An artificial olfactory inference system based on memristive devices
Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory system is promoted, emulating the function of the human nose by means of gas sensors and an inference system. In this work, an artificial olfactory i...
Saved in:
Published in | InfoMat Vol. 3; no. 7; pp. 804 - 813 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melbourne
John Wiley & Sons, Inc
01.07.2021
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory system is promoted, emulating the function of the human nose by means of gas sensors and an inference system. In this work, an artificial olfactory inference system based on memristive devices is developed to classify four gases (ethanol, methane, ethylene, and carbon monoxide) with 10 different concentrations. First, the spike trains converted from signals of the sensor array are inputted to a reservoir computing (RC) system based on volatile memristive devices, which extracts spatiotemporal features; then the features are processed by a classifier based on nonvolatile memristive devices; the output of the classifier indicates the classification result. Moreover, to reduce the device number and the power consumption, three strategies are applied to reduce the extracted features from the RC system. Eventually, the olfactory inference system successfully identifies the gases with a high accuracy of 95%.
An artificial olfactory inference system is implemented to classify 4 gases of 10 different concentrations. Gases are detected by the sensor array whose responses are converted to spike trains. The reservoir system based on volatile memristive devices extracts features from the responses of the sensors, while the neural network based on nonvolatile memristive devices realizes the inference. |
---|---|
AbstractList | Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory system is promoted, emulating the function of the human nose by means of gas sensors and an inference system. In this work, an artificial olfactory inference system based on memristive devices is developed to classify four gases (ethanol, methane, ethylene, and carbon monoxide) with 10 different concentrations. First, the spike trains converted from signals of the sensor array are inputted to a reservoir computing (RC) system based on volatile memristive devices, which extracts spatiotemporal features; then the features are processed by a classifier based on nonvolatile memristive devices; the output of the classifier indicates the classification result. Moreover, to reduce the device number and the power consumption, three strategies are applied to reduce the extracted features from the RC system. Eventually, the olfactory inference system successfully identifies the gases with a high accuracy of 95%. Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory system is promoted, emulating the function of the human nose by means of gas sensors and an inference system. In this work, an artificial olfactory inference system based on memristive devices is developed to classify four gases (ethanol, methane, ethylene, and carbon monoxide) with 10 different concentrations. First, the spike trains converted from signals of the sensor array are inputted to a reservoir computing (RC) system based on volatile memristive devices, which extracts spatiotemporal features; then the features are processed by a classifier based on nonvolatile memristive devices; the output of the classifier indicates the classification result. Moreover, to reduce the device number and the power consumption, three strategies are applied to reduce the extracted features from the RC system. Eventually, the olfactory inference system successfully identifies the gases with a high accuracy of 95%. An artificial olfactory inference system is implemented to classify 4 gases of 10 different concentrations. Gases are detected by the sensor array whose responses are converted to spike trains. The reservoir system based on volatile memristive devices extracts features from the responses of the sensors, while the neural network based on nonvolatile memristive devices realizes the inference. Abstract Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory system is promoted, emulating the function of the human nose by means of gas sensors and an inference system. In this work, an artificial olfactory inference system based on memristive devices is developed to classify four gases (ethanol, methane, ethylene, and carbon monoxide) with 10 different concentrations. First, the spike trains converted from signals of the sensor array are inputted to a reservoir computing (RC) system based on volatile memristive devices, which extracts spatiotemporal features; then the features are processed by a classifier based on nonvolatile memristive devices; the output of the classifier indicates the classification result. Moreover, to reduce the device number and the power consumption, three strategies are applied to reduce the extracted features from the RC system. Eventually, the olfactory inference system successfully identifies the gases with a high accuracy of 95%. Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory system is promoted, emulating the function of the human nose by means of gas sensors and an inference system. In this work, an artificial olfactory inference system based on memristive devices is developed to classify four gases (ethanol, methane, ethylene, and carbon monoxide) with 10 different concentrations. First, the spike trains converted from signals of the sensor array are inputted to a reservoir computing (RC) system based on volatile memristive devices, which extracts spatiotemporal features; then the features are processed by a classifier based on nonvolatile memristive devices; the output of the classifier indicates the classification result. Moreover, to reduce the device number and the power consumption, three strategies are applied to reduce the extracted features from the RC system. Eventually, the olfactory inference system successfully identifies the gases with a high accuracy of 95%. image |
Author | Wang, Xiao‐Xue Guo, Xin Huang, He‐Ming Wang, Tong |
Author_xml | – sequence: 1 givenname: Tong surname: Wang fullname: Wang, Tong organization: School of Materials Science and Engineering, Huazhong University of Science and Technology – sequence: 2 givenname: He‐Ming surname: Huang fullname: Huang, He‐Ming organization: School of Materials Science and Engineering, Huazhong University of Science and Technology – sequence: 3 givenname: Xiao‐Xue surname: Wang fullname: Wang, Xiao‐Xue organization: School of Materials Science and Engineering, Huazhong University of Science and Technology – sequence: 4 givenname: Xin orcidid: 0000-0003-1546-8119 surname: Guo fullname: Guo, Xin email: xguo@hust.edu.cn organization: School of Materials Science and Engineering, Huazhong University of Science and Technology |
BookMark | eNp9kM1LAzEQxYMoqLUX_4IFb0I1H5tk9yj1q1D0oucwTSaSst3UZFX637vtKoiIpxmG33u8ecdkv40tEnLK6AWjlF-G1vMLxlmt9sgRl0pPBFNy_8d-SMY5L2kPS1pyyY7I9VVbQOqCDzZAU8TGg-1i2hS9GSZsLRZ5kztcFQvI6IrYFitcpZC78I6Fw_dgMZ-QAw9NxvHXHJHn25un6f1k_ng3m17NJ1bSSk1AO1ppK5Qua2q9Qy0tSuEYulJIXVUgfO3AKaikdaC8Y5bjYiG8LmV_EyMyG3xdhKVZp7CCtDERgtkdYnox219sg0bohau9AFb6qqx5L1cVClGDVDV1XvVeZ4PXOsXXN8ydWca31PbxDZelZrzSckvRgbIp5pzQGxs66EJsuwShMYyabfVmW73ZVd9Lzn9JvoP-CbMB_ggNbv4hzezhlg-aT6vQlSk |
CitedBy_id | crossref_primary_10_1088_2631_7990_ad2e13 crossref_primary_10_1109_TIM_2024_3462986 crossref_primary_10_3390_biomimetics8030277 crossref_primary_10_1007_s11432_022_3601_8 crossref_primary_10_1063_5_0174863 crossref_primary_10_1109_TED_2022_3179347 crossref_primary_10_1109_LED_2021_3118053 crossref_primary_10_1063_5_0149271 crossref_primary_10_3390_mi14050901 crossref_primary_10_1002_adsr_202400044 crossref_primary_10_3390_math11183888 crossref_primary_10_1016_j_device_2024_100550 crossref_primary_10_1039_D4MH01348D crossref_primary_10_1007_s40843_023_2655_0 crossref_primary_10_7498_aps_71_20220226 crossref_primary_10_1109_JSEN_2023_3270024 crossref_primary_10_1002_adfm_202400039 crossref_primary_10_1016_j_ccr_2023_215155 crossref_primary_10_1021_acs_chemrev_4c00587 crossref_primary_10_1039_D5MH00038F crossref_primary_10_1109_JSEN_2023_3328869 crossref_primary_10_1002_aisy_202200316 crossref_primary_10_1021_acsami_4c14793 crossref_primary_10_1002_adfm_202409095 crossref_primary_10_3389_fnano_2022_954165 crossref_primary_10_1002_adma_202301063 crossref_primary_10_1002_adfm_202214139 crossref_primary_10_1038_s41928_024_01133_z crossref_primary_10_1088_1361_6463_ac2868 crossref_primary_10_1002_smll_202306585 crossref_primary_10_1016_j_engreg_2022_09_003 crossref_primary_10_1038_s41467_023_39371_y crossref_primary_10_1002_aelm_202101099 crossref_primary_10_1002_aisy_202200047 crossref_primary_10_1021_acs_chemrev_3c00527 crossref_primary_10_1021_acsami_1c19771 crossref_primary_10_1088_1674_4926_43_5_051201 crossref_primary_10_1002_adma_202311288 crossref_primary_10_7498_aps_71_20220281 crossref_primary_10_1039_D3NH00115F crossref_primary_10_1109_JSEN_2023_3240470 crossref_primary_10_1002_admi_202202216 crossref_primary_10_1002_inf2_12350 crossref_primary_10_1016_j_chaos_2024_114648 crossref_primary_10_1002_aelm_202200679 crossref_primary_10_1002_admt_202301814 crossref_primary_10_1002_advs_202302506 crossref_primary_10_1002_smll_202201111 crossref_primary_10_1039_D3TC01126G crossref_primary_10_1109_TCASAI_2024_3484370 crossref_primary_10_1039_D1TB02578C crossref_primary_10_1002_adma_202412549 crossref_primary_10_1088_2631_7990_acfcf1 crossref_primary_10_1016_j_mattod_2022_11_022 crossref_primary_10_1109_JSEN_2024_3376546 crossref_primary_10_1038_s41928_023_00950_y crossref_primary_10_3389_fnano_2022_940825 crossref_primary_10_1088_2752_5724_ad119e crossref_primary_10_1016_j_device_2023_100063 crossref_primary_10_1021_acs_nanolett_2c02775 |
Cites_doi | 10.1002/aisy.202000149 10.1002/inf2.12085 10.1016/j.snb.2016.05.089 10.1007/s11633-019-1212-9 10.1038/s41928-019-0288-0 10.3390/s19081841 10.1016/S0165-0173(03)00142-5 10.1109/ISOEN.2019.8823340 10.1002/adma.202004398 10.1109/MM.2018.112130359 10.1016/j.snb.2020.128523 10.1002/inf2.12162 10.1038/s41563-019-0291-x 10.1016/j.snb.2020.128921 10.1002/advs.202001842 10.1162/NECO_a_00694 10.1039/D0TA02934C 10.1002/admt.201800488 10.1016/j.snb.2019.01.044 10.1016/j.bios.2020.112412 10.3389/fnins.2019.00812 10.1038/s42256-019-0089-1 10.1038/s41586-019-1424-8 10.1038/ncomms1476 10.1002/adma.201902761 10.1126/sciadv.aba6173 10.1038/s42256-020-0159-4 10.1016/j.procs.2014.11.110 10.1002/adma.201900903 10.1021/acsami.7b07069 10.1038/s41586-020-1942-4 10.1002/aisy.201900084 10.3390/s151127804 10.1038/s41467-019-13827-6 10.1109/TCAD.2015.2474396 10.1109/TNNLS.2012.2195329 10.1126/science.1254642 10.1109/WISP.2015.7139171 10.1038/s41928-019-0313-3 10.1007/978-3-540-74690-4_48 10.3390/s19224831 10.3390/s141019336 10.1002/adma.201803849 10.1149/MA2020-01261859mtgabs 10.1021/cr068121q 10.1002/adma.202003018 10.1038/s41467-017-02337-y 10.1109/ACCESS.2019.2930804 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1002/inf2.12196 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3165 |
EndPage | 813 |
ExternalDocumentID | oai_doaj_org_article_37bd9f3a14f84925a868e339a5690df6 10_1002_inf2_12196 INF212196 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61971202 – fundername: National Key Research and Development Program of China funderid: 2018YFE0203802 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC KB. M7S OK1 PDBOC PIMPY PTHSS WIN AAYXX ADMLS CITATION PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c5086-a7d087c367490cfde75ce53d1ed435788a3f9dad6a85cda6fd1c2ebb3f745a853 |
IEDL.DBID | BENPR |
ISSN | 2567-3165 |
IngestDate | Wed Aug 27 01:25:20 EDT 2025 Wed Aug 13 08:48:44 EDT 2025 Tue Jul 01 01:33:43 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Wed Jan 22 16:57:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5086-a7d087c367490cfde75ce53d1ed435788a3f9dad6a85cda6fd1c2ebb3f745a853 |
Notes | Funding information [Correction added on 17 May, after first online publication: Grant numbers in the funding information have been updated]. National Natural Science Foundation of China, Grant/Award Number: 61971202; National Key Research and Development Program of China, Grant/Award Number: 2018YFE0203802 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1546-8119 |
OpenAccessLink | https://www.proquest.com/docview/2547128756?pq-origsite=%requestingapplication% |
PQID | 2547128756 |
PQPubID | 5068510 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_37bd9f3a14f84925a868e339a5690df6 proquest_journals_2547128756 crossref_citationtrail_10_1002_inf2_12196 crossref_primary_10_1002_inf2_12196 wiley_primary_10_1002_inf2_12196_INF212196 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Melbourne |
PublicationPlace_xml | – name: Melbourne – name: Beijing |
PublicationTitle | InfoMat |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2015; 34 2019; 7 2015; 15 2017; 8 2011; 2 2019; 31 2019; 2 2020; 165 2019; 1 2019; 13 2021; 327 2019; 17 2008; 108 2019; 19 2007 2019; 18 2020; 321 2020; 11 2020; 32 2014; 41 2017; 9 2019; 285 2020; 8 2020; 7 2020; 6 2015; 27 2020; 3 2020; 2 2018; 4 2000 2020 2019 2020; 577 2014; 14 2015 2016; 236 2012; 23 2003; 42 2018; 38 2014; 345 2019; 572 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 Heeger D (e_1_2_6_46_1) 2000 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 |
References_xml | – volume: 2 start-page: 480 year: 2019 end-page: 487 article-title: Temporal data classification and forecasting using a memristor‐based reservoir computing system publication-title: Nat Electron. – volume: 8 start-page: 14482 year: 2020 end-page: 14490 article-title: Flexible and transparent sensors for ultra‐low NO detection at room temperature under visible light illumination publication-title: J Mater Chem A – volume: 2 start-page: 420 year: 2019 end-page: 428 article-title: CMOS‐integrated memristive non‐volatile computing‐in‐memory for ai edge processors publication-title: Nat Electron – volume: 285 start-page: 193 year: 2019 end-page: 200 article-title: Discriminative detection of indoor volatile organic compounds using a sensor array based on pure and Fe‐doped In O nanofibers publication-title: Sens Actuators B – volume: 7 year: 2020 article-title: Implementation of dropout neuronal units based on stochastic memristive devices in neural networks with high classification accuracy publication-title: Adv Sci – volume: 42 start-page: 23 year: 2003 end-page: 32 article-title: Olfactory coding in the mammalian olfactory bulb publication-title: Brain Res Rev – volume: 14 start-page: 19336 year: 2014 end-page: 19353 article-title: Chemical discrimination in turbulent gas mixtures with mox sensors validated by gas chromatography‐mass spectrometry publication-title: Sensors. – volume: 15 start-page: 27804 year: 2015 end-page: 27831 article-title: Electronic nose feature extraction methods: a review publication-title: Sensors. – volume: 3 start-page: 293 year: 2020 end-page: 315 article-title: Recent advances in resistive random access memory based on lead halide perovskite publication-title: InfoMat. – volume: 2 year: 2020 article-title: Artificial neural networks based on memristive devices: from device to system publication-title: Adv Intell Syst. – volume: 19 start-page: 1841 year: 2019 article-title: Real‐time classification of multivariate olfaction data using spiking neural networks publication-title: Sensors – volume: 17 start-page: 179 year: 2019 end-page: 209 article-title: Electronic nose and its applications: a survey publication-title: Int J Autom Comput – volume: 4 year: 2018 article-title: Electronic noses: from advanced materials to sensors aided with data processing publication-title: Adv Mater Technol – volume: 2 start-page: 960 year: 2020 end-page: 967 article-title: The role of oxygen vacancies in the high cycling endurance and quantum conductance in BiVO ‐based resistive switching memory publication-title: InfoMat – volume: 23 start-page: 1065 year: 2012 end-page: 1073 article-title: Vlsi implementation of a bio‐inspired olfactory spiking neural network publication-title: IEEE Trans Neural Netw Learn Sys – volume: 7 start-page: 100954 year: 2019 end-page: 100963 article-title: A fast and robust gas recognition algorithm based on hybrid convolutional and recurrent neural network publication-title: IEEE Access – volume: 31 year: 2019 article-title: Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges publication-title: Adv Mater – volume: 327 year: 2021 article-title: Validation of the rapid detection approach for enhancing the electronic nose systems performance, using different deep learning models and support vector machines publication-title: Sens Actuators B. – volume: 165 year: 2020 article-title: Artificial intelligence biosensors: challenges and prospects publication-title: Biosens Bioelectron – volume: 31 year: 2019 article-title: Quasi‐Hodgkin‐Huxley neurons with leaky integrate‐and‐fire functions physically realized with memristive devices publication-title: Adv Mater – volume: 108 start-page: 705 year: 2008 end-page: 725 article-title: Electronic nose: current status and future trends publication-title: Chem Rev – volume: 41 start-page: 249 year: 2014 end-page: 254 article-title: Memristive reservoir computing architecture for epileptic seizure detection publication-title: Proc Comput Sci – volume: 345 start-page: 668 year: 2014 article-title: A million spiking‐neuron integrated circuit with a scalable communication network and interface publication-title: Science – volume: 572 start-page: 106 year: 2019 end-page: 111 article-title: Towards artificial general intelligence with hybrid tianjic chip architecture publication-title: Nature – volume: 38 start-page: 82 year: 2018 end-page: 99 article-title: Loihi: a neuromorphic manycore processor with on‐chip learning publication-title: IEEE Micro – volume: 31 year: 2019 article-title: Spatiotemporal information processing emulated by multiterminal neuro‐transistor networks publication-title: Adv Mater – volume: 321 year: 2020 article-title: Impact of heterostructures on hydrogen sulfide sensing: example of core‐shell CuO/CuFe O nanostructures publication-title: Sens Actuators, B – volume: 2 start-page: 181 year: 2020 end-page: 191 article-title: Rapid online learning and robust recall in a neuromorphic olfactory circuit publication-title: Nat Mach Intell – volume: 1 start-page: 434 year: 2019 end-page: 442 article-title: In situ training of feed‐forward and recurrent convolutional memristor networks publication-title: Nat Mach Intell. – volume: 11 start-page: 51 year: 2020 article-title: An artificial spiking afferent nerve based on Mott memristors for neurorobotics publication-title: Nat Commun – start-page: 1 year: 2015 end-page: 6 – start-page: 1 year: 2019 end-page: 4 – volume: 8 year: 2017 article-title: Reservoir computing using dynamic memristors for temporal information processing publication-title: Nat Commun – volume: 2 start-page: 468 year: 2011 article-title: Information processing using a single dynamical node as complex system publication-title: Nat Commun – year: 2000 – volume: 577 start-page: 641 year: 2020 end-page: 646 article-title: Fully hardware‐implemented memristor convolutional neural network publication-title: Nature – volume: 19 start-page: 4831 year: 2019 article-title: A hardware‐deployable neuromorphic solution for encoding and classification of electronic nose data publication-title: Sensors. – start-page: 471 year: 2007 end-page: 482 – volume: 27 start-page: 725 year: 2015 end-page: 747 article-title: Memristor models for machine learning publication-title: Neural Comput – volume: 236 start-page: 1044 year: 2016 end-page: 1053 article-title: Calibration transfer and drift counteraction in chemical sensor arrays using direct standardization publication-title: Sens Actuators B – volume: 32 year: 2020 article-title: Oxide‐based electrolyte‐gated transistors for spatiotemporal information processing publication-title: Adv Mater – volume: 6 year: 2020 article-title: Gate‐tunable van der waals heterostructure for reconfigurable neural network vision sensor publication-title: Sci Adv. – volume: 18 start-page: 309 year: 2019 end-page: 323 article-title: Memristive crossbar arrays for brain‐inspired computing publication-title: Nat Mater – volume: 13 start-page: 812 year: 2019 article-title: Unsupervised learning on resistive memory array based spiking neural networks publication-title: Front Neurosci – volume: 32 start-page: 2004398 year: 2020 article-title: A habituation sensory nervous system with memristors publication-title: Adv Mater – volume: 9 start-page: 29669 year: 2017 end-page: 29676 article-title: Hierarchical and hollow Fe O nanoboxes derived from metal‐organic frameworks with excellent sensitivity to H S publication-title: ACS Appl Mater Interfaces – volume: 34 start-page: 1537 year: 2015 end-page: 1557 article-title: Truenorth: design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip publication-title: IEEE Trans Comput Aid D – volume: 1 year: 2019 article-title: Reservoir computing using diffusive memristors publication-title: Adv Intell Syst – start-page: 1859 year: 2020 – ident: e_1_2_6_34_1 doi: 10.1002/aisy.202000149 – ident: e_1_2_6_36_1 doi: 10.1002/inf2.12085 – ident: e_1_2_6_16_1 doi: 10.1016/j.snb.2016.05.089 – ident: e_1_2_6_11_1 doi: 10.1007/s11633-019-1212-9 – ident: e_1_2_6_37_1 doi: 10.1038/s41928-019-0288-0 – ident: e_1_2_6_20_1 doi: 10.3390/s19081841 – ident: e_1_2_6_3_1 doi: 10.1016/S0165-0173(03)00142-5 – ident: e_1_2_6_12_1 doi: 10.1109/ISOEN.2019.8823340 – ident: e_1_2_6_6_1 doi: 10.1002/adma.202004398 – ident: e_1_2_6_27_1 doi: 10.1109/MM.2018.112130359 – ident: e_1_2_6_13_1 doi: 10.1016/j.snb.2020.128523 – ident: e_1_2_6_35_1 doi: 10.1002/inf2.12162 – ident: e_1_2_6_25_1 doi: 10.1038/s41563-019-0291-x – ident: e_1_2_6_50_1 doi: 10.1016/j.snb.2020.128921 – ident: e_1_2_6_43_1 doi: 10.1002/advs.202001842 – ident: e_1_2_6_33_1 doi: 10.1162/NECO_a_00694 – ident: e_1_2_6_15_1 doi: 10.1039/D0TA02934C – ident: e_1_2_6_2_1 doi: 10.1002/admt.201800488 – ident: e_1_2_6_8_1 doi: 10.1016/j.snb.2019.01.044 – ident: e_1_2_6_7_1 doi: 10.1016/j.bios.2020.112412 – ident: e_1_2_6_19_1 doi: 10.3389/fnins.2019.00812 – ident: e_1_2_6_45_1 doi: 10.1038/s42256-019-0089-1 – ident: e_1_2_6_44_1 doi: 10.1038/s41586-019-1424-8 – ident: e_1_2_6_41_1 doi: 10.1038/ncomms1476 – ident: e_1_2_6_42_1 doi: 10.1002/adma.201902761 – ident: e_1_2_6_5_1 doi: 10.1126/sciadv.aba6173 – ident: e_1_2_6_22_1 doi: 10.1038/s42256-020-0159-4 – ident: e_1_2_6_31_1 doi: 10.1016/j.procs.2014.11.110 – ident: e_1_2_6_38_1 doi: 10.1002/adma.201900903 – ident: e_1_2_6_14_1 doi: 10.1021/acsami.7b07069 – ident: e_1_2_6_21_1 doi: 10.1038/s41586-020-1942-4 – ident: e_1_2_6_40_1 doi: 10.1002/aisy.201900084 – ident: e_1_2_6_18_1 doi: 10.3390/s151127804 – ident: e_1_2_6_23_1 doi: 10.1038/s41467-019-13827-6 – ident: e_1_2_6_26_1 doi: 10.1109/TCAD.2015.2474396 – ident: e_1_2_6_10_1 doi: 10.1109/TNNLS.2012.2195329 – ident: e_1_2_6_28_1 doi: 10.1126/science.1254642 – ident: e_1_2_6_49_1 doi: 10.1109/WISP.2015.7139171 – ident: e_1_2_6_39_1 doi: 10.1038/s41928-019-0313-3 – ident: e_1_2_6_30_1 doi: 10.1007/978-3-540-74690-4_48 – ident: e_1_2_6_48_1 doi: 10.3390/s19224831 – ident: e_1_2_6_17_1 doi: 10.3390/s141019336 – ident: e_1_2_6_47_1 doi: 10.1002/adma.201803849 – ident: e_1_2_6_9_1 doi: 10.1149/MA2020-01261859mtgabs – ident: e_1_2_6_4_1 doi: 10.1021/cr068121q – ident: e_1_2_6_24_1 doi: 10.1002/adma.202003018 – ident: e_1_2_6_32_1 doi: 10.1038/s41467-017-02337-y – ident: e_1_2_6_29_1 doi: 10.1109/ACCESS.2019.2930804 – volume-title: Poisson Model of Spike Generation year: 2000 ident: e_1_2_6_46_1 |
SSID | ssj0002504251 |
Score | 2.4362454 |
Snippet | Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory system... Abstract Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 804 |
SubjectTerms | Arrays artificial neural network artificial olfactory inference system Carbon monoxide Classification Classifiers Datasets Efficiency Ethanol Feature extraction Gas sensors Gases Inference Machine learning Memory devices memristive device Neural networks Power consumption Principal components analysis reservoir computing Sensor arrays Sensors Smell |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMeDeNKD-MTVVQJ6USi2TdKkx_WxrB725IK3kGQSEHa7oqvgtzeP7lJB9OKttDkMM0nmPzD9DULnhZcUJLcmU4TxzOv_PBMQZ2iA0UKZWpnY5TuuRhP68MSeOqO-Qk9YwgMnx10RrqF2RBXUiQDSU6ISlpBaMV_XgYuwbZ_zOsVUuIMDmMtn7hWPtLzy8SoDSiHQ-TsZKIL6v6nLrkaNSWa4jbZadYgHyaodtGabXbTZYQbuodtBg4PVifyA59M0MecTPy9_3cOJzoxDggI8b_DMzuJR_rAYbLwZ9tFkePd4M8raUQiZ8QqqyhSHXHBDKk7r3DiwnBnLCBQWaODVCEVcDQoqJZgBVTkoTGm1Jo5T7zJGDtB6M2_sIcKiLkDTSntdoKn1BRKAK8C4mpY8p8700MXSPdK0nPAwrmIqE-G4lMGVMrqyh85Wa18SHePHVdfBy6sVgWgdX_g4yzbO8q8491B_GSPZHrM36atb7hMsZ_7zZYzbL2bI-_GwjE9H_2HQMdooQ39LbN3to_XF67s98QJloU_jXvwCH4fhkg priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JS8UwEMeDy0UP4oo7Ab0oFNvsBS9uD_UgHhS8hSSTiODrEzfw25ukfVVBBG8lnZaS6WT-CclvENqtoqSgpXeFoVwWUf-XhYJcQwOcVcbVxuVdvlfi_JZd3vG7CXQ4PgvT8iH6BbcUGXm8TgFu7MvBFzQ0OoAkNkItJtF0OlubyPmEXfcrLAnORXL9xZjW02Kc4D2flBx8Pf4jI2Vw_w-1-V2z5qQzmEdznVrER617F9CEbxbR7DeG4BI6PWpwcn9LgsCjx7aCzgd-GB_lwy2tGaeEBXjU4KEf5tB-9xh8HimW0e3g7ObkvOhKIxQuKipRGAmlko4KyerSBfCSO88pVB5Y4tcoQ0MNBoRR3IERASpHvLU0SMZjG11BU82o8asIq7oCy4SNOsEyHydMAKECF2pGZMmCW0N74-7RruOGp_IVj7olHhOdulLnrlxDO73tU0vL-NXqOPVyb5EI17lh9Hyvu4DRVFqoAzUVCyoBFI0SylNaGx7n8xDiSzbHPtJd2L3oONuVMeFKHm_vZ7_98Rn64mpA8tX6f4w30AxJ-1rylt1NNPX6_Oa3ojB5tdv5__sEqGfcCQ priority: 102 providerName: Wiley-Blackwell |
Title | An artificial olfactory inference system based on memristive devices |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12196 https://www.proquest.com/docview/2547128756 https://doaj.org/article/37bd9f3a14f84925a868e339a5690df6 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_0fLEPpfWDXmuPgL4oLO4m2U32SbT1_Hg4RBR8C9lMIgXdtd610P_eJJs7ryC-LEs2hGUmmfnN7OxvAPYKDylYbk2mWSkyj__zTGLsoYGmkdrU2sQq30l1fssv78q7lHCbprLKuU2Mhho7E3Lkhz6QEd6WirI6evqdha5R4etqaqGxCms0PBzA2snp5Op6kWUJBF3egy94Semh1xsNlAqBpX_JE0XC_v9Q5jJWjc5m_Ak-JpRIjnu1foYV227AhyXuwE34edySoPaeAYJ0D33nnH_k1_wXPtKzNJPgqJB0LXm0j_FI_7UEbbQQW3A7Pr35cZ6llgiZ8UiqyrTAXArDKsHr3Di0ojS2ZFhY5IG3RmrmatRYaVka1JXDwlDbNMwJXvoxtg2DtmvtFyCyLrDhVePxQcOtD5QQXYHG1ZyKnDszhP25eJRJfOGhbcWD6pmOqQqiVFGUQ9hdzH3qWTLenHUSpLyYEZit40D3fK_SQVFMNFg7pgvuZCBO1LKSlrFalz6OR-cX2ZnrSKXjNlWvm2MIB1Fv77yGupiMabz7-v5a32CdhgqWWJy7A4PZ8x_73UOQWTOCVcqv_FWOz0Zpz41iOP8Ck7fdqw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1BTxQxFH4BPIAHoyJhFbWJesBkwkzbaTsHY1BcdwX2BAm30ulrjQnMIKCGP-VvtO3MrGtiuHGbNE3TvPf6-rXz-n0Ar4sAKVjubGZYKbOA__NMYdLQQFsrYytjU5XvTEyO-ZeT8mQJfg9vYWJZ5ZATU6LG1sY78p1wkJEhl8pSvL_4nkXVqPh3dZDQ6MJi3938Cke2q3fTveDfN5SOPx19nGS9qkBmAxgRmZGYK2mZkLzKrUcnS-tKhoVDHqlflGG-QoPCqNKiER4LS11dMy95GdpYGHcZ7nHGqrii1Pjz_E4n0oEFvDBnQaU7IUpoJHCImgAL-16SB_gH0y4i47S1jR_Cgx6Tkt0uiB7Bkmsew_0FpsJ12NttSAyyjm-CtGedTs8N-TY8GCQdJzSJ2yKStiHn7jwlkJ-OoEv56Akc34mpNmClaRu3CURVBdZc1AGN1NyFYxmiL9D6ilOZc29HsD2YR9uenTyKZJzpjleZ6mhKnUw5glfzvhcdJ8d_e32IVp73iDzaqaG9_Kr7ZamZrLHyzBTcq0jTaJRQLnjWlKLK0YdBtgYf6X5xX-m_oTiCt8lvt0xDT2djmr6e3j7WS1idHB0e6IPpbP8ZrNFYO5PKgrdg5fryh3sewM91_SJFHIHTuw7xP14HF9o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1daxQxFL3ULYg-iJ90bdWA-qAw7EySSTIPIq3bpWtlKWKhbzGTm4jQzvRLpX_NX2eSmVlXkL71bQghDDcnNyczN-cAvCoCpWC5s5lhpcwC_88zhclDA22tjK2MTVW-C7F3yD8elUdr8Hu4CxPLKoecmBI1tjZ-I5-Eg4wMuVSWYuL7soiD6ez96VkWHaTin9bBTqODyL67-hWObxfv5tMw168pne1--bCX9Q4DmQ3ERGRGYq6kZULyKrcenSytKxkWDnmUgVGG-QoNCqNKi0Z4LCx1dc285GVoY2HcW7Auw6koH8H6zu7i4PPyC08UBwvsYamJSicBMzTKOUSHgJVdMJkF_MNwV3ly2uhm9-Fez1DJdgepB7Dmmodwd0W38BFMtxsSIdepT5D2uHPtuSLfh-uDpFOIJnGTRNI25MSdpHTy0xF0KTs9hsMbCdYTGDVt4zaAqKrAmos6cJOau3BIQ_QFWl9xKnPu7RjeDOHRttcqj5YZx7pTWaY6hlKnUI7h5bLvaafQ8d9eOzHKyx5RVTs1tOffdL9INZM1Vp6ZgnsVRRuNEsoxVplSVDn6MMjWMEe6X-oX-i8wx_A2zds1r6HnixlNT0-vH-sF3A7w1p_mi_1NuENjIU2qEd6C0eX5D_csMKHL-nkPOQJfbxrlfwDf6x1s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+artificial+olfactory+inference+system+based+on+memristive+devices&rft.jtitle=InfoMat&rft.au=Wang%2C+Tong&rft.au=Huang%2C+He%E2%80%90Ming&rft.au=Wang%2C+Xiao%E2%80%90Xue&rft.au=Guo%2C+Xin&rft.date=2021-07-01&rft.issn=2567-3165&rft.eissn=2567-3165&rft.volume=3&rft.issue=7&rft.spage=804&rft.epage=813&rft_id=info:doi/10.1002%2Finf2.12196&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_inf2_12196 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon |