Stacking Structure of Vaterite Revealed by Atomic Imaging and Diffraction Analysis
Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biol...
Saved in:
Published in | Chemistry : a European journal Vol. 30; no. 52; pp. e202401557 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley
16.09.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biological systems cannot be understood without elucidating the nature of vaterite. The crystal structure of vaterite has been discussed for nearly a century but is still an open question. Here we propose the actual structure of vaterite by combining atomic imaging and diffraction analysis with simulations of disordered stacking sequences. Vaterite basically appears as layers of hexagonal calcium planes and carbonate (CO32−)‐containing sheets stacked with +60°, −60°, or 180° rotations from the underlying layer. However, equivalent carbonate positions in alternating layers are forbidden, and four‐layer stacking in which the fourth layer rotates 180° relative to the first layer are predominant, forming an orthogonal reciprocal lattice in diffraction patterns. These stacking characteristics replicate the intensity distribution in the electron and X‐ray diffraction patterns. This study has almost completely elucidated the crystal structure and stacking sequence of vaterite. Our findings provide insights into the thermodynamic stability of vaterite, which facilitates comprehension of the biomineralization processes and growth dynamics of calcium carbonate.
After a century of discussion, the atomic arrangements of vaterite are fully visualized and described as a layer structure consisting of calcium planes and carbonate (CO32−)‐containing sheets. The layers are stacked with +60°, −60°, or 180° rotations from the underlying layer under two constraints: (i) carbonate ions cannot occupy equivalent positions in alternate layers, and (ii) the stacking sequences with orthogonal components are dominated. |
---|---|
AbstractList | Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biological systems cannot be understood without elucidating the nature of vaterite. The crystal structure of vaterite has been discussed for nearly a century but is still an open question. Here we propose the actual structure of vaterite by combining atomic imaging and diffraction analysis with simulations of disordered stacking sequences. Vaterite basically appears as layers of hexagonal calcium planes and carbonate (CO
)-containing sheets stacked with +60°, -60°, or 180° rotations from the underlying layer. However, equivalent carbonate positions in alternating layers are forbidden, and four-layer stacking in which the fourth layer rotates 180° relative to the first layer are predominant, forming an orthogonal reciprocal lattice in diffraction patterns. These stacking characteristics replicate the intensity distribution in the electron and X-ray diffraction patterns. This study has almost completely elucidated the crystal structure and stacking sequence of vaterite. Our findings provide insights into the thermodynamic stability of vaterite, which facilitates comprehension of the biomineralization processes and growth dynamics of calcium carbonate. Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biological systems cannot be understood without elucidating the nature of vaterite. The crystal structure of vaterite has been discussed for nearly a century but is still an open question. Here we propose the actual structure of vaterite by combining atomic imaging and diffraction analysis with simulations of disordered stacking sequences. Vaterite basically appears as layers of hexagonal calcium planes and carbonate (CO32−)‐containing sheets stacked with +60°, −60°, or 180° rotations from the underlying layer. However, equivalent carbonate positions in alternating layers are forbidden, and four‐layer stacking in which the fourth layer rotates 180° relative to the first layer are predominant, forming an orthogonal reciprocal lattice in diffraction patterns. These stacking characteristics replicate the intensity distribution in the electron and X‐ray diffraction patterns. This study has almost completely elucidated the crystal structure and stacking sequence of vaterite. Our findings provide insights into the thermodynamic stability of vaterite, which facilitates comprehension of the biomineralization processes and growth dynamics of calcium carbonate. Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biological systems cannot be understood without elucidating the nature of vaterite. The crystal structure of vaterite has been discussed for nearly a century but is still an open question. Here we propose the actual structure of vaterite by combining atomic imaging and diffraction analysis with simulations of disordered stacking sequences. Vaterite basically appears as layers of hexagonal calcium planes and carbonate (CO32−)‐containing sheets stacked with +60°, −60°, or 180° rotations from the underlying layer. However, equivalent carbonate positions in alternating layers are forbidden, and four‐layer stacking in which the fourth layer rotates 180° relative to the first layer are predominant, forming an orthogonal reciprocal lattice in diffraction patterns. These stacking characteristics replicate the intensity distribution in the electron and X‐ray diffraction patterns. This study has almost completely elucidated the crystal structure and stacking sequence of vaterite. Our findings provide insights into the thermodynamic stability of vaterite, which facilitates comprehension of the biomineralization processes and growth dynamics of calcium carbonate. After a century of discussion, the atomic arrangements of vaterite are fully visualized and described as a layer structure consisting of calcium planes and carbonate (CO32−)‐containing sheets. The layers are stacked with +60°, −60°, or 180° rotations from the underlying layer under two constraints: (i) carbonate ions cannot occupy equivalent positions in alternate layers, and (ii) the stacking sequences with orthogonal components are dominated. Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biological systems cannot be understood without elucidating the nature of vaterite. The crystal structure of vaterite has been discussed for nearly a century but is still an open question. Here we propose the actual structure of vaterite by combining atomic imaging and diffraction analysis with simulations of disordered stacking sequences. Vaterite basically appears as layers of hexagonal calcium planes and carbonate (CO 3 2− )‐containing sheets stacked with +60°, −60°, or 180° rotations from the underlying layer. However, equivalent carbonate positions in alternating layers are forbidden, and four‐layer stacking in which the fourth layer rotates 180° relative to the first layer are predominant, forming an orthogonal reciprocal lattice in diffraction patterns. These stacking characteristics replicate the intensity distribution in the electron and X‐ray diffraction patterns. This study has almost completely elucidated the crystal structure and stacking sequence of vaterite. Our findings provide insights into the thermodynamic stability of vaterite, which facilitates comprehension of the biomineralization processes and growth dynamics of calcium carbonate. Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biological systems cannot be understood without elucidating the nature of vaterite. The crystal structure of vaterite has been discussed for nearly a century but is still an open question. Here we propose the actual structure of vaterite by combining atomic imaging and diffraction analysis with simulations of disordered stacking sequences. Vaterite basically appears as layers of hexagonal calcium planes and carbonate (CO3 2-)-containing sheets stacked with +60°, -60°, or 180° rotations from the underlying layer. However, equivalent carbonate positions in alternating layers are forbidden, and four-layer stacking in which the fourth layer rotates 180° relative to the first layer are predominant, forming an orthogonal reciprocal lattice in diffraction patterns. These stacking characteristics replicate the intensity distribution in the electron and X-ray diffraction patterns. This study has almost completely elucidated the crystal structure and stacking sequence of vaterite. Our findings provide insights into the thermodynamic stability of vaterite, which facilitates comprehension of the biomineralization processes and growth dynamics of calcium carbonate.Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biological systems cannot be understood without elucidating the nature of vaterite. The crystal structure of vaterite has been discussed for nearly a century but is still an open question. Here we propose the actual structure of vaterite by combining atomic imaging and diffraction analysis with simulations of disordered stacking sequences. Vaterite basically appears as layers of hexagonal calcium planes and carbonate (CO3 2-)-containing sheets stacked with +60°, -60°, or 180° rotations from the underlying layer. However, equivalent carbonate positions in alternating layers are forbidden, and four-layer stacking in which the fourth layer rotates 180° relative to the first layer are predominant, forming an orthogonal reciprocal lattice in diffraction patterns. These stacking characteristics replicate the intensity distribution in the electron and X-ray diffraction patterns. This study has almost completely elucidated the crystal structure and stacking sequence of vaterite. Our findings provide insights into the thermodynamic stability of vaterite, which facilitates comprehension of the biomineralization processes and growth dynamics of calcium carbonate. |
Author | Michio Suzuki Toshihiro Kogure Taiga Okumura Gen Takahashi |
Author_xml | – sequence: 1 givenname: Taiga orcidid: 0000-0001-5252-8622 surname: Okumura fullname: Okumura, Taiga email: okumura@eps.s.u-tokyo.ac.jp organization: The University of Tokyo – sequence: 2 givenname: Gen surname: Takahashi fullname: Takahashi, Gen organization: The University of Tokyo – sequence: 3 givenname: Michio surname: Suzuki fullname: Suzuki, Michio organization: The University of Tokyo – sequence: 4 givenname: Toshihiro surname: Kogure fullname: Kogure, Toshihiro organization: The University of Tokyo |
BackLink | https://cir.nii.ac.jp/crid/1872273591449451776$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/38868960$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhoO02Gvt1qUEdOFmbnPyOVlertUWWgqtug2ZJFOj81GTjHL_vTPcVqQgbnI2z_Nyct4X6GAYh4DQKyBrIISeuq-hX1NCOQEh1DO0AkGhYkqKA7QimqtKCqaP0EnOsSGEa1JzDc_REatrWWtJVujmtlj3PQ53-LakyZUpBTy2-IstIcUS8E34GWwXPG52eFPGPjp80du7RbCDx-9j2ybrShwHvBlst8sxv0SHre1yOHmYx-jzh7NP2_Pq8vrjxXZzWTlBalVp7YWkspXShtBqpTRIyxsF3NdNw2ptiSTcq8Y5zzllIL31jQYmeSusp-wYvdvn3qfxxxRyMX3MLnSdHcI4ZcOInDOBUTGjb56g38YpzfvOFADQ-TJAZur1AzU1ffDmPsXepp15vNYM8D3g0phzCq1xsdjl8yXZ2BkgZunFLL2YP73M2vqJ9pj8T0HvhV-xC7v_0GZ7fnb1t_t27w4xzustL9SKUsWEBs41F6CUZL8BFvyoZA |
CitedBy_id | crossref_primary_10_1039_D4CE01253D |
Cites_doi | 10.1111/j.1749-6632.1963.tb13463.x 10.1016/0304-3991(95)00085-2 10.1154/1.3552994 10.1039/c1ce05976a 10.1016/j.ultramic.2010.04.004 10.1046/j.1365-2818.1998.3070861.x 10.1038/s41467-023-43625-0 10.1016/j.jcrysgro.2004.04.006 10.1180/minmag.1960.032.250.03 10.1021/cg300676b 10.1021/cg4002972 10.1016/j.jsb.2013.05.002 10.1098/rspa.1991.0062 10.1002/anie.201200845 10.1107/S0021889811038970 10.1107/S0365110X63002000 10.1002/jrs.2438 10.1007/s00114-010-0692-9 10.1016/j.jcrysgro.2007.02.001 10.2138/am-2016-5324 10.1016/S0304-3991(01)00145-0 10.1016/j.jcrysgro.2014.08.028 10.2465/jmps.231206 10.1039/C9QI00849G 10.1021/acs.cgd.7b00481 10.1016/j.ssnmr.2014.08.003 10.1038/s41598-019-45581-6 10.1126/science.1232139 10.1039/C0NR00589D 10.2307/1542480 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH – notice: 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | RYH 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202401557 |
DatabaseName | CiNii Complete Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 38868960 10_1002_chem_202401557 CHEM202401557 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science funderid: 22H01340 – fundername: Japan Society for the Promotion of Science grantid: 22H01340 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYH RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT 24P AEUQT AFPWT RGC RWI WRC AAYXX CITATION ACUHS EBD NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c5087-99d5626f66aeef977916a4b714d8bb389a0604d7bccd442316dadb91364f5ad23 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 09:53:04 EDT 2025 Fri Jul 25 12:07:15 EDT 2025 Mon Jul 21 06:05:42 EDT 2025 Tue Jul 01 00:44:04 EDT 2025 Thu Apr 24 23:12:29 EDT 2025 Wed Jan 22 17:14:18 EST 2025 Thu Jun 26 22:48:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Keywords | Biomineralization ABF/ADF-STEM Vaterite Diffraction analysis Crystal structure |
Language | English |
License | Attribution 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5087-99d5626f66aeef977916a4b714d8bb389a0604d7bccd442316dadb91364f5ad23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5252-8622 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202401557 |
PMID | 38868960 |
PQID | 3111249010 |
PQPubID | 986340 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_3067911325 proquest_journals_3111249010 pubmed_primary_38868960 crossref_citationtrail_10_1002_chem_202401557 crossref_primary_10_1002_chem_202401557 wiley_primary_10_1002_chem_202401557_CHEM202401557 nii_cinii_1872273591449451776 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 16, 2024 |
PublicationDateYYYYMMDD | 2024-09-16 |
PublicationDate_xml | – month: 09 year: 2024 text: September 16, 2024 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2024 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2010; 97 2019; 9 1960; 32 1991; 433 2023; 14 2019; 6 2007; 304 2004; 267 2016; 101 1993; 185 2013; 340 2012; 14 2011; 3 2012; 12 2013; 183 2010; 41 2012; 51 1998; 190 1963; 16 2014; 407 2017; 17 2013; 13 2024; 119 2015; 65 2010; 110 1963; 109 2011; 44 1996; 62 2008; 22 2011; 26 2002; 90 e_1_2_8_28_1 Kamiya N. (e_1_2_8_26_1) 2004; 267 e_1_2_8_25_1 San X. (e_1_2_8_22_1) 2023; 14 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_18_1 e_1_2_8_19_1 Makovicky E. (e_1_2_8_17_1) 2016; 101 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Kogure T. (e_1_2_8_29_1) 2008; 22 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 Takahashi G. (e_1_2_8_24_1) 2024; 119 e_1_2_8_30_1 |
References_xml | – volume: 62 start-page: 43 year: 1996 end-page: 52 publication-title: Ultramicroscopy – volume: 97 start-page: 743 year: 2010 end-page: 751 publication-title: Naturwissenschaften – volume: 44 start-page: 1272 year: 2011 end-page: 1276 publication-title: J. Appl. Crystallogr. – volume: 13 start-page: 2247 year: 2013 end-page: 2251 publication-title: Cryst. Growth Des. – volume: 304 start-page: 253 year: 2007 end-page: 256 publication-title: J. Cryst. Growth – volume: 90 start-page: 71 year: 2002 end-page: 83 publication-title: Ultramicroscopy – volume: 407 start-page: 78 year: 2014 end-page: 86 publication-title: J. Cryst. Growth – volume: 110 start-page: 903 year: 2010 end-page: 923 publication-title: Ultramicroscopy – volume: 109 start-page: 82 year: 1963 end-page: 112 publication-title: Ann. N. Y. Acad. Sci. – volume: 65 start-page: 75 year: 2015 end-page: 83 publication-title: Solid State Nucl. Magn. Reson. – volume: 183 start-page: 191 year: 2013 end-page: 198 publication-title: J. Struct. Biol. – volume: 190 start-page: 45 year: 1998 end-page: 51 publication-title: J. Microsc. – volume: 17 start-page: 3567 year: 2017 end-page: 3578 publication-title: Cryst. Growth Des. – volume: 22 start-page: S11 year: 2008 end-page: S14 publication-title: Microsc. Anal. – volume: 3 start-page: 265 year: 2011 end-page: 271 publication-title: Nanoscale – volume: 119 year: 2024 publication-title: J. Mineral. Petrol. Sci. – volume: 12 start-page: 3806 year: 2012 end-page: 3814 publication-title: Cryst. Growth Des. – volume: 267 start-page: 635 year: 2004 end-page: 645 publication-title: J. Cryst. Growth – volume: 101 start-page: 1636 year: 2016 end-page: 1641 publication-title: Am. Mineral. – volume: 14 start-page: 7858 year: 2023 publication-title: Nat. Commun. – volume: 185 start-page: 393 year: 1993 end-page: 404 publication-title: Biol. Bull. – volume: 16 start-page: 770 year: 1963 end-page: 772 publication-title: Acta Crystallogr. – volume: 340 start-page: 454 year: 2013 end-page: 457 publication-title: Science (80−) – volume: 51 start-page: 7041 year: 2012 end-page: 7045 publication-title: Angew. Chemie Int. Ed. – volume: 41 start-page: 193 year: 2010 end-page: 201 publication-title: J. Raman Spectrosc. – volume: 433 start-page: 499 year: 1991 end-page: 520 publication-title: Proc. R. Soc. London. Ser. A Math. Phys. Sci. – volume: 9 start-page: 9156 year: 2019 publication-title: Sci. Rep. – volume: 26 start-page: 16 year: 2011 end-page: 21 publication-title: Powder Diffr. – volume: 6 start-page: 2696 year: 2019 end-page: 2703 publication-title: Inorg. Chem. Front. – volume: 32 start-page: 535 year: 1960 end-page: 544 publication-title: Mineral. Mag. J. Mineral Soc. – volume: 14 start-page: 44 year: 2012 end-page: 47 publication-title: CrystEngComm – ident: e_1_2_8_11_1 doi: 10.1111/j.1749-6632.1963.tb13463.x – ident: e_1_2_8_27_1 doi: 10.1016/0304-3991(95)00085-2 – volume: 22 start-page: S11 year: 2008 ident: e_1_2_8_29_1 publication-title: Microsc. Anal. – ident: e_1_2_8_18_1 doi: 10.1154/1.3552994 – ident: e_1_2_8_14_1 doi: 10.1039/c1ce05976a – ident: e_1_2_8_23_1 doi: 10.1016/j.ultramic.2010.04.004 – ident: e_1_2_8_28_1 doi: 10.1046/j.1365-2818.1998.3070861.x – volume: 14 start-page: 7858 year: 2023 ident: e_1_2_8_22_1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-43625-0 – volume: 267 start-page: 635 year: 2004 ident: e_1_2_8_26_1 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2004.04.006 – ident: e_1_2_8_4_1 doi: 10.1180/minmag.1960.032.250.03 – ident: e_1_2_8_2_1 doi: 10.1021/cg300676b – ident: e_1_2_8_19_1 doi: 10.1021/cg4002972 – ident: e_1_2_8_8_1 doi: 10.1016/j.jsb.2013.05.002 – ident: e_1_2_8_25_1 doi: 10.1098/rspa.1991.0062 – ident: e_1_2_8_20_1 doi: 10.1002/anie.201200845 – ident: e_1_2_8_31_1 doi: 10.1107/S0021889811038970 – ident: e_1_2_8_13_1 doi: 10.1107/S0365110X63002000 – ident: e_1_2_8_5_1 doi: 10.1002/jrs.2438 – ident: e_1_2_8_6_1 doi: 10.1007/s00114-010-0692-9 – ident: e_1_2_8_7_1 doi: 10.1016/j.jcrysgro.2007.02.001 – volume: 101 start-page: 1636 year: 2016 ident: e_1_2_8_17_1 publication-title: Am. Mineral. doi: 10.2138/am-2016-5324 – ident: e_1_2_8_30_1 doi: 10.1016/S0304-3991(01)00145-0 – ident: e_1_2_8_15_1 doi: 10.1016/j.jcrysgro.2014.08.028 – volume: 119 year: 2024 ident: e_1_2_8_24_1 publication-title: J. Mineral. Petrol. Sci. doi: 10.2465/jmps.231206 – ident: e_1_2_8_1_1 doi: 10.1039/C9QI00849G – ident: e_1_2_8_12_1 doi: 10.1021/acs.cgd.7b00481 – ident: e_1_2_8_16_1 doi: 10.1016/j.ssnmr.2014.08.003 – ident: e_1_2_8_21_1 doi: 10.1038/s41598-019-45581-6 – ident: e_1_2_8_9_1 doi: 10.1126/science.1232139 – ident: e_1_2_8_3_1 doi: 10.1039/C0NR00589D – ident: e_1_2_8_10_1 doi: 10.2307/1542480 |
SSID | ssib004908491 ssib008497180 ssib000813635 ssib001177660 ssj0009633 ssib002494928 ssib017383888 ssib000160237 ssib000305938 ssib032277173 ssib026260319 |
Score | 2.4722123 |
Snippet | Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the... |
SourceID | proquest pubmed crossref wiley nii |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202401557 |
SubjectTerms | ABF/ADF-STEM Aragonite Atomic structure Biological activity Biomineralization Calcite Calcium carbonate Calcium imaging Calcium signalling Crystal growth Crystal lattices Crystal structure Crystals Diffraction analysis Diffraction patterns Metastable phases Mineralization Stacking Stacking sequence (composite materials) Vaterite X-ray diffraction |
Title | Stacking Structure of Vaterite Revealed by Atomic Imaging and Diffraction Analysis |
URI | https://cir.nii.ac.jp/crid/1872273591449451776 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202401557 https://www.ncbi.nlm.nih.gov/pubmed/38868960 https://www.proquest.com/docview/3111249010 https://www.proquest.com/docview/3067911325 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB_UF-_l_DytrhLhwKfqtk2T9lFWRX0Q2VPxreQTlju7oruC_vXOtNvqiiJ4L6WlSZtkks5v0pnfAPxGJZ6qKFOhFlqE3BsT5hyNFR-rRCq0B5SuvHzPxckVP7tJb95E8df8EO2GG62M6ntNC1zph_1X0lDsE0WSo0ZClUjh5OSwRaio_8ofhbOrziXPZUgcrA1rYzfen64-pZVmy8HgI8A5jV8rBXS8AKppeu138ndvPNJ75vkdq-P_9G0Rfk7QKTuop9MSzLhyGeZ7TVK4FegjODW0u87-VMSz43vHhp5dK6J8HjnWd4-EPC3TT-xgRBHP7PS2SoTEVGnZ4cD7-zqUgjV0KKtwdXx02TsJJ2kZQoNoToZ5bhE0CS-Ecs4jfkSEqbiWEbeZ1giAFBHyWKmNsRzRWiSssjpH8XCfKhsnv2CuHJZuHVgau8jpLEMU4bkwieJGprnuaqe7-C4bQNiIpTATznJKnfGvqNmW44JGqmhHKoDdtvxdzdbxacktlDI-lI5RJmOEcWmO1mXO00hKEUCnkX8xWdUPRYKKAc1VNGED2GlvowToJ4sq3XCMZWhnLkIbPw1grZ43bVOSLBMZmowBxJX0v2hjQawY7dXGdyptwg86JweXSHRgDqeG20IUNdLbMBvzi-1qvbwA4fgPow |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o9AC0YCcUq7Thw7OXCoulS7tPSwtKi34Ke0os2idhdU_hV_hV_ETF7VIhASUg9cIiVxEjsz4_nGj28AXqATzzTPdWykkbEI1saFwGAlJDpVGuMBbepVvgdydCTeHmfHK_C92wvT8EP0A25kGXV_TQZOA9Jbl6yh2CjaSo4uCX2iatdV7vmLrxi1nb8eD1HEL5Nk983hzihuEwvEFvGIiovCoduXQUrtfUAEhBhJC6O4cLkx6MI1Uco4Zax1AvEGl047U_BUipBpR1wH2OtfpzTiRNc_nFwyVqE-N9nrhYqJ9bXjiRwkW8v1XfKD16rp9HcQdxkx1y5v9xb86H5Ws9Ll0-Zibjbtt194JP-rv3kbbrYAnG03FnMHVnx1F9Z2urx392CC-NvSBAJ7X3PrLs48mwX2QROr9dyzif9C4Noxc8G257Spm41P61xPTFeODachnDW7RVjH-HIfjq6kSQ9gtZpV_hGwLPHcmzxHoBSEtKkWVmWFGRhvBvgtF0Hc6UFpW1p2yg5yUjaE0klJkil7yUTwqi__uSEk-WPJDVQrfCkdea4SRKpZgQF0ITKulIxgvVO4su24zssUfR9G5BilR_C8v40SoHkkXfnZAsvQ4CPnaZJF8LBR1L4qaZ7LHKPiCJJa3f5Sx5KIP_qzx__y0DNYGx2-2y_3xwd7T-AGXaf1PFyuwyqqid9A0Dg3T2szZfDxqjX5J8jrbEI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEB5qBe1L8d7UVldQfAo9u9nsJg8-lB4PPVZKqVb6FvcKB2xOaU8r_Vf-RGdyKwcUQehLIMkm2czs7Hyzl28A3qITzw0vTGqVVamMzqWlxGAlCpNpg_GAsc0q30O1fyI_neanK_Cr3wvT8kMMA25kGU1_TQZ-7uPOLWko_hPtJEePhC5Rd8sqD8LNTwzaLj9Mx6jhd0JMPn7d20-7vAKpQzii07L06PVVVMqEEBEAIUQy0moufWEtenBDjDJeW-e8RLjBlTfeljxTMubGE9UBdvr3aYaRFpEJeXRL86u65PVSp0T62tNEjsTOcn2X3OC9ejb7E8JdBsyNx5s8gvUOqrLdtm09hpVQP4GHe32GuKdwjEjV0VA7-9Kw0F5dBDaP7Jsh_udFYMfhmmCoZ_aG7S5o-zObnjVZkZipPRvPYrxo91WwnhvlGZzciSyfw2o9r8MGsFwEHmxRIKSIUrnMSKfz0o5ssCP8lk8g7UVWuY7AnPJo_Kha6mVRkYirQcQJvB_Kn7fUHX8tuY0awJfSkRdaIKbLSww1S5lzrVUCW71uqs7EL6sMvQTGrhjPJvBmuI0aoBkXU4f5FZahYTqOAX-ewItWp0NVsqJQBcaPCYhGyf-oY0UUGcPZ5v889BoeHI0n1efp4cFLWKPLtPCFqy1YxVYSthFdLeyrpkEz-H7XFvQb_OopuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking+Structure+of+Vaterite+Revealed+by+Atomic+Imaging+and+Diffraction+Analysis&rft.jtitle=Chemistry+%E2%80%93+A+European+Journal&rft.au=Taiga+Okumura&rft.au=Gen+Takahashi&rft.au=Michio+Suzuki&rft.au=Toshihiro+Kogure&rft.date=2024-09-16&rft.pub=Wiley&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002%2Fchem.202401557 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |