An artificial olfactory inference system based on memristive devices

Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory system is promoted, emulating the function of the human nose by means of gas sensors and an inference system. In this work, an artificial olfactory i...

Full description

Saved in:
Bibliographic Details
Published inInfoMat Vol. 3; no. 7; pp. 804 - 813
Main Authors Wang, Tong, Huang, He‐Ming, Wang, Xiao‐Xue, Guo, Xin
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons, Inc 01.07.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory system is promoted, emulating the function of the human nose by means of gas sensors and an inference system. In this work, an artificial olfactory inference system based on memristive devices is developed to classify four gases (ethanol, methane, ethylene, and carbon monoxide) with 10 different concentrations. First, the spike trains converted from signals of the sensor array are inputted to a reservoir computing (RC) system based on volatile memristive devices, which extracts spatiotemporal features; then the features are processed by a classifier based on nonvolatile memristive devices; the output of the classifier indicates the classification result. Moreover, to reduce the device number and the power consumption, three strategies are applied to reduce the extracted features from the RC system. Eventually, the olfactory inference system successfully identifies the gases with a high accuracy of 95%. An artificial olfactory inference system is implemented to classify 4 gases of 10 different concentrations. Gases are detected by the sensor array whose responses are converted to spike trains. The reservoir system based on volatile memristive devices extracts features from the responses of the sensors, while the neural network based on nonvolatile memristive devices realizes the inference.
AbstractList Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory system is promoted, emulating the function of the human nose by means of gas sensors and an inference system. In this work, an artificial olfactory inference system based on memristive devices is developed to classify four gases (ethanol, methane, ethylene, and carbon monoxide) with 10 different concentrations. First, the spike trains converted from signals of the sensor array are inputted to a reservoir computing (RC) system based on volatile memristive devices, which extracts spatiotemporal features; then the features are processed by a classifier based on nonvolatile memristive devices; the output of the classifier indicates the classification result. Moreover, to reduce the device number and the power consumption, three strategies are applied to reduce the extracted features from the RC system. Eventually, the olfactory inference system successfully identifies the gases with a high accuracy of 95%.
Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory system is promoted, emulating the function of the human nose by means of gas sensors and an inference system. In this work, an artificial olfactory inference system based on memristive devices is developed to classify four gases (ethanol, methane, ethylene, and carbon monoxide) with 10 different concentrations. First, the spike trains converted from signals of the sensor array are inputted to a reservoir computing (RC) system based on volatile memristive devices, which extracts spatiotemporal features; then the features are processed by a classifier based on nonvolatile memristive devices; the output of the classifier indicates the classification result. Moreover, to reduce the device number and the power consumption, three strategies are applied to reduce the extracted features from the RC system. Eventually, the olfactory inference system successfully identifies the gases with a high accuracy of 95%. An artificial olfactory inference system is implemented to classify 4 gases of 10 different concentrations. Gases are detected by the sensor array whose responses are converted to spike trains. The reservoir system based on volatile memristive devices extracts features from the responses of the sensors, while the neural network based on nonvolatile memristive devices realizes the inference.
Abstract Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory system is promoted, emulating the function of the human nose by means of gas sensors and an inference system. In this work, an artificial olfactory inference system based on memristive devices is developed to classify four gases (ethanol, methane, ethylene, and carbon monoxide) with 10 different concentrations. First, the spike trains converted from signals of the sensor array are inputted to a reservoir computing (RC) system based on volatile memristive devices, which extracts spatiotemporal features; then the features are processed by a classifier based on nonvolatile memristive devices; the output of the classifier indicates the classification result. Moreover, to reduce the device number and the power consumption, three strategies are applied to reduce the extracted features from the RC system. Eventually, the olfactory inference system successfully identifies the gases with a high accuracy of 95%.
Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory system is promoted, emulating the function of the human nose by means of gas sensors and an inference system. In this work, an artificial olfactory inference system based on memristive devices is developed to classify four gases (ethanol, methane, ethylene, and carbon monoxide) with 10 different concentrations. First, the spike trains converted from signals of the sensor array are inputted to a reservoir computing (RC) system based on volatile memristive devices, which extracts spatiotemporal features; then the features are processed by a classifier based on nonvolatile memristive devices; the output of the classifier indicates the classification result. Moreover, to reduce the device number and the power consumption, three strategies are applied to reduce the extracted features from the RC system. Eventually, the olfactory inference system successfully identifies the gases with a high accuracy of 95%. image
Author Wang, Xiao‐Xue
Guo, Xin
Huang, He‐Ming
Wang, Tong
Author_xml – sequence: 1
  givenname: Tong
  surname: Wang
  fullname: Wang, Tong
  organization: School of Materials Science and Engineering, Huazhong University of Science and Technology
– sequence: 2
  givenname: He‐Ming
  surname: Huang
  fullname: Huang, He‐Ming
  organization: School of Materials Science and Engineering, Huazhong University of Science and Technology
– sequence: 3
  givenname: Xiao‐Xue
  surname: Wang
  fullname: Wang, Xiao‐Xue
  organization: School of Materials Science and Engineering, Huazhong University of Science and Technology
– sequence: 4
  givenname: Xin
  orcidid: 0000-0003-1546-8119
  surname: Guo
  fullname: Guo, Xin
  email: xguo@hust.edu.cn
  organization: School of Materials Science and Engineering, Huazhong University of Science and Technology
BookMark eNp9kM1LAzEQxYMoqLUX_4IFb0I1H5tk9yj1q1D0oucwTSaSst3UZFX637vtKoiIpxmG33u8ecdkv40tEnLK6AWjlF-G1vMLxlmt9sgRl0pPBFNy_8d-SMY5L2kPS1pyyY7I9VVbQOqCDzZAU8TGg-1i2hS9GSZsLRZ5kztcFQvI6IrYFitcpZC78I6Fw_dgMZ-QAw9NxvHXHJHn25un6f1k_ng3m17NJ1bSSk1AO1ppK5Qua2q9Qy0tSuEYulJIXVUgfO3AKaikdaC8Y5bjYiG8LmV_EyMyG3xdhKVZp7CCtDERgtkdYnox219sg0bohau9AFb6qqx5L1cVClGDVDV1XvVeZ4PXOsXXN8ydWca31PbxDZelZrzSckvRgbIp5pzQGxs66EJsuwShMYyabfVmW73ZVd9Lzn9JvoP-CbMB_ggNbv4hzezhlg-aT6vQlSk
CitedBy_id crossref_primary_10_1088_2631_7990_ad2e13
crossref_primary_10_1109_TIM_2024_3462986
crossref_primary_10_3390_biomimetics8030277
crossref_primary_10_1007_s11432_022_3601_8
crossref_primary_10_1063_5_0174863
crossref_primary_10_1109_TED_2022_3179347
crossref_primary_10_1109_LED_2021_3118053
crossref_primary_10_1063_5_0149271
crossref_primary_10_3390_mi14050901
crossref_primary_10_1002_adsr_202400044
crossref_primary_10_3390_math11183888
crossref_primary_10_1016_j_device_2024_100550
crossref_primary_10_1039_D4MH01348D
crossref_primary_10_1007_s40843_023_2655_0
crossref_primary_10_7498_aps_71_20220226
crossref_primary_10_1109_JSEN_2023_3270024
crossref_primary_10_1002_adfm_202400039
crossref_primary_10_1016_j_ccr_2023_215155
crossref_primary_10_1021_acs_chemrev_4c00587
crossref_primary_10_1039_D5MH00038F
crossref_primary_10_1109_JSEN_2023_3328869
crossref_primary_10_1002_aisy_202200316
crossref_primary_10_1021_acsami_4c14793
crossref_primary_10_1002_adfm_202409095
crossref_primary_10_3389_fnano_2022_954165
crossref_primary_10_1002_adma_202301063
crossref_primary_10_1002_adfm_202214139
crossref_primary_10_1038_s41928_024_01133_z
crossref_primary_10_1088_1361_6463_ac2868
crossref_primary_10_1002_smll_202306585
crossref_primary_10_1016_j_engreg_2022_09_003
crossref_primary_10_1038_s41467_023_39371_y
crossref_primary_10_1002_aelm_202101099
crossref_primary_10_1002_aisy_202200047
crossref_primary_10_1021_acs_chemrev_3c00527
crossref_primary_10_1021_acsami_1c19771
crossref_primary_10_1088_1674_4926_43_5_051201
crossref_primary_10_1002_adma_202311288
crossref_primary_10_7498_aps_71_20220281
crossref_primary_10_1039_D3NH00115F
crossref_primary_10_1109_JSEN_2023_3240470
crossref_primary_10_1002_admi_202202216
crossref_primary_10_1002_inf2_12350
crossref_primary_10_1016_j_chaos_2024_114648
crossref_primary_10_1002_aelm_202200679
crossref_primary_10_1002_admt_202301814
crossref_primary_10_1002_advs_202302506
crossref_primary_10_1002_smll_202201111
crossref_primary_10_1039_D3TC01126G
crossref_primary_10_1109_TCASAI_2024_3484370
crossref_primary_10_1039_D1TB02578C
crossref_primary_10_1002_adma_202412549
crossref_primary_10_1088_2631_7990_acfcf1
crossref_primary_10_1016_j_mattod_2022_11_022
crossref_primary_10_1109_JSEN_2024_3376546
crossref_primary_10_1038_s41928_023_00950_y
crossref_primary_10_3389_fnano_2022_940825
crossref_primary_10_1088_2752_5724_ad119e
crossref_primary_10_1016_j_device_2023_100063
crossref_primary_10_1021_acs_nanolett_2c02775
Cites_doi 10.1002/aisy.202000149
10.1002/inf2.12085
10.1016/j.snb.2016.05.089
10.1007/s11633-019-1212-9
10.1038/s41928-019-0288-0
10.3390/s19081841
10.1016/S0165-0173(03)00142-5
10.1109/ISOEN.2019.8823340
10.1002/adma.202004398
10.1109/MM.2018.112130359
10.1016/j.snb.2020.128523
10.1002/inf2.12162
10.1038/s41563-019-0291-x
10.1016/j.snb.2020.128921
10.1002/advs.202001842
10.1162/NECO_a_00694
10.1039/D0TA02934C
10.1002/admt.201800488
10.1016/j.snb.2019.01.044
10.1016/j.bios.2020.112412
10.3389/fnins.2019.00812
10.1038/s42256-019-0089-1
10.1038/s41586-019-1424-8
10.1038/ncomms1476
10.1002/adma.201902761
10.1126/sciadv.aba6173
10.1038/s42256-020-0159-4
10.1016/j.procs.2014.11.110
10.1002/adma.201900903
10.1021/acsami.7b07069
10.1038/s41586-020-1942-4
10.1002/aisy.201900084
10.3390/s151127804
10.1038/s41467-019-13827-6
10.1109/TCAD.2015.2474396
10.1109/TNNLS.2012.2195329
10.1126/science.1254642
10.1109/WISP.2015.7139171
10.1038/s41928-019-0313-3
10.1007/978-3-540-74690-4_48
10.3390/s19224831
10.3390/s141019336
10.1002/adma.201803849
10.1149/MA2020-01261859mtgabs
10.1021/cr068121q
10.1002/adma.202003018
10.1038/s41467-017-02337-y
10.1109/ACCESS.2019.2930804
ContentType Journal Article
Copyright 2021 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/inf2.12196
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3165
EndPage 813
ExternalDocumentID oai_doaj_org_article_37bd9f3a14f84925a868e339a5690df6
10_1002_inf2_12196
INF212196
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61971202
– fundername: National Key Research and Development Program of China
  funderid: 2018YFE0203802
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KB.
M7S
OK1
PDBOC
PIMPY
PTHSS
WIN
AAYXX
ADMLS
CITATION
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c5086-a7d087c367490cfde75ce53d1ed435788a3f9dad6a85cda6fd1c2ebb3f745a853
IEDL.DBID BENPR
ISSN 2567-3165
IngestDate Wed Aug 27 01:25:20 EDT 2025
Wed Aug 13 08:48:44 EDT 2025
Tue Jul 01 01:33:43 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
Wed Jan 22 16:57:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5086-a7d087c367490cfde75ce53d1ed435788a3f9dad6a85cda6fd1c2ebb3f745a853
Notes Funding information
[Correction added on 17 May, after first online publication: Grant numbers in the funding information have been updated].
National Natural Science Foundation of China, Grant/Award Number: 61971202; National Key Research and Development Program of China, Grant/Award Number: 2018YFE0203802
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1546-8119
OpenAccessLink https://www.proquest.com/docview/2547128756?pq-origsite=%requestingapplication%
PQID 2547128756
PQPubID 5068510
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_37bd9f3a14f84925a868e339a5690df6
proquest_journals_2547128756
crossref_citationtrail_10_1002_inf2_12196
crossref_primary_10_1002_inf2_12196
wiley_primary_10_1002_inf2_12196_INF212196
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: Beijing
PublicationTitle InfoMat
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2015; 34
2019; 7
2015; 15
2017; 8
2011; 2
2019; 31
2019; 2
2020; 165
2019; 1
2019; 13
2021; 327
2019; 17
2008; 108
2019; 19
2007
2019; 18
2020; 321
2020; 11
2020; 32
2014; 41
2017; 9
2019; 285
2020; 8
2020; 7
2020; 6
2015; 27
2020; 3
2020; 2
2018; 4
2000
2020
2019
2020; 577
2014; 14
2015
2016; 236
2012; 23
2003; 42
2018; 38
2014; 345
2019; 572
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
Heeger D (e_1_2_6_46_1) 2000
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
References_xml – volume: 2
  start-page: 480
  year: 2019
  end-page: 487
  article-title: Temporal data classification and forecasting using a memristor‐based reservoir computing system
  publication-title: Nat Electron.
– volume: 8
  start-page: 14482
  year: 2020
  end-page: 14490
  article-title: Flexible and transparent sensors for ultra‐low NO detection at room temperature under visible light illumination
  publication-title: J Mater Chem A
– volume: 2
  start-page: 420
  year: 2019
  end-page: 428
  article-title: CMOS‐integrated memristive non‐volatile computing‐in‐memory for ai edge processors
  publication-title: Nat Electron
– volume: 285
  start-page: 193
  year: 2019
  end-page: 200
  article-title: Discriminative detection of indoor volatile organic compounds using a sensor array based on pure and Fe‐doped In O nanofibers
  publication-title: Sens Actuators B
– volume: 7
  year: 2020
  article-title: Implementation of dropout neuronal units based on stochastic memristive devices in neural networks with high classification accuracy
  publication-title: Adv Sci
– volume: 42
  start-page: 23
  year: 2003
  end-page: 32
  article-title: Olfactory coding in the mammalian olfactory bulb
  publication-title: Brain Res Rev
– volume: 14
  start-page: 19336
  year: 2014
  end-page: 19353
  article-title: Chemical discrimination in turbulent gas mixtures with mox sensors validated by gas chromatography‐mass spectrometry
  publication-title: Sensors.
– volume: 15
  start-page: 27804
  year: 2015
  end-page: 27831
  article-title: Electronic nose feature extraction methods: a review
  publication-title: Sensors.
– volume: 3
  start-page: 293
  year: 2020
  end-page: 315
  article-title: Recent advances in resistive random access memory based on lead halide perovskite
  publication-title: InfoMat.
– volume: 2
  year: 2020
  article-title: Artificial neural networks based on memristive devices: from device to system
  publication-title: Adv Intell Syst.
– volume: 19
  start-page: 1841
  year: 2019
  article-title: Real‐time classification of multivariate olfaction data using spiking neural networks
  publication-title: Sensors
– volume: 17
  start-page: 179
  year: 2019
  end-page: 209
  article-title: Electronic nose and its applications: a survey
  publication-title: Int J Autom Comput
– volume: 4
  year: 2018
  article-title: Electronic noses: from advanced materials to sensors aided with data processing
  publication-title: Adv Mater Technol
– volume: 2
  start-page: 960
  year: 2020
  end-page: 967
  article-title: The role of oxygen vacancies in the high cycling endurance and quantum conductance in BiVO ‐based resistive switching memory
  publication-title: InfoMat
– volume: 23
  start-page: 1065
  year: 2012
  end-page: 1073
  article-title: Vlsi implementation of a bio‐inspired olfactory spiking neural network
  publication-title: IEEE Trans Neural Netw Learn Sys
– volume: 7
  start-page: 100954
  year: 2019
  end-page: 100963
  article-title: A fast and robust gas recognition algorithm based on hybrid convolutional and recurrent neural network
  publication-title: IEEE Access
– volume: 31
  year: 2019
  article-title: Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges
  publication-title: Adv Mater
– volume: 327
  year: 2021
  article-title: Validation of the rapid detection approach for enhancing the electronic nose systems performance, using different deep learning models and support vector machines
  publication-title: Sens Actuators B.
– volume: 165
  year: 2020
  article-title: Artificial intelligence biosensors: challenges and prospects
  publication-title: Biosens Bioelectron
– volume: 31
  year: 2019
  article-title: Quasi‐Hodgkin‐Huxley neurons with leaky integrate‐and‐fire functions physically realized with memristive devices
  publication-title: Adv Mater
– volume: 108
  start-page: 705
  year: 2008
  end-page: 725
  article-title: Electronic nose: current status and future trends
  publication-title: Chem Rev
– volume: 41
  start-page: 249
  year: 2014
  end-page: 254
  article-title: Memristive reservoir computing architecture for epileptic seizure detection
  publication-title: Proc Comput Sci
– volume: 345
  start-page: 668
  year: 2014
  article-title: A million spiking‐neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
– volume: 572
  start-page: 106
  year: 2019
  end-page: 111
  article-title: Towards artificial general intelligence with hybrid tianjic chip architecture
  publication-title: Nature
– volume: 38
  start-page: 82
  year: 2018
  end-page: 99
  article-title: Loihi: a neuromorphic manycore processor with on‐chip learning
  publication-title: IEEE Micro
– volume: 31
  year: 2019
  article-title: Spatiotemporal information processing emulated by multiterminal neuro‐transistor networks
  publication-title: Adv Mater
– volume: 321
  year: 2020
  article-title: Impact of heterostructures on hydrogen sulfide sensing: example of core‐shell CuO/CuFe O nanostructures
  publication-title: Sens Actuators, B
– volume: 2
  start-page: 181
  year: 2020
  end-page: 191
  article-title: Rapid online learning and robust recall in a neuromorphic olfactory circuit
  publication-title: Nat Mach Intell
– volume: 1
  start-page: 434
  year: 2019
  end-page: 442
  article-title: In situ training of feed‐forward and recurrent convolutional memristor networks
  publication-title: Nat Mach Intell.
– volume: 11
  start-page: 51
  year: 2020
  article-title: An artificial spiking afferent nerve based on Mott memristors for neurorobotics
  publication-title: Nat Commun
– start-page: 1
  year: 2015
  end-page: 6
– start-page: 1
  year: 2019
  end-page: 4
– volume: 8
  year: 2017
  article-title: Reservoir computing using dynamic memristors for temporal information processing
  publication-title: Nat Commun
– volume: 2
  start-page: 468
  year: 2011
  article-title: Information processing using a single dynamical node as complex system
  publication-title: Nat Commun
– year: 2000
– volume: 577
  start-page: 641
  year: 2020
  end-page: 646
  article-title: Fully hardware‐implemented memristor convolutional neural network
  publication-title: Nature
– volume: 19
  start-page: 4831
  year: 2019
  article-title: A hardware‐deployable neuromorphic solution for encoding and classification of electronic nose data
  publication-title: Sensors.
– start-page: 471
  year: 2007
  end-page: 482
– volume: 27
  start-page: 725
  year: 2015
  end-page: 747
  article-title: Memristor models for machine learning
  publication-title: Neural Comput
– volume: 236
  start-page: 1044
  year: 2016
  end-page: 1053
  article-title: Calibration transfer and drift counteraction in chemical sensor arrays using direct standardization
  publication-title: Sens Actuators B
– volume: 32
  year: 2020
  article-title: Oxide‐based electrolyte‐gated transistors for spatiotemporal information processing
  publication-title: Adv Mater
– volume: 6
  year: 2020
  article-title: Gate‐tunable van der waals heterostructure for reconfigurable neural network vision sensor
  publication-title: Sci Adv.
– volume: 18
  start-page: 309
  year: 2019
  end-page: 323
  article-title: Memristive crossbar arrays for brain‐inspired computing
  publication-title: Nat Mater
– volume: 13
  start-page: 812
  year: 2019
  article-title: Unsupervised learning on resistive memory array based spiking neural networks
  publication-title: Front Neurosci
– volume: 32
  start-page: 2004398
  year: 2020
  article-title: A habituation sensory nervous system with memristors
  publication-title: Adv Mater
– volume: 9
  start-page: 29669
  year: 2017
  end-page: 29676
  article-title: Hierarchical and hollow Fe O nanoboxes derived from metal‐organic frameworks with excellent sensitivity to H S
  publication-title: ACS Appl Mater Interfaces
– volume: 34
  start-page: 1537
  year: 2015
  end-page: 1557
  article-title: Truenorth: design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip
  publication-title: IEEE Trans Comput Aid D
– volume: 1
  year: 2019
  article-title: Reservoir computing using diffusive memristors
  publication-title: Adv Intell Syst
– start-page: 1859
  year: 2020
– ident: e_1_2_6_34_1
  doi: 10.1002/aisy.202000149
– ident: e_1_2_6_36_1
  doi: 10.1002/inf2.12085
– ident: e_1_2_6_16_1
  doi: 10.1016/j.snb.2016.05.089
– ident: e_1_2_6_11_1
  doi: 10.1007/s11633-019-1212-9
– ident: e_1_2_6_37_1
  doi: 10.1038/s41928-019-0288-0
– ident: e_1_2_6_20_1
  doi: 10.3390/s19081841
– ident: e_1_2_6_3_1
  doi: 10.1016/S0165-0173(03)00142-5
– ident: e_1_2_6_12_1
  doi: 10.1109/ISOEN.2019.8823340
– ident: e_1_2_6_6_1
  doi: 10.1002/adma.202004398
– ident: e_1_2_6_27_1
  doi: 10.1109/MM.2018.112130359
– ident: e_1_2_6_13_1
  doi: 10.1016/j.snb.2020.128523
– ident: e_1_2_6_35_1
  doi: 10.1002/inf2.12162
– ident: e_1_2_6_25_1
  doi: 10.1038/s41563-019-0291-x
– ident: e_1_2_6_50_1
  doi: 10.1016/j.snb.2020.128921
– ident: e_1_2_6_43_1
  doi: 10.1002/advs.202001842
– ident: e_1_2_6_33_1
  doi: 10.1162/NECO_a_00694
– ident: e_1_2_6_15_1
  doi: 10.1039/D0TA02934C
– ident: e_1_2_6_2_1
  doi: 10.1002/admt.201800488
– ident: e_1_2_6_8_1
  doi: 10.1016/j.snb.2019.01.044
– ident: e_1_2_6_7_1
  doi: 10.1016/j.bios.2020.112412
– ident: e_1_2_6_19_1
  doi: 10.3389/fnins.2019.00812
– ident: e_1_2_6_45_1
  doi: 10.1038/s42256-019-0089-1
– ident: e_1_2_6_44_1
  doi: 10.1038/s41586-019-1424-8
– ident: e_1_2_6_41_1
  doi: 10.1038/ncomms1476
– ident: e_1_2_6_42_1
  doi: 10.1002/adma.201902761
– ident: e_1_2_6_5_1
  doi: 10.1126/sciadv.aba6173
– ident: e_1_2_6_22_1
  doi: 10.1038/s42256-020-0159-4
– ident: e_1_2_6_31_1
  doi: 10.1016/j.procs.2014.11.110
– ident: e_1_2_6_38_1
  doi: 10.1002/adma.201900903
– ident: e_1_2_6_14_1
  doi: 10.1021/acsami.7b07069
– ident: e_1_2_6_21_1
  doi: 10.1038/s41586-020-1942-4
– ident: e_1_2_6_40_1
  doi: 10.1002/aisy.201900084
– ident: e_1_2_6_18_1
  doi: 10.3390/s151127804
– ident: e_1_2_6_23_1
  doi: 10.1038/s41467-019-13827-6
– ident: e_1_2_6_26_1
  doi: 10.1109/TCAD.2015.2474396
– ident: e_1_2_6_10_1
  doi: 10.1109/TNNLS.2012.2195329
– ident: e_1_2_6_28_1
  doi: 10.1126/science.1254642
– ident: e_1_2_6_49_1
  doi: 10.1109/WISP.2015.7139171
– ident: e_1_2_6_39_1
  doi: 10.1038/s41928-019-0313-3
– ident: e_1_2_6_30_1
  doi: 10.1007/978-3-540-74690-4_48
– ident: e_1_2_6_48_1
  doi: 10.3390/s19224831
– ident: e_1_2_6_17_1
  doi: 10.3390/s141019336
– ident: e_1_2_6_47_1
  doi: 10.1002/adma.201803849
– ident: e_1_2_6_9_1
  doi: 10.1149/MA2020-01261859mtgabs
– ident: e_1_2_6_4_1
  doi: 10.1021/cr068121q
– ident: e_1_2_6_24_1
  doi: 10.1002/adma.202003018
– ident: e_1_2_6_32_1
  doi: 10.1038/s41467-017-02337-y
– ident: e_1_2_6_29_1
  doi: 10.1109/ACCESS.2019.2930804
– volume-title: Poisson Model of Spike Generation
  year: 2000
  ident: e_1_2_6_46_1
SSID ssj0002504251
Score 2.4362454
Snippet Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory system...
Abstract Due to the complexity of real environments, it is hard to detect toxic and harmful gases by sensors. To address such an issue, an artificial olfactory...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 804
SubjectTerms Arrays
artificial neural network
artificial olfactory inference system
Carbon monoxide
Classification
Classifiers
Datasets
Efficiency
Ethanol
Feature extraction
Gas sensors
Gases
Inference
Machine learning
Memory devices
memristive device
Neural networks
Power consumption
Principal components analysis
reservoir computing
Sensor arrays
Sensors
Smell
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMeDeNKD-MTVVQJ6USi2TdKkx_WxrB725IK3kGQSEHa7oqvgtzeP7lJB9OKttDkMM0nmPzD9DULnhZcUJLcmU4TxzOv_PBMQZ2iA0UKZWpnY5TuuRhP68MSeOqO-Qk9YwgMnx10RrqF2RBXUiQDSU6ISlpBaMV_XgYuwbZ_zOsVUuIMDmMtn7hWPtLzy8SoDSiHQ-TsZKIL6v6nLrkaNSWa4jbZadYgHyaodtGabXbTZYQbuodtBg4PVifyA59M0MecTPy9_3cOJzoxDggI8b_DMzuJR_rAYbLwZ9tFkePd4M8raUQiZ8QqqyhSHXHBDKk7r3DiwnBnLCBQWaODVCEVcDQoqJZgBVTkoTGm1Jo5T7zJGDtB6M2_sIcKiLkDTSntdoKn1BRKAK8C4mpY8p8700MXSPdK0nPAwrmIqE-G4lMGVMrqyh85Wa18SHePHVdfBy6sVgWgdX_g4yzbO8q8491B_GSPZHrM36atb7hMsZ_7zZYzbL2bI-_GwjE9H_2HQMdooQ39LbN3to_XF67s98QJloU_jXvwCH4fhkg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JS8UwEMeDy0UP4oo7Ab0oFNvsBS9uD_UgHhS8hSSTiODrEzfw25ukfVVBBG8lnZaS6WT-CclvENqtoqSgpXeFoVwWUf-XhYJcQwOcVcbVxuVdvlfi_JZd3vG7CXQ4PgvT8iH6BbcUGXm8TgFu7MvBFzQ0OoAkNkItJtF0OlubyPmEXfcrLAnORXL9xZjW02Kc4D2flBx8Pf4jI2Vw_w-1-V2z5qQzmEdznVrER617F9CEbxbR7DeG4BI6PWpwcn9LgsCjx7aCzgd-GB_lwy2tGaeEBXjU4KEf5tB-9xh8HimW0e3g7ObkvOhKIxQuKipRGAmlko4KyerSBfCSO88pVB5Y4tcoQ0MNBoRR3IERASpHvLU0SMZjG11BU82o8asIq7oCy4SNOsEyHydMAKECF2pGZMmCW0N74-7RruOGp_IVj7olHhOdulLnrlxDO73tU0vL-NXqOPVyb5EI17lh9Hyvu4DRVFqoAzUVCyoBFI0SylNaGx7n8xDiSzbHPtJd2L3oONuVMeFKHm_vZ7_98Rn64mpA8tX6f4w30AxJ-1rylt1NNPX6_Oa3ojB5tdv5__sEqGfcCQ
  priority: 102
  providerName: Wiley-Blackwell
Title An artificial olfactory inference system based on memristive devices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12196
https://www.proquest.com/docview/2547128756
https://doaj.org/article/37bd9f3a14f84925a868e339a5690df6
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_0fLEPpfWDXmuPgL4oLO4m2U32SbT1_Hg4RBR8C9lMIgXdtd610P_eJJs7ryC-LEs2hGUmmfnN7OxvAPYKDylYbk2mWSkyj__zTGLsoYGmkdrU2sQq30l1fssv78q7lHCbprLKuU2Mhho7E3Lkhz6QEd6WirI6evqdha5R4etqaqGxCms0PBzA2snp5Op6kWUJBF3egy94Semh1xsNlAqBpX_JE0XC_v9Q5jJWjc5m_Ak-JpRIjnu1foYV227AhyXuwE34edySoPaeAYJ0D33nnH_k1_wXPtKzNJPgqJB0LXm0j_FI_7UEbbQQW3A7Pr35cZ6llgiZ8UiqyrTAXArDKsHr3Di0ojS2ZFhY5IG3RmrmatRYaVka1JXDwlDbNMwJXvoxtg2DtmvtFyCyLrDhVePxQcOtD5QQXYHG1ZyKnDszhP25eJRJfOGhbcWD6pmOqQqiVFGUQ9hdzH3qWTLenHUSpLyYEZit40D3fK_SQVFMNFg7pgvuZCBO1LKSlrFalz6OR-cX2ZnrSKXjNlWvm2MIB1Fv77yGupiMabz7-v5a32CdhgqWWJy7A4PZ8x_73UOQWTOCVcqv_FWOz0Zpz41iOP8Ck7fdqw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1BTxQxFH4BPIAHoyJhFbWJesBkwkzbaTsHY1BcdwX2BAm30ulrjQnMIKCGP-VvtO3MrGtiuHGbNE3TvPf6-rXz-n0Ar4sAKVjubGZYKbOA__NMYdLQQFsrYytjU5XvTEyO-ZeT8mQJfg9vYWJZ5ZATU6LG1sY78p1wkJEhl8pSvL_4nkXVqPh3dZDQ6MJi3938Cke2q3fTveDfN5SOPx19nGS9qkBmAxgRmZGYK2mZkLzKrUcnS-tKhoVDHqlflGG-QoPCqNKiER4LS11dMy95GdpYGHcZ7nHGqrii1Pjz_E4n0oEFvDBnQaU7IUpoJHCImgAL-16SB_gH0y4i47S1jR_Cgx6Tkt0uiB7Bkmsew_0FpsJ12NttSAyyjm-CtGedTs8N-TY8GCQdJzSJ2yKStiHn7jwlkJ-OoEv56Akc34mpNmClaRu3CURVBdZc1AGN1NyFYxmiL9D6ilOZc29HsD2YR9uenTyKZJzpjleZ6mhKnUw5glfzvhcdJ8d_e32IVp73iDzaqaG9_Kr7ZamZrLHyzBTcq0jTaJRQLnjWlKLK0YdBtgYf6X5xX-m_oTiCt8lvt0xDT2djmr6e3j7WS1idHB0e6IPpbP8ZrNFYO5PKgrdg5fryh3sewM91_SJFHIHTuw7xP14HF9o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1daxQxFL3ULYg-iJ90bdWA-qAw7EySSTIPIq3bpWtlKWKhbzGTm4jQzvRLpX_NX2eSmVlXkL71bQghDDcnNyczN-cAvCoCpWC5s5lhpcwC_88zhclDA22tjK2MTVW-C7F3yD8elUdr8Hu4CxPLKoecmBI1tjZ-I5-Eg4wMuVSWYuL7soiD6ez96VkWHaTin9bBTqODyL67-hWObxfv5tMw168pne1--bCX9Q4DmQ3ERGRGYq6kZULyKrcenSytKxkWDnmUgVGG-QoNCqNKi0Z4LCx1dc285GVoY2HcW7Auw6koH8H6zu7i4PPyC08UBwvsYamJSicBMzTKOUSHgJVdMJkF_MNwV3ly2uhm9-Fez1DJdgepB7Dmmodwd0W38BFMtxsSIdepT5D2uHPtuSLfh-uDpFOIJnGTRNI25MSdpHTy0xF0KTs9hsMbCdYTGDVt4zaAqKrAmos6cJOau3BIQ_QFWl9xKnPu7RjeDOHRttcqj5YZx7pTWaY6hlKnUI7h5bLvaafQ8d9eOzHKyx5RVTs1tOffdL9INZM1Vp6ZgnsVRRuNEsoxVplSVDn6MMjWMEe6X-oX-i8wx_A2zds1r6HnixlNT0-vH-sF3A7w1p_mi_1NuENjIU2qEd6C0eX5D_csMKHL-nkPOQJfbxrlfwDf6x1s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+artificial+olfactory+inference+system+based+on+memristive+devices&rft.jtitle=InfoMat&rft.au=Wang%2C+Tong&rft.au=Huang%2C+He%E2%80%90Ming&rft.au=Wang%2C+Xiao%E2%80%90Xue&rft.au=Guo%2C+Xin&rft.date=2021-07-01&rft.issn=2567-3165&rft.eissn=2567-3165&rft.volume=3&rft.issue=7&rft.spage=804&rft.epage=813&rft_id=info:doi/10.1002%2Finf2.12196&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_inf2_12196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon