DMvVqPJPgGW5MEammRGIGIKl0r-UGy7L4FzhEhvBq9YPetyobOhGT5lrGhtNYxPBm9pDCwszOSNaWib1SX9PY6b3pTfoHOjPEay1LtTziLzQicpzovzkMoKXi8sYS_SDxFR-NCObQiAeRpD0F5uMBI8UT1QEb2uf3txjvb8z2KaDp_9u-gJWP3W6-uBD_-MzuIXwTDbk4DVYnk5m_jlCoKldr6f6b6c_Avg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+EGFR+targeting+nanoparticle+self+assembled+from+a+thermoresponsive+polymer&rft.jtitle=Journal+of+chemical+technology+and+biotechnology+%281986%29&rft.au=Goodall%2C+Stephen&rft.au=Howard%2C+Christopher+B&rft.au=Jones%2C+Martina+L&rft.au=Munro%2C+Trent&rft.date=2015-07-01&rft.issn=0268-2575&rft.eissn=1097-4660&rft.volume=90&rft.issue=7&rft.spage=1222&rft.epage=1229&rft_id=info:doi/10.1002%2Fjctb.4509&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2575&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2575&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2575&client=summon |