The ORF2 protein of Fusarium graminearum virus 1 suppresses the transcription of FgDICER2 and FgAGO1 to limit host antiviral defences
Summary The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double‐stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum, confers hypovirulence‐associated traits...
Saved in:
Published in | Molecular plant pathology Vol. 21; no. 2; pp. 230 - 243 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.02.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double‐stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum, confers hypovirulence‐associated traits such as reduced mycelial growth, increased pigmentation and reduced pathogenicity. In this study, we found that FgV1 can suppress RNA silencing by interfering with the induction of FgDICER2 and FgAGO1, which are involved in RNAi antiviral defence and the hairpin RNA/RNAi pathway in F. graminearum. In an FgAGO1‐ or FgDICER2‐promoter/GFP‐reporter expression assay the green fluorescent protein (GFP) transcript levels were reduced in FgV1‐infected transformed mutant strains. By comparing transcription levels of FgDICER2 and FgAGO1 in fungal transformed mutants expressing each open reading frame (ORF) of FgV1 with or without a hairpin RNA construct, we determined that reduction of FgDICER2 and FgAGO1 transcript levels requires only the FgV1 ORF2‐encoded protein (pORF2). Moreover, we confirmed that the pORF2 binds to the upstream region of FgDICERs and FgAGOs in vitro. These combined results indicate that the pORF2 of FgV1 counteracts the RNAi defence response of F. graminearum by interfering with the induction of FgDICER2 and FgAGO1 in a promoter‐dependent manner.
The ORF2 protein of Fusarium graminearum virus 1 can directly repress the induction of FgDICER2 and FgAGO1 at the transcriptional level to counteract the RNAi defence response of Fusarium graminearum. |
---|---|
AbstractList | The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double‐stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum, confers hypovirulence‐associated traits such as reduced mycelial growth, increased pigmentation and reduced pathogenicity. In this study, we found that FgV1 can suppress RNA silencing by interfering with the induction of FgDICER2 and FgAGO1, which are involved in RNAi antiviral defence and the hairpin RNA/RNAi pathway in F. graminearum. In an FgAGO1‐ or FgDICER2‐promoter/GFP‐reporter expression assay the green fluorescent protein (GFP) transcript levels were reduced in FgV1‐infected transformed mutant strains. By comparing transcription levels of FgDICER2 and FgAGO1 in fungal transformed mutants expressing each open reading frame (ORF) of FgV1 with or without a hairpin RNA construct, we determined that reduction of FgDICER2 and FgAGO1 transcript levels requires only the FgV1 ORF2‐encoded protein (pORF2). Moreover, we confirmed that the pORF2 binds to the upstream region of FgDICERs and FgAGOs in vitro. These combined results indicate that the pORF2 of FgV1 counteracts the RNAi defence response of F. graminearum by interfering with the induction of FgDICER2 and FgAGO1 in a promoter‐dependent manner. Summary The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double‐stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum, confers hypovirulence‐associated traits such as reduced mycelial growth, increased pigmentation and reduced pathogenicity. In this study, we found that FgV1 can suppress RNA silencing by interfering with the induction of FgDICER2 and FgAGO1, which are involved in RNAi antiviral defence and the hairpin RNA/RNAi pathway in F. graminearum. In an FgAGO1‐ or FgDICER2‐promoter/GFP‐reporter expression assay the green fluorescent protein (GFP) transcript levels were reduced in FgV1‐infected transformed mutant strains. By comparing transcription levels of FgDICER2 and FgAGO1 in fungal transformed mutants expressing each open reading frame (ORF) of FgV1 with or without a hairpin RNA construct, we determined that reduction of FgDICER2 and FgAGO1 transcript levels requires only the FgV1 ORF2‐encoded protein (pORF2). Moreover, we confirmed that the pORF2 binds to the upstream region of FgDICERs and FgAGOs in vitro. These combined results indicate that the pORF2 of FgV1 counteracts the RNAi defence response of F. graminearum by interfering with the induction of FgDICER2 and FgAGO1 in a promoter‐dependent manner. The ORF2 protein of Fusarium graminearum virus 1 can directly repress the induction of FgDICER2 and FgAGO1 at the transcriptional level to counteract the RNAi defence response of Fusarium graminearum. The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double‐stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum , confers hypovirulence‐associated traits such as reduced mycelial growth, increased pigmentation and reduced pathogenicity. In this study, we found that FgV1 can suppress RNA silencing by interfering with the induction of FgDICER2 and FgAGO1 , which are involved in RNAi antiviral defence and the hairpin RNA/RNAi pathway in F. graminearum . In an FgAGO1 ‐ or FgDICER2 ‐promoter/GFP‐reporter expression assay the green fluorescent protein (GFP) transcript levels were reduced in FgV1‐infected transformed mutant strains. By comparing transcription levels of FgDICER2 and FgAGO1 in fungal transformed mutants expressing each open reading frame (ORF) of FgV1 with or without a hairpin RNA construct, we determined that reduction of FgDICER2 and FgAGO1 transcript levels requires only the FgV1 ORF2‐encoded protein (pORF2). Moreover, we confirmed that the pORF2 binds to the upstream region of FgDICER s and FgAGO s in vitro . These combined results indicate that the pORF2 of FgV1 counteracts the RNAi defence response of F. graminearum by interfering with the induction of FgDICER2 and FgAGO1 in a promoter‐dependent manner. The ORF2 protein of Fusarium graminearum virus 1 can directly repress the induction of FgDICER2 and FgAGO1 at the transcriptional level to counteract the RNAi defence response of Fusarium graminearum . The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double‐stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum , confers hypovirulence‐associated traits such as reduced mycelial growth, increased pigmentation and reduced pathogenicity. In this study, we found that FgV1 can suppress RNA silencing by interfering with the induction of FgDICER2 and FgAGO1 , which are involved in RNAi antiviral defence and the hairpin RNA/RNAi pathway in F. graminearum . In an FgAGO1 ‐ or FgDICER2 ‐promoter/GFP‐reporter expression assay the green fluorescent protein (GFP) transcript levels were reduced in FgV1‐infected transformed mutant strains. By comparing transcription levels of FgDICER2 and FgAGO1 in fungal transformed mutants expressing each open reading frame (ORF) of FgV1 with or without a hairpin RNA construct, we determined that reduction of FgDICER2 and FgAGO1 transcript levels requires only the FgV1 ORF2‐encoded protein (pORF2). Moreover, we confirmed that the pORF2 binds to the upstream region of FgDICER s and FgAGO s in vitro . These combined results indicate that the pORF2 of FgV1 counteracts the RNAi defence response of F. graminearum by interfering with the induction of FgDICER2 and FgAGO1 in a promoter‐dependent manner. The filamentous fungus Fusarium graminearum possesses an RNA-interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double-stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum, confers hypovirulence-associated traits such as reduced mycelial growth, increased pigmentation and reduced pathogenicity. In this study, we found that FgV1 can suppress RNA silencing by interfering with the induction of FgDICER2 and FgAGO1, which are involved in RNAi antiviral defence and the hairpin RNA/RNAi pathway in F. graminearum. In an FgAGO1- or FgDICER2-promoter/GFP-reporter expression assay the green fluorescent protein (GFP) transcript levels were reduced in FgV1-infected transformed mutant strains. By comparing transcription levels of FgDICER2 and FgAGO1 in fungal transformed mutants expressing each open reading frame (ORF) of FgV1 with or without a hairpin RNA construct, we determined that reduction of FgDICER2 and FgAGO1 transcript levels requires only the FgV1 ORF2-encoded protein (pORF2). Moreover, we confirmed that the pORF2 binds to the upstream region of FgDICERs and FgAGOs in vitro. These combined results indicate that the pORF2 of FgV1 counteracts the RNAi defence response of F. graminearum by interfering with the induction of FgDICER2 and FgAGO1 in a promoter-dependent manner. |
Audience | Academic |
Author | Heo, Jeong‐In Kim, Kook‐Hyung Park, Ju Yeon Yu, Jisuk |
AuthorAffiliation | 3 Research Institute of Agriculture and Life Sciences Seoul National University Seoul Korea 2 Department of Agricultural Biotechnology Seoul National University Seoul Korea 1 Plant Genomics and Breeding Institute Seoul National University Seoul Korea |
AuthorAffiliation_xml | – name: 1 Plant Genomics and Breeding Institute Seoul National University Seoul Korea – name: 3 Research Institute of Agriculture and Life Sciences Seoul National University Seoul Korea – name: 2 Department of Agricultural Biotechnology Seoul National University Seoul Korea |
Author_xml | – sequence: 1 givenname: Jisuk surname: Yu fullname: Yu, Jisuk organization: Seoul National University – sequence: 2 givenname: Ju Yeon surname: Park fullname: Park, Ju Yeon organization: Seoul National University – sequence: 3 givenname: Jeong‐In surname: Heo fullname: Heo, Jeong‐In organization: Seoul National University – sequence: 4 givenname: Kook‐Hyung orcidid: 0000-0001-9066-6903 surname: Kim fullname: Kim, Kook‐Hyung email: kookkim@snu.ac.kr organization: Seoul National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31815356$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt9uFCEUxompse3qhS9gSLzRi93yZxiYG5OmdmuTmm2aek0YhtmlmYERZmr6AL63Z93atI0KFxzg932cE84h2gsxOITeUrKgMI76YVhQpirxAh1QXhZzLgnfg7iAuJSM7aPDnG8IobJi4hXa51RRwUV5gH5ebxxeXS0ZHlIcnQ84tng5ZZP81ON1Mr0PziSIb32aMqY4T8OQXM4u4xG0YzIh2-SH0cedeP35_OT0imETGtgcn60oHiPufO9HvIl5hIvRg5vpcONaF6zLr9HL1nTZvblfZ-jb8vT65Mv8YnV2fnJ8MbeCKDFXoiF1SUpIv7bSkbIopSiqphbMNJLUppW1rJxpVMksl1zURUUoEUrVDawVn6FPO99hqnvXWBcg_U4Pyfcm3elovH56E_xGr-OtLiulCi7A4MO9QYrfJ5dH3ftsXdeZ4OKUNeNKScmV5IC-f4bexCkFKA-oQrKqpOwRtTad0z60Ed61W1N9LDmjRBVQ7wwt_kLBbFzvLTRD6-H8ieDd40IfKvzz8QB83AE2xZyTax8QSvS2qTQ0lf7dVMAePWOtH832vyEL3_1P8QPyuvu3tf56eblT_ALcDtuV |
CitedBy_id | crossref_primary_10_1371_journal_ppat_1011397 crossref_primary_10_3390_v16091483 crossref_primary_10_3390_jof10080585 crossref_primary_10_3390_toxins14070503 crossref_primary_10_1038_s41467_020_19355_y crossref_primary_10_3390_v16091424 crossref_primary_10_1016_j_virusres_2023_199061 crossref_primary_10_3390_jof8121237 crossref_primary_10_1016_j_virol_2023_07_004 crossref_primary_10_3390_v12030357 crossref_primary_10_3389_fmicb_2023_1252294 crossref_primary_10_1128_mbio_03066_24 crossref_primary_10_3390_cells12192386 crossref_primary_10_3389_ffunb_2022_965781 crossref_primary_10_3389_fmicb_2023_1214133 crossref_primary_10_1146_annurev_phyto_021621_122122 crossref_primary_10_3389_fmicb_2021_622261 crossref_primary_10_1038_s41598_022_11403_5 crossref_primary_10_1590_1519_6984_248975 crossref_primary_10_1016_j_mib_2023_102337 crossref_primary_10_3390_biology10020100 crossref_primary_10_3390_jof8111171 crossref_primary_10_1007_s41348_024_01006_9 crossref_primary_10_3389_fmicb_2020_600775 |
Cites_doi | 10.1016/j.tplants.2013.04.001 10.3390/v10040214 10.1105/tpc.9.6.859 10.1128/JVI.79.16.10764-10775.2005 10.1007/s11262-010-0460-0 10.1038/nprot.2015.053 10.1016/j.tibs.2018.03.003 10.1038/srep12500 10.1016/B978-0-12-394315-6.00010-6 10.1016/j.virol.2005.09.041 10.4161/rna.23542 10.1371/journal.pone.0187799 10.1007/s00705-009-0507-5 10.1007/s00294-011-0352-4 10.1128/JVI.02951-15 10.1128/JVI.73.11.9478-9484.1999 10.1111/1348-0421.12148 10.3389/fcimb.2019.00257 10.1128/JVI.01026-13 10.1016/j.virol.2015.02.028 10.1094/MPMI.2003.16.8.681 10.1016/S0168-9525(00)02166-1 10.1016/j.cpb.2015.10.003 10.1016/S1016-8478(23)10720-5 10.1073/pnas.1701196114 10.3389/fpls.2019.00976 10.1111/j.1364-3703.2011.00734.x 10.1016/j.virusres.2015.11.012 10.1016/j.cropro.2016.10.002 10.3390/molecules21050627 10.1128/JVI.01756-17 10.1371/journal.pgen.1006595 10.1007/s40626-019-00143-z 10.1038/nprot.2007.249 10.1128/EC.00373-05 10.1371/journal.pgen.1006749 10.1093/nar/gkw139 10.1371/journal.pone.0100989 10.1073/pnas.1812407116 10.1073/pnas.0907552106 10.1007/s11105-014-0755-8 10.1016/j.virol.2013.07.010 10.1111/mpp.12221 10.1073/pnas.0510949103 10.1016/j.virol.2008.12.044 |
ContentType | Journal Article |
Copyright | 2019 The Authors. published by British Society for Plant Pathology and John Wiley & Sons Ltd 2019 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd. COPYRIGHT 2020 John Wiley & Sons, Inc. 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Authors. published by British Society for Plant Pathology and John Wiley & Sons Ltd – notice: 2019 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7T7 7U9 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ H94 HCIFZ LK8 M0K M7N M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 5PM |
DOI | 10.1111/mpp.12895 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection Biological Science Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | FgV1 ORF2 functions as VSR to suppress host RNAi |
EISSN | 1364-3703 |
EndPage | 243 |
ExternalDocumentID | PMC6988435 A732108406 31815356 10_1111_mpp_12895 MPP12895 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Agriculture, Food and Rural Affairs funderid: 710011‐03 – fundername: National Research Foundation funderid: NRF‐2016R1D1A1B03936370 – fundername: Ministry of Education funderid: 710011‐03 – fundername: Ministry of Agriculture funderid: 21 – fundername: ; grantid: 710011‐03 – fundername: ; grantid: NRF‐2016R1D1A1B03936370 – fundername: ; grantid: 21 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29M 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 7X2 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANHP AAONW AAZKR ABCQN ABDBF ABEML ABPVW ACBWZ ACCFJ ACCMX ACGFO ACGFS ACIWK ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADNMO ADZMN AEEZP AEGXH AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFEBI AFKRA AFPWT AFRAH AFZJQ AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATCPS ATUGU AUFTA AVUZU AVWKF AZBYB AZFZN AZVAB BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BHBCM BHPHI BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE FRP G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HVGLF HYE HZI HZ~ IAO IEP IGS IHE ITC IX1 J0M K48 LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 M0K M7P MK4 MRFUL MRSTM MSFUL MSSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PIMPY Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ SV3 TUS UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WYISQ XG1 ~IA ~KM ~WT AAYXX AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PMFND 3V. 7QL 7QO 7T7 7U9 8FD 8FE 8FH 8FK AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC C1K DWQXO FR3 GNUQQ H94 LK8 M7N P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5085-85d0b606318bc7e06467549db52ad70baf7b79ead862c3735b49010588bd01093 |
IEDL.DBID | DR2 |
ISSN | 1464-6722 |
IngestDate | Thu Aug 21 14:13:27 EDT 2025 Fri Jul 11 18:30:35 EDT 2025 Wed Aug 13 02:45:45 EDT 2025 Tue Jun 17 21:43:21 EDT 2025 Tue Jun 10 20:28:00 EDT 2025 Thu Jan 02 22:57:59 EST 2025 Thu Apr 24 23:05:58 EDT 2025 Tue Jul 01 01:14:59 EDT 2025 Wed Jan 22 16:34:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | mycovirus RNAi ORF2 silencing suppressor Fusarium graminearum virus 1 |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2019 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5085-85d0b606318bc7e06467549db52ad70baf7b79ead862c3735b49010588bd01093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9066-6903 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12895 |
PMID | 31815356 |
PQID | 2347296123 |
PQPubID | 1006541 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6988435 proquest_miscellaneous_2388773873 proquest_journals_2347296123 gale_infotracmisc_A732108406 gale_infotracacademiconefile_A732108406 pubmed_primary_31815356 crossref_primary_10_1111_mpp_12895 crossref_citationtrail_10_1111_mpp_12895 wiley_primary_10_1111_mpp_12895_MPP12895 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Molecular plant pathology |
PublicationTitleAlternate | Mol Plant Pathol |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2019; 9 2015; 5 2015; 16 2019; 31 2013; 87 2019; 10 2013; 86 2015; 33 2015; 10 2009; 154 2006; 5 2013; 444 2003; 16 2011; 57 2012; 13 2018; 43 2017; 114 1997; 9 2010; 40 2016; 5 2013; 18 2017; 91 2015; 479 2016; 90 2013; 10 2016; 217 2017; 13 2017; 12 2016; 21 2018; 92 2019; 116 2009; 386 2014; 58 2007; 2 1999; 73 2001; 17 2014; 9 2018; 10 2007; 23 2005; 79 2006; 103 2006; 344 2009; 106 2016; 44 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 Kwon S.‐J. (e_1_2_8_21_1) 2007; 23 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 114 start-page: E3499 year: 2017 end-page: E3506 article-title: SAGA complex mediates the transcriptional up‐regulation of antiviral RNA silencing publication-title: Proc. Natl Acad. Sci. USA – volume: 106 start-page: 17927 year: 2009 end-page: 17932 article-title: A single Argonaute gene is required for induction of RNA silencing antiviral defense and promotes viral RNA recombination publication-title: Proc. Natl Acad. Sci. USA – volume: 40 start-page: 440 year: 2010 end-page: 446 article-title: HC‐Pro, a potyvirus RNA silencing suppressor, cancels cycling of Cucumber mosaic virus in plants publication-title: Virus Genes – volume: 9 start-page: 859 year: 1997 end-page: 868 article-title: Plant viral synergism: the potyviral genome encodes a broad‐range pathogenicity enhancer that transactivates replication of heterologous viruses publication-title: Plant Cell – volume: 217 start-page: 1 year: 2016 end-page: 7 article-title: Characterization of a novel single‐stranded RNA virus, closely related to fusariviruses, infecting the plant pathogenic fungus publication-title: Virus Res – volume: 2 start-page: 1849 year: 2007 article-title: Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions publication-title: Nat. Protoc – volume: 23 start-page: 304 year: 2007 end-page: 315 article-title: Molecular characterization of a dsRNA mycovirus, Fusarium graminearum virus‐DK21, which is phylogenetically related to hypoviruses but has a genome organization and gene expression strategy resembling those of plant potex‐like viruses publication-title: Mol. Cells – volume: 92 start-page: e01756 year: 2018 end-page: 17 article-title: Differential contribution of RNA interference components in response to distinct Fusarium graminearum virus infections publication-title: J. Virol – volume: 33 start-page: 335 year: 2015 end-page: 346 article-title: Suppress to survive—implication of plant viruses in PTGS publication-title: Plant Mol. Biol. Rep – volume: 103 start-page: 2057 year: 2006 end-page: 2062 article-title: Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes publication-title: Proc. Natl Acad. Sci. USA – volume: 21 start-page: 627 year: 2016 article-title: toxins in cereals: occurrence, legislation, factors promoting the appearance and their management publication-title: Molecules – volume: 13 start-page: 204 year: 2012 end-page: 216 article-title: Facilitative and antagonistic interactions between plant viruses in mixed infections publication-title: Mol. Plant Pathol – volume: 479 start-page: 85 year: 2015 end-page: 103 article-title: Viral silencing suppressors: tools forged to fine‐tune host–pathogen coexistence publication-title: Virology – volume: 10 start-page: 976 year: 2019 article-title: Roles of argonautes and dicers on antiviral RNA silencing publication-title: Front. Plant Sci – volume: 57 start-page: 343 year: 2011 end-page: 351 article-title: A putative ABC transporter gene, , is required for zearalenone production in publication-title: Curr. Genet – volume: 73 start-page: 9478 year: 1999 end-page: 9484 article-title: Mapping of a hypovirus p29 protease symptom determinant domain with sequence similarity to potyvirus HC‐Pro protease publication-title: J. Virol – volume: 116 start-page: 2274 year: 2019 end-page: 2281 article-title: Dicer functions transcriptionally and posttranscriptionally in a multilayer antiviral defense publication-title: Proc. Natl Acad. Sci. USA – volume: 31 start-page: 103 year: 2019 end-page: 125 article-title: Transcriptomics of plant–virus interactions: a review publication-title: Theor. Exp. Plant Phys – volume: 9 year: 2014 article-title: A comparison of transcriptional patterns and mycological phenotypes following infection of by four mycoviruses publication-title: PLoS ONE – volume: 5 start-page: 13 year: 2016 end-page: 24 article-title: A molecular tug‐of‐war: global plant proteome changes during viral infection publication-title: Curr. Plant Biol – volume: 43 start-page: 397 year: 2018 end-page: 401 article-title: Long‐term transcriptional gene silencing by RNA viruses publication-title: Trends. Biochem. Sci – volume: 86 start-page: 273 year: 2013 end-page: 288 article-title: Insight into mycoviruses infecting species publication-title: Adv. Virus Res – volume: 18 start-page: 382 year: 2013 end-page: 392 article-title: RNA silencing and its suppression: novel insights from in planta analyses publication-title: Trends Plant Sci – volume: 444 start-page: 409 year: 2013 end-page: 416 article-title: A mycoreovirus suppresses RNA silencing in the white root rot fungus, publication-title: Virology – volume: 13 year: 2017 article-title: Long‐range control of gene expression via RNA‐directed DNA methylation publication-title: PLoS Genet – volume: 5 start-page: 896 year: 2006 end-page: 904 article-title: Hypovirus papain‐like protease p29 suppresses RNA silencing in the natural fungal host and in a heterologous plant system publication-title: Eukaryot. Cell – volume: 79 start-page: 10764 year: 2005 end-page: 10775 article-title: A begomovirus DNAβ‐encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus publication-title: J. Virol – volume: 344 start-page: 158 year: 2006 end-page: 168 article-title: Silencing suppression by geminivirus proteins publication-title: J. Virol – volume: 10 start-page: 214 year: 2018 article-title: Mycoviruses as triggers and targets of RNA silencing in white mold fungus publication-title: Viruses – volume: 9 start-page: 257 year: 2019 article-title: Mycoviruses in species: an updating review publication-title: Front. Cell. Infect. Microbiol – volume: 44 start-page: 6505 year: 2016 end-page: 6517 article-title: Transcriptional gene silencing in humans publication-title: Nucleic Acids Res – volume: 154 start-page: 1855 year: 2009 end-page: 1858 article-title: Complete nucleotide sequence of double‐stranded RNA viruses from strain DK3 publication-title: Arch. Virol – volume: 16 start-page: 641 year: 2015 end-page: 652 article-title: Effects of the deletion and over‐expression of gene on host response to mycovirus Fusarium graminearum virus 1 publication-title: Mol. Plant Pathol – volume: 10 start-page: 845 year: 2015 article-title: The Phyre2 web portal for protein modeling, prediction and analysis publication-title: Nat. Protoc – volume: 87 start-page: 10356 year: 2013 end-page: 10367 article-title: The gene of is required for fungal asexual reproduction and pathogenesis and for efficient viral RNA accumulation of Fusarium graminearum virus 1 publication-title: J. Virol – volume: 12 year: 2017 article-title: The alkalophilic fungus hosts beta‐and gammapartitiviruses together with a new fusarivirus publication-title: PLoS ONE – volume: 10 start-page: 453 year: 2013 end-page: 455 article-title: Revisiting RNA‐directed DNA methylation publication-title: RNA Biol – volume: 16 start-page: 681 year: 2003 end-page: 688 article-title: Tobacco mosaic virus induced alterations in the gene expression profile of publication-title: Mol. Plant‐Microbe Interact – volume: 17 start-page: 29 year: 2001 end-page: 35 article-title: Transcriptional gene silencing in plants: targets, inducers and regulators publication-title: Trends Genet – volume: 91 start-page: 114 year: 2017 end-page: 122 article-title: Fusarium head blight of wheat: pathogenesis and control strategies publication-title: J. Crop Prot – volume: 5 start-page: 12500 year: 2015 article-title: Characterization of RNA silencing components in the plant pathogenic fungus publication-title: Sci. Rep – volume: 58 start-page: 294 year: 2014 end-page: 302 article-title: Heterologous expression of a gene of Magnaporthe oryzae chrysovirus 1 strain A disrupts growth of the human pathogenic fungus publication-title: Microbiol. Immunol – volume: 13 year: 2017 article-title: Genome‐wide exonic small interference RNA‐mediated gene silencing regulates sexual reproduction in the homothallic fungus publication-title: PLoS Genet – volume: 90 start-page: 5677 year: 2016 end-page: 5692 article-title: Differential inductions of RNA silencing among encapsidated double‐stranded RNA mycoviruses in the white root rot fungus publication-title: J. Virol – volume: 386 start-page: 257 year: 2009 end-page: 269 article-title: protein, NbPCIP1, interacting with Potato virus X coat protein plays a role as susceptible factor for viral infection publication-title: Virology – ident: e_1_2_8_19_1 doi: 10.1016/j.tplants.2013.04.001 – ident: e_1_2_8_25_1 doi: 10.3390/v10040214 – ident: e_1_2_8_28_1 doi: 10.1105/tpc.9.6.859 – ident: e_1_2_8_10_1 doi: 10.1128/JVI.79.16.10764-10775.2005 – ident: e_1_2_8_15_1 doi: 10.1007/s11262-010-0460-0 – ident: e_1_2_8_20_1 doi: 10.1038/nprot.2015.053 – ident: e_1_2_8_5_1 doi: 10.1016/j.tibs.2018.03.003 – ident: e_1_2_8_7_1 doi: 10.1038/srep12500 – ident: e_1_2_8_8_1 doi: 10.1016/B978-0-12-394315-6.00010-6 – ident: e_1_2_8_6_1 doi: 10.1016/j.virol.2005.09.041 – ident: e_1_2_8_12_1 doi: 10.4161/rna.23542 – ident: e_1_2_8_18_1 doi: 10.1371/journal.pone.0187799 – ident: e_1_2_8_42_1 doi: 10.1007/s00705-009-0507-5 – ident: e_1_2_8_22_1 doi: 10.1007/s00294-011-0352-4 – ident: e_1_2_8_41_1 doi: 10.1128/JVI.02951-15 – ident: e_1_2_8_34_1 doi: 10.1128/JVI.73.11.9478-9484.1999 – ident: e_1_2_8_36_1 doi: 10.1111/1348-0421.12148 – ident: e_1_2_8_24_1 doi: 10.3389/fcimb.2019.00257 – ident: e_1_2_8_31_1 doi: 10.1128/JVI.01026-13 – ident: e_1_2_8_9_1 doi: 10.1016/j.virol.2015.02.028 – ident: e_1_2_8_16_1 doi: 10.1094/MPMI.2003.16.8.681 – ident: e_1_2_8_37_1 doi: 10.1016/S0168-9525(00)02166-1 – ident: e_1_2_8_2_1 doi: 10.1016/j.cpb.2015.10.003 – volume: 23 start-page: 304 year: 2007 ident: e_1_2_8_21_1 article-title: Molecular characterization of a dsRNA mycovirus, Fusarium graminearum virus‐DK21, which is phylogenetically related to hypoviruses but has a genome organization and gene expression strategy resembling those of plant potex‐like viruses publication-title: Mol. Cells doi: 10.1016/S1016-8478(23)10720-5 – ident: e_1_2_8_3_1 doi: 10.1073/pnas.1701196114 – ident: e_1_2_8_26_1 doi: 10.3389/fpls.2019.00976 – ident: e_1_2_8_35_1 doi: 10.1111/j.1364-3703.2011.00734.x – ident: e_1_2_8_46_1 doi: 10.1016/j.virusres.2015.11.012 – ident: e_1_2_8_13_1 doi: 10.1016/j.cropro.2016.10.002 – ident: e_1_2_8_14_1 doi: 10.3390/molecules21050627 – ident: e_1_2_8_44_1 doi: 10.1128/JVI.01756-17 – ident: e_1_2_8_32_1 doi: 10.1371/journal.pgen.1006595 – ident: e_1_2_8_45_1 doi: 10.1007/s40626-019-00143-z – ident: e_1_2_8_17_1 doi: 10.1038/nprot.2007.249 – ident: e_1_2_8_30_1 doi: 10.1128/EC.00373-05 – ident: e_1_2_8_29_1 doi: 10.1371/journal.pgen.1006749 – ident: e_1_2_8_38_1 doi: 10.1093/nar/gkw139 – ident: e_1_2_8_23_1 doi: 10.1371/journal.pone.0100989 – ident: e_1_2_8_4_1 doi: 10.1073/pnas.1812407116 – ident: e_1_2_8_33_1 doi: 10.1073/pnas.0907552106 – ident: e_1_2_8_39_1 doi: 10.1007/s11105-014-0755-8 – ident: e_1_2_8_40_1 doi: 10.1016/j.virol.2013.07.010 – ident: e_1_2_8_43_1 doi: 10.1111/mpp.12221 – ident: e_1_2_8_11_1 doi: 10.1073/pnas.0510949103 – ident: e_1_2_8_27_1 doi: 10.1016/j.virol.2008.12.044 |
SSID | ssj0017925 |
Score | 2.400039 |
Snippet | Summary
The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and... The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and... The filamentous fungus Fusarium graminearum possesses an RNA-interference (RNAi) pathway that acts as a defence response against virus infections and... The filamentous fungus Fusarium graminearum possesses an RNA-interference (RNAi) pathway that acts as a defence response against virus infections and exogenous... The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and exogenous... |
SourceID | pubmedcentral proquest gale pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 230 |
SubjectTerms | Antiviral agents Antiviral Agents - metabolism Defense Deoxyribonucleic acid DNA DNA methylation double-stranded RNA Fluorescence Fungal Proteins - genetics Fungal Proteins - metabolism Fungal Viruses - pathogenicity Fungi Fusarium - metabolism Fusarium - virology Fusarium graminearum Fusarium graminearum virus 1 Gene expression Genes Genetic transcription Green fluorescent protein Health aspects Infection Infections Laboratories messenger RNA mutants Mycelia mycelium mycovirus Open reading frames ORF2 Original Pathogenicity Pathogens Pigmentation Proteins RNA RNA Interference RNA viruses RNA-mediated interference RNAi silencing suppressor Transcription transcription (genetics) Virus diseases Viruses |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3bbtMw1ILtBR4QdwoDGYQEL4E0juPkCZXRMpC2VRWT9hb5OiptSWga_oD_5hzXCe0EvCXyceT43O1zIeQ1B9GnRS4jpRmLUuOKKGfSRsIwwV1sEycwOfn4JDs6S7-e8_Nw4NaGsMpeJnpBbWqNZ-TvE5aCHYjFQj40PyLsGoW3q6GFxk2yDyI4B-dr_-P0ZL4Y7hFE4duugjhIo0wkSagthLE8V03zDuZgY4ktjXRdLm8pputBk9vGrNdGs7vkTjAj6WSD93vkhq3uk9uTi1UopWEfkF9AAfR0MUuor8WwrGjt6KxrwTnurigGZYGBKVfw_HO56lo6pm3X-LBY21IwC-ka1VgvVPzki09fDqeLhMrKwMvk8-mYrmt6iTlSFLNFYACbUcC6qbHOR2g_JGez6bfDoyg0XYg0x0SEnJtYgVcDvK60sGCxgEuRFkbxRBoRK-mEEgXQH7hCmgnGVYoRHjzPlcFrNvaI7FV1ZZ8QWsSZjjPHEifBcNRGKpY5O2ZAFlobxkfkbb_xpQ4VybExxmXZeyaAo9LjaEReDaDNpgzH34DeIPZKZE34jpYhwwBWg0WuyonAhCXwaLMROdiBBJbSu8M9_svA0m35hwBH5OUwjDMxTK2ydYcwILMFywXAPN6Qy7Bc2FDQLhw-LnYIaQDAQt-7I9Xyuy_4nRV5nvr98iT37x0oj-dz__D0_3_wjNxK8NzAR58fkL31qrPPwbhaqxeBg34DFaMjZg priority: 102 providerName: ProQuest |
Title | The ORF2 protein of Fusarium graminearum virus 1 suppresses the transcription of FgDICER2 and FgAGO1 to limit host antiviral defences |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12895 https://www.ncbi.nlm.nih.gov/pubmed/31815356 https://www.proquest.com/docview/2347296123 https://www.proquest.com/docview/2388773873 https://pubmed.ncbi.nlm.nih.gov/PMC6988435 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW5QIH3o8uS2UQElxSpXYSJ-JUlpYFqd2oYqU9IEW24yzV7qZVk3Dgzv9mxnmoqUBCXKpUHucxmacz85mQNz6YPi1C6SjNueOlWeSEXBpHpFz4mWtYJrA5eb4ITs-9Lxf-xQF53_bC1PgQ3YIbaoa116jgUhU7Sn6z2YzAuEbYYI61WhgQLTvoKJAzu-EqGALPCQRjDaoQVvF0M3u-aN8i77ik_XLJ3TDW-qHZffKtfYK6_ORqVJVqpH_ugTv-5yM-IPea-JROaoF6SA5M_ojcnVxuG4wO85j8AtGiZ8sZoxbkYZXTdUZnVQFZd3VDsdoLLiy3cPxjta0KOqZFtbH1tqagEG_SEv1ja63s5MuPn0-mS0ZlnsKfyaezMS3X9Bqbryi2ocAA7nIBbKGpyWzp9xNyPpt-PTl1mt0cHO1jh0Pop66CdAmMiNLCQCgEuYoXpcpnMhWukplQIgLBhhxLc8F95WHpiB-GKsXvd_wpOczXuXlOaOQG2g0yzjIJEalOpeJBZsYc5E3rlPsD8q59r4luoM5xx43rpE15gLOJ5eyAvO5INzW-x5-I3qJwJKjzcB4tm9YFuBtEz0omAjuhIFUOBuS4Rwm6qvvDrXglja0oEsY9yHAQBmdAXnXDOBPr33KzrpAGnIHgoQCaZ7U0drcLDAW35cPJRU9OOwJEEO-P5KvvFkk8iMLQs_yyYvh3DiTzOLYHR_9O-oLcYbg4YUvcj8lhua3MS4jgSjUkt5gXD8ntD9NFvBzadZChVV_4XcTz307rRuA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QE4IN4ECiwIBBcXZ9f22geEQpuQ0CaNolbqzdi76xKptU0cg_gB_B1-IzPrB0kF3HpztGNrMzM7D_ubGUJeumD6pPAjK5acW45KAsvnkbaE4sJNbM0SgcXJk6k3OnE-nbqnW-RXUwuDsMrGJhpDrTKJ78jfMu5AHIjNQt7nXy2cGoVfV5sRGpVaHOgf3yFlK96N90G-rxgbDo73RlY9VcCSLiLtfVfZMYTtoMyxFBpcMsTMTqBil0VK2HGUiFgEwGCI9SUX3I0dhDC4vh8ru2q-BCZ_2-GQynTI9ofBdDZvv1uIwIx5BfPjWJ5grO5lhNihizzfBWeAgyzWPOBlP7DmCC-DNNeDZ-P9hrfIzTpspf1Kz26TLZ3eITf6Z8u6dYe-S36CxtGj-ZBR0_thkdIsocOygGS8vKAIAoOANlrC9bfFsixojxZlbmC4uqAQhtIVus3GiJmbz_bHe4M5o1Gq4Ef_41GPrjJ6jjVZFKtTYAGHX8C-qdKJQYTfIydXIo77pJNmqX5IaGB70vYSzpIIAlWpoph7ie5xUEMpFXe75E3D-FDWHdBxEMd52GRCIKPQyKhLXrSkedX2429Er1F6IZoCeI6M6ooG2A021Qr7AgukIIP2umRngxKOsNxcbuQf1iakCP8ofJc8b5fxToTFpTorkQZ8hOC-AJoHlbq02wWGgjdz4eFiQ5FaAmwsvrmSLr6YBuNe4PuO4ZdRuX9zIJzMZubi0f__wTNybXQ8OQwPx9ODx-Q6w3cWBvm-QzqrZamfQGC3ip_Wp4mSz1d9gH8DYYNeCw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqYTggHgTKLAgEFxMnV3bax8QCk1MQ2kaRVTqzdi76xKptU0cg_gB_Cl-HTPrB0kF3HpztGNrMzM7D_ubGUKeu2D6pPBjK5GcW45KA8vnsbaE4sJNbc1SgcXJh1Nv_9j5cOKebJFfbS0Mwipbm2gMtcolviPfZdyBOBCbheymDSxiNgrfFl8tnCCFX1rbcRq1ihzoH98hfSvfTEYg6xeMheNPe_tWM2HAki6i7n1X2QmE8KDYiRQa3DPEz06gEpfFSthJnIpEBMBsiPslF9xNHIQzuL6fKLtuxATmf1tAVmT3yPa78XQ2775hiMCMfAVT5FieYKzpa4Q4ovOieA2OAYdarHnDiz5hzSleBGyuB9LGE4Y3yPUmhKXDWuduki2d3SLXhqfLpo2Hvk1-gvbRo3nIqOkDschontKwKiExr84pAsIguI2XcP1tsaxKOqBlVRhIri4phKR0hS60NWjm5tPRZG88ZzTOFPwYvj8a0FVOz7A-i2KlCizgIAzYN1U6NejwO-T4UsRxl_SyPNP3CQ1sT9peylkaQ9AqVZxwL9UDDioppeJun7xqGR_Jphs6DuU4i9qsCGQUGRn1ybOOtKhbgPyN6CVKL0KzAM-RcVPdALvBBlvRUGCxFGTTXp_sbFDCcZaby638o8aclNEf5e-Tp90y3okQuUznFdKAvxDcF0Bzr1aXbrvAUPBsLjxcbChSR4BNxjdXssUX02zcC3zfMfwyKvdvDkSHs5m5ePD_f_CEXIGDG32cTA8ekqsMX18YEPwO6a2WlX4EMd4qedwcJko-X_b5_Q3YSmJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ORF2+protein+of+Fusarium+graminearum+virus+1+suppresses+the+transcription+of+FgDICER2+and+FgAGO1+to+limit+host+antiviral+defences&rft.jtitle=Molecular+plant+pathology&rft.au=Yu%2C+Jisuk&rft.au=Park%2C+Ju+Yeon&rft.au=Heo%2C+Jeong%E2%80%90In&rft.au=Kim%2C+Kook%E2%80%90Hyung&rft.date=2020-02-01&rft.issn=1464-6722&rft.eissn=1364-3703&rft.volume=21&rft.issue=2&rft.spage=230&rft.epage=243&rft_id=info:doi/10.1111%2Fmpp.12895&rft.externalDBID=10.1111%252Fmpp.12895&rft.externalDocID=MPP12895 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-6722&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-6722&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-6722&client=summon |