Stacking Structure of Vaterite Revealed by Atomic Imaging and Diffraction Analysis

Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biol...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 30; no. 52; pp. e202401557 - n/a
Main Authors Okumura, Taiga, Takahashi, Gen, Suzuki, Michio, Kogure, Toshihiro
Format Journal Article
LanguageEnglish
Published Germany Wiley 16.09.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biological systems cannot be understood without elucidating the nature of vaterite. The crystal structure of vaterite has been discussed for nearly a century but is still an open question. Here we propose the actual structure of vaterite by combining atomic imaging and diffraction analysis with simulations of disordered stacking sequences. Vaterite basically appears as layers of hexagonal calcium planes and carbonate (CO32−)‐containing sheets stacked with +60°, −60°, or 180° rotations from the underlying layer. However, equivalent carbonate positions in alternating layers are forbidden, and four‐layer stacking in which the fourth layer rotates 180° relative to the first layer are predominant, forming an orthogonal reciprocal lattice in diffraction patterns. These stacking characteristics replicate the intensity distribution in the electron and X‐ray diffraction patterns. This study has almost completely elucidated the crystal structure and stacking sequence of vaterite. Our findings provide insights into the thermodynamic stability of vaterite, which facilitates comprehension of the biomineralization processes and growth dynamics of calcium carbonate. After a century of discussion, the atomic arrangements of vaterite are fully visualized and described as a layer structure consisting of calcium planes and carbonate (CO32−)‐containing sheets. The layers are stacked with +60°, −60°, or 180° rotations from the underlying layer under two constraints: (i) carbonate ions cannot occupy equivalent positions in alternate layers, and (ii) the stacking sequences with orthogonal components are dominated.
AbstractList Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biological systems cannot be understood without elucidating the nature of vaterite. The crystal structure of vaterite has been discussed for nearly a century but is still an open question. Here we propose the actual structure of vaterite by combining atomic imaging and diffraction analysis with simulations of disordered stacking sequences. Vaterite basically appears as layers of hexagonal calcium planes and carbonate (CO )-containing sheets stacked with +60°, -60°, or 180° rotations from the underlying layer. However, equivalent carbonate positions in alternating layers are forbidden, and four-layer stacking in which the fourth layer rotates 180° relative to the first layer are predominant, forming an orthogonal reciprocal lattice in diffraction patterns. These stacking characteristics replicate the intensity distribution in the electron and X-ray diffraction patterns. This study has almost completely elucidated the crystal structure and stacking sequence of vaterite. Our findings provide insights into the thermodynamic stability of vaterite, which facilitates comprehension of the biomineralization processes and growth dynamics of calcium carbonate.
Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biological systems cannot be understood without elucidating the nature of vaterite. The crystal structure of vaterite has been discussed for nearly a century but is still an open question. Here we propose the actual structure of vaterite by combining atomic imaging and diffraction analysis with simulations of disordered stacking sequences. Vaterite basically appears as layers of hexagonal calcium planes and carbonate (CO32−)‐containing sheets stacked with +60°, −60°, or 180° rotations from the underlying layer. However, equivalent carbonate positions in alternating layers are forbidden, and four‐layer stacking in which the fourth layer rotates 180° relative to the first layer are predominant, forming an orthogonal reciprocal lattice in diffraction patterns. These stacking characteristics replicate the intensity distribution in the electron and X‐ray diffraction patterns. This study has almost completely elucidated the crystal structure and stacking sequence of vaterite. Our findings provide insights into the thermodynamic stability of vaterite, which facilitates comprehension of the biomineralization processes and growth dynamics of calcium carbonate.
Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biological systems cannot be understood without elucidating the nature of vaterite. The crystal structure of vaterite has been discussed for nearly a century but is still an open question. Here we propose the actual structure of vaterite by combining atomic imaging and diffraction analysis with simulations of disordered stacking sequences. Vaterite basically appears as layers of hexagonal calcium planes and carbonate (CO32−)‐containing sheets stacked with +60°, −60°, or 180° rotations from the underlying layer. However, equivalent carbonate positions in alternating layers are forbidden, and four‐layer stacking in which the fourth layer rotates 180° relative to the first layer are predominant, forming an orthogonal reciprocal lattice in diffraction patterns. These stacking characteristics replicate the intensity distribution in the electron and X‐ray diffraction patterns. This study has almost completely elucidated the crystal structure and stacking sequence of vaterite. Our findings provide insights into the thermodynamic stability of vaterite, which facilitates comprehension of the biomineralization processes and growth dynamics of calcium carbonate. After a century of discussion, the atomic arrangements of vaterite are fully visualized and described as a layer structure consisting of calcium planes and carbonate (CO32−)‐containing sheets. The layers are stacked with +60°, −60°, or 180° rotations from the underlying layer under two constraints: (i) carbonate ions cannot occupy equivalent positions in alternate layers, and (ii) the stacking sequences with orthogonal components are dominated.
Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biological systems cannot be understood without elucidating the nature of vaterite. The crystal structure of vaterite has been discussed for nearly a century but is still an open question. Here we propose the actual structure of vaterite by combining atomic imaging and diffraction analysis with simulations of disordered stacking sequences. Vaterite basically appears as layers of hexagonal calcium planes and carbonate (CO 3 2− )‐containing sheets stacked with +60°, −60°, or 180° rotations from the underlying layer. However, equivalent carbonate positions in alternating layers are forbidden, and four‐layer stacking in which the fourth layer rotates 180° relative to the first layer are predominant, forming an orthogonal reciprocal lattice in diffraction patterns. These stacking characteristics replicate the intensity distribution in the electron and X‐ray diffraction patterns. This study has almost completely elucidated the crystal structure and stacking sequence of vaterite. Our findings provide insights into the thermodynamic stability of vaterite, which facilitates comprehension of the biomineralization processes and growth dynamics of calcium carbonate.
Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biological systems cannot be understood without elucidating the nature of vaterite. The crystal structure of vaterite has been discussed for nearly a century but is still an open question. Here we propose the actual structure of vaterite by combining atomic imaging and diffraction analysis with simulations of disordered stacking sequences. Vaterite basically appears as layers of hexagonal calcium planes and carbonate (CO3 2-)-containing sheets stacked with +60°, -60°, or 180° rotations from the underlying layer. However, equivalent carbonate positions in alternating layers are forbidden, and four-layer stacking in which the fourth layer rotates 180° relative to the first layer are predominant, forming an orthogonal reciprocal lattice in diffraction patterns. These stacking characteristics replicate the intensity distribution in the electron and X-ray diffraction patterns. This study has almost completely elucidated the crystal structure and stacking sequence of vaterite. Our findings provide insights into the thermodynamic stability of vaterite, which facilitates comprehension of the biomineralization processes and growth dynamics of calcium carbonate.Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the geological environment, it is intriguing that various biominerals are composed of vaterite. The processes of stable vaterite formation in biological systems cannot be understood without elucidating the nature of vaterite. The crystal structure of vaterite has been discussed for nearly a century but is still an open question. Here we propose the actual structure of vaterite by combining atomic imaging and diffraction analysis with simulations of disordered stacking sequences. Vaterite basically appears as layers of hexagonal calcium planes and carbonate (CO3 2-)-containing sheets stacked with +60°, -60°, or 180° rotations from the underlying layer. However, equivalent carbonate positions in alternating layers are forbidden, and four-layer stacking in which the fourth layer rotates 180° relative to the first layer are predominant, forming an orthogonal reciprocal lattice in diffraction patterns. These stacking characteristics replicate the intensity distribution in the electron and X-ray diffraction patterns. This study has almost completely elucidated the crystal structure and stacking sequence of vaterite. Our findings provide insights into the thermodynamic stability of vaterite, which facilitates comprehension of the biomineralization processes and growth dynamics of calcium carbonate.
Author Michio Suzuki
Toshihiro Kogure
Taiga Okumura
Gen Takahashi
Author_xml – sequence: 1
  givenname: Taiga
  orcidid: 0000-0001-5252-8622
  surname: Okumura
  fullname: Okumura, Taiga
  email: okumura@eps.s.u-tokyo.ac.jp
  organization: The University of Tokyo
– sequence: 2
  givenname: Gen
  surname: Takahashi
  fullname: Takahashi, Gen
  organization: The University of Tokyo
– sequence: 3
  givenname: Michio
  surname: Suzuki
  fullname: Suzuki, Michio
  organization: The University of Tokyo
– sequence: 4
  givenname: Toshihiro
  surname: Kogure
  fullname: Kogure, Toshihiro
  organization: The University of Tokyo
BackLink https://cir.nii.ac.jp/crid/1872273591449451776$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/38868960$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoO02Gvt1qUEdOFmbnPyOVlertUWWgqtug2ZJFOj81GTjHL_vTPcVqQgbnI2z_Nyct4X6GAYh4DQKyBrIISeuq-hX1NCOQEh1DO0AkGhYkqKA7QimqtKCqaP0EnOsSGEa1JzDc_REatrWWtJVujmtlj3PQ53-LakyZUpBTy2-IstIcUS8E34GWwXPG52eFPGPjp80du7RbCDx-9j2ybrShwHvBlst8sxv0SHre1yOHmYx-jzh7NP2_Pq8vrjxXZzWTlBalVp7YWkspXShtBqpTRIyxsF3NdNw2ptiSTcq8Y5zzllIL31jQYmeSusp-wYvdvn3qfxxxRyMX3MLnSdHcI4ZcOInDOBUTGjb56g38YpzfvOFADQ-TJAZur1AzU1ffDmPsXepp15vNYM8D3g0phzCq1xsdjl8yXZ2BkgZunFLL2YP73M2vqJ9pj8T0HvhV-xC7v_0GZ7fnb1t_t27w4xzustL9SKUsWEBs41F6CUZL8BFvyoZA
CitedBy_id crossref_primary_10_1039_D4CE01253D
Cites_doi 10.1111/j.1749-6632.1963.tb13463.x
10.1016/0304-3991(95)00085-2
10.1154/1.3552994
10.1039/c1ce05976a
10.1016/j.ultramic.2010.04.004
10.1046/j.1365-2818.1998.3070861.x
10.1038/s41467-023-43625-0
10.1016/j.jcrysgro.2004.04.006
10.1180/minmag.1960.032.250.03
10.1021/cg300676b
10.1021/cg4002972
10.1016/j.jsb.2013.05.002
10.1098/rspa.1991.0062
10.1002/anie.201200845
10.1107/S0021889811038970
10.1107/S0365110X63002000
10.1002/jrs.2438
10.1007/s00114-010-0692-9
10.1016/j.jcrysgro.2007.02.001
10.2138/am-2016-5324
10.1016/S0304-3991(01)00145-0
10.1016/j.jcrysgro.2014.08.028
10.2465/jmps.231206
10.1039/C9QI00849G
10.1021/acs.cgd.7b00481
10.1016/j.ssnmr.2014.08.003
10.1038/s41598-019-45581-6
10.1126/science.1232139
10.1039/C0NR00589D
10.2307/1542480
ContentType Journal Article
Copyright 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
– notice: 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202401557
DatabaseName CiNii Complete
Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 38868960
10_1002_chem_202401557
CHEM202401557
Genre article
Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  funderid: 22H01340
– fundername: Japan Society for the Promotion of Science
  grantid: 22H01340
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYH
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
24P
AEUQT
AFPWT
RGC
RWI
WRC
AAYXX
CITATION
ACUHS
EBD
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c5087-99d5626f66aeef977916a4b714d8bb389a0604d7bccd442316dadb91364f5ad23
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 09:53:04 EDT 2025
Fri Jul 25 12:07:15 EDT 2025
Mon Jul 21 06:05:42 EDT 2025
Tue Jul 01 00:44:04 EDT 2025
Thu Apr 24 23:12:29 EDT 2025
Wed Jan 22 17:14:18 EST 2025
Thu Jun 26 22:48:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords Biomineralization
ABF/ADF-STEM
Vaterite
Diffraction analysis
Crystal structure
Language English
License Attribution
2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5087-99d5626f66aeef977916a4b714d8bb389a0604d7bccd442316dadb91364f5ad23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5252-8622
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202401557
PMID 38868960
PQID 3111249010
PQPubID 986340
PageCount 6
ParticipantIDs proquest_miscellaneous_3067911325
proquest_journals_3111249010
pubmed_primary_38868960
crossref_citationtrail_10_1002_chem_202401557
crossref_primary_10_1002_chem_202401557
wiley_primary_10_1002_chem_202401557_CHEM202401557
nii_cinii_1872273591449451776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 16, 2024
PublicationDateYYYYMMDD 2024-09-16
PublicationDate_xml – month: 09
  year: 2024
  text: September 16, 2024
  day: 16
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2024
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2010; 97
2019; 9
1960; 32
1991; 433
2023; 14
2019; 6
2007; 304
2004; 267
2016; 101
1993; 185
2013; 340
2012; 14
2011; 3
2012; 12
2013; 183
2010; 41
2012; 51
1998; 190
1963; 16
2014; 407
2017; 17
2013; 13
2024; 119
2015; 65
2010; 110
1963; 109
2011; 44
1996; 62
2008; 22
2011; 26
2002; 90
e_1_2_8_28_1
Kamiya N. (e_1_2_8_26_1) 2004; 267
e_1_2_8_25_1
San X. (e_1_2_8_22_1) 2023; 14
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_18_1
e_1_2_8_19_1
Makovicky E. (e_1_2_8_17_1) 2016; 101
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Kogure T. (e_1_2_8_29_1) 2008; 22
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
Takahashi G. (e_1_2_8_24_1) 2024; 119
e_1_2_8_30_1
References_xml – volume: 62
  start-page: 43
  year: 1996
  end-page: 52
  publication-title: Ultramicroscopy
– volume: 97
  start-page: 743
  year: 2010
  end-page: 751
  publication-title: Naturwissenschaften
– volume: 44
  start-page: 1272
  year: 2011
  end-page: 1276
  publication-title: J. Appl. Crystallogr.
– volume: 13
  start-page: 2247
  year: 2013
  end-page: 2251
  publication-title: Cryst. Growth Des.
– volume: 304
  start-page: 253
  year: 2007
  end-page: 256
  publication-title: J. Cryst. Growth
– volume: 90
  start-page: 71
  year: 2002
  end-page: 83
  publication-title: Ultramicroscopy
– volume: 407
  start-page: 78
  year: 2014
  end-page: 86
  publication-title: J. Cryst. Growth
– volume: 110
  start-page: 903
  year: 2010
  end-page: 923
  publication-title: Ultramicroscopy
– volume: 109
  start-page: 82
  year: 1963
  end-page: 112
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 65
  start-page: 75
  year: 2015
  end-page: 83
  publication-title: Solid State Nucl. Magn. Reson.
– volume: 183
  start-page: 191
  year: 2013
  end-page: 198
  publication-title: J. Struct. Biol.
– volume: 190
  start-page: 45
  year: 1998
  end-page: 51
  publication-title: J. Microsc.
– volume: 17
  start-page: 3567
  year: 2017
  end-page: 3578
  publication-title: Cryst. Growth Des.
– volume: 22
  start-page: S11
  year: 2008
  end-page: S14
  publication-title: Microsc. Anal.
– volume: 3
  start-page: 265
  year: 2011
  end-page: 271
  publication-title: Nanoscale
– volume: 119
  year: 2024
  publication-title: J. Mineral. Petrol. Sci.
– volume: 12
  start-page: 3806
  year: 2012
  end-page: 3814
  publication-title: Cryst. Growth Des.
– volume: 267
  start-page: 635
  year: 2004
  end-page: 645
  publication-title: J. Cryst. Growth
– volume: 101
  start-page: 1636
  year: 2016
  end-page: 1641
  publication-title: Am. Mineral.
– volume: 14
  start-page: 7858
  year: 2023
  publication-title: Nat. Commun.
– volume: 185
  start-page: 393
  year: 1993
  end-page: 404
  publication-title: Biol. Bull.
– volume: 16
  start-page: 770
  year: 1963
  end-page: 772
  publication-title: Acta Crystallogr.
– volume: 340
  start-page: 454
  year: 2013
  end-page: 457
  publication-title: Science (80−)
– volume: 51
  start-page: 7041
  year: 2012
  end-page: 7045
  publication-title: Angew. Chemie Int. Ed.
– volume: 41
  start-page: 193
  year: 2010
  end-page: 201
  publication-title: J. Raman Spectrosc.
– volume: 433
  start-page: 499
  year: 1991
  end-page: 520
  publication-title: Proc. R. Soc. London. Ser. A Math. Phys. Sci.
– volume: 9
  start-page: 9156
  year: 2019
  publication-title: Sci. Rep.
– volume: 26
  start-page: 16
  year: 2011
  end-page: 21
  publication-title: Powder Diffr.
– volume: 6
  start-page: 2696
  year: 2019
  end-page: 2703
  publication-title: Inorg. Chem. Front.
– volume: 32
  start-page: 535
  year: 1960
  end-page: 544
  publication-title: Mineral. Mag. J. Mineral Soc.
– volume: 14
  start-page: 44
  year: 2012
  end-page: 47
  publication-title: CrystEngComm
– ident: e_1_2_8_11_1
  doi: 10.1111/j.1749-6632.1963.tb13463.x
– ident: e_1_2_8_27_1
  doi: 10.1016/0304-3991(95)00085-2
– volume: 22
  start-page: S11
  year: 2008
  ident: e_1_2_8_29_1
  publication-title: Microsc. Anal.
– ident: e_1_2_8_18_1
  doi: 10.1154/1.3552994
– ident: e_1_2_8_14_1
  doi: 10.1039/c1ce05976a
– ident: e_1_2_8_23_1
  doi: 10.1016/j.ultramic.2010.04.004
– ident: e_1_2_8_28_1
  doi: 10.1046/j.1365-2818.1998.3070861.x
– volume: 14
  start-page: 7858
  year: 2023
  ident: e_1_2_8_22_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-43625-0
– volume: 267
  start-page: 635
  year: 2004
  ident: e_1_2_8_26_1
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2004.04.006
– ident: e_1_2_8_4_1
  doi: 10.1180/minmag.1960.032.250.03
– ident: e_1_2_8_2_1
  doi: 10.1021/cg300676b
– ident: e_1_2_8_19_1
  doi: 10.1021/cg4002972
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jsb.2013.05.002
– ident: e_1_2_8_25_1
  doi: 10.1098/rspa.1991.0062
– ident: e_1_2_8_20_1
  doi: 10.1002/anie.201200845
– ident: e_1_2_8_31_1
  doi: 10.1107/S0021889811038970
– ident: e_1_2_8_13_1
  doi: 10.1107/S0365110X63002000
– ident: e_1_2_8_5_1
  doi: 10.1002/jrs.2438
– ident: e_1_2_8_6_1
  doi: 10.1007/s00114-010-0692-9
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jcrysgro.2007.02.001
– volume: 101
  start-page: 1636
  year: 2016
  ident: e_1_2_8_17_1
  publication-title: Am. Mineral.
  doi: 10.2138/am-2016-5324
– ident: e_1_2_8_30_1
  doi: 10.1016/S0304-3991(01)00145-0
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jcrysgro.2014.08.028
– volume: 119
  year: 2024
  ident: e_1_2_8_24_1
  publication-title: J. Mineral. Petrol. Sci.
  doi: 10.2465/jmps.231206
– ident: e_1_2_8_1_1
  doi: 10.1039/C9QI00849G
– ident: e_1_2_8_12_1
  doi: 10.1021/acs.cgd.7b00481
– ident: e_1_2_8_16_1
  doi: 10.1016/j.ssnmr.2014.08.003
– ident: e_1_2_8_21_1
  doi: 10.1038/s41598-019-45581-6
– ident: e_1_2_8_9_1
  doi: 10.1126/science.1232139
– ident: e_1_2_8_3_1
  doi: 10.1039/C0NR00589D
– ident: e_1_2_8_10_1
  doi: 10.2307/1542480
SSID ssib004908491
ssib008497180
ssib000813635
ssib001177660
ssj0009633
ssib002494928
ssib017383888
ssib000160237
ssib000305938
ssib032277173
ssib026260319
Score 2.4722123
Snippet Anhydrous calcium carbonate crystals exist as three polymorphs: calcite, aragonite, and vaterite. Although vaterite is a metastable phase rarely found in the...
SourceID proquest
pubmed
crossref
wiley
nii
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202401557
SubjectTerms ABF/ADF-STEM
Aragonite
Atomic structure
Biological activity
Biomineralization
Calcite
Calcium carbonate
Calcium imaging
Calcium signalling
Crystal growth
Crystal lattices
Crystal structure
Crystals
Diffraction analysis
Diffraction patterns
Metastable phases
Mineralization
Stacking
Stacking sequence (composite materials)
Vaterite
X-ray diffraction
Title Stacking Structure of Vaterite Revealed by Atomic Imaging and Diffraction Analysis
URI https://cir.nii.ac.jp/crid/1872273591449451776
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202401557
https://www.ncbi.nlm.nih.gov/pubmed/38868960
https://www.proquest.com/docview/3111249010
https://www.proquest.com/docview/3067911325
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB_UF-_l_DytrhLhwKfqtk2T9lFWRX0Q2VPxreQTlju7oruC_vXOtNvqiiJ4L6WlSZtkks5v0pnfAPxGJZ6qKFOhFlqE3BsT5hyNFR-rRCq0B5SuvHzPxckVP7tJb95E8df8EO2GG62M6ntNC1zph_1X0lDsE0WSo0ZClUjh5OSwRaio_8ofhbOrziXPZUgcrA1rYzfen64-pZVmy8HgI8A5jV8rBXS8AKppeu138ndvPNJ75vkdq-P_9G0Rfk7QKTuop9MSzLhyGeZ7TVK4FegjODW0u87-VMSz43vHhp5dK6J8HjnWd4-EPC3TT-xgRBHP7PS2SoTEVGnZ4cD7-zqUgjV0KKtwdXx02TsJJ2kZQoNoToZ5bhE0CS-Ecs4jfkSEqbiWEbeZ1giAFBHyWKmNsRzRWiSssjpH8XCfKhsnv2CuHJZuHVgau8jpLEMU4bkwieJGprnuaqe7-C4bQNiIpTATznJKnfGvqNmW44JGqmhHKoDdtvxdzdbxacktlDI-lI5RJmOEcWmO1mXO00hKEUCnkX8xWdUPRYKKAc1VNGED2GlvowToJ4sq3XCMZWhnLkIbPw1grZ43bVOSLBMZmowBxJX0v2hjQawY7dXGdyptwg86JweXSHRgDqeG20IUNdLbMBvzi-1qvbwA4fgPow
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o9AC0YCcUq7Thw7OXCoulS7tPSwtKi34Ke0os2idhdU_hV_hV_ETF7VIhASUg9cIiVxEjsz4_nGj28AXqATzzTPdWykkbEI1saFwGAlJDpVGuMBbepVvgdydCTeHmfHK_C92wvT8EP0A25kGXV_TQZOA9Jbl6yh2CjaSo4uCX2iatdV7vmLrxi1nb8eD1HEL5Nk983hzihuEwvEFvGIiovCoduXQUrtfUAEhBhJC6O4cLkx6MI1Uco4Zax1AvEGl047U_BUipBpR1wH2OtfpzTiRNc_nFwyVqE-N9nrhYqJ9bXjiRwkW8v1XfKD16rp9HcQdxkx1y5v9xb86H5Ws9Ll0-Zibjbtt194JP-rv3kbbrYAnG03FnMHVnx1F9Z2urx392CC-NvSBAJ7X3PrLs48mwX2QROr9dyzif9C4Noxc8G257Spm41P61xPTFeODachnDW7RVjH-HIfjq6kSQ9gtZpV_hGwLPHcmzxHoBSEtKkWVmWFGRhvBvgtF0Hc6UFpW1p2yg5yUjaE0klJkil7yUTwqi__uSEk-WPJDVQrfCkdea4SRKpZgQF0ITKulIxgvVO4su24zssUfR9G5BilR_C8v40SoHkkXfnZAsvQ4CPnaZJF8LBR1L4qaZ7LHKPiCJJa3f5Sx5KIP_qzx__y0DNYGx2-2y_3xwd7T-AGXaf1PFyuwyqqid9A0Dg3T2szZfDxqjX5J8jrbEI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEB5qBe1L8d7UVldQfAo9u9nsJg8-lB4PPVZKqVb6FvcKB2xOaU8r_Vf-RGdyKwcUQehLIMkm2czs7Hyzl28A3qITzw0vTGqVVamMzqWlxGAlCpNpg_GAsc0q30O1fyI_neanK_Cr3wvT8kMMA25kGU1_TQZ-7uPOLWko_hPtJEePhC5Rd8sqD8LNTwzaLj9Mx6jhd0JMPn7d20-7vAKpQzii07L06PVVVMqEEBEAIUQy0moufWEtenBDjDJeW-e8RLjBlTfeljxTMubGE9UBdvr3aYaRFpEJeXRL86u65PVSp0T62tNEjsTOcn2X3OC9ejb7E8JdBsyNx5s8gvUOqrLdtm09hpVQP4GHe32GuKdwjEjV0VA7-9Kw0F5dBDaP7Jsh_udFYMfhmmCoZ_aG7S5o-zObnjVZkZipPRvPYrxo91WwnhvlGZzciSyfw2o9r8MGsFwEHmxRIKSIUrnMSKfz0o5ssCP8lk8g7UVWuY7AnPJo_Kha6mVRkYirQcQJvB_Kn7fUHX8tuY0awJfSkRdaIKbLSww1S5lzrVUCW71uqs7EL6sMvQTGrhjPJvBmuI0aoBkXU4f5FZahYTqOAX-ewItWp0NVsqJQBcaPCYhGyf-oY0UUGcPZ5v889BoeHI0n1efp4cFLWKPLtPCFqy1YxVYSthFdLeyrpkEz-H7XFvQb_OopuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking+Structure+of+Vaterite+Revealed+by+Atomic+Imaging+and+Diffraction+Analysis&rft.jtitle=Chemistry+%E2%80%93+A+European+Journal&rft.au=Taiga+Okumura&rft.au=Gen+Takahashi&rft.au=Michio+Suzuki&rft.au=Toshihiro+Kogure&rft.date=2024-09-16&rft.pub=Wiley&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002%2Fchem.202401557
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon