Organic thin film transistors‐based biosensors
Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to transfer and amplify received biological signals into electrical signals. Nevertheless, the development of OTFTs‐based biosensors with excellent sensitivi...
Saved in:
Published in | EcoMat (Beijing, China) Vol. 3; no. 2 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.04.2021
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to transfer and amplify received biological signals into electrical signals. Nevertheless, the development of OTFTs‐based biosensors with excellent sensitivity, selectivity, and stability for specific biological processes remains a major challenge. This mini review focuses on recent achievements in OTFTs‐based biosensors since 2010. Specifically, three types of OTFTs, specifically organic field‐effect transistors (OFETs), electrolyte‐gated OFETs (EGOFETs), and organic electrochemical transistors (OECTs) are summarized in terms of the key strategies required for high‐performance bioelectronics. Additionally, various OTFTs‐based biosensors, such as ions, glucose, nucleic acids, proteins, and cells are described in terms of their working principles. This mini review highlights the uses of OTFTs for a broad range of research applications with a focus on designing novel OTFTs‐based biosensors.
The organic thin film transistors (OTFTs)‐based biosensors integrate the advantages of OTFTs and biosensors, leading to the state‐of‐the‐art biosensing platforms for health or body signal monitoring. In this review, recent efforts in high‐performance OTFTs‐based biosensors are introduced in details for meeting various specific healthcare and diagnosis applications, such as ion, glucose, DNA, protein, cells, and so forth. |
---|---|
AbstractList | Abstract Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to transfer and amplify received biological signals into electrical signals. Nevertheless, the development of OTFTs‐based biosensors with excellent sensitivity, selectivity, and stability for specific biological processes remains a major challenge. This mini review focuses on recent achievements in OTFTs‐based biosensors since 2010. Specifically, three types of OTFTs, specifically organic field‐effect transistors (OFETs), electrolyte‐gated OFETs (EGOFETs), and organic electrochemical transistors (OECTs) are summarized in terms of the key strategies required for high‐performance bioelectronics. Additionally, various OTFTs‐based biosensors, such as ions, glucose, nucleic acids, proteins, and cells are described in terms of their working principles. This mini review highlights the uses of OTFTs for a broad range of research applications with a focus on designing novel OTFTs‐based biosensors. Abstract Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to transfer and amplify received biological signals into electrical signals. Nevertheless, the development of OTFTs‐based biosensors with excellent sensitivity, selectivity, and stability for specific biological processes remains a major challenge. This mini review focuses on recent achievements in OTFTs‐based biosensors since 2010. Specifically, three types of OTFTs, specifically organic field‐effect transistors (OFETs), electrolyte‐gated OFETs (EGOFETs), and organic electrochemical transistors (OECTs) are summarized in terms of the key strategies required for high‐performance bioelectronics. Additionally, various OTFTs‐based biosensors, such as ions, glucose, nucleic acids, proteins, and cells are described in terms of their working principles. This mini review highlights the uses of OTFTs for a broad range of research applications with a focus on designing novel OTFTs‐based biosensors. image Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to transfer and amplify received biological signals into electrical signals. Nevertheless, the development of OTFTs‐based biosensors with excellent sensitivity, selectivity, and stability for specific biological processes remains a major challenge. This mini review focuses on recent achievements in OTFTs‐based biosensors since 2010. Specifically, three types of OTFTs, specifically organic field‐effect transistors (OFETs), electrolyte‐gated OFETs (EGOFETs), and organic electrochemical transistors (OECTs) are summarized in terms of the key strategies required for high‐performance bioelectronics. Additionally, various OTFTs‐based biosensors, such as ions, glucose, nucleic acids, proteins, and cells are described in terms of their working principles. This mini review highlights the uses of OTFTs for a broad range of research applications with a focus on designing novel OTFTs‐based biosensors. The organic thin film transistors (OTFTs)‐based biosensors integrate the advantages of OTFTs and biosensors, leading to the state‐of‐the‐art biosensing platforms for health or body signal monitoring. In this review, recent efforts in high‐performance OTFTs‐based biosensors are introduced in details for meeting various specific healthcare and diagnosis applications, such as ion, glucose, DNA, protein, cells, and so forth. |
Author | Wang, Xue Auwalu, Muhammad Aminu Cheng, Shanshan Hu, Wenping Sun, Chenfang |
Author_xml | – sequence: 1 givenname: Chenfang surname: Sun fullname: Sun, Chenfang organization: Tianjin University – sequence: 2 givenname: Xue surname: Wang fullname: Wang, Xue organization: Tianjin University – sequence: 3 givenname: Muhammad Aminu surname: Auwalu fullname: Auwalu, Muhammad Aminu organization: Tianjin University – sequence: 4 givenname: Shanshan surname: Cheng fullname: Cheng, Shanshan email: chengss@tju.edu.cn organization: Tianjin University – sequence: 5 givenname: Wenping orcidid: 0000-0001-5686-2740 surname: Hu fullname: Hu, Wenping email: huwp@tju.edu.cn organization: Institution of Chemistry, Chinese Academy of Sciences |
BookMark | eNp9kM1KAzEUhYNUsNZufIJZC1Nz89MkSylVC5VudB0ySaamTCeSDEh3PoLP6JM47Yi4cnUvh-98i3OJRm1sPULXgGeAMbn1cU9mQLBiZ2hM-FyUFAQd_fkv0DTnHe5hjhlhMEZ4k7amDbboXkNb1KHZF10ybQ65iyl_fXxWJntXVCFm3-Y-ukLntWmyn_7cCXq5Xz4vHsv15mG1uFuXlmPJSs8kdb4ylDNCPZeVwtyBZVRQqvAcnDWkBk8EJ0IaRaQ1ylBwFRdWMjB0glaD10Wz028p7E066GiCPgUxbbVJXbCN16Cg5tgwJYExXjkliADBJFhsCatx77oZXDbFnJOvf32A9XE6fZxOn6brYRjg99D4wz-kXm6eyND5BgSacKU |
CitedBy_id | crossref_primary_10_1039_D1TC05238A crossref_primary_10_1080_10408347_2021_2002133 crossref_primary_10_2174_1573413719666230714121859 crossref_primary_10_1021_acsaelm_2c00983 crossref_primary_10_1039_D2NR05863D crossref_primary_10_1002_adhm_202100955 crossref_primary_10_1016_j_nxnano_2023_100025 crossref_primary_10_1016_j_bios_2022_114667 crossref_primary_10_3390_chemosensors11030202 crossref_primary_10_1021_acs_chemrev_3c00507 crossref_primary_10_1109_ACCESS_2023_3253563 crossref_primary_10_3390_polym15204062 crossref_primary_10_3390_bios13080765 crossref_primary_10_1016_j_jmst_2022_05_047 crossref_primary_10_1021_acsnano_2c12606 crossref_primary_10_1016_j_aej_2023_11_085 crossref_primary_10_1016_j_matlet_2022_133197 crossref_primary_10_1039_D3NR01051A crossref_primary_10_1002_aelm_202300548 crossref_primary_10_1002_aisy_202100253 crossref_primary_10_1002_smsc_202300058 crossref_primary_10_1039_D1AN02188E crossref_primary_10_1002_solr_202100787 crossref_primary_10_1016_j_mssp_2023_107658 crossref_primary_10_3390_bios12121081 crossref_primary_10_3390_s23198309 crossref_primary_10_3390_bios13040426 crossref_primary_10_1007_s40820_022_00930_5 crossref_primary_10_1021_acsnano_3c08315 crossref_primary_10_1007_s12274_023_5606_1 crossref_primary_10_1002_aelm_202200142 crossref_primary_10_1080_10408436_2023_2169657 crossref_primary_10_3390_bios13060586 crossref_primary_10_1002_adhm_202303923 crossref_primary_10_1021_acs_analchem_1c03683 crossref_primary_10_1002_eom2_12253 crossref_primary_10_1016_j_apsusc_2024_160639 crossref_primary_10_1109_JFLEX_2022_3152465 crossref_primary_10_1021_acs_chemrev_1c00539 crossref_primary_10_1002_elsa_202100216 crossref_primary_10_1007_s40820_022_00806_8 crossref_primary_10_1002_ijch_202100067 crossref_primary_10_1021_acs_analchem_1c02601 crossref_primary_10_1088_2752_5724_ace3dd crossref_primary_10_1016_j_xcrp_2023_101673 crossref_primary_10_1021_acs_analchem_2c00897 crossref_primary_10_1109_TNANO_2023_3312819 crossref_primary_10_1039_D3NR03405D crossref_primary_10_1002_adma_202308952 crossref_primary_10_3390_mi13101613 crossref_primary_10_1149_1945_7111_aca722 |
Cites_doi | 10.1002/aelm.201700209 10.1016/j.orgel.2011.09.025 10.1039/C5TB00243E 10.3390/polym11010107 10.1002/adfm.201404535 10.1002/adma.201302615 10.1038/srep00754 10.1021/jacs.7b09381 10.1016/j.bios.2017.12.041 10.1021/ja107088m 10.1002/adma.201801830 10.5796/electrochemistry.18-6-E2672 10.1021/acsami.7b09384 10.1007/s00216-016-9502-3 10.1002/adma.201002313 10.1021/cm802530x 10.1007/s00216-011-5363-y 10.1002/adbi.201900204 10.1002/adma.201400263 10.1002/advs.201700609 10.1088/2058-8585/aad0cb 10.2116/analsci.18SDN02 10.1002/adma.201800051 10.1016/j.orgel.2014.06.002 10.1016/j.bios.2016.01.012 10.1063/1.3581882 10.1016/j.tsf.2018.11.032 10.1063/1.1527233 10.1016/j.snb.2015.02.038 10.1038/ncomms9356 10.1016/j.orgel.2013.12.016 10.1039/D0TC01536A 10.1039/C9NR06096K 10.1038/ncomms10032 10.1039/b811606g 10.1002/anie.201916397 10.1002/adma.201203587 10.1002/smm2.1010 10.1016/j.chempr.2018.03.007 10.1002/adma.201202996 10.1016/j.bios.2008.07.030 10.1039/c1cc10321k 10.1016/j.snb.2008.08.009 10.1002/advs.201701053 10.1039/C3TB21491E 10.1021/acs.analchem.6b03522 10.1021/nn305903q 10.1002/adma.201201318 10.1002/aelm.201900249 10.1002/adma.201801951 10.1002/smm2.1009 10.1016/j.bios.2018.01.035 10.1021/ar9000873 10.1016/j.bios.2018.04.051 10.3389/fchem.2019.00667 10.1039/C7TC04389A 10.1002/admt.201600042 10.1039/c3tb00525a 10.1039/c3tb20340a 10.1016/j.bios.2016.02.036 10.1016/j.bios.2020.112251 10.1016/j.orgel.2012.10.027 10.1039/C7MH00887B 10.1002/adfm.201700999 10.1039/c3tc31412j 10.1126/sciadv.1501856 10.1063/1.1527698 10.1002/adfm.201606506 10.1063/1.1873051 10.1016/j.orgel.2020.105794 10.1016/j.scib.2020.03.013 10.1021/nn204830b 10.1002/adma.201004071 10.1002/adfm.201700018 10.1002/adma.201000790 10.1038/nature07727 10.1039/c0cc02064h 10.1021/acs.chemmater.8b02260 10.1002/adma.201704843 10.1021/acsami.0c04208 10.1021/acsami.6b05515 10.1016/j.bios.2011.03.031 10.1002/adma.201602237 10.1038/nnano.2015.324 10.1002/aelm.201901127 10.1002/aelm.201901352 10.1002/smll.201900854 10.1038/s41557-018-0200-y 10.1002/adhm.201600494 10.1002/adma.201000971 10.1039/c3tb20451k 10.1038/ncomms3954 10.1002/open.201700070 10.1063/1.3623438 10.1021/am100154e 10.1038/35006603 10.1038/s41551-018-0336-5 10.1002/aelm.201800547 10.1002/adma.201801891 10.1063/1.2936296 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. |
Copyright_xml | – notice: 2021 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. |
DBID | 24P WIN AAYXX CITATION DOA |
DOI | 10.1002/eom2.12094 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley-Blackwell Open Access Backfiles CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3173 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_191f50a4981445bd972717481c0c24f0 10_1002_eom2_12094 EOM212094 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 21473222; 21661132006; 51703160; 51633006; 91433115; 51733004; 21705116 – fundername: Ministry of Science and Technology of China funderid: 2016YFB0401100; 2017YFA0204503; 2015CB856502 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EDH GROUPED_DOAJ HCIFZ IAO KB. M~E PATMY PDBOC PIMPY PYCSY WIN AAYXX CITATION ITC |
ID | FETCH-LOGICAL-c5084-e483deba35423e58b905d1c437339061dca2f1e275278a928ca9a31db57c841a3 |
IEDL.DBID | DOA |
ISSN | 2567-3173 |
IngestDate | Tue Oct 22 15:12:57 EDT 2024 Thu Sep 26 18:18:14 EDT 2024 Sat Aug 24 01:02:11 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5084-e483deba35423e58b905d1c437339061dca2f1e275278a928ca9a31db57c841a3 |
Notes | Funding information Ministry of Science and Technology of China, Grant/Award Numbers: 2016YFB0401100, 2017YFA0204503, 2015CB856502; Natural Science Foundation of China, Grant/Award Numbers: 21473222, 21661132006, 51703160, 51633006, 91433115, 51733004, 21705116 |
ORCID | 0000-0001-5686-2740 |
OpenAccessLink | https://doaj.org/article/191f50a4981445bd972717481c0c24f0 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_191f50a4981445bd972717481c0c24f0 crossref_primary_10_1002_eom2_12094 wiley_primary_10_1002_eom2_12094_EOM212094 |
PublicationCentury | 2000 |
PublicationDate | April 2021 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA |
PublicationTitle | EcoMat (Beijing, China) |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 6 2013; 25 2017; 3 2013; 1 2009; 42 2020; 164 2019; 11 2019; 15 2014; 26 2011; 99 2020; 59 2011; 98 2020; 12 2013; 7 2012; 13 2012; 402 2018; 86 2017; 9 2016; 79 2020; 8 2010; 22 2018; 6 2020; 6 2014; 5 2018; 3 2020; 4 2013; 14 2018; 5 2020; 2 2018; 4 2014; 2 2020; 1 2015; 212 2000; 404 2014; 15 2018; 30 2011; 23 2016; 81 2011; 26 2008; 20 2003; 82 2012; 24 2010; 2 2016; 88 2019; 7 2009; 24 2015; 6 2019; 3 2019; 5 2015; 3 2018; 105 2020; 84 2017; 27 2019; 35 2018; 104 2016; 408 2005; 86 2002; 81 2019; 669 2008; 92 2011; 133 2017; 139 2009; 457 2016; 11 2016; 5 2015; 25 2012; 2 2016; 1 2016; 2 2010; 46 2021 2018; 113 2009; 9 2020; 65 2011; 47 2008; 135 2016; 28 2012; 4 2016; 8 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 Li J (e_1_2_7_102_1) 2021 e_1_2_7_90_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 Zhu Q (e_1_2_7_9_1) 2011; 99 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 Boutry CM (e_1_2_7_5_1) 2019; 3 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 Wang Z (e_1_2_7_100_1) 2018; 5 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 Wu FC (e_1_2_7_51_1) 2020; 2 e_1_2_7_6_1 Hammock ML (e_1_2_7_11_1) 2012; 4 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 Baroot A (e_1_2_7_66_1) 2019; 669 e_1_2_7_38_1 Si K (e_1_2_7_96_1) 2018; 30 |
References_xml | – volume: 5 year: 2018 article-title: The role of weak molecular dopants in enhancing the performance of solution‐processed organic field‐effect transistors publication-title: Adv Electron Mater – volume: 11 start-page: 17709 year: 2019 end-page: 17717 article-title: Polymer‐based flexible NO sensors with ppb‐level detection at room temperature using breath‐figure molding publication-title: Nanoscale – volume: 6 start-page: 472 year: 2017 end-page: 475 article-title: Label‐free direct electrical detection of a histidine‐rich protein with sub‐femtomolar sensitivity using an organic field‐effect transistor publication-title: ChemistryOpen – volume: 105 start-page: 121 year: 2018 end-page: 128 article-title: Chirality detection of amino acid enantiomers by organic electrochemical transistor publication-title: Biosens Bioelectron – volume: 5 start-page: 2954 year: 2014 article-title: Highly stable organic polymer field‐effect transistor sensor for selective detection in the marine environment publication-title: Nat Commun – volume: 2 start-page: 1413 year: 2020 end-page: 1420 article-title: Multifunctional interfacial layers from a one‐step process for effective charge capturing and erasing in low‐voltage‐driven organic thin‐film transistors publication-title: ACS Appl Mater Interfaces – volume: 14 start-page: 156 year: 2013 end-page: 163 article-title: Organic field‐effect transistor for label‐free dopamine sensing publication-title: Org Electron – volume: 8 start-page: 19860 year: 2016 end-page: 19865 article-title: Molecularly imprinted polymer (MIP) film with improved surface area developed by using metal‐organic framework (MOF) for sensitive lipocalin (NGAL) determination publication-title: ACS Appl Mater Interfaces – volume: 11 start-page: 271 year: 2019 end-page: 277 article-title: Mesopolymer synthesis by ligand‐modulated direct arylation polycondensation towards n‐type and ambipolar conjugated systems publication-title: Nat Chem – volume: 27 year: 2017 article-title: Extended solution gate OFET‐based biosensor for label‐free glial fibrillary acidic protein detection with polyethylene glycol‐containing bioreceptor layer publication-title: Adv Funct Mater – volume: 3 start-page: 7 year: 2019 end-page: 57 article-title: Biodegradable and flexible arterial‐pulse sensor for the wireless monitoring of blood flow publication-title: Nat Biomed Eng – volume: 1 start-page: 3728 year: 2013 end-page: 3741 article-title: Water‐gated organic field effect transistors‐ opportunities for biochemical sensing and extracellular signal transduction publication-title: J Mater Chem B – volume: 4 start-page: 1416 year: 2018 end-page: 1426 article-title: Functionalized π stacks of hexabenzoperylenes as a platform for chemical and biological sensing publication-title: Chem – year: 2021 article-title: Biomimetic nanoporous aerogels from branched aramid nanofibers combining high heat insulation and compressive strength publication-title: SmartMat – volume: 30 start-page: 5422 year: 2018 end-page: 5428 article-title: Spectroscopic study of charge transport at organic solid‐water interface publication-title: Chem Mater – volume: 15 start-page: 595 year: 2014 end-page: 601 article-title: Polymeric ion‐selective membrane functionalized gate‐electrodes: ion‐selective response of electrolyte‐gated poly(3‐hexylthiophene) field‐effect transistors publication-title: Org Electron – volume: 1 start-page: 6532 year: 2013 article-title: Flexible spray‐coated TIPS‐pentacene organic thin‐film transistors as ammonia gas sensors publication-title: J Mater Chem C – volume: 2 year: 2016 article-title: Ultraflexible organic photonic skin publication-title: Sci Adv – volume: 1 start-page: 2090 year: 2013 end-page: 2097 article-title: Copolythiophene‐based water‐gated organic field‐effect transistors for biosensing publication-title: J Mater Chem B – volume: 6 year: 2020 article-title: Interlayers for improved hole injection in organic field‐effect transistors publication-title: Adv Electron Mater – volume: 6 start-page: 8356 year: 2015 article-title: Flexible and self‐powered temperature‐pressure dual‐parameter sensors using microstructure‐frame‐supported organic thermoelectric materials publication-title: Nat Commun – volume: 15 start-page: 2126 year: 2014 end-page: 2134 article-title: Improving mobility and electrochemical stability of a water‐gated polymer field‐effect transistor publication-title: Org Electron – volume: 27 year: 2017 article-title: Porous organic field‐effect transistors for enhanced chemical sensing performances publication-title: Adv Funct Mater – volume: 408 start-page: 3943 year: 2016 end-page: 3952 article-title: Label‐free C‐reactive protein electronic detection with an electrolyte‐gated organic field‐effect transistor‐based immunosensor publication-title: Anal Bioanal Chem – volume: 6 year: 2015 article-title: High mobility emissive organic semiconductor publication-title: Nat Commun – volume: 3 start-page: 5049 year: 2015 end-page: 5057 article-title: UV crosslinked poly(acrylic acid): a simple method to bio‐functionalize electrolyte‐gated OFET biosensors publication-title: J Mater Chem B – volume: 113 start-page: 32 year: 2018 end-page: 38 article-title: Triggering the electrolyte‐gated organic field‐effect transistor output characteristics through gate functionalization using diazonium chemistry: application to biodetection of 2,4‐dichlorophenoxyacetic acid publication-title: Biosens Bioelectron – volume: 4 year: 2020 article-title: Organic electrochemical transistors for real‐time monitoring of in vitro silver nanoparticle toxicity publication-title: Adv Biosyst – volume: 30 year: 2018 article-title: Fabric organic electrochemical transistors for biosensors publication-title: Adv Mater – volume: 212 start-page: 329 year: 2015 end-page: 334 article-title: Label‐free detection of tumor markers using field effect transistor (FET)‐based biosensors for lung cancer diagnosis publication-title: Sens Actuat B – volume: 47 start-page: 5109 year: 2011 end-page: 5115 article-title: Naphthalene and perylene diimides for organic transistors publication-title: Chem Commun – volume: 1 year: 2020 article-title: Organic photodetectors based on supramolecular nanostructures publication-title: SmartMat – volume: 669 start-page: 665 year: 2019 end-page: 669 article-title: Electrochemical gating of a hydrophobic organic semiconductor with aqueous media publication-title: Thin Solid Films – volume: 22 start-page: 4862 year: 2010 end-page: 4866 article-title: A high mobility p‐type DPP‐thieno[3,2‐b]thiophene copolymer for organic thin‐film transistors publication-title: Adv Mater – volume: 23 start-page: 1630 year: 2011 end-page: 1634 article-title: Flexible organic thin‐film transistors with silk fibroin as the gate dielectric publication-title: Adv Mater – volume: 82 start-page: 475 year: 2003 end-page: 477 article-title: Field‐effect detection of chemical species with hybrid organic/inorganic transistors publication-title: Appl Phys Lett – volume: 86 year: 2005 article-title: Flexible, organic, ion‐sensitive field‐effect transistor publication-title: Appl Phys Lett – volume: 133 start-page: 2170 year: 2011 end-page: 2176 article-title: In situ antibody detection and charge discrimination using aqueous stable pentacene transistor biosensors publication-title: J Am Chem Soc – volume: 26 start-page: 3874 year: 2014 end-page: 3878 article-title: Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold publication-title: Adv Mater – volume: 2 start-page: 754 year: 2012 article-title: A stable solution‐processed polymer semiconductor with record high‐mobility for printed transistors publication-title: Sci Rep – volume: 24 start-page: 1241 year: 2009 end-page: 1245 article-title: Label‐free DNA sensor based on organic thin film transistors publication-title: Biosens Bioelectron – volume: 9 start-page: 38687 year: 2017 end-page: 38694 article-title: Liquid‐solid dual‐gate organic transistors with tunable threshold voltage for cell sensing publication-title: ACS Appl Mater Interfaces – volume: 30 year: 2018 article-title: Triple acceptors in a polymeric architecture for balanced ambipolar transistors and high‐gain inverters publication-title: Adv Mater – volume: 35 start-page: 103 year: 2019 end-page: 106 article-title: Fabrication of a flexible biosensor based on an organic field‐effect transistor for lactate detection publication-title: Anal Sci – volume: 15 year: 2019 article-title: Recent progress in organic electron transport materials in inverted perovskite solar cells publication-title: Small – volume: 25 start-page: 2138 year: 2015 end-page: 2146 article-title: Thermally stable, biocompatible, and flexible organic field‐effect transistors and their application in temperature sensing arrays for artificial skin publication-title: Adv Func Mater – volume: 28 start-page: 9722 year: 2016 end-page: 9728 article-title: Integration of organic electrochemical and field‐effect transistors for ultraflexible, high temporal resolution electrophysiology arrays publication-title: Adv Mater – volume: 11 start-page: 472 year: 2016 end-page: 478 article-title: A transparent bending‐insensitive pressure sensor publication-title: Nat Nanotechnol – volume: 25 start-page: 6575 year: 2013 end-page: 6580 article-title: Organic electrochemical transistor array for recording transepithelial ion transport of human airway epithelial cells publication-title: Adv Mater – volume: 20 start-page: 7332 year: 2008 end-page: 7338 article-title: Influence of molecular structure and film properties on the water‐stability and sensor characteristics of organic transistors publication-title: Chem Mater – volume: 65 start-page: 791 year: 2020 end-page: 795 article-title: Solution‐processed ultra‐flexible C ‐BTBT organic thin‐film transistors with the corrected mobility over 18 cm /(V s) publication-title: Sci Bull – volume: 5 year: 2018 article-title: Smart surgical catheter for C‐reactive protein sensing based on an imperceptible organic transistor publication-title: Adv Sci – volume: 2 start-page: 2537 year: 2014 end-page: 2545 article-title: A facile biofunctionalisation route for solution processable conducting polymer devices publication-title: J Mater Chem B – volume: 11 start-page: 107 year: 2019 article-title: Recent progress in thermoelectric materials based on conjugated polymers publication-title: Polymers – volume: 79 start-page: 736 year: 2016 end-page: 741 article-title: A highly sensitive biosensor for tumor marker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT publication-title: Biosens Bioelectron – volume: 402 start-page: 1813 year: 2012 end-page: 1826 article-title: Advances in organic transistor‐based biosensors: from organic electrochemical transistors to electrolyte‐gated organic field‐effect transistors publication-title: Anal Bioanal Chem – volume: 7 start-page: 3970 year: 2013 end-page: 3980 article-title: Investigation of protein detection parameters using nanofunctionalized organic field‐effect transistors publication-title: ACS Nano – volume: 27 year: 2017 article-title: Solution‐processed monolayer organic crystals for high‐performance field‐effect transistors and ultrasensitive gas sensors publication-title: Adv Funct Mater – volume: 3 year: 2018 article-title: Ultra‐sensitive protein detection with organic electrochemical transistors printed on plastic substrates publication-title: Flex Print Electron – volume: 104 start-page: 113 year: 2018 end-page: 119 article-title: Low‐picomolar, label‐free procalcitonin analytical detection with an electrolyte‐gated organic field‐effect transistor based electronic immunosensor publication-title: Biosens Bioelectron – volume: 4 start-page: 3100 year: 2012 end-page: 3108 article-title: Organic transistors with ordered nanoparticle arrays as a tailorable platform for selective, in situ detection publication-title: ACS Nano – volume: 46 start-page: 7972 year: 2010 end-page: 7974 article-title: Electrochemical transistors with ionic liquids for enzymatic sensing publication-title: Chem Commun – volume: 30 year: 2018 article-title: Free‐standing 2D hexagonal aluminum nitride dielectric crystals for high‐performance organic field‐effect transistors publication-title: Adv Mater – volume: 30 start-page: 991 year: 2018 end-page: 999 article-title: Multianalyte detection of cancer biomarkers in human serum using a label‐free field effect transistor biosensor publication-title: Sens Mater – volume: 84 year: 2020 article-title: Organic‐based field effect transistors for protein detection fabricated by inkjet‐printing publication-title: Org Electron – volume: 135 start-page: 195 year: 2008 end-page: 199 article-title: Varahramyan K. glucose sensor based on organic thin film transistor using glucose oxidase and conducting polymer publication-title: Sens Actuat B – volume: 6 start-page: 3485 year: 2018 end-page: 3498 article-title: Recent progress on organic donor‐acceptor complexes as active elements in organic field‐effect transistors publication-title: J Mater Chem C – volume: 1 start-page: 3820 year: 2013 end-page: 3829 article-title: Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene‐modified gate electrodes publication-title: J Mater Chem B – volume: 86 start-page: 303 year: 2018 end-page: 308 article-title: Development of enzymatic sensors based on extended‐gate‐type organic field‐effect transistors publication-title: Electrochemistry – volume: 42 start-page: 1573 year: 2009 end-page: 1583 article-title: Interface engineering: an effective approach toward high‐performance organic field‐effect transistors publication-title: Acc Chem Res – volume: 30 year: 2018 article-title: Doping: a key enabler for organic transistors publication-title: Adv Mater – volume: 81 start-page: 87 year: 2016 end-page: 91 article-title: Selective nitrate detection by an enzymatic sensor based on an extended‐gate type organic field‐effect transistor publication-title: Biosens Bioelectron – volume: 24 start-page: 4618 year: 2012 end-page: 4622 article-title: Highly π‐extended copolymers with diketopyrrolopyrrole moieties for high‐performance field‐effect transistors publication-title: Adv Mater – volume: 98 year: 2011 article-title: Electrolyte‐gated organic field‐effect transistors for sensing applications publication-title: Appl Phys Lett – volume: 404 start-page: 478 year: 2000 end-page: 480 article-title: A soluble and air‐stable organic semiconductor with high electron mobility publication-title: Nature – volume: 92 year: 2008 article-title: In vitro evaluation of flexible pH and potassium ion‐sensitive organic field effect transistor sensors publication-title: Appl Phys Lett – volume: 5 year: 2018 article-title: Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems publication-title: Adv Sci – volume: 99 year: 2011 article-title: The immobilization and electrical response of single‐stranded DNA molecules on pentacene transistors publication-title: Appl Phys Lett – volume: 5 year: 2019 article-title: Solvent engineering for high‐performance n‐type organic electrochemical transistors publication-title: Adv Electron Mater – volume: 25 start-page: 2090 year: 2013 end-page: 2094 article-title: Electrolyte‐gated organic field‐effect transistor sensors based on supported biotinylated phospholipid bilayer publication-title: Adv Mater – volume: 457 start-page: 679 year: 2009 end-page: 686 article-title: A high‐mobility electron‐transporting polymer for printed transistors publication-title: Nature – volume: 5 start-page: 240 year: 2018 end-page: 247 article-title: Molecular antenna tailored organic thin‐film transistors for sensing application publication-title: Mater Horiz – volume: 12 start-page: 26239 year: 2020 end-page: 26249 article-title: The critical role of materials' interaction in realizing organic field‐effect transistors via high‐dilution blending with insulating polymers publication-title: ACS Appl Mater Interfaces – volume: 9 start-page: 704 year: 2009 end-page: 708 article-title: Integration of a surface‐directed microfluidic system with an organic electrochemical transistor array for multi‐analyte biosensors publication-title: Lab Chip – volume: 88 start-page: 12330 year: 2016 end-page: 12338 article-title: Biorecognition in organic field effect transistors biosensors: the role of the density of states of the organic semiconductor publication-title: Anal Chem – volume: 5 start-page: 2295 year: 2016 end-page: 2302 article-title: Organic transistor arrays integrated with finger‐powered microfluidics for multianalyte saliva testing publication-title: Adv Healthc Mater – volume: 139 start-page: 17261 year: 2017 end-page: 17264 article-title: Aromatic extension at 2,6‐positions of anthracene toward an elegant strategy for organic semiconductors with efficient charge transport and strong solid state emission publication-title: J Am Chem Soc – volume: 13 start-page: 1 year: 2012 end-page: 6 article-title: DNA detection with a water‐gated organic field‐effect transistor publication-title: Org Electron – volume: 7 start-page: 667 year: 2019 article-title: A study on the stability of water‐gated organic field‐effect‐transistors based on a commercial p‐type polymer publication-title: Front Chem – volume: 2 start-page: 1637 year: 2010 end-page: 1641 article-title: Ion‐sensitive properties of organic electrochemical transistors publication-title: ACS Appl Mater Interfaces – volume: 1 year: 2020 article-title: Flexible conductive polymer composites for smart wearable strain sensors publication-title: SmartMat – volume: 3 year: 2017 article-title: Assembly of π‐conjugated nanosystems for electronic sensing devices publication-title: Adv Electron Mater – volume: 6 year: 2020 article-title: Robust high‐capacitance polymer gate dielectrics for stable low‐voltage organic field‐effect transistor sensors publication-title: Adv Electron Mater – volume: 59 start-page: 4380 year: 2020 end-page: 4384 article-title: Monolayer two‐dimensional molecular crystals for an ultrasensitive OFET‐based chemical sensor publication-title: Angew Chem Int Ed – volume: 22 start-page: 4452 year: 2010 end-page: 4456 article-title: In situ, label‐free DNA detection using organic transistor sensors publication-title: Adv Mater – volume: 22 start-page: 3655 year: 2010 end-page: 3660 article-title: The application of organic electrochemical transistors in cell‐based biosensors publication-title: Adv Mater – volume: 30 year: 2018 article-title: Quinoline‐flanked diketopyrrolopyrrole copolymers breaking through electron mobility over 6 cm V s in flexible thin film devices publication-title: Adv Mater – volume: 1 year: 2016 article-title: Highly sensitive metabolite biosensor based on organic electrochemical transistor integrated with microfluidic channel and poly(N‐vinyl‐2‐pyrrolidone)‐capped platinum nanoparticles publication-title: Adv Mater Technol – volume: 81 start-page: 4643 year: 2002 end-page: 4645 article-title: Humidity sensors based on pentacene thin‐film transistors publication-title: Appl Phys Lett – volume: 8 start-page: 8213 year: 2020 end-page: 8223 article-title: Iron‐coordinating π‐conjugated semiconducting polymer: morphology and charge transport in organic field‐effect transistors publication-title: J Mater Chem C – volume: 26 start-page: 4217 year: 2011 end-page: 4221 article-title: Effect of passivation on the sensitivity and stability of pentacene transistor sensors in aqueous media publication-title: Biosens Bioelectron – volume: 164 year: 2020 article-title: Facile and cost‐effective liver cancer diagnosis by water‐gated organic field‐effect transistors publication-title: Biosens Bioelectron – volume: 25 start-page: 103 year: 2013 end-page: 107 article-title: Ultralow voltage, OTFT‐based sensor for label‐free DNA detection publication-title: Adv Mater – ident: e_1_2_7_19_1 doi: 10.1002/aelm.201700209 – ident: e_1_2_7_62_1 doi: 10.1016/j.orgel.2011.09.025 – ident: e_1_2_7_59_1 doi: 10.1039/C5TB00243E – ident: e_1_2_7_98_1 doi: 10.3390/polym11010107 – ident: e_1_2_7_44_1 doi: 10.1002/adfm.201404535 – ident: e_1_2_7_92_1 doi: 10.1002/adma.201302615 – ident: e_1_2_7_32_1 doi: 10.1038/srep00754 – ident: e_1_2_7_27_1 doi: 10.1021/jacs.7b09381 – ident: e_1_2_7_60_1 doi: 10.1016/j.bios.2017.12.041 – ident: e_1_2_7_85_1 doi: 10.1021/ja107088m – ident: e_1_2_7_38_1 doi: 10.1002/adma.201801830 – ident: e_1_2_7_50_1 doi: 10.5796/electrochemistry.18-6-E2672 – ident: e_1_2_7_90_1 doi: 10.1021/acsami.7b09384 – ident: e_1_2_7_20_1 doi: 10.1007/s00216-016-9502-3 – ident: e_1_2_7_63_1 doi: 10.1002/adma.201002313 – ident: e_1_2_7_7_1 doi: 10.1021/cm802530x – ident: e_1_2_7_61_1 doi: 10.1007/s00216-011-5363-y – ident: e_1_2_7_91_1 doi: 10.1002/adbi.201900204 – ident: e_1_2_7_6_1 doi: 10.1002/adma.201400263 – ident: e_1_2_7_101_1 doi: 10.1002/advs.201700609 – ident: e_1_2_7_71_1 doi: 10.1088/2058-8585/aad0cb – ident: e_1_2_7_8_1 doi: 10.2116/analsci.18SDN02 – ident: e_1_2_7_2_1 doi: 10.1002/adma.201800051 – ident: e_1_2_7_31_1 doi: 10.1016/j.orgel.2014.06.002 – ident: e_1_2_7_70_1 doi: 10.1016/j.bios.2016.01.012 – ident: e_1_2_7_73_1 doi: 10.1063/1.3581882 – volume: 669 start-page: 665 year: 2019 ident: e_1_2_7_66_1 article-title: Electrochemical gating of a hydrophobic organic semiconductor with aqueous media publication-title: Thin Solid Films doi: 10.1016/j.tsf.2018.11.032 contributor: fullname: Baroot A – ident: e_1_2_7_21_1 doi: 10.1063/1.1527233 – ident: e_1_2_7_4_1 doi: 10.1016/j.snb.2015.02.038 – ident: e_1_2_7_45_1 doi: 10.1038/ncomms9356 – ident: e_1_2_7_84_1 doi: 10.1016/j.orgel.2013.12.016 – ident: e_1_2_7_42_1 doi: 10.1039/D0TC01536A – ident: e_1_2_7_64_1 doi: 10.1039/C9NR06096K – volume: 30 start-page: 991 year: 2018 ident: e_1_2_7_96_1 article-title: Multianalyte detection of cancer biomarkers in human serum using a label‐free field effect transistor biosensor publication-title: Sens Mater contributor: fullname: Si K – ident: e_1_2_7_26_1 doi: 10.1038/ncomms10032 – ident: e_1_2_7_93_1 doi: 10.1039/b811606g – ident: e_1_2_7_15_1 doi: 10.1002/anie.201916397 – ident: e_1_2_7_57_1 doi: 10.1002/adma.201203587 – ident: e_1_2_7_104_1 doi: 10.1002/smm2.1010 – ident: e_1_2_7_10_1 doi: 10.1016/j.chempr.2018.03.007 – ident: e_1_2_7_82_1 doi: 10.1002/adma.201202996 – ident: e_1_2_7_80_1 doi: 10.1016/j.bios.2008.07.030 – ident: e_1_2_7_29_1 doi: 10.1039/c1cc10321k – ident: e_1_2_7_77_1 doi: 10.1016/j.snb.2008.08.009 – ident: e_1_2_7_3_1 doi: 10.1002/advs.201701053 – ident: e_1_2_7_69_1 doi: 10.1039/C3TB21491E – ident: e_1_2_7_87_1 doi: 10.1021/acs.analchem.6b03522 – ident: e_1_2_7_88_1 doi: 10.1021/nn305903q – ident: e_1_2_7_33_1 doi: 10.1002/adma.201201318 – ident: e_1_2_7_40_1 doi: 10.1002/aelm.201900249 – ident: e_1_2_7_34_1 doi: 10.1002/adma.201801951 – ident: e_1_2_7_103_1 doi: 10.1002/smm2.1009 – ident: e_1_2_7_83_1 doi: 10.1016/j.bios.2018.01.035 – start-page: e1019 year: 2021 ident: e_1_2_7_102_1 article-title: Biomimetic nanoporous aerogels from branched aramid nanofibers combining high heat insulation and compressive strength publication-title: SmartMat contributor: fullname: Li J – ident: e_1_2_7_37_1 doi: 10.1021/ar9000873 – ident: e_1_2_7_13_1 doi: 10.1016/j.bios.2018.04.051 – ident: e_1_2_7_30_1 doi: 10.3389/fchem.2019.00667 – ident: e_1_2_7_97_1 doi: 10.1039/C7TC04389A – ident: e_1_2_7_95_1 doi: 10.1002/admt.201600042 – ident: e_1_2_7_68_1 doi: 10.1039/c3tb00525a – ident: e_1_2_7_67_1 doi: 10.1039/c3tb20340a – volume: 2 start-page: 1413 year: 2020 ident: e_1_2_7_51_1 article-title: Multifunctional interfacial layers from a one‐step process for effective charge capturing and erasing in low‐voltage‐driven organic thin‐film transistors publication-title: ACS Appl Mater Interfaces contributor: fullname: Wu FC – ident: e_1_2_7_48_1 doi: 10.1016/j.bios.2016.02.036 – ident: e_1_2_7_17_1 doi: 10.1016/j.bios.2020.112251 – ident: e_1_2_7_55_1 doi: 10.1016/j.orgel.2012.10.027 – ident: e_1_2_7_58_1 doi: 10.1039/C7MH00887B – ident: e_1_2_7_24_1 doi: 10.1002/adfm.201700999 – ident: e_1_2_7_22_1 doi: 10.1039/c3tc31412j – ident: e_1_2_7_43_1 doi: 10.1126/sciadv.1501856 – ident: e_1_2_7_76_1 doi: 10.1063/1.1527698 – ident: e_1_2_7_49_1 doi: 10.1002/adfm.201606506 – ident: e_1_2_7_72_1 doi: 10.1063/1.1873051 – ident: e_1_2_7_12_1 doi: 10.1016/j.orgel.2020.105794 – ident: e_1_2_7_25_1 doi: 10.1016/j.scib.2020.03.013 – volume: 4 start-page: 3100 year: 2012 ident: e_1_2_7_11_1 article-title: Organic transistors with ordered nanoparticle arrays as a tailorable platform for selective, in situ detection publication-title: ACS Nano doi: 10.1021/nn204830b contributor: fullname: Hammock ML – ident: e_1_2_7_54_1 doi: 10.1002/adma.201004071 – ident: e_1_2_7_23_1 doi: 10.1002/adfm.201700018 – ident: e_1_2_7_81_1 doi: 10.1002/adma.201000790 – ident: e_1_2_7_36_1 doi: 10.1038/nature07727 – ident: e_1_2_7_78_1 doi: 10.1039/c0cc02064h – ident: e_1_2_7_65_1 doi: 10.1021/acs.chemmater.8b02260 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201704843 – ident: e_1_2_7_41_1 doi: 10.1021/acsami.0c04208 – ident: e_1_2_7_14_1 doi: 10.1021/acsami.6b05515 – ident: e_1_2_7_86_1 doi: 10.1016/j.bios.2011.03.031 – ident: e_1_2_7_47_1 doi: 10.1002/adma.201602237 – ident: e_1_2_7_46_1 doi: 10.1038/nnano.2015.324 – ident: e_1_2_7_53_1 doi: 10.1002/aelm.201901127 – ident: e_1_2_7_39_1 doi: 10.1002/aelm.201901352 – ident: e_1_2_7_99_1 doi: 10.1002/smll.201900854 – ident: e_1_2_7_35_1 doi: 10.1038/s41557-018-0200-y – ident: e_1_2_7_94_1 doi: 10.1002/adhm.201600494 – ident: e_1_2_7_89_1 doi: 10.1002/adma.201000971 – ident: e_1_2_7_79_1 doi: 10.1039/c3tb20451k – ident: e_1_2_7_18_1 doi: 10.1038/ncomms3954 – ident: e_1_2_7_56_1 doi: 10.1002/open.201700070 – volume: 99 start-page: 073301 year: 2011 ident: e_1_2_7_9_1 article-title: The immobilization and electrical response of single‐stranded DNA molecules on pentacene transistors publication-title: Appl Phys Lett doi: 10.1063/1.3623438 contributor: fullname: Zhu Q – ident: e_1_2_7_74_1 doi: 10.1021/am100154e – ident: e_1_2_7_28_1 doi: 10.1038/35006603 – volume: 3 start-page: 7 year: 2019 ident: e_1_2_7_5_1 article-title: Biodegradable and flexible arterial‐pulse sensor for the wireless monitoring of blood flow publication-title: Nat Biomed Eng doi: 10.1038/s41551-018-0336-5 contributor: fullname: Boutry CM – volume: 5 start-page: 1800547 year: 2018 ident: e_1_2_7_100_1 article-title: The role of weak molecular dopants in enhancing the performance of solution‐processed organic field‐effect transistors publication-title: Adv Electron Mater doi: 10.1002/aelm.201800547 contributor: fullname: Wang Z – ident: e_1_2_7_52_1 doi: 10.1002/adma.201801891 – ident: e_1_2_7_75_1 doi: 10.1063/1.2936296 |
SSID | ssj0002504241 |
Score | 2.4546568 |
Snippet | Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to transfer and... Abstract Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to... Abstract Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to... |
SourceID | doaj crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | biosensors electrolyte‐gated organic transistors organic bioelectronics organic electrochemical transistors organic field‐effect transistors organic thin film transistors |
SummonAdditionalLinks | – databaseName: Wiley-Blackwell Open Access Collection dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEMeXWi96EJ9YXwT0JMRu9tHdBS8qLUWoerDQW9hXtGATaePdj-Bn9JO4u2lTexG8hWVDyGQ2859h57cAXBADLc18i7LLHWKiIYlFltBYECQZzLg2gc4_eOj0h-R-REcNcL3ohan4EHXBza-M8L_2C1yqWXsJDbXFBF35zk-yBtY9Msb7NyJPdYXFw7lQOLrShXVfjGO45pOi9vL2lYgUwP2rQjVEmt422JpLxOim-qY7oGHzXbD5Cxy4B2DVQqmj8nWcR9n4bRKVPugE5sfs-_PLBycTqXExc2mqG9oHw173-a4fz88-iLWTTCS2hGNjlcTU6R1LuRKQmkR7EBEWLgYbLVGWWMQoYlwKxLUUEidGUaY5SSQ-AM28yO0hiDqaO40CMbMEk441irkcgiZMI5lRDVkLnC_eP32vEBdpBTNGqbdSGqzUArfeNPUMj6UOA8X0JZ17eeqSv4xCSQR3eRpVRjh15FIenmioEclgC1wGw_7xnLT7OEDh6ug_k4_BBvK7TcKemhPQLKcf9tTJhVKdBa_4AX5btnU priority: 102 providerName: Wiley-Blackwell |
Title | Organic thin film transistors‐based biosensors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12094 https://doaj.org/article/191f50a4981445bd972717481c0c24f0 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA3alS7EJ9ZHGdCVMDaTSZpkqdJShKoLC90NmTywYKdix634CX6jX-JNUku70Y2bIYRAMvcOc86Be08QOqcGW-Z8izJoh5RqTFPpMpZKShTHTmgT3PkHd53-kN6O2Gjpqi9fExbtgWPg2qAnHMOKSgHUn5VGAuACixaZxppQF9U6lktiyv-DvTEXYNPCj5S07XRCLn2jKF1BoGDUv0pMA7L0ttHWnBImV_EoO2jNVrtoc8kocA_h2DKpk_ppXCVu_DxJag8yweNj9vXx6cHIJOV4OgNZClP7aNjrPt700_ldB6kGikRTS0VubKlyBvzGMlFKzEymvfFQLgFzjVbEZZZwRrhQkgitpMozUzKuBc1UfoAa1bSyhyjpaAGcBOfc0px2rCk5aAaWcU2UYxrzJjr7ef_iJVpaFNG8mBQ-SkWIUhNd-9AsVngb6jABySnmySn-Sk4TXYTA_rJP0b0fkDA6-o8dj9EG8VUnobbmBDXq1zd7CrShLltondCHVvhO4Dl4734DM2C8rA |
link.rule.ids | 315,783,787,867,2109,11576,27938,27939,46066,46490,50828,50937 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgHYAB8RTlGQkmpFDHj9oZC2pVoC1LgyqWyLEdqERT1JadT-Ab-RJsJ6R0QWKLLCtRbuycc67uPQbggiioaWpblI128ImExA_TgPohQYLBlEvl3Pl7_UYnIndDOixqc2wvTO4PUSbc7M5w_2u7wW1Cur5wDdWTMbqyrZ9kFVQN7mGjvarNx-gpKpMs1p8LudMrDbLbfBzDpUUpqi9usARKzrt_mas6sGlvgc2CJXrN_LNugxWd7YCNX96BuwDmXZTSm7-MMi8dvY69ucUdZ_sx-_r4tPikvGQ0mRmlaob2QNRuDW46fnH8gS8NayK-JhwrnQhMDeXRlCchpCqQ1osIhwaGlRQoDTRiFDEuQsSlCAUOVEKZ5CQQeB9UskmmD4DXkNzQFIiZJpg0tEqYkRE0YBKJlErIauD85_3jt9zlIs79jFFsoxS7KNXAtQ1NOcM6U7uByfQ5LhZ6bPRfSqEgITdSjSYqNATJqB4eSCgRSWENXLrA_vGcuPXQQ-7q8D-Tz8BaZ9Drxt3b_v0RWEe2-MSV2ByDynz6rk8Me5gnp8Ua-QYcXLuv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JSwMxFMcftYLoQVyxrgN6EkYzmaTJgBeXlrq09mChtyGTRQt2oa13P4Kf0U9ikuliL4K3IWQY5k0y7_8Peb8AnBGFNDWuRNl6h5BIRMLERDRMCBYMGS6Vp_PXG-Vaizy0absAV9NamJwPMVtwczPD_6_dBB8oczmHhup-F1-4yk-yBMvE6XDHdSbN2QqLg3Nhf3SlTetuMY7FMz4pvpzfvpCRPLh_Uaj6TFPdgPWJRAyu82-6CQXd24K1X-DAbUB5CaUMxm-dXmA6791g7JKOZ36Mvj-_XHJSQdbpj6xNtU070KpWXm5r4eTsg1BayURCTXisdCZiavWOpjxLEFWRdCCiOLE5WEmBTaQxo5hxkWAuRSLiSGWUSU4iEe9Csdfv6T0IypJbjYJipklMylplzHoIGjGJhaESsRKcTt8_HeSIizSHGePURSn1USrBjQvNrIfDUvuG_vA1nYzy1Jo_Q5EgCbc-jWYqserIWh4eSSQxMagE5z6wfzwnrTzXsb_a_0_nE1hp3lXTp_vG4wGsYrfxxG-vOYTiePihj6xyGGfHfoD8AH2_uQk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+thin+film+transistors%E2%80%90based+biosensors&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Sun%2C+Chenfang&rft.au=Wang%2C+Xue&rft.au=Auwalu%2C+Muhammad+Aminu&rft.au=Cheng%2C+Shanshan&rft.date=2021-04-01&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=3&rft.issue=2&rft_id=info:doi/10.1002%2Feom2.12094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eom2_12094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon |