An EGFR targeting nanoparticle self assembled from a thermoresponsive polymer

BACKGROUND Decorating nanoparticles with proteins, antibodies and antibody fragments allows highly specific targeting to selected cells for improved delivery of therapeutics and diagnostics. A range of particles have previously been trialled in drug delivery including liposomes, dendrimers, hydrogel...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical technology and biotechnology (1986) Vol. 90; no. 7; pp. 1222 - 1229
Main Authors Goodall, Stephen, Howard, Christopher B., Jones, Martina L., Munro, Trent, Jia, Zhongfan, Monteiro, Michael J., Mahler, Stephen
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.07.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND Decorating nanoparticles with proteins, antibodies and antibody fragments allows highly specific targeting to selected cells for improved delivery of therapeutics and diagnostics. A range of particles have previously been trialled in drug delivery including liposomes, dendrimers, hydrogels and inorganic particles. Polymer nanoparticles can be rationally designed and self‐assembled with control over particle size, morphology, charge and shape, allowing for optimization of drug delivery. However, post‐functionalization of particles with antibodies or proteins can influence the self‐assembly process and creates challenges in maintaining bioactivity. RESULTS An EGFR‐targeting scFv antibody fragment has been integrated as a hydrophilic moiety, and through self‐assembly driven by a thermoresponsive polymer, formed antibody‐targeted polymeric nanoparticles (immunoparticles) of approximately 320 nm in diameter. The binding of the scFv to native EGFR on MDA MB 468 cells and to recombinant EGFR was determined using flow cytometry and surface plasmon resonance respectively. Conjugation of the scFv to the thermoresponsive polymer did not compromise the binding to EGFR. Furthermore, cross‐linking the scFv with glutaraldehyde to stabilize the immunoparticle did not impact the binding of the particle to EGFR. CONCLUSION The temperature‐induced self‐assembly of immunoparticles from antibody‐conjugated polymers provides a novel method to prepare targeted nanoparticles. This methodology further provides a rapid and versatile way to build immunoparticles with multi‐targeting capability by combining different types of scFv‐PNIPAM conjugates targeting different receptors. © 2014 Society of Chemical Industry
AbstractList BACKGROUND Decorating nanoparticles with proteins, antibodies and antibody fragments allows highly specific targeting to selected cells for improved delivery of therapeutics and diagnostics. A range of particles have previously been trialled in drug delivery including liposomes, dendrimers, hydrogels and inorganic particles. Polymer nanoparticles can be rationally designed and self-assembled with control over particle size, morphology, charge and shape, allowing for optimization of drug delivery. However, post-functionalization of particles with antibodies or proteins can influence the self-assembly process and creates challenges in maintaining bioactivity. RESULTS An EGFR-targeting scFv antibody fragment has been integrated as a hydrophilic moiety, and through self-assembly driven by a thermoresponsive polymer, formed antibody-targeted polymeric nanoparticles (immunoparticles) of approximately 320nm in diameter. The binding of the scFv to native EGFR on MDA MB 468 cells and to recombinant EGFR was determined using flow cytometry and surface plasmon resonance respectively. Conjugation of the scFv to the thermoresponsive polymer did not compromise the binding to EGFR. Furthermore, cross-linking the scFv with glutaraldehyde to stabilize the immunoparticle did not impact the binding of the particle to EGFR. CONCLUSION The temperature-induced self-assembly of immunoparticles from antibody-conjugated polymers provides a novel method to prepare targeted nanoparticles. This methodology further provides a rapid and versatile way to build immunoparticles with multi-targeting capability by combining different types of scFv-PNIPAM conjugates targeting different receptors. © 2014 Society of Chemical Industry
BACKGROUND Decorating nanoparticles with proteins, antibodies and antibody fragments allows highly specific targeting to selected cells for improved delivery of therapeutics and diagnostics. A range of particles have previously been trialled in drug delivery including liposomes, dendrimers, hydrogels and inorganic particles. Polymer nanoparticles can be rationally designed and self-assembled with control over particle size, morphology, charge and shape, allowing for optimization of drug delivery. However, post-functionalization of particles with antibodies or proteins can influence the self-assembly process and creates challenges in maintaining bioactivity. RESULTS An EGFR-targeting scFv antibody fragment has been integrated as a hydrophilic moiety, and through self-assembly driven by a thermoresponsive polymer, formed antibody-targeted polymeric nanoparticles (immunoparticles) of approximately 320nm in diameter. The binding of the scFv to native EGFR on MDA MB 468 cells and to recombinant EGFR was determined using flow cytometry and surface plasmon resonance respectively. Conjugation of the scFv to the thermoresponsive polymer did not compromise the binding to EGFR. Furthermore, cross-linking the scFv with glutaraldehyde to stabilize the immunoparticle did not impact the binding of the particle to EGFR. CONCLUSION The temperature-induced self-assembly of immunoparticles from antibody-conjugated polymers provides a novel method to prepare targeted nanoparticles. This methodology further provides a rapid and versatile way to build immunoparticles with multi-targeting capability by combining different types of scFv-PNIPAM conjugates targeting different receptors.
BACKGROUND Decorating nanoparticles with proteins, antibodies and antibody fragments allows highly specific targeting to selected cells for improved delivery of therapeutics and diagnostics. A range of particles have previously been trialled in drug delivery including liposomes, dendrimers, hydrogels and inorganic particles. Polymer nanoparticles can be rationally designed and self‐assembled with control over particle size, morphology, charge and shape, allowing for optimization of drug delivery. However, post‐functionalization of particles with antibodies or proteins can influence the self‐assembly process and creates challenges in maintaining bioactivity. RESULTS An EGFR‐targeting scFv antibody fragment has been integrated as a hydrophilic moiety, and through self‐assembly driven by a thermoresponsive polymer, formed antibody‐targeted polymeric nanoparticles (immunoparticles) of approximately 320 nm in diameter. The binding of the scFv to native EGFR on MDA MB 468 cells and to recombinant EGFR was determined using flow cytometry and surface plasmon resonance respectively. Conjugation of the scFv to the thermoresponsive polymer did not compromise the binding to EGFR. Furthermore, cross‐linking the scFv with glutaraldehyde to stabilize the immunoparticle did not impact the binding of the particle to EGFR. CONCLUSION The temperature‐induced self‐assembly of immunoparticles from antibody‐conjugated polymers provides a novel method to prepare targeted nanoparticles. This methodology further provides a rapid and versatile way to build immunoparticles with multi‐targeting capability by combining different types of scFv‐PNIPAM conjugates targeting different receptors. © 2014 Society of Chemical Industry
Author Jia, Zhongfan
Monteiro, Michael J.
Goodall, Stephen
Jones, Martina L.
Munro, Trent
Mahler, Stephen
Howard, Christopher B.
Author_xml – sequence: 1
  givenname: Stephen
  surname: Goodall
  fullname: Goodall, Stephen
  email: Stephen.goodall@uqconnect.edu.au
  organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia
– sequence: 2
  givenname: Christopher B.
  surname: Howard
  fullname: Howard, Christopher B.
  organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia
– sequence: 3
  givenname: Martina L.
  surname: Jones
  fullname: Jones, Martina L.
  organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia
– sequence: 4
  givenname: Trent
  surname: Munro
  fullname: Munro, Trent
  organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia
– sequence: 5
  givenname: Zhongfan
  surname: Jia
  fullname: Jia, Zhongfan
  organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia
– sequence: 6
  givenname: Michael J.
  surname: Monteiro
  fullname: Monteiro, Michael J.
  organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia
– sequence: 7
  givenname: Stephen
  surname: Mahler
  fullname: Mahler, Stephen
  organization: Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), QLD 4072, Brisbane, Australia
BookMark eNqF0c1OGzEUBWCrolJDYMEbWOqmXQzYnvHfkqYQikIrUKBLy_Fc00ln7Kk9oeTtO1FQF5UqVnfzHcv3nkN0EGIAhE4oOaWEsLO1G1anFSf6DZpQomVRCUEO0IQwoQrGJX-HDnNeE0KEYmKCbs4Dvphf3uHBpkcYmvCIgw2xt2loXAs4Q-uxzRm6VQs19il22OLhB6QuJsh9DLl5AtzHdttBOkJvvW0zHL_MKbq_vFjOrorFt_mX2fmicJwoXZSCg_R1yZmX1HnHVxS4Z3XlhHDUrZivRSU806CEV7KUpeJl7T14R7kr63KKPuzf7VP8tYE8mK7JDtrWBoibbKgcV2eCUfE6FbrSUiqqR_r-H7qOmxTGRUalFGdEj_-Yoo975VLMOYE3fWo6m7aGErPrwOw6MLsORnu2t7-bFrb_h-Z6tvz0kij2iSYP8Pw3YdNPI8ZDcPP969xUmj9cLT8vzG35ByA5mVs
CitedBy_id crossref_primary_10_4161_19420862_2014_985952
crossref_primary_10_1016_j_ijpharm_2020_120082
crossref_primary_10_1021_acsnano_7b03375
crossref_primary_10_1002_wnan_1689
crossref_primary_10_1002_adhm_201700607
crossref_primary_10_1002_jctb_4555
crossref_primary_10_1016_j_ymeth_2016_11_010
crossref_primary_10_1002_jctb_4689
crossref_primary_10_1007_s12274_018_2121_x
Cites_doi 10.1016/S1040-8428(00)00134-7
10.1016/j.ijpharm.2011.12.039
10.1021/ma9804951
10.1039/b9py00362b
10.1021/ja0430999
10.1186/1477-3155-10-31
10.1016/S0378-5173(00)00501-9
10.1152/physrev.00049.2010
10.1158/1078-0432.CCR-07-0065
10.1021/ma0519617
10.1016/j.jconrel.2011.09.063
10.1007/BF00665957
10.1021/cr990119u
10.1016/S0168-3659(97)00124-7
10.1021/mz200176g
10.1016/0079-6700(92)90023-R
10.1002/pola.25041
10.1021/ma00127a042
10.1021/ja065484z
10.1080/08977190902843565
10.1016/0006-291X(85)90131-7
10.1021/ar400162w
10.1016/j.addr.2012.08.012
10.2217/nnm.12.160
10.1039/C0SM00412J
10.1016/0142-9612(90)90019-M
10.2217/fon.12.139
10.1021/bc00030a013
ContentType Journal Article
Copyright 2014 Society of Chemical Industry
2015 Society of Chemical Industry
Copyright_xml – notice: 2014 Society of Chemical Industry
– notice: 2015 Society of Chemical Industry
DBID BSCLL
AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1002/jctb.4509
DatabaseName Istex
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database
Engineering Research Database

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4660
EndPage 1229
ExternalDocumentID 3716250361
10_1002_jctb_4509
JCTB4509
ark_67375_WNG_495VHTDL_Q
Genre article
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29K
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
D-I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UAO
UB1
V2E
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
XXG
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c5089-365e7fd352f71cfc5b1e5f2d4c66c1cb2fd646f29e86f87373853dffefc15c3d3
IEDL.DBID DR2
ISSN 0268-2575
IngestDate Wed Dec 04 08:44:24 EST 2024
Wed Dec 04 05:22:18 EST 2024
Thu Oct 10 18:26:27 EDT 2024
Fri Dec 06 02:33:36 EST 2024
Sat Aug 24 01:04:08 EDT 2024
Wed Oct 30 09:58:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5089-365e7fd352f71cfc5b1e5f2d4c66c1cb2fd646f29e86f87373853dffefc15c3d3
Notes ark:/67375/WNG-495VHTDL-Q
ArticleID:JCTB4509
istex:26E39EF1614450B1AB8ACABACEF74F3794F93437
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1688520985
PQPubID 2034149
PageCount 8
ParticipantIDs proquest_miscellaneous_1709726216
proquest_miscellaneous_1694977819
proquest_journals_1688520985
crossref_primary_10_1002_jctb_4509
wiley_primary_10_1002_jctb_4509_JCTB4509
istex_primary_ark_67375_WNG_495VHTDL_Q
PublicationCentury 2000
PublicationDate July 2015
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle Journal of chemical technology and biotechnology (1986)
PublicationTitleAlternate J. Chem. Technol. Biotechnol
PublicationYear 2015
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Elvin JG, Couston RG and Van Der Walle CF, Therapeutic antibodies: market considerations, disease targets and bioprocessing. Int J Pharmaceut 440:83-98 (2013).
Hawker CJ, Bosman AW and Harth E, New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661-3688 (2001).
Kim IS, Jeong YI, Cho CS and Kim SH, Thermo-responsive self-assembled polymeric micelles for drug delivery in vitro. Int J Pharmaceut 205:165-172 (2000).
Chen JP, Yang HJ and Hoffman AS, Polymer-protein conjugates. I. Effect of protein conjugation on the cloud point of poly(N-isopropylacrylamide). Biomaterials 11:625-630 (1990).
Schild HG, Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polymer Sci (Oxford) 17:163-249 (1992).
Filmus J, Pollak MN, Cailleau R and Buick RN, MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF. Biochem Biophys Res Commun 128:898-905 (1985).
Velonia K, Protein-polymer amphiphilic chimeras: recent advances and future challenges. Polym Chem 1:944-952 (2010).
Messersmith WA and Hidalgo M, Panitumumab, a monoclonal anti-epidermal growth factor receptor antibody in colorectal cancer: another one or the one? Clin Cancer Res 13:4664-4666 (2007).
Sumerlin BS, Proteins as initiators of controlled radical polymerization: grafting from via ATRP and RAFT. ACS Macro Lett 1:141-145 (2012).
Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E and Thang SH, Living free-radical polymerization by reversible addition - fragmentation chain transfer: the RAFT process. Macromolecules 31:5559-5562 (1998).
Master AM and Sen Gupta A, EGF receptor-targeted nanocarriers for enhanced cancer treatment. Nanomedicine 7:1895-1906 (2012).
Lammers T, Kiessling F, Hennink WE and Storm G, Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Controlled Release 161:175-187 (2012).
Yang XD, Jia XC, Corvalan JRF, Wang P and Davis CG, Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Critic Rev Oncol/Hematol 38:17-23 (2001).
Wang JS and Matyjaszewski K, Controlled/'living' radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 28:7901-7910 (1995).
Mantovani G, Lecolley F, Tao L, Haddleton DM, Clerx J, Cornelissen JJLM and Velonia K, Design and synthesis of N-maleimido-functionalized hydrophilic polymers via copper-mediated living radical polymerization: a suitable alternative to pegylation chemistry. J Am Chem Soc 127:2966-2973 (2005).
James ML and Gambhir SS, A molecular imaging primer: modalities, imaging agents, and applications. Physiolog Rev 92:897-965 (2012).
Cao P and Bae Y, Polymer nanoparticulate drug delivery and combination cancer therapy. Future Oncol 8:1471-1480 (2012).
Khazaie K, Schirrmacher V and Lichtner RB, EGF receptor in neoplasia and metastasis. Cancer Metastasis Rev 12:255-274 (1993).
Mu B, Zhang J, McNicholas TP, Reuel NF, Kruss S and Strano MS, Recent advances in molecular recognition based on nanoengineered platforms. Acct Chem Res 47:979-988 (2014).
Kim SY, Shin IG, Lee YM, Cho CS and Sung YK, Methoxy poly(ethylene glycol) and ε-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours. J Controlled Release 51:13-22 (1998).
Duncan R and Vicent MJ, Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev 65:60-70 (2013).
Takei YG, Matsukata M, Aoki T, Sanui K, Ogata N, Kikuchi A, Sakurai Y and Okano T, Temperature-responsive bioconjugates. 3. Antibody-poly(N-isopropylacrylamide) conjugates for temperature-modulated precipitations and affinity bioseparations. Bioconjugate Chem 5:577-582 (1994).
Boyer C, Huang X, Whittaker MR, Bulmus V and Davis TP, An overview of protein-polymer particles. Soft Matter 7:1599-1614 (2011).
Percec V, Guliashvili T, Ladislaw JS, Wistrand A, Stjerndahl A, Sienkowska MJ, Monteiro MJ and Sahoo S, Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C. J Am Chem Soc 128:14156-14165 (2006).
Appel EA, Del Barrio J, Loh XJ, Dyson J and Scherman OA, High molecular weight polyacrylamides by atom transfer radical polymerization: enabling advancements in water-based applications. J Polym Sci Part A: Polym Chem 50:181-186 (2012).
Yang XD, Jia XC, Corvalan JRF, Wang P, Davis CG and Jakobovits A, Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res 59:1236-1243 (1999).
Adams T, Koziolek EJ, Hoyne PH, Bentley JD, Lu L, Lovrecz G, Ward CW, Lee FT, Scott AM, Nash AD, Rothacker J, Nice EC, Burgess AW and Johns TG, A truncated soluble epidermal growth factor receptor-Fc fusion ligand trap displays anti-tumour activity in vivo. Growth Factors 27:141-154 (2009).
Xia Y, Burke NAD and Stöver HDH, End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 39:2275-2283 (2006).
Fakruddin M, Hossain Z and Afroz H, Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10:31 (2012).
2012; 161
2001; 101
1990; 11
2013; 65
2006; 39
1992; 17
2014; 47
1985; 128
2013; 440
2007; 13
2012; 10
2009; 27
2011; 7
2012; 50
2012; 92
1993; 12
2010; 1
2012; 1
1995; 28
2000; 205
2005; 127
1999; 59
2001; 38
2012; 7
1998; 51
1998; 31
2006; 128
1994; 5
2012; 8
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Yang XD (e_1_2_7_29_1) 1999; 59
References_xml – volume: 1
  start-page: 141
  year: 2012
  end-page: 145
  article-title: Proteins as initiators of controlled radical polymerization: grafting from via ATRP and RAFT
  publication-title: ACS Macro Lett
– volume: 440
  start-page: 83
  year: 2013
  end-page: 98
  article-title: Therapeutic antibodies: market considerations, disease targets and bioprocessing
  publication-title: Int J Pharmaceut
– volume: 50
  start-page: 181
  year: 2012
  end-page: 186
  article-title: High molecular weight polyacrylamides by atom transfer radical polymerization: enabling advancements in water‐based applications
  publication-title: J Polym Sci Part A: Polym Chem
– volume: 27
  start-page: 141
  year: 2009
  end-page: 154
  article-title: A truncated soluble epidermal growth factor receptor‐Fc fusion ligand trap displays anti‐tumour activity
  publication-title: Growth Factors
– volume: 31
  start-page: 5559
  year: 1998
  end-page: 5562
  article-title: Living free‐radical polymerization by reversible addition ‐ fragmentation chain transfer: the RAFT process
  publication-title: Macromolecules
– volume: 92
  start-page: 897
  year: 2012
  end-page: 965
  article-title: A molecular imaging primer: modalities, imaging agents, and applications
  publication-title: Physiolog Rev
– volume: 101
  start-page: 3661
  year: 2001
  end-page: 3688
  article-title: New polymer synthesis by nitroxide mediated living radical polymerizations
  publication-title: Chem Rev
– volume: 8
  start-page: 1471
  year: 2012
  end-page: 1480
  article-title: Polymer nanoparticulate drug delivery and combination cancer therapy
  publication-title: Future Oncol
– volume: 59
  start-page: 1236
  year: 1999
  end-page: 1243
  article-title: Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy
  publication-title: Cancer Res
– volume: 39
  start-page: 2275
  year: 2006
  end-page: 2283
  article-title: End group effect on the thermal response of narrow‐disperse poly(N‐isopropylacrylamide) prepared by atom transfer radical polymerization
  publication-title: Macromolecules
– volume: 28
  start-page: 7901
  year: 1995
  end-page: 7910
  article-title: Controlled/'living' radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process
  publication-title: Macromolecules
– volume: 10
  start-page: 31
  year: 2012
  article-title: Prospects and applications of nanobiotechnology: a medical perspective
  publication-title: J Nanobiotechnol
– volume: 51
  start-page: 13
  year: 1998
  end-page: 22
  article-title: Methoxy poly(ethylene glycol) and ε‐caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours
  publication-title: J Controlled Release
– volume: 1
  start-page: 944
  year: 2010
  end-page: 952
  article-title: Protein‐polymer amphiphilic chimeras: recent advances and future challenges
  publication-title: Polym Chem
– volume: 205
  start-page: 165
  year: 2000
  end-page: 172
  article-title: Thermo‐responsive self‐assembled polymeric micelles for drug delivery
  publication-title: Int J Pharmaceut
– volume: 65
  start-page: 60
  year: 2013
  end-page: 70
  article-title: Polymer therapeutics‐prospects for 21st century: the end of the beginning
  publication-title: Adv Drug Deliv Rev
– volume: 13
  start-page: 4664
  year: 2007
  end-page: 4666
  article-title: Panitumumab, a monoclonal anti‐epidermal growth factor receptor antibody in colorectal cancer: another one or the one?
  publication-title: Clin Cancer Res
– volume: 17
  start-page: 163
  year: 1992
  end-page: 249
  article-title: Poly(N‐isopropylacrylamide): experiment, theory and application
  publication-title: Prog Polymer Sci (Oxford)
– volume: 5
  start-page: 577
  year: 1994
  end-page: 582
  article-title: Temperature‐responsive bioconjugates. 3. Antibody‐poly(N‐isopropylacrylamide) conjugates for temperature‐modulated precipitations and affinity bioseparations
  publication-title: Bioconjugate Chem
– volume: 12
  start-page: 255
  year: 1993
  end-page: 274
  article-title: EGF receptor in neoplasia and metastasis
  publication-title: Cancer Metastasis Rev
– volume: 38
  start-page: 17
  year: 2001
  end-page: 23
  article-title: Development of ABX‐EGF, a fully human anti‐EGF receptor monoclonal antibody, for cancer therapy
  publication-title: Critic Rev Oncol/Hematol
– volume: 128
  start-page: 14156
  year: 2006
  end-page: 14165
  article-title: Ultrafast synthesis of ultrahigh molar mass polymers by metal‐catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C
  publication-title: J Am Chem Soc
– volume: 7
  start-page: 1895
  year: 2012
  end-page: 1906
  article-title: EGF receptor‐targeted nanocarriers for enhanced cancer treatment
  publication-title: Nanomedicine
– volume: 161
  start-page: 175
  year: 2012
  end-page: 187
  article-title: Drug targeting to tumors: principles, pitfalls and (pre‐) clinical progress
  publication-title: J Controlled Release
– volume: 7
  start-page: 1599
  year: 2011
  end-page: 1614
  article-title: An overview of protein‐polymer particles
  publication-title: Soft Matter
– volume: 47
  start-page: 979
  year: 2014
  end-page: 988
  article-title: Recent advances in molecular recognition based on nanoengineered platforms
  publication-title: Acct Chem Res
– volume: 11
  start-page: 625
  year: 1990
  end-page: 630
  article-title: Polymer‐protein conjugates. I. Effect of protein conjugation on the cloud point of poly(N‐isopropylacrylamide)
  publication-title: Biomaterials
– volume: 127
  start-page: 2966
  year: 2005
  end-page: 2973
  article-title: Design and synthesis of N‐maleimido‐functionalized hydrophilic polymers via copper‐mediated living radical polymerization: a suitable alternative to pegylation chemistry
  publication-title: J Am Chem Soc
– volume: 128
  start-page: 898
  year: 1985
  end-page: 905
  article-title: MDA‐468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF
  publication-title: Biochem Biophys Res Commun
– ident: e_1_2_7_24_1
  doi: 10.1016/S1040-8428(00)00134-7
– ident: e_1_2_7_2_1
  doi: 10.1016/j.ijpharm.2011.12.039
– ident: e_1_2_7_8_1
  doi: 10.1021/ma9804951
– ident: e_1_2_7_18_1
  doi: 10.1039/b9py00362b
– ident: e_1_2_7_25_1
  doi: 10.1021/ja0430999
– ident: e_1_2_7_6_1
  doi: 10.1186/1477-3155-10-31
– ident: e_1_2_7_21_1
  doi: 10.1016/S0378-5173(00)00501-9
– ident: e_1_2_7_13_1
  doi: 10.1152/physrev.00049.2010
– ident: e_1_2_7_4_1
  doi: 10.1158/1078-0432.CCR-07-0065
– ident: e_1_2_7_30_1
  doi: 10.1021/ma0519617
– volume: 59
  start-page: 1236
  year: 1999
  ident: e_1_2_7_29_1
  article-title: Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy
  publication-title: Cancer Res
  contributor:
    fullname: Yang XD
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jconrel.2011.09.063
– ident: e_1_2_7_3_1
  doi: 10.1007/BF00665957
– ident: e_1_2_7_11_1
  doi: 10.1021/cr990119u
– ident: e_1_2_7_12_1
  doi: 10.1016/S0168-3659(97)00124-7
– ident: e_1_2_7_19_1
  doi: 10.1021/mz200176g
– ident: e_1_2_7_20_1
  doi: 10.1016/0079-6700(92)90023-R
– ident: e_1_2_7_26_1
  doi: 10.1002/pola.25041
– ident: e_1_2_7_9_1
  doi: 10.1021/ma00127a042
– ident: e_1_2_7_10_1
  doi: 10.1021/ja065484z
– ident: e_1_2_7_27_1
  doi: 10.1080/08977190902843565
– ident: e_1_2_7_28_1
  doi: 10.1016/0006-291X(85)90131-7
– ident: e_1_2_7_15_1
  doi: 10.1021/ar400162w
– ident: e_1_2_7_16_1
  doi: 10.1016/j.addr.2012.08.012
– ident: e_1_2_7_5_1
  doi: 10.2217/nnm.12.160
– ident: e_1_2_7_17_1
  doi: 10.1039/C0SM00412J
– ident: e_1_2_7_22_1
  doi: 10.1016/0142-9612(90)90019-M
– ident: e_1_2_7_14_1
  doi: 10.2217/fon.12.139
– ident: e_1_2_7_23_1
  doi: 10.1021/bc00030a013
SSID ssj0006826
Score 2.2325163
Snippet BACKGROUND Decorating nanoparticles with proteins, antibodies and antibody fragments allows highly specific targeting to selected cells for improved delivery...
BACKGROUND Decorating nanoparticles with proteins, antibodies and antibody fragments allows highly specific targeting to selected cells for improved delivery...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1222
SubjectTerms Antibodies
Binding
Construction
drug delivery
Drug delivery systems
EGFR
Fragments
immunomicelle
immunoparticle
Nanoparticles
PNIPAM
Proteins
scFv
Self assembly
Title An EGFR targeting nanoparticle self assembled from a thermoresponsive polymer
URI https://api.istex.fr/ark:/67375/WNG-495VHTDL-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjctb.4509
https://www.proquest.com/docview/1688520985
https://search.proquest.com/docview/1694977819
https://search.proquest.com/docview/1709726216
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V5QIHoHyIQFsZhBCXtMSOnax6Km23q4pWotpCD0iW7YwPdJut9gMBv56ZZLNtkUCIW5SMI8fjid8kb54BXkeUVY6eq9u9SnNacSnmFKYEdV3lEGXwnCgen5jBWX50rs9XYKerhWn1IZYf3Dgymvc1B7jz0-1r0dCvYea3ct0U72WqYDrf_um1dJQpm63WKMWgmUCYpFMVeie3ly1vrUV3eFi_3wKaN-Fqs970H8CXrqctzeRia043Cz9_E3H8z0d5CPcXOFTsthNnDVawfgT3bqgTPobj3VocHPZPRcsWp3OidjUl2W0bMcVRFIS98dKPsBJcqCKcYEDJ5N2WevsNxdV49OMSJ0_grH8w3Buki90X0kCgrZcqo7GIFQG0WGQhBu0z1JE8G4wJWfAyViY3UfawNJH8y7I4qooRY8h0UJV6Cqv1uMZnIIoyd06rwuUEGKLnyj8lndRVDKEXMp_Aq84P9qoV2bCtnLK0PDaWxyaBN42HlhZucsGstELbzyeHlhK9T4Ph_gf7MYH1zoV2EZBTm5myZMZPqRN4ubxMocT_R1yN4znb9HKCw4SR_mJTsN6RkZlJ4G3j0z_32B7tDd_zwfN_N30BdwmS6ZYQvA6rs8kcNwj2zPxmM79_AapGACg
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5N2wPwwG9ExgCDEOIlG3FiJ5V4Gdu6MtpKTB3sBVm2c37YunTqWgT89dwlTbchgRBvUXKOEp8v_s757jPAq4CyzNBxdbtL44xmXIq5FGOCura0iNI7ThQHQ907yg6O1fEKvGtrYRp9iOWCG0dG_b3mAOcF6a1L1dATP3ObmeLqvTUK94QJXbuHl-JRuqg3W6Mkg8YCoZJWV-it3Fo2vTYbrXHHfr8GNa8C1nrG6d6Br-2zNkST08053cz__E3G8X9f5i7cXkBRsd2MnXuwgtV9uHVFoPABDLYrsbffPRQNYZzOicpWlGc3bcQFjoMg-I1nboyl4FoVYQVjSubvNuzbbyjOJ-MfZzh9CEfdvdFOL15swBB7wm2dONUK81ASRgt54oNXLkEVyLlea594J0OpMx1kBwsdyMWsjJOWIWDwifJpmT6C1WpS4WMQeZFZq9LcZoQZguPiv1RaqcrgfccnLoKXrSPMeaOzYRpFZWm4bwz3TQSvaxctLez0lIlpuTJfhvuGcr3PvdFu33yKYKP1oVnE5IVJdFEw6adQEbxYXqZo4l8ktsLJnG06GSFigkl_sclZ8kjLREfwpnbqn5_YHOyM3vPB-r-bPocbvdGgb_ofhh-fwE1CaKrhB2_A6mw6x6eEgmbuWT3YfwGsmQRJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NmzTBA78RgTEMQoiXbMSxnUQ8beu6MrYKpo7tAcmyHfuBdWnVtQj467lLmm5DGkK8Rck5cny--Lvku88Ar4PnpfCWqtttGgtccTHmUh8j1DWl8Z47S4niYV_1jsX-qTxdgvdtLUyjD7H44EaRUb-vKcDHZdi8FA395qZ2Q0gq3lsRihcknN85utSOUnm91xrmGDgVEJS0skLv-Oai6bXFaIXG9cc1pHkVr9YLTvcufG272vBMzjZmeDP36w8Vx_98lntwZw5E2VYzc-7Dkq8ewO0r8oQP4XCrYrt73SPW0MXxHKtMhVl204Zd-GFgCL79uR36klGlCjOMECWxdxvu7XfPxqPhz3M_eQTH3d3BTi-eb78QO0RtRZwq6bNQIkILWeKCkzbxMqBrnVIucZaHUgkVeOFzFdDBpIuTliH44BLp0jJ9DMvVqPJPgGW5MEammRGIGIKl0r-UGy7L4FzhEhvBq9YPetyobOhGT5lrGhtNYxPBm9pDCwszOSNaWib1SX9PY6b3pTfoHOjPEay1LtTziLzQicpzovzkMoKXi8sYS_SDxFR-NCObQiAeRpD0F5uMBI8UT1QEb2uf3txjvb8z2KaDp_9u-gJWP3W6-uBD_-MzuIXwTDbk4DVYnk5m_jlCoKldr6f6b6c_Avg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+EGFR+targeting+nanoparticle+self+assembled+from+a+thermoresponsive+polymer&rft.jtitle=Journal+of+chemical+technology+and+biotechnology+%281986%29&rft.au=Goodall%2C+Stephen&rft.au=Howard%2C+Christopher+B&rft.au=Jones%2C+Martina+L&rft.au=Munro%2C+Trent&rft.date=2015-07-01&rft.issn=0268-2575&rft.eissn=1097-4660&rft.volume=90&rft.issue=7&rft.spage=1222&rft.epage=1229&rft_id=info:doi/10.1002%2Fjctb.4509&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2575&client=summon