The ORF2 protein of Fusarium graminearum virus 1 suppresses the transcription of FgDICER2 and FgAGO1 to limit host antiviral defences

Summary The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double‐stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum, confers hypovirulence‐associated traits...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant pathology Vol. 21; no. 2; pp. 230 - 243
Main Authors Yu, Jisuk, Park, Ju Yeon, Heo, Jeong‐In, Kim, Kook‐Hyung
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.02.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double‐stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum, confers hypovirulence‐associated traits such as reduced mycelial growth, increased pigmentation and reduced pathogenicity. In this study, we found that FgV1 can suppress RNA silencing by interfering with the induction of FgDICER2 and FgAGO1, which are involved in RNAi antiviral defence and the hairpin RNA/RNAi pathway in F. graminearum. In an FgAGO1‐ or FgDICER2‐promoter/GFP‐reporter expression assay the green fluorescent protein (GFP) transcript levels were reduced in FgV1‐infected transformed mutant strains. By comparing transcription levels of FgDICER2 and FgAGO1 in fungal transformed mutants expressing each open reading frame (ORF) of FgV1 with or without a hairpin RNA construct, we determined that reduction of FgDICER2 and FgAGO1 transcript levels requires only the FgV1 ORF2‐encoded protein (pORF2). Moreover, we confirmed that the pORF2 binds to the upstream region of FgDICERs and FgAGOs in vitro. These combined results indicate that the pORF2 of FgV1 counteracts the RNAi defence response of F. graminearum by interfering with the induction of FgDICER2 and FgAGO1 in a promoter‐dependent manner. The ORF2 protein of Fusarium graminearum virus 1 can directly repress the induction of FgDICER2 and FgAGO1 at the transcriptional level to counteract the RNAi defence response of Fusarium graminearum.
AbstractList The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double‐stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum, confers hypovirulence‐associated traits such as reduced mycelial growth, increased pigmentation and reduced pathogenicity. In this study, we found that FgV1 can suppress RNA silencing by interfering with the induction of FgDICER2 and FgAGO1, which are involved in RNAi antiviral defence and the hairpin RNA/RNAi pathway in F. graminearum. In an FgAGO1‐ or FgDICER2‐promoter/GFP‐reporter expression assay the green fluorescent protein (GFP) transcript levels were reduced in FgV1‐infected transformed mutant strains. By comparing transcription levels of FgDICER2 and FgAGO1 in fungal transformed mutants expressing each open reading frame (ORF) of FgV1 with or without a hairpin RNA construct, we determined that reduction of FgDICER2 and FgAGO1 transcript levels requires only the FgV1 ORF2‐encoded protein (pORF2). Moreover, we confirmed that the pORF2 binds to the upstream region of FgDICERs and FgAGOs in vitro. These combined results indicate that the pORF2 of FgV1 counteracts the RNAi defence response of F. graminearum by interfering with the induction of FgDICER2 and FgAGO1 in a promoter‐dependent manner.
Summary The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double‐stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum, confers hypovirulence‐associated traits such as reduced mycelial growth, increased pigmentation and reduced pathogenicity. In this study, we found that FgV1 can suppress RNA silencing by interfering with the induction of FgDICER2 and FgAGO1, which are involved in RNAi antiviral defence and the hairpin RNA/RNAi pathway in F. graminearum. In an FgAGO1‐ or FgDICER2‐promoter/GFP‐reporter expression assay the green fluorescent protein (GFP) transcript levels were reduced in FgV1‐infected transformed mutant strains. By comparing transcription levels of FgDICER2 and FgAGO1 in fungal transformed mutants expressing each open reading frame (ORF) of FgV1 with or without a hairpin RNA construct, we determined that reduction of FgDICER2 and FgAGO1 transcript levels requires only the FgV1 ORF2‐encoded protein (pORF2). Moreover, we confirmed that the pORF2 binds to the upstream region of FgDICERs and FgAGOs in vitro. These combined results indicate that the pORF2 of FgV1 counteracts the RNAi defence response of F. graminearum by interfering with the induction of FgDICER2 and FgAGO1 in a promoter‐dependent manner. The ORF2 protein of Fusarium graminearum virus 1 can directly repress the induction of FgDICER2 and FgAGO1 at the transcriptional level to counteract the RNAi defence response of Fusarium graminearum.
The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double‐stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum , confers hypovirulence‐associated traits such as reduced mycelial growth, increased pigmentation and reduced pathogenicity. In this study, we found that FgV1 can suppress RNA silencing by interfering with the induction of FgDICER2 and FgAGO1 , which are involved in RNAi antiviral defence and the hairpin RNA/RNAi pathway in F. graminearum . In an FgAGO1 ‐ or FgDICER2 ‐promoter/GFP‐reporter expression assay the green fluorescent protein (GFP) transcript levels were reduced in FgV1‐infected transformed mutant strains. By comparing transcription levels of FgDICER2 and FgAGO1 in fungal transformed mutants expressing each open reading frame (ORF) of FgV1 with or without a hairpin RNA construct, we determined that reduction of FgDICER2 and FgAGO1 transcript levels requires only the FgV1 ORF2‐encoded protein (pORF2). Moreover, we confirmed that the pORF2 binds to the upstream region of FgDICER s and FgAGO s in vitro . These combined results indicate that the pORF2 of FgV1 counteracts the RNAi defence response of F. graminearum by interfering with the induction of FgDICER2 and FgAGO1 in a promoter‐dependent manner. The ORF2 protein of Fusarium graminearum virus 1 can directly repress the induction of FgDICER2 and FgAGO1 at the transcriptional level to counteract the RNAi defence response of Fusarium graminearum .
The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double‐stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum , confers hypovirulence‐associated traits such as reduced mycelial growth, increased pigmentation and reduced pathogenicity. In this study, we found that FgV1 can suppress RNA silencing by interfering with the induction of FgDICER2 and FgAGO1 , which are involved in RNAi antiviral defence and the hairpin RNA/RNAi pathway in F. graminearum . In an FgAGO1 ‐ or FgDICER2 ‐promoter/GFP‐reporter expression assay the green fluorescent protein (GFP) transcript levels were reduced in FgV1‐infected transformed mutant strains. By comparing transcription levels of FgDICER2 and FgAGO1 in fungal transformed mutants expressing each open reading frame (ORF) of FgV1 with or without a hairpin RNA construct, we determined that reduction of FgDICER2 and FgAGO1 transcript levels requires only the FgV1 ORF2‐encoded protein (pORF2). Moreover, we confirmed that the pORF2 binds to the upstream region of FgDICER s and FgAGO s in vitro . These combined results indicate that the pORF2 of FgV1 counteracts the RNAi defence response of F. graminearum by interfering with the induction of FgDICER2 and FgAGO1 in a promoter‐dependent manner.
The filamentous fungus Fusarium graminearum possesses an RNA-interference (RNAi) pathway that acts as a defence response against virus infections and exogenous double-stranded (ds) RNA. Fusarium graminearum virus 1 (FgV1), which infects F. graminearum, confers hypovirulence-associated traits such as reduced mycelial growth, increased pigmentation and reduced pathogenicity. In this study, we found that FgV1 can suppress RNA silencing by interfering with the induction of FgDICER2 and FgAGO1, which are involved in RNAi antiviral defence and the hairpin RNA/RNAi pathway in F. graminearum. In an FgAGO1- or FgDICER2-promoter/GFP-reporter expression assay the green fluorescent protein (GFP) transcript levels were reduced in FgV1-infected transformed mutant strains. By comparing transcription levels of FgDICER2 and FgAGO1 in fungal transformed mutants expressing each open reading frame (ORF) of FgV1 with or without a hairpin RNA construct, we determined that reduction of FgDICER2 and FgAGO1 transcript levels requires only the FgV1 ORF2-encoded protein (pORF2). Moreover, we confirmed that the pORF2 binds to the upstream region of FgDICERs and FgAGOs in vitro. These combined results indicate that the pORF2 of FgV1 counteracts the RNAi defence response of F. graminearum by interfering with the induction of FgDICER2 and FgAGO1 in a promoter-dependent manner.
Audience Academic
Author Heo, Jeong‐In
Kim, Kook‐Hyung
Park, Ju Yeon
Yu, Jisuk
AuthorAffiliation 3 Research Institute of Agriculture and Life Sciences Seoul National University Seoul Korea
2 Department of Agricultural Biotechnology Seoul National University Seoul Korea
1 Plant Genomics and Breeding Institute Seoul National University Seoul Korea
AuthorAffiliation_xml – name: 1 Plant Genomics and Breeding Institute Seoul National University Seoul Korea
– name: 3 Research Institute of Agriculture and Life Sciences Seoul National University Seoul Korea
– name: 2 Department of Agricultural Biotechnology Seoul National University Seoul Korea
Author_xml – sequence: 1
  givenname: Jisuk
  surname: Yu
  fullname: Yu, Jisuk
  organization: Seoul National University
– sequence: 2
  givenname: Ju Yeon
  surname: Park
  fullname: Park, Ju Yeon
  organization: Seoul National University
– sequence: 3
  givenname: Jeong‐In
  surname: Heo
  fullname: Heo, Jeong‐In
  organization: Seoul National University
– sequence: 4
  givenname: Kook‐Hyung
  orcidid: 0000-0001-9066-6903
  surname: Kim
  fullname: Kim, Kook‐Hyung
  email: kookkim@snu.ac.kr
  organization: Seoul National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31815356$$D View this record in MEDLINE/PubMed
BookMark eNp9kt9uFCEUxompse3qhS9gSLzRi93yZxiYG5OmdmuTmm2aek0YhtmlmYERZmr6AL63Z93atI0KFxzg932cE84h2gsxOITeUrKgMI76YVhQpirxAh1QXhZzLgnfg7iAuJSM7aPDnG8IobJi4hXa51RRwUV5gH5ebxxeXS0ZHlIcnQ84tng5ZZP81ON1Mr0PziSIb32aMqY4T8OQXM4u4xG0YzIh2-SH0cedeP35_OT0imETGtgcn60oHiPufO9HvIl5hIvRg5vpcONaF6zLr9HL1nTZvblfZ-jb8vT65Mv8YnV2fnJ8MbeCKDFXoiF1SUpIv7bSkbIopSiqphbMNJLUppW1rJxpVMksl1zURUUoEUrVDawVn6FPO99hqnvXWBcg_U4Pyfcm3elovH56E_xGr-OtLiulCi7A4MO9QYrfJ5dH3ftsXdeZ4OKUNeNKScmV5IC-f4bexCkFKA-oQrKqpOwRtTad0z60Ed61W1N9LDmjRBVQ7wwt_kLBbFzvLTRD6-H8ieDd40IfKvzz8QB83AE2xZyTax8QSvS2qTQ0lf7dVMAePWOtH832vyEL3_1P8QPyuvu3tf56eblT_ALcDtuV
CitedBy_id crossref_primary_10_1371_journal_ppat_1011397
crossref_primary_10_3390_v16091483
crossref_primary_10_3390_jof10080585
crossref_primary_10_3390_toxins14070503
crossref_primary_10_1038_s41467_020_19355_y
crossref_primary_10_3390_v16091424
crossref_primary_10_1016_j_virusres_2023_199061
crossref_primary_10_3390_jof8121237
crossref_primary_10_1016_j_virol_2023_07_004
crossref_primary_10_3390_v12030357
crossref_primary_10_3389_fmicb_2023_1252294
crossref_primary_10_1128_mbio_03066_24
crossref_primary_10_3390_cells12192386
crossref_primary_10_3389_ffunb_2022_965781
crossref_primary_10_3389_fmicb_2023_1214133
crossref_primary_10_1146_annurev_phyto_021621_122122
crossref_primary_10_3389_fmicb_2021_622261
crossref_primary_10_1038_s41598_022_11403_5
crossref_primary_10_1590_1519_6984_248975
crossref_primary_10_1016_j_mib_2023_102337
crossref_primary_10_3390_biology10020100
crossref_primary_10_3390_jof8111171
crossref_primary_10_1007_s41348_024_01006_9
crossref_primary_10_3389_fmicb_2020_600775
Cites_doi 10.1016/j.tplants.2013.04.001
10.3390/v10040214
10.1105/tpc.9.6.859
10.1128/JVI.79.16.10764-10775.2005
10.1007/s11262-010-0460-0
10.1038/nprot.2015.053
10.1016/j.tibs.2018.03.003
10.1038/srep12500
10.1016/B978-0-12-394315-6.00010-6
10.1016/j.virol.2005.09.041
10.4161/rna.23542
10.1371/journal.pone.0187799
10.1007/s00705-009-0507-5
10.1007/s00294-011-0352-4
10.1128/JVI.02951-15
10.1128/JVI.73.11.9478-9484.1999
10.1111/1348-0421.12148
10.3389/fcimb.2019.00257
10.1128/JVI.01026-13
10.1016/j.virol.2015.02.028
10.1094/MPMI.2003.16.8.681
10.1016/S0168-9525(00)02166-1
10.1016/j.cpb.2015.10.003
10.1016/S1016-8478(23)10720-5
10.1073/pnas.1701196114
10.3389/fpls.2019.00976
10.1111/j.1364-3703.2011.00734.x
10.1016/j.virusres.2015.11.012
10.1016/j.cropro.2016.10.002
10.3390/molecules21050627
10.1128/JVI.01756-17
10.1371/journal.pgen.1006595
10.1007/s40626-019-00143-z
10.1038/nprot.2007.249
10.1128/EC.00373-05
10.1371/journal.pgen.1006749
10.1093/nar/gkw139
10.1371/journal.pone.0100989
10.1073/pnas.1812407116
10.1073/pnas.0907552106
10.1007/s11105-014-0755-8
10.1016/j.virol.2013.07.010
10.1111/mpp.12221
10.1073/pnas.0510949103
10.1016/j.virol.2008.12.044
ContentType Journal Article
Copyright 2019 The Authors. published by British Society for Plant Pathology and John Wiley & Sons Ltd
2019 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.
COPYRIGHT 2020 John Wiley & Sons, Inc.
2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by British Society for Plant Pathology and John Wiley & Sons Ltd
– notice: 2019 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7T7
7U9
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
H94
HCIFZ
LK8
M0K
M7N
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
5PM
DOI 10.1111/mpp.12895
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database


AGRICOLA
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate FgV1 ORF2 functions as VSR to suppress host RNAi
EISSN 1364-3703
EndPage 243
ExternalDocumentID PMC6988435
A732108406
31815356
10_1111_mpp_12895
MPP12895
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Agriculture, Food and Rural Affairs
  funderid: 710011‐03
– fundername: National Research Foundation
  funderid: NRF‐2016R1D1A1B03936370
– fundername: Ministry of Education
  funderid: 710011‐03
– fundername: Ministry of Agriculture
  funderid: 21
– fundername: ;
  grantid: 710011‐03
– fundername: ;
  grantid: NRF‐2016R1D1A1B03936370
– fundername: ;
  grantid: 21
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29M
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
7X2
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABPVW
ACBWZ
ACCFJ
ACCMX
ACGFO
ACGFS
ACIWK
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADNMO
ADZMN
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFEBI
AFKRA
AFPWT
AFRAH
AFZJQ
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATCPS
ATUGU
AUFTA
AVUZU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
FRP
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HVGLF
HYE
HZI
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
K48
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
M0K
M7P
MK4
MRFUL
MRSTM
MSFUL
MSSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WYISQ
XG1
~IA
~KM
~WT
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QL
7QO
7T7
7U9
8FD
8FE
8FH
8FK
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
LK8
M7N
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
5PM
ID FETCH-LOGICAL-c5085-85d0b606318bc7e06467549db52ad70baf7b79ead862c3735b49010588bd01093
IEDL.DBID DR2
ISSN 1464-6722
IngestDate Thu Aug 21 14:13:27 EDT 2025
Fri Jul 11 18:30:35 EDT 2025
Wed Aug 13 02:45:45 EDT 2025
Tue Jun 17 21:43:21 EDT 2025
Tue Jun 10 20:28:00 EDT 2025
Thu Jan 02 22:57:59 EST 2025
Thu Apr 24 23:05:58 EDT 2025
Tue Jul 01 01:14:59 EDT 2025
Wed Jan 22 16:34:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords mycovirus
RNAi
ORF2
silencing suppressor
Fusarium graminearum virus 1
Language English
License Attribution-NonCommercial-NoDerivs
2019 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5085-85d0b606318bc7e06467549db52ad70baf7b79ead862c3735b49010588bd01093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9066-6903
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12895
PMID 31815356
PQID 2347296123
PQPubID 1006541
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6988435
proquest_miscellaneous_2388773873
proquest_journals_2347296123
gale_infotracmisc_A732108406
gale_infotracacademiconefile_A732108406
pubmed_primary_31815356
crossref_primary_10_1111_mpp_12895
crossref_citationtrail_10_1111_mpp_12895
wiley_primary_10_1111_mpp_12895_MPP12895
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Molecular plant pathology
PublicationTitleAlternate Mol Plant Pathol
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2019; 9
2015; 5
2015; 16
2019; 31
2013; 87
2019; 10
2013; 86
2015; 33
2015; 10
2009; 154
2006; 5
2013; 444
2003; 16
2011; 57
2012; 13
2018; 43
2017; 114
1997; 9
2010; 40
2016; 5
2013; 18
2017; 91
2015; 479
2016; 90
2013; 10
2016; 217
2017; 13
2017; 12
2016; 21
2018; 92
2019; 116
2009; 386
2014; 58
2007; 2
1999; 73
2001; 17
2014; 9
2018; 10
2007; 23
2005; 79
2006; 103
2006; 344
2009; 106
2016; 44
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
Kwon S.‐J. (e_1_2_8_21_1) 2007; 23
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 114
  start-page: E3499
  year: 2017
  end-page: E3506
  article-title: SAGA complex mediates the transcriptional up‐regulation of antiviral RNA silencing
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 106
  start-page: 17927
  year: 2009
  end-page: 17932
  article-title: A single Argonaute gene is required for induction of RNA silencing antiviral defense and promotes viral RNA recombination
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 40
  start-page: 440
  year: 2010
  end-page: 446
  article-title: HC‐Pro, a potyvirus RNA silencing suppressor, cancels cycling of Cucumber mosaic virus in plants
  publication-title: Virus Genes
– volume: 9
  start-page: 859
  year: 1997
  end-page: 868
  article-title: Plant viral synergism: the potyviral genome encodes a broad‐range pathogenicity enhancer that transactivates replication of heterologous viruses
  publication-title: Plant Cell
– volume: 217
  start-page: 1
  year: 2016
  end-page: 7
  article-title: Characterization of a novel single‐stranded RNA virus, closely related to fusariviruses, infecting the plant pathogenic fungus
  publication-title: Virus Res
– volume: 2
  start-page: 1849
  year: 2007
  article-title: Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions
  publication-title: Nat. Protoc
– volume: 23
  start-page: 304
  year: 2007
  end-page: 315
  article-title: Molecular characterization of a dsRNA mycovirus, Fusarium graminearum virus‐DK21, which is phylogenetically related to hypoviruses but has a genome organization and gene expression strategy resembling those of plant potex‐like viruses
  publication-title: Mol. Cells
– volume: 92
  start-page: e01756
  year: 2018
  end-page: 17
  article-title: Differential contribution of RNA interference components in response to distinct Fusarium graminearum virus infections
  publication-title: J. Virol
– volume: 33
  start-page: 335
  year: 2015
  end-page: 346
  article-title: Suppress to survive—implication of plant viruses in PTGS
  publication-title: Plant Mol. Biol. Rep
– volume: 103
  start-page: 2057
  year: 2006
  end-page: 2062
  article-title: Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 21
  start-page: 627
  year: 2016
  article-title: toxins in cereals: occurrence, legislation, factors promoting the appearance and their management
  publication-title: Molecules
– volume: 13
  start-page: 204
  year: 2012
  end-page: 216
  article-title: Facilitative and antagonistic interactions between plant viruses in mixed infections
  publication-title: Mol. Plant Pathol
– volume: 479
  start-page: 85
  year: 2015
  end-page: 103
  article-title: Viral silencing suppressors: tools forged to fine‐tune host–pathogen coexistence
  publication-title: Virology
– volume: 10
  start-page: 976
  year: 2019
  article-title: Roles of argonautes and dicers on antiviral RNA silencing
  publication-title: Front. Plant Sci
– volume: 57
  start-page: 343
  year: 2011
  end-page: 351
  article-title: A putative ABC transporter gene, , is required for zearalenone production in
  publication-title: Curr. Genet
– volume: 73
  start-page: 9478
  year: 1999
  end-page: 9484
  article-title: Mapping of a hypovirus p29 protease symptom determinant domain with sequence similarity to potyvirus HC‐Pro protease
  publication-title: J. Virol
– volume: 116
  start-page: 2274
  year: 2019
  end-page: 2281
  article-title: Dicer functions transcriptionally and posttranscriptionally in a multilayer antiviral defense
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 31
  start-page: 103
  year: 2019
  end-page: 125
  article-title: Transcriptomics of plant–virus interactions: a review
  publication-title: Theor. Exp. Plant Phys
– volume: 9
  year: 2014
  article-title: A comparison of transcriptional patterns and mycological phenotypes following infection of by four mycoviruses
  publication-title: PLoS ONE
– volume: 5
  start-page: 13
  year: 2016
  end-page: 24
  article-title: A molecular tug‐of‐war: global plant proteome changes during viral infection
  publication-title: Curr. Plant Biol
– volume: 43
  start-page: 397
  year: 2018
  end-page: 401
  article-title: Long‐term transcriptional gene silencing by RNA viruses
  publication-title: Trends. Biochem. Sci
– volume: 86
  start-page: 273
  year: 2013
  end-page: 288
  article-title: Insight into mycoviruses infecting species
  publication-title: Adv. Virus Res
– volume: 18
  start-page: 382
  year: 2013
  end-page: 392
  article-title: RNA silencing and its suppression: novel insights from in planta analyses
  publication-title: Trends Plant Sci
– volume: 444
  start-page: 409
  year: 2013
  end-page: 416
  article-title: A mycoreovirus suppresses RNA silencing in the white root rot fungus,
  publication-title: Virology
– volume: 13
  year: 2017
  article-title: Long‐range control of gene expression via RNA‐directed DNA methylation
  publication-title: PLoS Genet
– volume: 5
  start-page: 896
  year: 2006
  end-page: 904
  article-title: Hypovirus papain‐like protease p29 suppresses RNA silencing in the natural fungal host and in a heterologous plant system
  publication-title: Eukaryot. Cell
– volume: 79
  start-page: 10764
  year: 2005
  end-page: 10775
  article-title: A begomovirus DNAβ‐encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus
  publication-title: J. Virol
– volume: 344
  start-page: 158
  year: 2006
  end-page: 168
  article-title: Silencing suppression by geminivirus proteins
  publication-title: J. Virol
– volume: 10
  start-page: 214
  year: 2018
  article-title: Mycoviruses as triggers and targets of RNA silencing in white mold fungus
  publication-title: Viruses
– volume: 9
  start-page: 257
  year: 2019
  article-title: Mycoviruses in species: an updating review
  publication-title: Front. Cell. Infect. Microbiol
– volume: 44
  start-page: 6505
  year: 2016
  end-page: 6517
  article-title: Transcriptional gene silencing in humans
  publication-title: Nucleic Acids Res
– volume: 154
  start-page: 1855
  year: 2009
  end-page: 1858
  article-title: Complete nucleotide sequence of double‐stranded RNA viruses from strain DK3
  publication-title: Arch. Virol
– volume: 16
  start-page: 641
  year: 2015
  end-page: 652
  article-title: Effects of the deletion and over‐expression of gene on host response to mycovirus Fusarium graminearum virus 1
  publication-title: Mol. Plant Pathol
– volume: 10
  start-page: 845
  year: 2015
  article-title: The Phyre2 web portal for protein modeling, prediction and analysis
  publication-title: Nat. Protoc
– volume: 87
  start-page: 10356
  year: 2013
  end-page: 10367
  article-title: The gene of is required for fungal asexual reproduction and pathogenesis and for efficient viral RNA accumulation of Fusarium graminearum virus 1
  publication-title: J. Virol
– volume: 12
  year: 2017
  article-title: The alkalophilic fungus hosts beta‐and gammapartitiviruses together with a new fusarivirus
  publication-title: PLoS ONE
– volume: 10
  start-page: 453
  year: 2013
  end-page: 455
  article-title: Revisiting RNA‐directed DNA methylation
  publication-title: RNA Biol
– volume: 16
  start-page: 681
  year: 2003
  end-page: 688
  article-title: Tobacco mosaic virus induced alterations in the gene expression profile of
  publication-title: Mol. Plant‐Microbe Interact
– volume: 17
  start-page: 29
  year: 2001
  end-page: 35
  article-title: Transcriptional gene silencing in plants: targets, inducers and regulators
  publication-title: Trends Genet
– volume: 91
  start-page: 114
  year: 2017
  end-page: 122
  article-title: Fusarium head blight of wheat: pathogenesis and control strategies
  publication-title: J. Crop Prot
– volume: 5
  start-page: 12500
  year: 2015
  article-title: Characterization of RNA silencing components in the plant pathogenic fungus
  publication-title: Sci. Rep
– volume: 58
  start-page: 294
  year: 2014
  end-page: 302
  article-title: Heterologous expression of a gene of Magnaporthe oryzae chrysovirus 1 strain A disrupts growth of the human pathogenic fungus
  publication-title: Microbiol. Immunol
– volume: 13
  year: 2017
  article-title: Genome‐wide exonic small interference RNA‐mediated gene silencing regulates sexual reproduction in the homothallic fungus
  publication-title: PLoS Genet
– volume: 90
  start-page: 5677
  year: 2016
  end-page: 5692
  article-title: Differential inductions of RNA silencing among encapsidated double‐stranded RNA mycoviruses in the white root rot fungus
  publication-title: J. Virol
– volume: 386
  start-page: 257
  year: 2009
  end-page: 269
  article-title: protein, NbPCIP1, interacting with Potato virus X coat protein plays a role as susceptible factor for viral infection
  publication-title: Virology
– ident: e_1_2_8_19_1
  doi: 10.1016/j.tplants.2013.04.001
– ident: e_1_2_8_25_1
  doi: 10.3390/v10040214
– ident: e_1_2_8_28_1
  doi: 10.1105/tpc.9.6.859
– ident: e_1_2_8_10_1
  doi: 10.1128/JVI.79.16.10764-10775.2005
– ident: e_1_2_8_15_1
  doi: 10.1007/s11262-010-0460-0
– ident: e_1_2_8_20_1
  doi: 10.1038/nprot.2015.053
– ident: e_1_2_8_5_1
  doi: 10.1016/j.tibs.2018.03.003
– ident: e_1_2_8_7_1
  doi: 10.1038/srep12500
– ident: e_1_2_8_8_1
  doi: 10.1016/B978-0-12-394315-6.00010-6
– ident: e_1_2_8_6_1
  doi: 10.1016/j.virol.2005.09.041
– ident: e_1_2_8_12_1
  doi: 10.4161/rna.23542
– ident: e_1_2_8_18_1
  doi: 10.1371/journal.pone.0187799
– ident: e_1_2_8_42_1
  doi: 10.1007/s00705-009-0507-5
– ident: e_1_2_8_22_1
  doi: 10.1007/s00294-011-0352-4
– ident: e_1_2_8_41_1
  doi: 10.1128/JVI.02951-15
– ident: e_1_2_8_34_1
  doi: 10.1128/JVI.73.11.9478-9484.1999
– ident: e_1_2_8_36_1
  doi: 10.1111/1348-0421.12148
– ident: e_1_2_8_24_1
  doi: 10.3389/fcimb.2019.00257
– ident: e_1_2_8_31_1
  doi: 10.1128/JVI.01026-13
– ident: e_1_2_8_9_1
  doi: 10.1016/j.virol.2015.02.028
– ident: e_1_2_8_16_1
  doi: 10.1094/MPMI.2003.16.8.681
– ident: e_1_2_8_37_1
  doi: 10.1016/S0168-9525(00)02166-1
– ident: e_1_2_8_2_1
  doi: 10.1016/j.cpb.2015.10.003
– volume: 23
  start-page: 304
  year: 2007
  ident: e_1_2_8_21_1
  article-title: Molecular characterization of a dsRNA mycovirus, Fusarium graminearum virus‐DK21, which is phylogenetically related to hypoviruses but has a genome organization and gene expression strategy resembling those of plant potex‐like viruses
  publication-title: Mol. Cells
  doi: 10.1016/S1016-8478(23)10720-5
– ident: e_1_2_8_3_1
  doi: 10.1073/pnas.1701196114
– ident: e_1_2_8_26_1
  doi: 10.3389/fpls.2019.00976
– ident: e_1_2_8_35_1
  doi: 10.1111/j.1364-3703.2011.00734.x
– ident: e_1_2_8_46_1
  doi: 10.1016/j.virusres.2015.11.012
– ident: e_1_2_8_13_1
  doi: 10.1016/j.cropro.2016.10.002
– ident: e_1_2_8_14_1
  doi: 10.3390/molecules21050627
– ident: e_1_2_8_44_1
  doi: 10.1128/JVI.01756-17
– ident: e_1_2_8_32_1
  doi: 10.1371/journal.pgen.1006595
– ident: e_1_2_8_45_1
  doi: 10.1007/s40626-019-00143-z
– ident: e_1_2_8_17_1
  doi: 10.1038/nprot.2007.249
– ident: e_1_2_8_30_1
  doi: 10.1128/EC.00373-05
– ident: e_1_2_8_29_1
  doi: 10.1371/journal.pgen.1006749
– ident: e_1_2_8_38_1
  doi: 10.1093/nar/gkw139
– ident: e_1_2_8_23_1
  doi: 10.1371/journal.pone.0100989
– ident: e_1_2_8_4_1
  doi: 10.1073/pnas.1812407116
– ident: e_1_2_8_33_1
  doi: 10.1073/pnas.0907552106
– ident: e_1_2_8_39_1
  doi: 10.1007/s11105-014-0755-8
– ident: e_1_2_8_40_1
  doi: 10.1016/j.virol.2013.07.010
– ident: e_1_2_8_43_1
  doi: 10.1111/mpp.12221
– ident: e_1_2_8_11_1
  doi: 10.1073/pnas.0510949103
– ident: e_1_2_8_27_1
  doi: 10.1016/j.virol.2008.12.044
SSID ssj0017925
Score 2.400039
Snippet Summary The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and...
The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and...
The filamentous fungus Fusarium graminearum possesses an RNA-interference (RNAi) pathway that acts as a defence response against virus infections and...
The filamentous fungus Fusarium graminearum possesses an RNA-interference (RNAi) pathway that acts as a defence response against virus infections and exogenous...
The filamentous fungus Fusarium graminearum possesses an RNA‐interference (RNAi) pathway that acts as a defence response against virus infections and exogenous...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 230
SubjectTerms Antiviral agents
Antiviral Agents - metabolism
Defense
Deoxyribonucleic acid
DNA
DNA methylation
double-stranded RNA
Fluorescence
Fungal Proteins - genetics
Fungal Proteins - metabolism
Fungal Viruses - pathogenicity
Fungi
Fusarium - metabolism
Fusarium - virology
Fusarium graminearum
Fusarium graminearum virus 1
Gene expression
Genes
Genetic transcription
Green fluorescent protein
Health aspects
Infection
Infections
Laboratories
messenger RNA
mutants
Mycelia
mycelium
mycovirus
Open reading frames
ORF2
Original
Pathogenicity
Pathogens
Pigmentation
Proteins
RNA
RNA Interference
RNA viruses
RNA-mediated interference
RNAi
silencing suppressor
Transcription
transcription (genetics)
Virus diseases
Viruses
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3bbtMw1ILtBR4QdwoDGYQEL4E0juPkCZXRMpC2VRWT9hb5OiptSWga_oD_5hzXCe0EvCXyceT43O1zIeQ1B9GnRS4jpRmLUuOKKGfSRsIwwV1sEycwOfn4JDs6S7-e8_Nw4NaGsMpeJnpBbWqNZ-TvE5aCHYjFQj40PyLsGoW3q6GFxk2yDyI4B-dr_-P0ZL4Y7hFE4duugjhIo0wkSagthLE8V03zDuZgY4ktjXRdLm8pputBk9vGrNdGs7vkTjAj6WSD93vkhq3uk9uTi1UopWEfkF9AAfR0MUuor8WwrGjt6KxrwTnurigGZYGBKVfw_HO56lo6pm3X-LBY21IwC-ka1VgvVPzki09fDqeLhMrKwMvk8-mYrmt6iTlSFLNFYACbUcC6qbHOR2g_JGez6bfDoyg0XYg0x0SEnJtYgVcDvK60sGCxgEuRFkbxRBoRK-mEEgXQH7hCmgnGVYoRHjzPlcFrNvaI7FV1ZZ8QWsSZjjPHEifBcNRGKpY5O2ZAFlobxkfkbb_xpQ4VybExxmXZeyaAo9LjaEReDaDNpgzH34DeIPZKZE34jpYhwwBWg0WuyonAhCXwaLMROdiBBJbSu8M9_svA0m35hwBH5OUwjDMxTK2ydYcwILMFywXAPN6Qy7Bc2FDQLhw-LnYIaQDAQt-7I9Xyuy_4nRV5nvr98iT37x0oj-dz__D0_3_wjNxK8NzAR58fkL31qrPPwbhaqxeBg34DFaMjZg
  priority: 102
  providerName: ProQuest
Title The ORF2 protein of Fusarium graminearum virus 1 suppresses the transcription of FgDICER2 and FgAGO1 to limit host antiviral defences
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmpp.12895
https://www.ncbi.nlm.nih.gov/pubmed/31815356
https://www.proquest.com/docview/2347296123
https://www.proquest.com/docview/2388773873
https://pubmed.ncbi.nlm.nih.gov/PMC6988435
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW5QIH3o8uS2UQElxSpXYSJ-JUlpYFqd2oYqU9IEW24yzV7qZVk3Dgzv9mxnmoqUBCXKpUHucxmacz85mQNz6YPi1C6SjNueOlWeSEXBpHpFz4mWtYJrA5eb4ITs-9Lxf-xQF53_bC1PgQ3YIbaoa116jgUhU7Sn6z2YzAuEbYYI61WhgQLTvoKJAzu-EqGALPCQRjDaoQVvF0M3u-aN8i77ik_XLJ3TDW-qHZffKtfYK6_ORqVJVqpH_ugTv-5yM-IPea-JROaoF6SA5M_ojcnVxuG4wO85j8AtGiZ8sZoxbkYZXTdUZnVQFZd3VDsdoLLiy3cPxjta0KOqZFtbH1tqagEG_SEv1ja63s5MuPn0-mS0ZlnsKfyaezMS3X9Bqbryi2ocAA7nIBbKGpyWzp9xNyPpt-PTl1mt0cHO1jh0Pop66CdAmMiNLCQCgEuYoXpcpnMhWukplQIgLBhhxLc8F95WHpiB-GKsXvd_wpOczXuXlOaOQG2g0yzjIJEalOpeJBZsYc5E3rlPsD8q59r4luoM5xx43rpE15gLOJ5eyAvO5INzW-x5-I3qJwJKjzcB4tm9YFuBtEz0omAjuhIFUOBuS4Rwm6qvvDrXglja0oEsY9yHAQBmdAXnXDOBPr33KzrpAGnIHgoQCaZ7U0drcLDAW35cPJRU9OOwJEEO-P5KvvFkk8iMLQs_yyYvh3DiTzOLYHR_9O-oLcYbg4YUvcj8lhua3MS4jgSjUkt5gXD8ntD9NFvBzadZChVV_4XcTz307rRuA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QE4IN4ECiwIBBcXZ9f22geEQpuQ0CaNolbqzdi76xKptU0cg_gB_B1-IzPrB0kF3HpztGNrMzM7D_ubGUJeumD6pPAjK5acW45KAsvnkbaE4sJNbM0SgcXJk6k3OnE-nbqnW-RXUwuDsMrGJhpDrTKJ78jfMu5AHIjNQt7nXy2cGoVfV5sRGpVaHOgf3yFlK96N90G-rxgbDo73RlY9VcCSLiLtfVfZMYTtoMyxFBpcMsTMTqBil0VK2HGUiFgEwGCI9SUX3I0dhDC4vh8ru2q-BCZ_2-GQynTI9ofBdDZvv1uIwIx5BfPjWJ5grO5lhNihizzfBWeAgyzWPOBlP7DmCC-DNNeDZ-P9hrfIzTpspf1Kz26TLZ3eITf6Z8u6dYe-S36CxtGj-ZBR0_thkdIsocOygGS8vKAIAoOANlrC9bfFsixojxZlbmC4uqAQhtIVus3GiJmbz_bHe4M5o1Gq4Ef_41GPrjJ6jjVZFKtTYAGHX8C-qdKJQYTfIydXIo77pJNmqX5IaGB70vYSzpIIAlWpoph7ie5xUEMpFXe75E3D-FDWHdBxEMd52GRCIKPQyKhLXrSkedX2429Er1F6IZoCeI6M6ooG2A021Qr7AgukIIP2umRngxKOsNxcbuQf1iakCP8ofJc8b5fxToTFpTorkQZ8hOC-AJoHlbq02wWGgjdz4eFiQ5FaAmwsvrmSLr6YBuNe4PuO4ZdRuX9zIJzMZubi0f__wTNybXQ8OQwPx9ODx-Q6w3cWBvm-QzqrZamfQGC3ip_Wp4mSz1d9gH8DYYNeCw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqYTggHgTKLAgEFxMnV3bax8QCk1MQ2kaRVTqzdi76xKptU0cg_gB_Cl-HTPrB0kF3HpztGNrMzM7D_ubGUKeu2D6pPBjK5GcW45KA8vnsbaE4sJNbc1SgcXJh1Nv_9j5cOKebJFfbS0Mwipbm2gMtcolviPfZdyBOBCbheymDSxiNgrfFl8tnCCFX1rbcRq1ihzoH98hfSvfTEYg6xeMheNPe_tWM2HAki6i7n1X2QmE8KDYiRQa3DPEz06gEpfFSthJnIpEBMBsiPslF9xNHIQzuL6fKLtuxATmf1tAVmT3yPa78XQ2775hiMCMfAVT5FieYKzpa4Q4ovOieA2OAYdarHnDiz5hzSleBGyuB9LGE4Y3yPUmhKXDWuduki2d3SLXhqfLpo2Hvk1-gvbRo3nIqOkDschontKwKiExr84pAsIguI2XcP1tsaxKOqBlVRhIri4phKR0hS60NWjm5tPRZG88ZzTOFPwYvj8a0FVOz7A-i2KlCizgIAzYN1U6NejwO-T4UsRxl_SyPNP3CQ1sT9peylkaQ9AqVZxwL9UDDioppeJun7xqGR_Jphs6DuU4i9qsCGQUGRn1ybOOtKhbgPyN6CVKL0KzAM-RcVPdALvBBlvRUGCxFGTTXp_sbFDCcZaby638o8aclNEf5e-Tp90y3okQuUznFdKAvxDcF0Bzr1aXbrvAUPBsLjxcbChSR4BNxjdXssUX02zcC3zfMfwyKvdvDkSHs5m5ePD_f_CEXIGDG32cTA8ekqsMX18YEPwO6a2WlX4EMd4qedwcJko-X_b5_Q3YSmJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ORF2+protein+of+Fusarium+graminearum+virus+1+suppresses+the+transcription+of+FgDICER2+and+FgAGO1+to+limit+host+antiviral+defences&rft.jtitle=Molecular+plant+pathology&rft.au=Yu%2C+Jisuk&rft.au=Park%2C+Ju+Yeon&rft.au=Heo%2C+Jeong%E2%80%90In&rft.au=Kim%2C+Kook%E2%80%90Hyung&rft.date=2020-02-01&rft.issn=1464-6722&rft.eissn=1364-3703&rft.volume=21&rft.issue=2&rft.spage=230&rft.epage=243&rft_id=info:doi/10.1111%2Fmpp.12895&rft.externalDBID=10.1111%252Fmpp.12895&rft.externalDocID=MPP12895
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-6722&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-6722&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-6722&client=summon