Organic thin film transistors‐based biosensors

Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to transfer and amplify received biological signals into electrical signals. Nevertheless, the development of OTFTs‐based biosensors with excellent sensitivi...

Full description

Saved in:
Bibliographic Details
Published inEcoMat (Beijing, China) Vol. 3; no. 2
Main Authors Sun, Chenfang, Wang, Xue, Auwalu, Muhammad Aminu, Cheng, Shanshan, Hu, Wenping
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.04.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to transfer and amplify received biological signals into electrical signals. Nevertheless, the development of OTFTs‐based biosensors with excellent sensitivity, selectivity, and stability for specific biological processes remains a major challenge. This mini review focuses on recent achievements in OTFTs‐based biosensors since 2010. Specifically, three types of OTFTs, specifically organic field‐effect transistors (OFETs), electrolyte‐gated OFETs (EGOFETs), and organic electrochemical transistors (OECTs) are summarized in terms of the key strategies required for high‐performance bioelectronics. Additionally, various OTFTs‐based biosensors, such as ions, glucose, nucleic acids, proteins, and cells are described in terms of their working principles. This mini review highlights the uses of OTFTs for a broad range of research applications with a focus on designing novel OTFTs‐based biosensors. The organic thin film transistors (OTFTs)‐based biosensors integrate the advantages of OTFTs and biosensors, leading to the state‐of‐the‐art biosensing platforms for health or body signal monitoring. In this review, recent efforts in high‐performance OTFTs‐based biosensors are introduced in details for meeting various specific healthcare and diagnosis applications, such as ion, glucose, DNA, protein, cells, and so forth.
AbstractList Abstract Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to transfer and amplify received biological signals into electrical signals. Nevertheless, the development of OTFTs‐based biosensors with excellent sensitivity, selectivity, and stability for specific biological processes remains a major challenge. This mini review focuses on recent achievements in OTFTs‐based biosensors since 2010. Specifically, three types of OTFTs, specifically organic field‐effect transistors (OFETs), electrolyte‐gated OFETs (EGOFETs), and organic electrochemical transistors (OECTs) are summarized in terms of the key strategies required for high‐performance bioelectronics. Additionally, various OTFTs‐based biosensors, such as ions, glucose, nucleic acids, proteins, and cells are described in terms of their working principles. This mini review highlights the uses of OTFTs for a broad range of research applications with a focus on designing novel OTFTs‐based biosensors.
Abstract Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to transfer and amplify received biological signals into electrical signals. Nevertheless, the development of OTFTs‐based biosensors with excellent sensitivity, selectivity, and stability for specific biological processes remains a major challenge. This mini review focuses on recent achievements in OTFTs‐based biosensors since 2010. Specifically, three types of OTFTs, specifically organic field‐effect transistors (OFETs), electrolyte‐gated OFETs (EGOFETs), and organic electrochemical transistors (OECTs) are summarized in terms of the key strategies required for high‐performance bioelectronics. Additionally, various OTFTs‐based biosensors, such as ions, glucose, nucleic acids, proteins, and cells are described in terms of their working principles. This mini review highlights the uses of OTFTs for a broad range of research applications with a focus on designing novel OTFTs‐based biosensors. image
Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to transfer and amplify received biological signals into electrical signals. Nevertheless, the development of OTFTs‐based biosensors with excellent sensitivity, selectivity, and stability for specific biological processes remains a major challenge. This mini review focuses on recent achievements in OTFTs‐based biosensors since 2010. Specifically, three types of OTFTs, specifically organic field‐effect transistors (OFETs), electrolyte‐gated OFETs (EGOFETs), and organic electrochemical transistors (OECTs) are summarized in terms of the key strategies required for high‐performance bioelectronics. Additionally, various OTFTs‐based biosensors, such as ions, glucose, nucleic acids, proteins, and cells are described in terms of their working principles. This mini review highlights the uses of OTFTs for a broad range of research applications with a focus on designing novel OTFTs‐based biosensors. The organic thin film transistors (OTFTs)‐based biosensors integrate the advantages of OTFTs and biosensors, leading to the state‐of‐the‐art biosensing platforms for health or body signal monitoring. In this review, recent efforts in high‐performance OTFTs‐based biosensors are introduced in details for meeting various specific healthcare and diagnosis applications, such as ion, glucose, DNA, protein, cells, and so forth.
Author Wang, Xue
Auwalu, Muhammad Aminu
Cheng, Shanshan
Hu, Wenping
Sun, Chenfang
Author_xml – sequence: 1
  givenname: Chenfang
  surname: Sun
  fullname: Sun, Chenfang
  organization: Tianjin University
– sequence: 2
  givenname: Xue
  surname: Wang
  fullname: Wang, Xue
  organization: Tianjin University
– sequence: 3
  givenname: Muhammad Aminu
  surname: Auwalu
  fullname: Auwalu, Muhammad Aminu
  organization: Tianjin University
– sequence: 4
  givenname: Shanshan
  surname: Cheng
  fullname: Cheng, Shanshan
  email: chengss@tju.edu.cn
  organization: Tianjin University
– sequence: 5
  givenname: Wenping
  orcidid: 0000-0001-5686-2740
  surname: Hu
  fullname: Hu, Wenping
  email: huwp@tju.edu.cn
  organization: Institution of Chemistry, Chinese Academy of Sciences
BookMark eNp9kM1KAzEUhYNUsNZufIJZC1Nz89MkSylVC5VudB0ySaamTCeSDEh3PoLP6JM47Yi4cnUvh-98i3OJRm1sPULXgGeAMbn1cU9mQLBiZ2hM-FyUFAQd_fkv0DTnHe5hjhlhMEZ4k7amDbboXkNb1KHZF10ybQ65iyl_fXxWJntXVCFm3-Y-ukLntWmyn_7cCXq5Xz4vHsv15mG1uFuXlmPJSs8kdb4ylDNCPZeVwtyBZVRQqvAcnDWkBk8EJ0IaRaQ1ylBwFRdWMjB0glaD10Wz028p7E066GiCPgUxbbVJXbCN16Cg5tgwJYExXjkliADBJFhsCatx77oZXDbFnJOvf32A9XE6fZxOn6brYRjg99D4wz-kXm6eyND5BgSacKU
CitedBy_id crossref_primary_10_1039_D1TC05238A
crossref_primary_10_1080_10408347_2021_2002133
crossref_primary_10_2174_1573413719666230714121859
crossref_primary_10_1021_acsaelm_2c00983
crossref_primary_10_1039_D2NR05863D
crossref_primary_10_1002_adhm_202100955
crossref_primary_10_1016_j_nxnano_2023_100025
crossref_primary_10_1016_j_bios_2022_114667
crossref_primary_10_3390_chemosensors11030202
crossref_primary_10_1021_acs_chemrev_3c00507
crossref_primary_10_1109_ACCESS_2023_3253563
crossref_primary_10_3390_polym15204062
crossref_primary_10_3390_bios13080765
crossref_primary_10_1016_j_jmst_2022_05_047
crossref_primary_10_1021_acsnano_2c12606
crossref_primary_10_1016_j_aej_2023_11_085
crossref_primary_10_1016_j_matlet_2022_133197
crossref_primary_10_1039_D3NR01051A
crossref_primary_10_1002_aelm_202300548
crossref_primary_10_1002_aisy_202100253
crossref_primary_10_1002_smsc_202300058
crossref_primary_10_1039_D1AN02188E
crossref_primary_10_1002_solr_202100787
crossref_primary_10_1016_j_mssp_2023_107658
crossref_primary_10_3390_bios12121081
crossref_primary_10_3390_s23198309
crossref_primary_10_3390_bios13040426
crossref_primary_10_1007_s40820_022_00930_5
crossref_primary_10_1021_acsnano_3c08315
crossref_primary_10_1007_s12274_023_5606_1
crossref_primary_10_1002_aelm_202200142
crossref_primary_10_1080_10408436_2023_2169657
crossref_primary_10_3390_bios13060586
crossref_primary_10_1002_adhm_202303923
crossref_primary_10_1021_acs_analchem_1c03683
crossref_primary_10_1002_eom2_12253
crossref_primary_10_1016_j_apsusc_2024_160639
crossref_primary_10_1109_JFLEX_2022_3152465
crossref_primary_10_1021_acs_chemrev_1c00539
crossref_primary_10_1002_elsa_202100216
crossref_primary_10_1007_s40820_022_00806_8
crossref_primary_10_1002_ijch_202100067
crossref_primary_10_1021_acs_analchem_1c02601
crossref_primary_10_1088_2752_5724_ace3dd
crossref_primary_10_1016_j_xcrp_2023_101673
crossref_primary_10_1021_acs_analchem_2c00897
crossref_primary_10_1109_TNANO_2023_3312819
crossref_primary_10_1039_D3NR03405D
crossref_primary_10_1002_adma_202308952
crossref_primary_10_3390_mi13101613
crossref_primary_10_1149_1945_7111_aca722
Cites_doi 10.1002/aelm.201700209
10.1016/j.orgel.2011.09.025
10.1039/C5TB00243E
10.3390/polym11010107
10.1002/adfm.201404535
10.1002/adma.201302615
10.1038/srep00754
10.1021/jacs.7b09381
10.1016/j.bios.2017.12.041
10.1021/ja107088m
10.1002/adma.201801830
10.5796/electrochemistry.18-6-E2672
10.1021/acsami.7b09384
10.1007/s00216-016-9502-3
10.1002/adma.201002313
10.1021/cm802530x
10.1007/s00216-011-5363-y
10.1002/adbi.201900204
10.1002/adma.201400263
10.1002/advs.201700609
10.1088/2058-8585/aad0cb
10.2116/analsci.18SDN02
10.1002/adma.201800051
10.1016/j.orgel.2014.06.002
10.1016/j.bios.2016.01.012
10.1063/1.3581882
10.1016/j.tsf.2018.11.032
10.1063/1.1527233
10.1016/j.snb.2015.02.038
10.1038/ncomms9356
10.1016/j.orgel.2013.12.016
10.1039/D0TC01536A
10.1039/C9NR06096K
10.1038/ncomms10032
10.1039/b811606g
10.1002/anie.201916397
10.1002/adma.201203587
10.1002/smm2.1010
10.1016/j.chempr.2018.03.007
10.1002/adma.201202996
10.1016/j.bios.2008.07.030
10.1039/c1cc10321k
10.1016/j.snb.2008.08.009
10.1002/advs.201701053
10.1039/C3TB21491E
10.1021/acs.analchem.6b03522
10.1021/nn305903q
10.1002/adma.201201318
10.1002/aelm.201900249
10.1002/adma.201801951
10.1002/smm2.1009
10.1016/j.bios.2018.01.035
10.1021/ar9000873
10.1016/j.bios.2018.04.051
10.3389/fchem.2019.00667
10.1039/C7TC04389A
10.1002/admt.201600042
10.1039/c3tb00525a
10.1039/c3tb20340a
10.1016/j.bios.2016.02.036
10.1016/j.bios.2020.112251
10.1016/j.orgel.2012.10.027
10.1039/C7MH00887B
10.1002/adfm.201700999
10.1039/c3tc31412j
10.1126/sciadv.1501856
10.1063/1.1527698
10.1002/adfm.201606506
10.1063/1.1873051
10.1016/j.orgel.2020.105794
10.1016/j.scib.2020.03.013
10.1021/nn204830b
10.1002/adma.201004071
10.1002/adfm.201700018
10.1002/adma.201000790
10.1038/nature07727
10.1039/c0cc02064h
10.1021/acs.chemmater.8b02260
10.1002/adma.201704843
10.1021/acsami.0c04208
10.1021/acsami.6b05515
10.1016/j.bios.2011.03.031
10.1002/adma.201602237
10.1038/nnano.2015.324
10.1002/aelm.201901127
10.1002/aelm.201901352
10.1002/smll.201900854
10.1038/s41557-018-0200-y
10.1002/adhm.201600494
10.1002/adma.201000971
10.1039/c3tb20451k
10.1038/ncomms3954
10.1002/open.201700070
10.1063/1.3623438
10.1021/am100154e
10.1038/35006603
10.1038/s41551-018-0336-5
10.1002/aelm.201800547
10.1002/adma.201801891
10.1063/1.2936296
ContentType Journal Article
Copyright 2021 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
Copyright_xml – notice: 2021 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
DBID 24P
WIN
AAYXX
CITATION
DOA
DOI 10.1002/eom2.12094
DatabaseName Wiley-Blackwell Open Access Collection
Wiley-Blackwell Open Access Backfiles
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3173
EndPage n/a
ExternalDocumentID oai_doaj_org_article_191f50a4981445bd972717481c0c24f0
10_1002_eom2_12094
EOM212094
Genre reviewArticle
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 21473222; 21661132006; 51703160; 51633006; 91433115; 51733004; 21705116
– fundername: Ministry of Science and Technology of China
  funderid: 2016YFB0401100; 2017YFA0204503; 2015CB856502
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
KB.
M~E
PATMY
PDBOC
PIMPY
PYCSY
WIN
AAYXX
CITATION
ITC
ID FETCH-LOGICAL-c5084-e483deba35423e58b905d1c437339061dca2f1e275278a928ca9a31db57c841a3
IEDL.DBID DOA
ISSN 2567-3173
IngestDate Tue Oct 22 15:12:57 EDT 2024
Thu Sep 26 18:18:14 EDT 2024
Sat Aug 24 01:02:11 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5084-e483deba35423e58b905d1c437339061dca2f1e275278a928ca9a31db57c841a3
Notes Funding information
Ministry of Science and Technology of China, Grant/Award Numbers: 2016YFB0401100, 2017YFA0204503, 2015CB856502; Natural Science Foundation of China, Grant/Award Numbers: 21473222, 21661132006, 51703160, 51633006, 91433115, 51733004, 21705116
ORCID 0000-0001-5686-2740
OpenAccessLink https://doaj.org/article/191f50a4981445bd972717481c0c24f0
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_191f50a4981445bd972717481c0c24f0
crossref_primary_10_1002_eom2_12094
wiley_primary_10_1002_eom2_12094_EOM212094
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle EcoMat (Beijing, China)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 6
2013; 25
2017; 3
2013; 1
2009; 42
2020; 164
2019; 11
2019; 15
2014; 26
2011; 99
2020; 59
2011; 98
2020; 12
2013; 7
2012; 13
2012; 402
2018; 86
2017; 9
2016; 79
2020; 8
2010; 22
2018; 6
2020; 6
2014; 5
2018; 3
2020; 4
2013; 14
2018; 5
2020; 2
2018; 4
2014; 2
2020; 1
2015; 212
2000; 404
2014; 15
2018; 30
2011; 23
2016; 81
2011; 26
2008; 20
2003; 82
2012; 24
2010; 2
2016; 88
2019; 7
2009; 24
2015; 6
2019; 3
2019; 5
2015; 3
2018; 105
2020; 84
2017; 27
2019; 35
2018; 104
2016; 408
2005; 86
2002; 81
2019; 669
2008; 92
2011; 133
2017; 139
2009; 457
2016; 11
2016; 5
2015; 25
2012; 2
2016; 1
2016; 2
2010; 46
2021
2018; 113
2009; 9
2020; 65
2011; 47
2008; 135
2016; 28
2012; 4
2016; 8
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
Li J (e_1_2_7_102_1) 2021
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
Zhu Q (e_1_2_7_9_1) 2011; 99
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
Boutry CM (e_1_2_7_5_1) 2019; 3
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
Wang Z (e_1_2_7_100_1) 2018; 5
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
Wu FC (e_1_2_7_51_1) 2020; 2
e_1_2_7_6_1
Hammock ML (e_1_2_7_11_1) 2012; 4
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
Baroot A (e_1_2_7_66_1) 2019; 669
e_1_2_7_38_1
Si K (e_1_2_7_96_1) 2018; 30
References_xml – volume: 5
  year: 2018
  article-title: The role of weak molecular dopants in enhancing the performance of solution‐processed organic field‐effect transistors
  publication-title: Adv Electron Mater
– volume: 11
  start-page: 17709
  year: 2019
  end-page: 17717
  article-title: Polymer‐based flexible NO sensors with ppb‐level detection at room temperature using breath‐figure molding
  publication-title: Nanoscale
– volume: 6
  start-page: 472
  year: 2017
  end-page: 475
  article-title: Label‐free direct electrical detection of a histidine‐rich protein with sub‐femtomolar sensitivity using an organic field‐effect transistor
  publication-title: ChemistryOpen
– volume: 105
  start-page: 121
  year: 2018
  end-page: 128
  article-title: Chirality detection of amino acid enantiomers by organic electrochemical transistor
  publication-title: Biosens Bioelectron
– volume: 5
  start-page: 2954
  year: 2014
  article-title: Highly stable organic polymer field‐effect transistor sensor for selective detection in the marine environment
  publication-title: Nat Commun
– volume: 2
  start-page: 1413
  year: 2020
  end-page: 1420
  article-title: Multifunctional interfacial layers from a one‐step process for effective charge capturing and erasing in low‐voltage‐driven organic thin‐film transistors
  publication-title: ACS Appl Mater Interfaces
– volume: 14
  start-page: 156
  year: 2013
  end-page: 163
  article-title: Organic field‐effect transistor for label‐free dopamine sensing
  publication-title: Org Electron
– volume: 8
  start-page: 19860
  year: 2016
  end-page: 19865
  article-title: Molecularly imprinted polymer (MIP) film with improved surface area developed by using metal‐organic framework (MOF) for sensitive lipocalin (NGAL) determination
  publication-title: ACS Appl Mater Interfaces
– volume: 11
  start-page: 271
  year: 2019
  end-page: 277
  article-title: Mesopolymer synthesis by ligand‐modulated direct arylation polycondensation towards n‐type and ambipolar conjugated systems
  publication-title: Nat Chem
– volume: 27
  year: 2017
  article-title: Extended solution gate OFET‐based biosensor for label‐free glial fibrillary acidic protein detection with polyethylene glycol‐containing bioreceptor layer
  publication-title: Adv Funct Mater
– volume: 3
  start-page: 7
  year: 2019
  end-page: 57
  article-title: Biodegradable and flexible arterial‐pulse sensor for the wireless monitoring of blood flow
  publication-title: Nat Biomed Eng
– volume: 1
  start-page: 3728
  year: 2013
  end-page: 3741
  article-title: Water‐gated organic field effect transistors‐ opportunities for biochemical sensing and extracellular signal transduction
  publication-title: J Mater Chem B
– volume: 4
  start-page: 1416
  year: 2018
  end-page: 1426
  article-title: Functionalized π stacks of hexabenzoperylenes as a platform for chemical and biological sensing
  publication-title: Chem
– year: 2021
  article-title: Biomimetic nanoporous aerogels from branched aramid nanofibers combining high heat insulation and compressive strength
  publication-title: SmartMat
– volume: 30
  start-page: 5422
  year: 2018
  end-page: 5428
  article-title: Spectroscopic study of charge transport at organic solid‐water interface
  publication-title: Chem Mater
– volume: 15
  start-page: 595
  year: 2014
  end-page: 601
  article-title: Polymeric ion‐selective membrane functionalized gate‐electrodes: ion‐selective response of electrolyte‐gated poly(3‐hexylthiophene) field‐effect transistors
  publication-title: Org Electron
– volume: 1
  start-page: 6532
  year: 2013
  article-title: Flexible spray‐coated TIPS‐pentacene organic thin‐film transistors as ammonia gas sensors
  publication-title: J Mater Chem C
– volume: 2
  year: 2016
  article-title: Ultraflexible organic photonic skin
  publication-title: Sci Adv
– volume: 1
  start-page: 2090
  year: 2013
  end-page: 2097
  article-title: Copolythiophene‐based water‐gated organic field‐effect transistors for biosensing
  publication-title: J Mater Chem B
– volume: 6
  year: 2020
  article-title: Interlayers for improved hole injection in organic field‐effect transistors
  publication-title: Adv Electron Mater
– volume: 6
  start-page: 8356
  year: 2015
  article-title: Flexible and self‐powered temperature‐pressure dual‐parameter sensors using microstructure‐frame‐supported organic thermoelectric materials
  publication-title: Nat Commun
– volume: 15
  start-page: 2126
  year: 2014
  end-page: 2134
  article-title: Improving mobility and electrochemical stability of a water‐gated polymer field‐effect transistor
  publication-title: Org Electron
– volume: 27
  year: 2017
  article-title: Porous organic field‐effect transistors for enhanced chemical sensing performances
  publication-title: Adv Funct Mater
– volume: 408
  start-page: 3943
  year: 2016
  end-page: 3952
  article-title: Label‐free C‐reactive protein electronic detection with an electrolyte‐gated organic field‐effect transistor‐based immunosensor
  publication-title: Anal Bioanal Chem
– volume: 6
  year: 2015
  article-title: High mobility emissive organic semiconductor
  publication-title: Nat Commun
– volume: 3
  start-page: 5049
  year: 2015
  end-page: 5057
  article-title: UV crosslinked poly(acrylic acid): a simple method to bio‐functionalize electrolyte‐gated OFET biosensors
  publication-title: J Mater Chem B
– volume: 113
  start-page: 32
  year: 2018
  end-page: 38
  article-title: Triggering the electrolyte‐gated organic field‐effect transistor output characteristics through gate functionalization using diazonium chemistry: application to biodetection of 2,4‐dichlorophenoxyacetic acid
  publication-title: Biosens Bioelectron
– volume: 4
  year: 2020
  article-title: Organic electrochemical transistors for real‐time monitoring of in vitro silver nanoparticle toxicity
  publication-title: Adv Biosyst
– volume: 30
  year: 2018
  article-title: Fabric organic electrochemical transistors for biosensors
  publication-title: Adv Mater
– volume: 212
  start-page: 329
  year: 2015
  end-page: 334
  article-title: Label‐free detection of tumor markers using field effect transistor (FET)‐based biosensors for lung cancer diagnosis
  publication-title: Sens Actuat B
– volume: 47
  start-page: 5109
  year: 2011
  end-page: 5115
  article-title: Naphthalene and perylene diimides for organic transistors
  publication-title: Chem Commun
– volume: 1
  year: 2020
  article-title: Organic photodetectors based on supramolecular nanostructures
  publication-title: SmartMat
– volume: 669
  start-page: 665
  year: 2019
  end-page: 669
  article-title: Electrochemical gating of a hydrophobic organic semiconductor with aqueous media
  publication-title: Thin Solid Films
– volume: 22
  start-page: 4862
  year: 2010
  end-page: 4866
  article-title: A high mobility p‐type DPP‐thieno[3,2‐b]thiophene copolymer for organic thin‐film transistors
  publication-title: Adv Mater
– volume: 23
  start-page: 1630
  year: 2011
  end-page: 1634
  article-title: Flexible organic thin‐film transistors with silk fibroin as the gate dielectric
  publication-title: Adv Mater
– volume: 82
  start-page: 475
  year: 2003
  end-page: 477
  article-title: Field‐effect detection of chemical species with hybrid organic/inorganic transistors
  publication-title: Appl Phys Lett
– volume: 86
  year: 2005
  article-title: Flexible, organic, ion‐sensitive field‐effect transistor
  publication-title: Appl Phys Lett
– volume: 133
  start-page: 2170
  year: 2011
  end-page: 2176
  article-title: In situ antibody detection and charge discrimination using aqueous stable pentacene transistor biosensors
  publication-title: J Am Chem Soc
– volume: 26
  start-page: 3874
  year: 2014
  end-page: 3878
  article-title: Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold
  publication-title: Adv Mater
– volume: 2
  start-page: 754
  year: 2012
  article-title: A stable solution‐processed polymer semiconductor with record high‐mobility for printed transistors
  publication-title: Sci Rep
– volume: 24
  start-page: 1241
  year: 2009
  end-page: 1245
  article-title: Label‐free DNA sensor based on organic thin film transistors
  publication-title: Biosens Bioelectron
– volume: 9
  start-page: 38687
  year: 2017
  end-page: 38694
  article-title: Liquid‐solid dual‐gate organic transistors with tunable threshold voltage for cell sensing
  publication-title: ACS Appl Mater Interfaces
– volume: 30
  year: 2018
  article-title: Triple acceptors in a polymeric architecture for balanced ambipolar transistors and high‐gain inverters
  publication-title: Adv Mater
– volume: 35
  start-page: 103
  year: 2019
  end-page: 106
  article-title: Fabrication of a flexible biosensor based on an organic field‐effect transistor for lactate detection
  publication-title: Anal Sci
– volume: 15
  year: 2019
  article-title: Recent progress in organic electron transport materials in inverted perovskite solar cells
  publication-title: Small
– volume: 25
  start-page: 2138
  year: 2015
  end-page: 2146
  article-title: Thermally stable, biocompatible, and flexible organic field‐effect transistors and their application in temperature sensing arrays for artificial skin
  publication-title: Adv Func Mater
– volume: 28
  start-page: 9722
  year: 2016
  end-page: 9728
  article-title: Integration of organic electrochemical and field‐effect transistors for ultraflexible, high temporal resolution electrophysiology arrays
  publication-title: Adv Mater
– volume: 11
  start-page: 472
  year: 2016
  end-page: 478
  article-title: A transparent bending‐insensitive pressure sensor
  publication-title: Nat Nanotechnol
– volume: 25
  start-page: 6575
  year: 2013
  end-page: 6580
  article-title: Organic electrochemical transistor array for recording transepithelial ion transport of human airway epithelial cells
  publication-title: Adv Mater
– volume: 20
  start-page: 7332
  year: 2008
  end-page: 7338
  article-title: Influence of molecular structure and film properties on the water‐stability and sensor characteristics of organic transistors
  publication-title: Chem Mater
– volume: 65
  start-page: 791
  year: 2020
  end-page: 795
  article-title: Solution‐processed ultra‐flexible C ‐BTBT organic thin‐film transistors with the corrected mobility over 18 cm /(V s)
  publication-title: Sci Bull
– volume: 5
  year: 2018
  article-title: Smart surgical catheter for C‐reactive protein sensing based on an imperceptible organic transistor
  publication-title: Adv Sci
– volume: 2
  start-page: 2537
  year: 2014
  end-page: 2545
  article-title: A facile biofunctionalisation route for solution processable conducting polymer devices
  publication-title: J Mater Chem B
– volume: 11
  start-page: 107
  year: 2019
  article-title: Recent progress in thermoelectric materials based on conjugated polymers
  publication-title: Polymers
– volume: 79
  start-page: 736
  year: 2016
  end-page: 741
  article-title: A highly sensitive biosensor for tumor marker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT
  publication-title: Biosens Bioelectron
– volume: 402
  start-page: 1813
  year: 2012
  end-page: 1826
  article-title: Advances in organic transistor‐based biosensors: from organic electrochemical transistors to electrolyte‐gated organic field‐effect transistors
  publication-title: Anal Bioanal Chem
– volume: 7
  start-page: 3970
  year: 2013
  end-page: 3980
  article-title: Investigation of protein detection parameters using nanofunctionalized organic field‐effect transistors
  publication-title: ACS Nano
– volume: 27
  year: 2017
  article-title: Solution‐processed monolayer organic crystals for high‐performance field‐effect transistors and ultrasensitive gas sensors
  publication-title: Adv Funct Mater
– volume: 3
  year: 2018
  article-title: Ultra‐sensitive protein detection with organic electrochemical transistors printed on plastic substrates
  publication-title: Flex Print Electron
– volume: 104
  start-page: 113
  year: 2018
  end-page: 119
  article-title: Low‐picomolar, label‐free procalcitonin analytical detection with an electrolyte‐gated organic field‐effect transistor based electronic immunosensor
  publication-title: Biosens Bioelectron
– volume: 4
  start-page: 3100
  year: 2012
  end-page: 3108
  article-title: Organic transistors with ordered nanoparticle arrays as a tailorable platform for selective, in situ detection
  publication-title: ACS Nano
– volume: 46
  start-page: 7972
  year: 2010
  end-page: 7974
  article-title: Electrochemical transistors with ionic liquids for enzymatic sensing
  publication-title: Chem Commun
– volume: 30
  year: 2018
  article-title: Free‐standing 2D hexagonal aluminum nitride dielectric crystals for high‐performance organic field‐effect transistors
  publication-title: Adv Mater
– volume: 30
  start-page: 991
  year: 2018
  end-page: 999
  article-title: Multianalyte detection of cancer biomarkers in human serum using a label‐free field effect transistor biosensor
  publication-title: Sens Mater
– volume: 84
  year: 2020
  article-title: Organic‐based field effect transistors for protein detection fabricated by inkjet‐printing
  publication-title: Org Electron
– volume: 135
  start-page: 195
  year: 2008
  end-page: 199
  article-title: Varahramyan K. glucose sensor based on organic thin film transistor using glucose oxidase and conducting polymer
  publication-title: Sens Actuat B
– volume: 6
  start-page: 3485
  year: 2018
  end-page: 3498
  article-title: Recent progress on organic donor‐acceptor complexes as active elements in organic field‐effect transistors
  publication-title: J Mater Chem C
– volume: 1
  start-page: 3820
  year: 2013
  end-page: 3829
  article-title: Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene‐modified gate electrodes
  publication-title: J Mater Chem B
– volume: 86
  start-page: 303
  year: 2018
  end-page: 308
  article-title: Development of enzymatic sensors based on extended‐gate‐type organic field‐effect transistors
  publication-title: Electrochemistry
– volume: 42
  start-page: 1573
  year: 2009
  end-page: 1583
  article-title: Interface engineering: an effective approach toward high‐performance organic field‐effect transistors
  publication-title: Acc Chem Res
– volume: 30
  year: 2018
  article-title: Doping: a key enabler for organic transistors
  publication-title: Adv Mater
– volume: 81
  start-page: 87
  year: 2016
  end-page: 91
  article-title: Selective nitrate detection by an enzymatic sensor based on an extended‐gate type organic field‐effect transistor
  publication-title: Biosens Bioelectron
– volume: 24
  start-page: 4618
  year: 2012
  end-page: 4622
  article-title: Highly π‐extended copolymers with diketopyrrolopyrrole moieties for high‐performance field‐effect transistors
  publication-title: Adv Mater
– volume: 98
  year: 2011
  article-title: Electrolyte‐gated organic field‐effect transistors for sensing applications
  publication-title: Appl Phys Lett
– volume: 404
  start-page: 478
  year: 2000
  end-page: 480
  article-title: A soluble and air‐stable organic semiconductor with high electron mobility
  publication-title: Nature
– volume: 92
  year: 2008
  article-title: In vitro evaluation of flexible pH and potassium ion‐sensitive organic field effect transistor sensors
  publication-title: Appl Phys Lett
– volume: 5
  year: 2018
  article-title: Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems
  publication-title: Adv Sci
– volume: 99
  year: 2011
  article-title: The immobilization and electrical response of single‐stranded DNA molecules on pentacene transistors
  publication-title: Appl Phys Lett
– volume: 5
  year: 2019
  article-title: Solvent engineering for high‐performance n‐type organic electrochemical transistors
  publication-title: Adv Electron Mater
– volume: 25
  start-page: 2090
  year: 2013
  end-page: 2094
  article-title: Electrolyte‐gated organic field‐effect transistor sensors based on supported biotinylated phospholipid bilayer
  publication-title: Adv Mater
– volume: 457
  start-page: 679
  year: 2009
  end-page: 686
  article-title: A high‐mobility electron‐transporting polymer for printed transistors
  publication-title: Nature
– volume: 5
  start-page: 240
  year: 2018
  end-page: 247
  article-title: Molecular antenna tailored organic thin‐film transistors for sensing application
  publication-title: Mater Horiz
– volume: 12
  start-page: 26239
  year: 2020
  end-page: 26249
  article-title: The critical role of materials' interaction in realizing organic field‐effect transistors via high‐dilution blending with insulating polymers
  publication-title: ACS Appl Mater Interfaces
– volume: 9
  start-page: 704
  year: 2009
  end-page: 708
  article-title: Integration of a surface‐directed microfluidic system with an organic electrochemical transistor array for multi‐analyte biosensors
  publication-title: Lab Chip
– volume: 88
  start-page: 12330
  year: 2016
  end-page: 12338
  article-title: Biorecognition in organic field effect transistors biosensors: the role of the density of states of the organic semiconductor
  publication-title: Anal Chem
– volume: 5
  start-page: 2295
  year: 2016
  end-page: 2302
  article-title: Organic transistor arrays integrated with finger‐powered microfluidics for multianalyte saliva testing
  publication-title: Adv Healthc Mater
– volume: 139
  start-page: 17261
  year: 2017
  end-page: 17264
  article-title: Aromatic extension at 2,6‐positions of anthracene toward an elegant strategy for organic semiconductors with efficient charge transport and strong solid state emission
  publication-title: J Am Chem Soc
– volume: 13
  start-page: 1
  year: 2012
  end-page: 6
  article-title: DNA detection with a water‐gated organic field‐effect transistor
  publication-title: Org Electron
– volume: 7
  start-page: 667
  year: 2019
  article-title: A study on the stability of water‐gated organic field‐effect‐transistors based on a commercial p‐type polymer
  publication-title: Front Chem
– volume: 2
  start-page: 1637
  year: 2010
  end-page: 1641
  article-title: Ion‐sensitive properties of organic electrochemical transistors
  publication-title: ACS Appl Mater Interfaces
– volume: 1
  year: 2020
  article-title: Flexible conductive polymer composites for smart wearable strain sensors
  publication-title: SmartMat
– volume: 3
  year: 2017
  article-title: Assembly of π‐conjugated nanosystems for electronic sensing devices
  publication-title: Adv Electron Mater
– volume: 6
  year: 2020
  article-title: Robust high‐capacitance polymer gate dielectrics for stable low‐voltage organic field‐effect transistor sensors
  publication-title: Adv Electron Mater
– volume: 59
  start-page: 4380
  year: 2020
  end-page: 4384
  article-title: Monolayer two‐dimensional molecular crystals for an ultrasensitive OFET‐based chemical sensor
  publication-title: Angew Chem Int Ed
– volume: 22
  start-page: 4452
  year: 2010
  end-page: 4456
  article-title: In situ, label‐free DNA detection using organic transistor sensors
  publication-title: Adv Mater
– volume: 22
  start-page: 3655
  year: 2010
  end-page: 3660
  article-title: The application of organic electrochemical transistors in cell‐based biosensors
  publication-title: Adv Mater
– volume: 30
  year: 2018
  article-title: Quinoline‐flanked diketopyrrolopyrrole copolymers breaking through electron mobility over 6 cm V s in flexible thin film devices
  publication-title: Adv Mater
– volume: 1
  year: 2016
  article-title: Highly sensitive metabolite biosensor based on organic electrochemical transistor integrated with microfluidic channel and poly(N‐vinyl‐2‐pyrrolidone)‐capped platinum nanoparticles
  publication-title: Adv Mater Technol
– volume: 81
  start-page: 4643
  year: 2002
  end-page: 4645
  article-title: Humidity sensors based on pentacene thin‐film transistors
  publication-title: Appl Phys Lett
– volume: 8
  start-page: 8213
  year: 2020
  end-page: 8223
  article-title: Iron‐coordinating π‐conjugated semiconducting polymer: morphology and charge transport in organic field‐effect transistors
  publication-title: J Mater Chem C
– volume: 26
  start-page: 4217
  year: 2011
  end-page: 4221
  article-title: Effect of passivation on the sensitivity and stability of pentacene transistor sensors in aqueous media
  publication-title: Biosens Bioelectron
– volume: 164
  year: 2020
  article-title: Facile and cost‐effective liver cancer diagnosis by water‐gated organic field‐effect transistors
  publication-title: Biosens Bioelectron
– volume: 25
  start-page: 103
  year: 2013
  end-page: 107
  article-title: Ultralow voltage, OTFT‐based sensor for label‐free DNA detection
  publication-title: Adv Mater
– ident: e_1_2_7_19_1
  doi: 10.1002/aelm.201700209
– ident: e_1_2_7_62_1
  doi: 10.1016/j.orgel.2011.09.025
– ident: e_1_2_7_59_1
  doi: 10.1039/C5TB00243E
– ident: e_1_2_7_98_1
  doi: 10.3390/polym11010107
– ident: e_1_2_7_44_1
  doi: 10.1002/adfm.201404535
– ident: e_1_2_7_92_1
  doi: 10.1002/adma.201302615
– ident: e_1_2_7_32_1
  doi: 10.1038/srep00754
– ident: e_1_2_7_27_1
  doi: 10.1021/jacs.7b09381
– ident: e_1_2_7_60_1
  doi: 10.1016/j.bios.2017.12.041
– ident: e_1_2_7_85_1
  doi: 10.1021/ja107088m
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201801830
– ident: e_1_2_7_50_1
  doi: 10.5796/electrochemistry.18-6-E2672
– ident: e_1_2_7_90_1
  doi: 10.1021/acsami.7b09384
– ident: e_1_2_7_20_1
  doi: 10.1007/s00216-016-9502-3
– ident: e_1_2_7_63_1
  doi: 10.1002/adma.201002313
– ident: e_1_2_7_7_1
  doi: 10.1021/cm802530x
– ident: e_1_2_7_61_1
  doi: 10.1007/s00216-011-5363-y
– ident: e_1_2_7_91_1
  doi: 10.1002/adbi.201900204
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201400263
– ident: e_1_2_7_101_1
  doi: 10.1002/advs.201700609
– ident: e_1_2_7_71_1
  doi: 10.1088/2058-8585/aad0cb
– ident: e_1_2_7_8_1
  doi: 10.2116/analsci.18SDN02
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201800051
– ident: e_1_2_7_31_1
  doi: 10.1016/j.orgel.2014.06.002
– ident: e_1_2_7_70_1
  doi: 10.1016/j.bios.2016.01.012
– ident: e_1_2_7_73_1
  doi: 10.1063/1.3581882
– volume: 669
  start-page: 665
  year: 2019
  ident: e_1_2_7_66_1
  article-title: Electrochemical gating of a hydrophobic organic semiconductor with aqueous media
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2018.11.032
  contributor:
    fullname: Baroot A
– ident: e_1_2_7_21_1
  doi: 10.1063/1.1527233
– ident: e_1_2_7_4_1
  doi: 10.1016/j.snb.2015.02.038
– ident: e_1_2_7_45_1
  doi: 10.1038/ncomms9356
– ident: e_1_2_7_84_1
  doi: 10.1016/j.orgel.2013.12.016
– ident: e_1_2_7_42_1
  doi: 10.1039/D0TC01536A
– ident: e_1_2_7_64_1
  doi: 10.1039/C9NR06096K
– volume: 30
  start-page: 991
  year: 2018
  ident: e_1_2_7_96_1
  article-title: Multianalyte detection of cancer biomarkers in human serum using a label‐free field effect transistor biosensor
  publication-title: Sens Mater
  contributor:
    fullname: Si K
– ident: e_1_2_7_26_1
  doi: 10.1038/ncomms10032
– ident: e_1_2_7_93_1
  doi: 10.1039/b811606g
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.201916397
– ident: e_1_2_7_57_1
  doi: 10.1002/adma.201203587
– ident: e_1_2_7_104_1
  doi: 10.1002/smm2.1010
– ident: e_1_2_7_10_1
  doi: 10.1016/j.chempr.2018.03.007
– ident: e_1_2_7_82_1
  doi: 10.1002/adma.201202996
– ident: e_1_2_7_80_1
  doi: 10.1016/j.bios.2008.07.030
– ident: e_1_2_7_29_1
  doi: 10.1039/c1cc10321k
– ident: e_1_2_7_77_1
  doi: 10.1016/j.snb.2008.08.009
– ident: e_1_2_7_3_1
  doi: 10.1002/advs.201701053
– ident: e_1_2_7_69_1
  doi: 10.1039/C3TB21491E
– ident: e_1_2_7_87_1
  doi: 10.1021/acs.analchem.6b03522
– ident: e_1_2_7_88_1
  doi: 10.1021/nn305903q
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201201318
– ident: e_1_2_7_40_1
  doi: 10.1002/aelm.201900249
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.201801951
– ident: e_1_2_7_103_1
  doi: 10.1002/smm2.1009
– ident: e_1_2_7_83_1
  doi: 10.1016/j.bios.2018.01.035
– start-page: e1019
  year: 2021
  ident: e_1_2_7_102_1
  article-title: Biomimetic nanoporous aerogels from branched aramid nanofibers combining high heat insulation and compressive strength
  publication-title: SmartMat
  contributor:
    fullname: Li J
– ident: e_1_2_7_37_1
  doi: 10.1021/ar9000873
– ident: e_1_2_7_13_1
  doi: 10.1016/j.bios.2018.04.051
– ident: e_1_2_7_30_1
  doi: 10.3389/fchem.2019.00667
– ident: e_1_2_7_97_1
  doi: 10.1039/C7TC04389A
– ident: e_1_2_7_95_1
  doi: 10.1002/admt.201600042
– ident: e_1_2_7_68_1
  doi: 10.1039/c3tb00525a
– ident: e_1_2_7_67_1
  doi: 10.1039/c3tb20340a
– volume: 2
  start-page: 1413
  year: 2020
  ident: e_1_2_7_51_1
  article-title: Multifunctional interfacial layers from a one‐step process for effective charge capturing and erasing in low‐voltage‐driven organic thin‐film transistors
  publication-title: ACS Appl Mater Interfaces
  contributor:
    fullname: Wu FC
– ident: e_1_2_7_48_1
  doi: 10.1016/j.bios.2016.02.036
– ident: e_1_2_7_17_1
  doi: 10.1016/j.bios.2020.112251
– ident: e_1_2_7_55_1
  doi: 10.1016/j.orgel.2012.10.027
– ident: e_1_2_7_58_1
  doi: 10.1039/C7MH00887B
– ident: e_1_2_7_24_1
  doi: 10.1002/adfm.201700999
– ident: e_1_2_7_22_1
  doi: 10.1039/c3tc31412j
– ident: e_1_2_7_43_1
  doi: 10.1126/sciadv.1501856
– ident: e_1_2_7_76_1
  doi: 10.1063/1.1527698
– ident: e_1_2_7_49_1
  doi: 10.1002/adfm.201606506
– ident: e_1_2_7_72_1
  doi: 10.1063/1.1873051
– ident: e_1_2_7_12_1
  doi: 10.1016/j.orgel.2020.105794
– ident: e_1_2_7_25_1
  doi: 10.1016/j.scib.2020.03.013
– volume: 4
  start-page: 3100
  year: 2012
  ident: e_1_2_7_11_1
  article-title: Organic transistors with ordered nanoparticle arrays as a tailorable platform for selective, in situ detection
  publication-title: ACS Nano
  doi: 10.1021/nn204830b
  contributor:
    fullname: Hammock ML
– ident: e_1_2_7_54_1
  doi: 10.1002/adma.201004071
– ident: e_1_2_7_23_1
  doi: 10.1002/adfm.201700018
– ident: e_1_2_7_81_1
  doi: 10.1002/adma.201000790
– ident: e_1_2_7_36_1
  doi: 10.1038/nature07727
– ident: e_1_2_7_78_1
  doi: 10.1039/c0cc02064h
– ident: e_1_2_7_65_1
  doi: 10.1021/acs.chemmater.8b02260
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201704843
– ident: e_1_2_7_41_1
  doi: 10.1021/acsami.0c04208
– ident: e_1_2_7_14_1
  doi: 10.1021/acsami.6b05515
– ident: e_1_2_7_86_1
  doi: 10.1016/j.bios.2011.03.031
– ident: e_1_2_7_47_1
  doi: 10.1002/adma.201602237
– ident: e_1_2_7_46_1
  doi: 10.1038/nnano.2015.324
– ident: e_1_2_7_53_1
  doi: 10.1002/aelm.201901127
– ident: e_1_2_7_39_1
  doi: 10.1002/aelm.201901352
– ident: e_1_2_7_99_1
  doi: 10.1002/smll.201900854
– ident: e_1_2_7_35_1
  doi: 10.1038/s41557-018-0200-y
– ident: e_1_2_7_94_1
  doi: 10.1002/adhm.201600494
– ident: e_1_2_7_89_1
  doi: 10.1002/adma.201000971
– ident: e_1_2_7_79_1
  doi: 10.1039/c3tb20451k
– ident: e_1_2_7_18_1
  doi: 10.1038/ncomms3954
– ident: e_1_2_7_56_1
  doi: 10.1002/open.201700070
– volume: 99
  start-page: 073301
  year: 2011
  ident: e_1_2_7_9_1
  article-title: The immobilization and electrical response of single‐stranded DNA molecules on pentacene transistors
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3623438
  contributor:
    fullname: Zhu Q
– ident: e_1_2_7_74_1
  doi: 10.1021/am100154e
– ident: e_1_2_7_28_1
  doi: 10.1038/35006603
– volume: 3
  start-page: 7
  year: 2019
  ident: e_1_2_7_5_1
  article-title: Biodegradable and flexible arterial‐pulse sensor for the wireless monitoring of blood flow
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0336-5
  contributor:
    fullname: Boutry CM
– volume: 5
  start-page: 1800547
  year: 2018
  ident: e_1_2_7_100_1
  article-title: The role of weak molecular dopants in enhancing the performance of solution‐processed organic field‐effect transistors
  publication-title: Adv Electron Mater
  doi: 10.1002/aelm.201800547
  contributor:
    fullname: Wang Z
– ident: e_1_2_7_52_1
  doi: 10.1002/adma.201801891
– ident: e_1_2_7_75_1
  doi: 10.1063/1.2936296
SSID ssj0002504241
Score 2.4546568
Snippet Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to transfer and...
Abstract Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to...
Abstract Organic thin film transistors (OTFTs)‐based biosensors are widely applied as advanced biosensing platforms by virtue of their inherent ability to...
SourceID doaj
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms biosensors
electrolyte‐gated organic transistors
organic bioelectronics
organic electrochemical transistors
organic field‐effect transistors
organic thin film transistors
SummonAdditionalLinks – databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEMeXWi96EJ9YXwT0JMRu9tHdBS8qLUWoerDQW9hXtGATaePdj-Bn9JO4u2lTexG8hWVDyGQ2859h57cAXBADLc18i7LLHWKiIYlFltBYECQZzLg2gc4_eOj0h-R-REcNcL3ohan4EHXBza-M8L_2C1yqWXsJDbXFBF35zk-yBtY9Msb7NyJPdYXFw7lQOLrShXVfjGO45pOi9vL2lYgUwP2rQjVEmt422JpLxOim-qY7oGHzXbD5Cxy4B2DVQqmj8nWcR9n4bRKVPugE5sfs-_PLBycTqXExc2mqG9oHw173-a4fz88-iLWTTCS2hGNjlcTU6R1LuRKQmkR7EBEWLgYbLVGWWMQoYlwKxLUUEidGUaY5SSQ-AM28yO0hiDqaO40CMbMEk441irkcgiZMI5lRDVkLnC_eP32vEBdpBTNGqbdSGqzUArfeNPUMj6UOA8X0JZ17eeqSv4xCSQR3eRpVRjh15FIenmioEclgC1wGw_7xnLT7OEDh6ug_k4_BBvK7TcKemhPQLKcf9tTJhVKdBa_4AX5btnU
  priority: 102
  providerName: Wiley-Blackwell
Title Organic thin film transistors‐based biosensors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12094
https://doaj.org/article/191f50a4981445bd972717481c0c24f0
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA3alS7EJ9ZHGdCVMDaTSZpkqdJShKoLC90NmTywYKdix634CX6jX-JNUku70Y2bIYRAMvcOc86Be08QOqcGW-Z8izJoh5RqTFPpMpZKShTHTmgT3PkHd53-kN6O2Gjpqi9fExbtgWPg2qAnHMOKSgHUn5VGAuACixaZxppQF9U6lktiyv-DvTEXYNPCj5S07XRCLn2jKF1BoGDUv0pMA7L0ttHWnBImV_EoO2jNVrtoc8kocA_h2DKpk_ppXCVu_DxJag8yweNj9vXx6cHIJOV4OgNZClP7aNjrPt700_ldB6kGikRTS0VubKlyBvzGMlFKzEymvfFQLgFzjVbEZZZwRrhQkgitpMozUzKuBc1UfoAa1bSyhyjpaAGcBOfc0px2rCk5aAaWcU2UYxrzJjr7ef_iJVpaFNG8mBQ-SkWIUhNd-9AsVngb6jABySnmySn-Sk4TXYTA_rJP0b0fkDA6-o8dj9EG8VUnobbmBDXq1zd7CrShLltondCHVvhO4Dl4734DM2C8rA
link.rule.ids 315,783,787,867,2109,11576,27938,27939,46066,46490,50828,50937
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgHYAB8RTlGQkmpFDHj9oZC2pVoC1LgyqWyLEdqERT1JadT-Ab-RJsJ6R0QWKLLCtRbuycc67uPQbggiioaWpblI128ImExA_TgPohQYLBlEvl3Pl7_UYnIndDOixqc2wvTO4PUSbc7M5w_2u7wW1Cur5wDdWTMbqyrZ9kFVQN7mGjvarNx-gpKpMs1p8LudMrDbLbfBzDpUUpqi9usARKzrt_mas6sGlvgc2CJXrN_LNugxWd7YCNX96BuwDmXZTSm7-MMi8dvY69ucUdZ_sx-_r4tPikvGQ0mRmlaob2QNRuDW46fnH8gS8NayK-JhwrnQhMDeXRlCchpCqQ1osIhwaGlRQoDTRiFDEuQsSlCAUOVEKZ5CQQeB9UskmmD4DXkNzQFIiZJpg0tEqYkRE0YBKJlErIauD85_3jt9zlIs79jFFsoxS7KNXAtQ1NOcM6U7uByfQ5LhZ6bPRfSqEgITdSjSYqNATJqB4eSCgRSWENXLrA_vGcuPXQQ-7q8D-Tz8BaZ9Drxt3b_v0RWEe2-MSV2ByDynz6rk8Me5gnp8Ua-QYcXLuv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JSwMxFMcftYLoQVyxrgN6EkYzmaTJgBeXlrq09mChtyGTRQt2oa13P4Kf0U9ikuliL4K3IWQY5k0y7_8Peb8AnBGFNDWuRNl6h5BIRMLERDRMCBYMGS6Vp_PXG-Vaizy0absAV9NamJwPMVtwczPD_6_dBB8oczmHhup-F1-4yk-yBMvE6XDHdSbN2QqLg3Nhf3SlTetuMY7FMz4pvpzfvpCRPLh_Uaj6TFPdgPWJRAyu82-6CQXd24K1X-DAbUB5CaUMxm-dXmA6791g7JKOZ36Mvj-_XHJSQdbpj6xNtU070KpWXm5r4eTsg1BayURCTXisdCZiavWOpjxLEFWRdCCiOLE5WEmBTaQxo5hxkWAuRSLiSGWUSU4iEe9Csdfv6T0IypJbjYJipklMylplzHoIGjGJhaESsRKcTt8_HeSIizSHGePURSn1USrBjQvNrIfDUvuG_vA1nYzy1Jo_Q5EgCbc-jWYqserIWh4eSSQxMagE5z6wfzwnrTzXsb_a_0_nE1hp3lXTp_vG4wGsYrfxxG-vOYTiePihj6xyGGfHfoD8AH2_uQk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic+thin+film+transistors%E2%80%90based+biosensors&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Sun%2C+Chenfang&rft.au=Wang%2C+Xue&rft.au=Auwalu%2C+Muhammad+Aminu&rft.au=Cheng%2C+Shanshan&rft.date=2021-04-01&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=3&rft.issue=2&rft_id=info:doi/10.1002%2Feom2.12094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eom2_12094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon