Bayesian clinical trials in action

Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements in computational algorithms and computer hardware have greatly enhanced the alternative Bayesian paradigm. Compared with its frequentist coun...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 31; no. 25; pp. 2955 - 2972
Main Authors Jack Lee, J., Chu, Caleb T.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 10.11.2012
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.5404

Cover

Loading…
Abstract Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements in computational algorithms and computer hardware have greatly enhanced the alternative Bayesian paradigm. Compared with its frequentist counterpart, the Bayesian framework has several unique advantages, and its incorporation into clinical trial design is occurring more frequently. Using an extensive literature review to assess how Bayesian methods are used in clinical trials, we find them most commonly used for dose finding, efficacy monitoring, toxicity monitoring, diagnosis/decision making, and studying pharmacokinetics/pharmacodynamics. The additional infrastructure required for implementing Bayesian methods in clinical trials may include specialized software programs to run the study design, simulation and analysis, and web‐based applications, all of which are particularly useful for timely data entry and analysis. Trial success requires not only the development of proper tools but also timely and accurate execution of data entry, quality control, adaptive randomization, and Bayesian computation. The relative merit of the Bayesian and frequentist approaches continues to be the subject of debate in statistics. However, more evidence can be found showing the convergence of the two camps, at least at the practical level. Ultimately, better clinical trial methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and better outcomes for patients enrolled in the trials. Bayesian methods offer attractive alternatives for better trials. More Bayesian trials should be designed and conducted to refine the approach and demonstrate their real benefit in action. Copyright © 2012 John Wiley & Sons, Ltd.
AbstractList Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements in computational algorithms and computer hardware have greatly enhanced the alternative Bayesian paradigm. Compared with its frequentist counterpart, the Bayesian framework has several unique advantages, and its incorporation into clinical trial design is occurring more frequently. Using an extensive literature review to assess how Bayesian methods are used in clinical trials, we find them most commonly used for dose finding, efficacy monitoring, toxicity monitoring, diagnosis/decision making, and studying pharmacokinetics/pharmacodynamics. The additional infrastructure required for implementing Bayesian methods in clinical trials may include specialized software programs to run the study design, simulation and analysis, and web-based applications, all of which are particularly useful for timely data entry and analysis. Trial success requires not only the development of proper tools but also timely and accurate execution of data entry, quality control, adaptive randomization, and Bayesian computation. The relative merit of the Bayesian and frequentist approaches continues to be the subject of debate in statistics. However, more evidence can be found showing the convergence of the two camps, at least at the practical level. Ultimately, better clinical trial methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and better outcomes for patients enrolled in the trials. Bayesian methods offer attractive alternatives for better trials. More Bayesian trials should be designed and conducted to refine the approach and demonstrate their real benefit in action.
Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. The alternative Bayesian paradigm has been greatly enhanced by advancements in computational algorithms and computer hardware. Compared to its frequentist counterpart, the Bayesian framework has several unique advantages, and its incorporation into clinical trial design is occurring more frequently. Using an extensive literature review to assess how Bayesian methods are used in clinical trials, we find them most commonly used for dose finding, efficacy monitoring, toxicity monitoring, diagnosis/decision making, and for studying pharmacokinetics/pharmacodynamics. The additional infrastructure required for implementing Bayesian methods in clinical trials may include specialized software programs to run the study design, simulation, and analysis, and Web-based applications, which are particularly useful for timely data entry and analysis. Trial success requires not only the development of proper tools but also timely and accurate execution of data entry, quality control, adaptive randomization, and Bayesian computation. The relative merit of the Bayesian and frequentist approaches continues to be the subject of debate in statistics. However, more evidence can be found showing the convergence of the two camps, at least at the practical level. Ultimately, better clinical trial methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and better outcomes for patients enrolled in the trials. Bayesian methods offer attractive alternatives for better trials. More such trials should be designed and conducted to refine the approach and demonstrate its real benefit in action.
Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements in computational algorithms and computer hardware have greatly enhanced the alternative Bayesian paradigm. Compared with its frequentist counterpart, the Bayesian framework has several unique advantages, and its incorporation into clinical trial design is occurring more frequently. Using an extensive literature review to assess how Bayesian methods are used in clinical trials, we find them most commonly used for dose finding, efficacy monitoring, toxicity monitoring, diagnosis/decision making, and studying pharmacokinetics/pharmacodynamics. The additional infrastructure required for implementing Bayesian methods in clinical trials may include specialized software programs to run the study design, simulation and analysis, and web-based applications, all of which are particularly useful for timely data entry and analysis. Trial success requires not only the development of proper tools but also timely and accurate execution of data entry, quality control, adaptive randomization, and Bayesian computation. The relative merit of the Bayesian and frequentist approaches continues to be the subject of debate in statistics. However, more evidence can be found showing the convergence of the two camps, at least at the practical level. Ultimately, better clinical trial methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and better outcomes for patients enrolled in the trials. Bayesian methods offer attractive alternatives for better trials. More Bayesian trials should be designed and conducted to refine the approach and demonstrate their real benefit in action.Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements in computational algorithms and computer hardware have greatly enhanced the alternative Bayesian paradigm. Compared with its frequentist counterpart, the Bayesian framework has several unique advantages, and its incorporation into clinical trial design is occurring more frequently. Using an extensive literature review to assess how Bayesian methods are used in clinical trials, we find them most commonly used for dose finding, efficacy monitoring, toxicity monitoring, diagnosis/decision making, and studying pharmacokinetics/pharmacodynamics. The additional infrastructure required for implementing Bayesian methods in clinical trials may include specialized software programs to run the study design, simulation and analysis, and web-based applications, all of which are particularly useful for timely data entry and analysis. Trial success requires not only the development of proper tools but also timely and accurate execution of data entry, quality control, adaptive randomization, and Bayesian computation. The relative merit of the Bayesian and frequentist approaches continues to be the subject of debate in statistics. However, more evidence can be found showing the convergence of the two camps, at least at the practical level. Ultimately, better clinical trial methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and better outcomes for patients enrolled in the trials. Bayesian methods offer attractive alternatives for better trials. More Bayesian trials should be designed and conducted to refine the approach and demonstrate their real benefit in action.
Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements in computational algorithms and computer hardware have greatly enhanced the alternative Bayesian paradigm. Compared with its frequentist counterpart, the Bayesian framework has several unique advantages, and its incorporation into clinical trial design is occurring more frequently. Using an extensive literature review to assess how Bayesian methods are used in clinical trials, we find them most commonly used for dose finding, efficacy monitoring, toxicity monitoring, diagnosis/decision making, and studying pharmacokinetics/pharmacodynamics. The additional infrastructure required for implementing Bayesian methods in clinical trials may include specialized software programs to run the study design, simulation and analysis, and web‐based applications, all of which are particularly useful for timely data entry and analysis. Trial success requires not only the development of proper tools but also timely and accurate execution of data entry, quality control, adaptive randomization, and Bayesian computation. The relative merit of the Bayesian and frequentist approaches continues to be the subject of debate in statistics. However, more evidence can be found showing the convergence of the two camps, at least at the practical level. Ultimately, better clinical trial methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and better outcomes for patients enrolled in the trials. Bayesian methods offer attractive alternatives for better trials. More Bayesian trials should be designed and conducted to refine the approach and demonstrate their real benefit in action. Copyright © 2012 John Wiley & Sons, Ltd.
Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements in computational algorithms and computer hardware have greatly enhanced the alternative Bayesian paradigm. Compared with its frequentist counterpart, the Bayesian framework has several unique advantages, and its incorporation into clinical trial design is occurring more frequently. Using an extensive literature review to assess how Bayesian methods are used in clinical trials, we find them most commonly used for dose finding, efficacy monitoring, toxicity monitoring, diagnosis/decision making, and studying pharmacokinetics/pharmacodynamics. The additional infrastructure required for implementing Bayesian methods in clinical trials may include specialized software programs to run the study design, simulation and analysis, and web-based applications, all of which are particularly useful for timely data entry and analysis. Trial success requires not only the development of proper tools but also timely and accurate execution of data entry, quality control, adaptive randomization, and Bayesian computation. The relative merit of the Bayesian and frequentist approaches continues to be the subject of debate in statistics. However, more evidence can be found showing the convergence of the two camps, at least at the practical level. Ultimately, better clinical trial methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and better outcomes for patients enrolled in the trials. Bayesian methods offer attractive alternatives for better trials. More Bayesian trials should be designed and conducted to refine the approach and demonstrate their real benefit in action. [PUBLICATION ABSTRACT]
Author Chu, Caleb T.
Jack Lee, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Jack Lee
  fullname: Jack Lee, J.
  email: J. Jack Lee, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1411, Houston, TX 77030, U.S.A., jjlee@mdanderson.org
  organization: Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX 77030, Houston, U.S.A
– sequence: 2
  givenname: Caleb T.
  surname: Chu
  fullname: Chu, Caleb T.
  organization: Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX 77030, Houston, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22711340$$D View this record in MEDLINE/PubMed
BookMark eNp1kVtPGzEQhS0EKgEq8QuqqH3pywZf1reXSpRCQOLyQAu8jbyOt5huvKm9KeTf4xAIFxVLI0vjb46O52yg1dAGh9A2wQOCMd1JfjzgJS5XUI9gLQtMuVpFPUylLIQkfB1tpHSDMSGcyg9onVJJCCtxD33-bmYueRP6tvHBW9P0u-hNk_o-9I3tfBu20FqdG-7j472Jfh3s_9w7LI7Phkd7u8eF5ViVhdKYOYqxFZUjVikltFM8l2J1ZYlkemSEqCvGR7XllhOOKyk1YUKPaqEI20TfFrqTaTV2I-tCF00Dk-jHJs6gNR5evwR_Db_bf8BKzbWUWeDro0Bs_05d6mDsk3VNY4JrpwlIPopLpXhGv7xBb9ppDPl7D5TghFKdqU8vHS2tPK0vA4MFYGObUnQ1WN-Z-dKyQd8AwTDPB3I-MM_n2eJy4EnzP2ixQG9942bvcnB-dPKa96lzd0vexD8gJJMcLk-HcPFDXh2Ww1Mo2T2frqsW
CODEN SMEDDA
CitedBy_id crossref_primary_10_1177_00033197241235957
crossref_primary_10_1007_s00125_016_4122_1
crossref_primary_10_1097_CCM_0000000000000576
crossref_primary_10_1007_s00280_014_2546_1
crossref_primary_10_1080_23311835_2016_1193927
crossref_primary_10_1016_j_jcrc_2020_12_003
crossref_primary_10_1089_acm_2016_0094
crossref_primary_10_1542_hpeds_2023_007160
crossref_primary_10_1177_1740774519871471
crossref_primary_10_1200_PO_21_00212
crossref_primary_10_1542_peds_2021_050400
crossref_primary_10_3109_10601333_2015_1079217
crossref_primary_10_1016_j_jclinepi_2023_05_019
crossref_primary_10_3390_ijerph18020530
crossref_primary_10_1016_j_reth_2016_09_001
crossref_primary_10_1155_2017_3624075
crossref_primary_10_1016_j_jtho_2018_08_2019
crossref_primary_10_1002_psp4_12696
crossref_primary_10_1080_00031305_2019_1566091
crossref_primary_10_2139_ssrn_3141043
crossref_primary_10_1016_j_conctc_2020_100658
crossref_primary_10_1186_s12874_016_0166_7
crossref_primary_10_1016_j_jclinepi_2024_111651
crossref_primary_10_1177_2168479018778282
crossref_primary_10_1016_j_hlc_2023_11_004
crossref_primary_10_1111_risa_13337
crossref_primary_10_1186_s12874_022_01813_4
crossref_primary_10_1017_cts_2023_537
crossref_primary_10_1016_j_mayocp_2023_04_013
crossref_primary_10_2217_fca_2017_0040
crossref_primary_10_1177_1740774514531352
crossref_primary_10_1186_s12874_019_0699_7
crossref_primary_10_1007_s10555_020_09856_z
crossref_primary_10_1053_j_gastro_2022_02_036
crossref_primary_10_1371_journal_pmed_1001887
crossref_primary_10_1177_2168479013513889
crossref_primary_10_1186_s12885_016_2308_z
crossref_primary_10_3390_jof8121284
crossref_primary_10_1016_j_cjca_2020_04_025
crossref_primary_10_1088_2632_2153_acf6aa
crossref_primary_10_1681_ASN_0000000565
crossref_primary_10_1053_j_jvca_2019_09_003
crossref_primary_10_1016_j_cct_2024_107560
crossref_primary_10_1016_j_enpol_2015_08_020
crossref_primary_10_1200_CCI_20_00122
crossref_primary_10_1186_s12916_019_1348_z
crossref_primary_10_1002_pst_2339
crossref_primary_10_1371_journal_pone_0131524
crossref_primary_10_1080_10543406_2021_2009498
crossref_primary_10_1080_19466315_2020_1797867
crossref_primary_10_2196_40730
crossref_primary_10_3390_healthcare9050591
crossref_primary_10_1002_sim_10130
crossref_primary_10_1080_19466315_2019_1629996
crossref_primary_10_1186_s13643_021_01622_8
crossref_primary_10_1161_STROKEAHA_117_016720
crossref_primary_10_1186_s12874_022_01526_8
crossref_primary_10_1371_journal_pone_0149803
crossref_primary_10_1007_s11245_018_9542_8
crossref_primary_10_1016_j_jacc_2021_09_1367
crossref_primary_10_1002_pst_1595
crossref_primary_10_1002_pst_1991
crossref_primary_10_1080_14992027_2017_1385862
crossref_primary_10_3390_life14060661
crossref_primary_10_1002_pst_1755
crossref_primary_10_1002_psp4_12092
crossref_primary_10_3389_fonc_2021_636561
crossref_primary_10_1111_epi_13090
crossref_primary_10_1016_j_jacc_2018_10_033
crossref_primary_10_1016_S2213_2600_20_30471_9
crossref_primary_10_1007_s11245_018_9554_4
crossref_primary_10_1186_s13023_022_02342_5
crossref_primary_10_1177_1740774514568875
crossref_primary_10_1176_appi_ajp_20240042
crossref_primary_10_12688_f1000research_17952_2
crossref_primary_10_1186_s13063_016_1544_5
crossref_primary_10_1002_sim_6403
crossref_primary_10_1080_10543406_2016_1198367
crossref_primary_10_1186_s13063_022_06240_w
crossref_primary_10_1186_s13063_022_06877_7
crossref_primary_10_2139_ssrn_3713924
crossref_primary_10_1007_s12561_014_9124_2
crossref_primary_10_1002_sim_9115
crossref_primary_10_1186_s13063_025_08737_6
crossref_primary_10_1016_S0140_6736_24_01295_9
crossref_primary_10_1016_j_jtho_2020_05_005
crossref_primary_10_1016_j_jclinepi_2021_04_010
crossref_primary_10_1186_s12874_023_02097_y
crossref_primary_10_3389_fphar_2025_1548997
crossref_primary_10_1158_1078_0432_CCR_23_2378
crossref_primary_10_1093_jamiaopen_ooab107
crossref_primary_10_1016_j_compchemeng_2020_106774
crossref_primary_10_1177_17407745241247334
crossref_primary_10_1007_s10928_020_09671_7
crossref_primary_10_2196_10873
crossref_primary_10_4155_fdd_2019_0021
crossref_primary_10_1002_pbc_30187
crossref_primary_10_1186_s13054_023_04717_x
crossref_primary_10_1542_peds_2024_065799
crossref_primary_10_1186_s12874_024_02235_0
crossref_primary_10_1016_j_softx_2023_101358
crossref_primary_10_1093_jnci_djx013
crossref_primary_10_1007_s00540_022_03044_9
crossref_primary_10_3390_ijerph18020595
crossref_primary_10_1002_bimj_201700275
crossref_primary_10_3390_ijerph18041833
crossref_primary_10_1002_asmb_2249
crossref_primary_10_1287_mnsc_2021_4096
crossref_primary_10_1016_j_ctrv_2018_12_003
crossref_primary_10_1136_ijgc_2024_005634
crossref_primary_10_15446_ede_v28n53_75382
crossref_primary_10_1002_pst_2139
crossref_primary_10_1186_s13063_024_07935_y
Cites_doi 10.1214/06‐BA115
10.1001/jama.272.2.129
10.1200/JCO.2007.12.1012
10.1002/sim.4363
10.2307/2289776
10.1158/2159‐8274.CD‐10‐0010
10.1038/sj.leu.2405014
10.1002/9780470316870
10.1016/0197-2456(81)90038-6
10.2307/2529851
10.1002/sim.2672
10.2307/2531628
10.1002/(SICI)1097-0258(19980530)17:10<1103::AID-SIM793>3.0.CO;2-9
10.2307/2981538
10.1002/sim.3175
10.1136/bmj.2.4582.769
10.1208/aapsj0901007
10.1038/nrd1927
10.1214/088342304000000116
10.1007/BF01060053
10.1177/1740774509104992
10.1177/096228020101000404
10.1002/pst.315
10.1146/annurev.pa.32.040192.001153
10.1038/clpt.2009.68
10.1007/s10463-006-0046-8
10.1002/sim.4780090804
10.1177/0272989X04267012
10.1200/JCO.2007.14.0665
10.1214/ss/1056397485
10.1038/nrclinonc.2011.165
10.1111/j.1467‐9469.2011.00737.x
10.1177/1740774508091815
10.1002/sim.2204
10.1109/TPAMI.1984.4767596
10.1214/10‐STS333
10.1198/016214505000000033
10.1214/ss/1032280216
10.1200/JCO.2005.07.032
10.1198/000313006X117837
10.1111/j.1467-9469.2011.00750.x
10.1002/sim.4780090803
10.1002/0470092602
10.2165/00003088‐198611050‐00004
10.1002/sim.3680
10.1214/06‐BA116C
10.1214/06‐BA116
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
Copyright John Wiley and Sons, Limited Nov 10, 2012
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
– notice: Copyright John Wiley and Sons, Limited Nov 10, 2012
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.5404
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 2972
ExternalDocumentID PMC3495977
2787503491
22711340
10_1002_sim_5404
SIM5404
ark_67375_WNG_VD7XH4GN_4
Genre article
Journal Article
Review
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: National Cancer Institute
  funderid: CA016672; CA097007
– fundername: NCI NIH HHS
  grantid: CA097007
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NCI NIH HHS
  grantid: P01 CA091844
– fundername: NCI NIH HHS
  grantid: P50 CA097007
– fundername: NCI NIH HHS
  grantid: CA016672
– fundername: National Cancer Institute : NCI
  grantid: P01 CA091844 || CA
– fundername: National Cancer Institute : NCI
  grantid: P50 CA097007 || CA
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
5PM
ID FETCH-LOGICAL-c5084-8903e200c6be1c88869e859e883fbc1739da66fb35dfc5c5150b7791369df6813
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 18:21:11 EDT 2025
Fri Jul 11 14:31:26 EDT 2025
Fri Jul 25 03:47:21 EDT 2025
Thu Apr 03 07:03:36 EDT 2025
Tue Jul 01 03:28:03 EDT 2025
Thu Apr 24 23:04:25 EDT 2025
Wed Jan 22 16:20:18 EST 2025
Wed Oct 30 09:52:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2012 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5084-8903e200c6be1c88869e859e883fbc1739da66fb35dfc5c5150b7791369df6813
Notes ArticleID:SIM5404
istex:21C9A25AC4D0D01E2AEEB39BC6CFB3B2FF122086
ark:/67375/WNG-VD7XH4GN-4
National Cancer Institute - No. CA016672; No. CA097007
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 22711340
PQID 1111651229
PQPubID 48361
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3495977
proquest_miscellaneous_1111857885
proquest_journals_1111651229
pubmed_primary_22711340
crossref_citationtrail_10_1002_sim_5404
crossref_primary_10_1002_sim_5404
wiley_primary_10_1002_sim_5404_SIM5404
istex_primary_ark_67375_WNG_VD7XH4GN_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 November 2012
PublicationDateYYYYMMDD 2012-11-10
PublicationDate_xml – month: 11
  year: 2012
  text: 10 November 2012
  day: 10
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Jennison C, Turnbull BW. Group Sequential Methods with Applications to Clinical Trials. Chapman & Hall/CRC:Boca Raton, FL, 2000.
Ashby D. Bayesian statistics in medicine: a 25 year review. Statistics in Medicine 2006; 25(21):3589-3631, DOI: 10.1002/sim.2672.
Meier P. Jerome Cornfield and the methodology of clinical trials. Controlled Clinical Trials 1981; 1(4):339-345.
Whiting B, Kelman AW, Grevel J. Population pharmacokinetics. Theory and clinical application. Clinical Pharmacokinetics 1986; 11:387-401, DOI:10.2165/00003088-198611050-00004.
Sheiner LB, Beal SL. Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. Journal of Pharmacokinetics and Biopharmaceutics 1980; 8:553-571, DOI: 10.1007/BF01060053.
Streptomycin-in-Tuberculosis-Trials-Committee. Streptomycin treatment of pulmonary tuberculosis: a Medical Research Council investigation. British Medical Journal 1948; 2:769-782, DOI: 10.1136/bmj.2.4582.769.
Bayes T. An essay towards solving a problem in the doctrine of chances. 1763. M.D. Computing: Computers in Medical Practice 1991; 8:157-171.
Gehan EA. Methodological issues in cancer clinical trials: the comparison of therapies. Biomedicine and Pharmacotherapy 1988; 42(3):161-165.
Bernardo JM. The concept of exchangeability and its applications. Far East Journal of Mathematical Sciences 1996; 4:111-121.
Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984; PAMI-6:721-741, DOI: 10.1109/TPAMI.1984.4767596.
Dmitrienko A, Wang MD. Bayesian predictive approach to interim monitoring in clinical trials. Statistics in Medicine 2006; 25(13):2178-2195, DOI:10.1002/sim.2204.
Berry DA. Bayesian clinical trials. Nature Reviews Drug Discovery 2006; 5(1):27-36, DOI: 10.1038/nrd1927.
Goldstein M. Subjective Bayesian analysis: principles and practice. Bayesian Analysis 2006; 1:403-420, DOI: 10.1214/06-BA116.
Bauer RJ, Guzy S, Ng C. A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples. The AAPS Journal 2007; 9:E60-E83, DOI: 10.1208/aapsj0901007.
Arjas E. On future directions in statistical methodologies-some speculations. Scandinavian Journal of Statistics 2011; 38:185-194, DOI:10.1111/j.1467-9469.2011.00737.x.
Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian Approaches to Clinical Trials and Health-Care Evaluation. Wiley:West Sussex, 2004.
Berger JO, Christensen R. Could Fisher, Jeffreys and Neyman have agreed on testing? Statistical Science 2003; 18(1):1-32.
Gehan EA, Schneiderman MA. Historical and methodological developments in clinical trials at the National Cancer Institute. Statistics in Medicine 1990; 9:871-880, DOI: 10.1002/sim.4780090803.
Kim ES, Herbst RS, Wistuba II, Lee JJ, Jr. GRB, Tsao A, Stewart DJ, Hicks ME, Jr JE, Gupta S, Alden CM, Liu S, Tang X, Khuri FR, Tran HT, Johnson BE, Heymach JV, Mao L, Fossella F, Kies MS, Papadimitrakopoulou V, Davis SE, Lippman SM, Hong WK. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discovery 2011; 1:44-53, DOI:10.1158/2159-8274.CD-10-0010.
Berry DA. Adaptive clinical trials in oncology. Nature Reviews Clinical Oncology 2012; 9:199-207, DOI: 10.1038/nrclinonc.2011.165.
Betrò B, Bodini A, Guglielmi A. Generalized moment theory and Bayesian robustness analysis for hierarchical mixture models. Annals of the Institute of Statistical Mathematics 2006; 58(4):721-738.
Buzdar AU, Ibrahim NK, Francis D, Booser DJ, Thomas ES, Theriault RL, Pusztai L, Green MC, Arun BK, Giordano SH, Cristofanilli M, Frye DK, Smith TL, Hunt KK, Singletary SE, Sahin AA, Ewer MS, Buchholz TA, Berry D, Hortobagyi GN. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. Journal of Clinical Oncology 2005; 23:3676-3685. DOI:10.1200/JCO.2005.07.032.
Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA, Esserman LJ. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clinical Pharmacology and Therapeutics 2009; 86:97-100, DOI:10.1038/clpt.2009.68.
de Lima M, Champlin RE, Thall PF, Wang X, Martin TG 3rd, Cook JD, McCormick G, Qazilbash M, Kebriaei P, Couriel D, Shpall EJ, Khouri I, Anderlini P, Hosing C, Chan KW, Andersson BS, Patah PA, Caldera Z, Jabbour E, Giralt S. Phase I/II study of gemtuzumab ozogamicin added to fludarabine, melphalan and allogeneic hematopoietic stem cell transplantation for high-risk CD33 positive myeloid leukemias and myelodysplastic syndrome. Leukemia 2008; 22(2):258-264.
Chevret S. Bayesian adaptive clinical trials: a dream for statisticians only? Statistics in Medicine 2011, DOI: 10.1002/sim.4363. [Sept 9 Epub ahead of print].
O'Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics 1990; 46:33-48, DOI:10.2307/2531628.
Fienberg SE. Does it make sense to be an " objective Bayesian" ? (Comment on articles by Berger and by Goldstein). Bayesian Analysis 2006; 1:429-432. DOI:10.1214/06-BA116C.
Gelfand AE, Smith AFM. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 1990; 85:398-409, DOI:10.2307/2289776.
Center for Devices and Radiological Health, Food and Drug Administration. Guidance for the Use of Bayesian statistics in Medical Device Clinical Trials. U.S. Department of Health and Human Services:Rockville, MD, 2010. Accessed 10/14/2011; available at http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071121.pdf.
Stigler SM. The history of statistics in 1933. Statistical Science 1996; 11:244-252, DOI: 10.1214/ss/1032280216.
Bernardo JM, Smith AFM. Bayesian Theory. Wiley:West Sussex, 1994.
Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: evolution, critique and future directions. Statistics in Medicine 2009; 28:3049-3067, DOI:10.1002/sim.3680.
Julian TB, Blumencranz P, Deck K, Whitworth P, Berry DA, Berry SM, Rosenberg A, Chagpar AB, Reintgen D, Beitsch P, Simmons R, Saha S, Mamounas EP, Giuliano A. Novel intraoperative molecular test for sentinel lymph node metastases in patients with early-stage breast cancer. Journal of Clinical Oncology 2008; 26:3338-3345, DOI: 10.1200/JCO.2007.14.0665.
Sutton AJ, Abrams KR. Bayesian methods in meta-analysis and evidence synthesis. Statistical Methods in Medical Research 2001; 10(4):277-303, DOI:10.1177/096228020101000404.
Center for Drug Evaluation and Research, Food and Drug Administration. Guidance for Industry: Adaptive Design Clinical Trials for Drugs and Biologics. U.S. Department of Health and Human Services:Rockville, MD, 2010. Accessed 10/14/2011; available at http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM201790.pdf.
Rogatko A, Schoeneck D, Jonas W, Tighiouart M, Khuri FR, Porter A. Translation of innovative designs into phase I trials. Journal of Clinical Oncology 2007; 25:4982-4986, DOI: 10.1200/JCO.2007.12.1012.
Stigler SM. Thomas Bayes' Bayesian inference. Journal of the Royal Statistical Society, Series A 1982; 145:250-258, DOI: 10.2307/2981538.
Little RJ. Calibrated Bayes: a Bayes/frequentist roadmap. American Statistician 2006; 60:213-223, DOI: 10.1198/000313006X117837.
Bayarri MJ, Berger JO. The interplay of Bayesian and frequentist analysis. Statistical Science 2004; 19:58-80, DOI: 10.1214/088342304000000116.
Brutti P, De Santis F, Gubbiotti S. Robust Bayesian sample size determination in clinical trials. Statistics in Medicine 2008; 27(13):2290-2306.
Zhou X, Liu S, Kim ES, Herbst RS, Lee JJ. Bayesian adaptive design for targeted therapy development in lung cancer-a step toward personalized medicine. Clinical Trials 2008; 5:181-193, DOI: 10.1177/1740774508091815.
Berry DA. Adaptive trial design. Clinical Advances in Hematology and Oncology 2007; 5(7):522-524. http://www.clinicaladvances.com/article\_pdfs/ho-article-200707-drugdev.pdf.
Grieve AP. 25 years of Bayesian methods in the pharmaceutical industry: a personal, statistical bummel. Pharmaceutical Statistics 2007; 6:261-281, DOI:10.1002/pst.315.
Altman DG, Goodman SN. Transfer of technology from statistical journals to the biomedical literature-past trends and future predictions. JAMA 1994; 272:129-132, DOI: 10.1001/jama.272.2.129.
Tighiouart M, Rogatko A. Dose finding with escalation with overdose control (EWOC) in cancer clinical trials. Statistical Science 2010; 25:217-226, DOI:10.1214/10-STS333.
Resnic FS, Zou KH, Do DV, Apostolakis G, Ohno-Machado L. Exploration of a Bayesian updating methodology to monitor the safety of interventional cardiovascular procedures. Medical Decision Making 2004; 24(4):399-407.
Ederer F. Jerome Cornfield's contributions to the conduct of clinical trials. Biometrics 1982; 38 Suppl:25-32.
Biswas S, Liu DD, Lee JJ, Berry DA. Bayesian clinical trials at the University of Texas M. D. Anderson Cancer Center. Clinical Trials 2009; 6:205-216, DOI:10.1177/1740774509104992.
Andrade JAA, O'Hagan A. Bayesian robustness modelling of location and scale parameters. Scandinavian Journal of Statistics 2011; 38(4):691-711.
Halperin M, DeMets DL, Ware JH. Early methodological developments for clinical trials at the National Heart, Lung and Blood Institute. Statistics in Medicine 1990; 9(8):881-892, DOI: 10.1002/sim.4780090804.
Berger JO, Wolpert RL. The Likelihood Principle. SS Gupta, ed. Institute of Mathematical Statistics:Hayward, CA, 1984. http://projecteuclid.org/euclid.lnms/1215466210.
Babb J, Rogatko A, Zacks S. Cancer phase I clinical trials: efficient dose escalation with overdose control. Statistics in Medicine 1998; 17:1103-1120, DOI: 10.1002/(SICI)1097-0258(19980530)17:10 < 1103::AID-SIM793 > 3.0.CO;2-9.
Efron B. Bayesians, frequentists, and scientists. Journal
2009; 86
1984; PAMI‐6
2004; 24
1982; 145
2008; 5
2003; 18
2005; 23
1990; 85
2006; 60
1998; 17
1990; 46
2010; 25
1982; 38 Suppl
2000
2005; 100
1948; 2
2006; 25
2008; 27
2007; 9
2008; 26
2007; 6
1984
2007; 5
2008; 22
1988; 42
1996; 4
2007; 25
2001; 10
2011; 1
2011
1981; 1
2010
1986; 11
2006; 58
1994; 272
2009
2006; 5
1994
2005
2004
2006; 1
2002
2011; 38
1992; 32
1991; 8
1996; 11
2009; 28
2004; 19
1980; 8
2009; 6
1990; 9
2012; 9
e_1_2_12_4_1
Bernardo JM (e_1_2_12_17_1) 1996; 4
e_1_2_12_19_1
e_1_2_12_2_1
Bayes T (e_1_2_12_8_1) 1991; 8
e_1_2_12_38_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_24_1
e_1_2_12_45_1
Gehan EA (e_1_2_12_6_1) 1988; 42
e_1_2_12_47_1
Center for Devices and Radiological Health, Food and Drug Administration (e_1_2_12_52_1) 2010
e_1_2_12_60_1
Jennison C (e_1_2_12_23_1) 2000
e_1_2_12_28_1
e_1_2_12_49_1
Center for Drug Evaluation and Research, Food and Drug Administration (e_1_2_12_26_1) 2010
e_1_2_12_31_1
e_1_2_12_33_1
e_1_2_12_54_1
e_1_2_12_35_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_58_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_10_1
Berry DA (e_1_2_12_25_1) 2007; 5
e_1_2_12_50_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_46_1
e_1_2_12_48_1
Berger JO (e_1_2_12_15_1) 1984
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_9_1
References_xml – reference: Gelfand AE, Smith AFM. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 1990; 85:398-409, DOI:10.2307/2289776.
– reference: Kim ES, Herbst RS, Wistuba II, Lee JJ, Jr. GRB, Tsao A, Stewart DJ, Hicks ME, Jr JE, Gupta S, Alden CM, Liu S, Tang X, Khuri FR, Tran HT, Johnson BE, Heymach JV, Mao L, Fossella F, Kies MS, Papadimitrakopoulou V, Davis SE, Lippman SM, Hong WK. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discovery 2011; 1:44-53, DOI:10.1158/2159-8274.CD-10-0010.
– reference: Berger JO, Wolpert RL. The Likelihood Principle. SS Gupta, ed. Institute of Mathematical Statistics:Hayward, CA, 1984. http://projecteuclid.org/euclid.lnms/1215466210.
– reference: Betrò B, Bodini A, Guglielmi A. Generalized moment theory and Bayesian robustness analysis for hierarchical mixture models. Annals of the Institute of Statistical Mathematics 2006; 58(4):721-738.
– reference: Sheiner LB, Ludden TM. Population pharmacokinetics/dynamics. Annual Review of Pharmacology and Toxicology 1992; 32:185-209, DOI:10.1146/annurev.pa.32.040192.001153.
– reference: Brutti P, De Santis F, Gubbiotti S. Robust Bayesian sample size determination in clinical trials. Statistics in Medicine 2008; 27(13):2290-2306.
– reference: Bayarri MJ, Berger JO. The interplay of Bayesian and frequentist analysis. Statistical Science 2004; 19:58-80, DOI: 10.1214/088342304000000116.
– reference: Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian Approaches to Clinical Trials and Health-Care Evaluation. Wiley:West Sussex, 2004.
– reference: O'Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics 1990; 46:33-48, DOI:10.2307/2531628.
– reference: Ederer F. Jerome Cornfield's contributions to the conduct of clinical trials. Biometrics 1982; 38 Suppl:25-32.
– reference: Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA, Esserman LJ. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clinical Pharmacology and Therapeutics 2009; 86:97-100, DOI:10.1038/clpt.2009.68.
– reference: Resnic FS, Zou KH, Do DV, Apostolakis G, Ohno-Machado L. Exploration of a Bayesian updating methodology to monitor the safety of interventional cardiovascular procedures. Medical Decision Making 2004; 24(4):399-407.
– reference: Berger J. The case for objective Bayesian analysis. Bayesian Analysis 2006; 1:385-402, DOI: 10.1214/06-BA115.
– reference: Bauer RJ, Guzy S, Ng C. A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples. The AAPS Journal 2007; 9:E60-E83, DOI: 10.1208/aapsj0901007.
– reference: Berry DA. Adaptive trial design. Clinical Advances in Hematology and Oncology 2007; 5(7):522-524. http://www.clinicaladvances.com/article\_pdfs/ho-article-200707-drugdev.pdf.
– reference: Fienberg SE. Does it make sense to be an " objective Bayesian" ? (Comment on articles by Berger and by Goldstein). Bayesian Analysis 2006; 1:429-432. DOI:10.1214/06-BA116C.
– reference: Bernardo JM. The concept of exchangeability and its applications. Far East Journal of Mathematical Sciences 1996; 4:111-121.
– reference: Sutton AJ, Abrams KR. Bayesian methods in meta-analysis and evidence synthesis. Statistical Methods in Medical Research 2001; 10(4):277-303, DOI:10.1177/096228020101000404.
– reference: Sheiner LB, Beal SL. Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. Journal of Pharmacokinetics and Biopharmaceutics 1980; 8:553-571, DOI: 10.1007/BF01060053.
– reference: Rogatko A, Schoeneck D, Jonas W, Tighiouart M, Khuri FR, Porter A. Translation of innovative designs into phase I trials. Journal of Clinical Oncology 2007; 25:4982-4986, DOI: 10.1200/JCO.2007.12.1012.
– reference: Buzdar AU, Ibrahim NK, Francis D, Booser DJ, Thomas ES, Theriault RL, Pusztai L, Green MC, Arun BK, Giordano SH, Cristofanilli M, Frye DK, Smith TL, Hunt KK, Singletary SE, Sahin AA, Ewer MS, Buchholz TA, Berry D, Hortobagyi GN. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. Journal of Clinical Oncology 2005; 23:3676-3685. DOI:10.1200/JCO.2005.07.032.
– reference: de Lima M, Champlin RE, Thall PF, Wang X, Martin TG 3rd, Cook JD, McCormick G, Qazilbash M, Kebriaei P, Couriel D, Shpall EJ, Khouri I, Anderlini P, Hosing C, Chan KW, Andersson BS, Patah PA, Caldera Z, Jabbour E, Giralt S. Phase I/II study of gemtuzumab ozogamicin added to fludarabine, melphalan and allogeneic hematopoietic stem cell transplantation for high-risk CD33 positive myeloid leukemias and myelodysplastic syndrome. Leukemia 2008; 22(2):258-264.
– reference: Goldstein M. Subjective Bayesian analysis: principles and practice. Bayesian Analysis 2006; 1:403-420, DOI: 10.1214/06-BA116.
– reference: Halperin M, DeMets DL, Ware JH. Early methodological developments for clinical trials at the National Heart, Lung and Blood Institute. Statistics in Medicine 1990; 9(8):881-892, DOI: 10.1002/sim.4780090804.
– reference: Center for Drug Evaluation and Research, Food and Drug Administration. Guidance for Industry: Adaptive Design Clinical Trials for Drugs and Biologics. U.S. Department of Health and Human Services:Rockville, MD, 2010. Accessed 10/14/2011; available at http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM201790.pdf.
– reference: Meier P. Jerome Cornfield and the methodology of clinical trials. Controlled Clinical Trials 1981; 1(4):339-345.
– reference: Berry DA. Bayesian clinical trials. Nature Reviews Drug Discovery 2006; 5(1):27-36, DOI: 10.1038/nrd1927.
– reference: Zhou X, Liu S, Kim ES, Herbst RS, Lee JJ. Bayesian adaptive design for targeted therapy development in lung cancer-a step toward personalized medicine. Clinical Trials 2008; 5:181-193, DOI: 10.1177/1740774508091815.
– reference: Stigler SM. The history of statistics in 1933. Statistical Science 1996; 11:244-252, DOI: 10.1214/ss/1032280216.
– reference: Berry DA. Adaptive clinical trials in oncology. Nature Reviews Clinical Oncology 2012; 9:199-207, DOI: 10.1038/nrclinonc.2011.165.
– reference: Arjas E. On future directions in statistical methodologies-some speculations. Scandinavian Journal of Statistics 2011; 38:185-194, DOI:10.1111/j.1467-9469.2011.00737.x.
– reference: Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: evolution, critique and future directions. Statistics in Medicine 2009; 28:3049-3067, DOI:10.1002/sim.3680.
– reference: Dmitrienko A, Wang MD. Bayesian predictive approach to interim monitoring in clinical trials. Statistics in Medicine 2006; 25(13):2178-2195, DOI:10.1002/sim.2204.
– reference: Jennison C, Turnbull BW. Group Sequential Methods with Applications to Clinical Trials. Chapman & Hall/CRC:Boca Raton, FL, 2000.
– reference: Altman DG, Goodman SN. Transfer of technology from statistical journals to the biomedical literature-past trends and future predictions. JAMA 1994; 272:129-132, DOI: 10.1001/jama.272.2.129.
– reference: Ashby D. Bayesian statistics in medicine: a 25 year review. Statistics in Medicine 2006; 25(21):3589-3631, DOI: 10.1002/sim.2672.
– reference: Julian TB, Blumencranz P, Deck K, Whitworth P, Berry DA, Berry SM, Rosenberg A, Chagpar AB, Reintgen D, Beitsch P, Simmons R, Saha S, Mamounas EP, Giuliano A. Novel intraoperative molecular test for sentinel lymph node metastases in patients with early-stage breast cancer. Journal of Clinical Oncology 2008; 26:3338-3345, DOI: 10.1200/JCO.2007.14.0665.
– reference: Berger JO, Christensen R. Could Fisher, Jeffreys and Neyman have agreed on testing? Statistical Science 2003; 18(1):1-32.
– reference: Whiting B, Kelman AW, Grevel J. Population pharmacokinetics. Theory and clinical application. Clinical Pharmacokinetics 1986; 11:387-401, DOI:10.2165/00003088-198611050-00004.
– reference: Bernardo JM, Smith AFM. Bayesian Theory. Wiley:West Sussex, 1994.
– reference: Andrade JAA, O'Hagan A. Bayesian robustness modelling of location and scale parameters. Scandinavian Journal of Statistics 2011; 38(4):691-711.
– reference: Tighiouart M, Rogatko A. Dose finding with escalation with overdose control (EWOC) in cancer clinical trials. Statistical Science 2010; 25:217-226, DOI:10.1214/10-STS333.
– reference: Bayes T. An essay towards solving a problem in the doctrine of chances. 1763. M.D. Computing: Computers in Medical Practice 1991; 8:157-171.
– reference: Babb J, Rogatko A, Zacks S. Cancer phase I clinical trials: efficient dose escalation with overdose control. Statistics in Medicine 1998; 17:1103-1120, DOI: 10.1002/(SICI)1097-0258(19980530)17:10 < 1103::AID-SIM793 > 3.0.CO;2-9.
– reference: Center for Devices and Radiological Health, Food and Drug Administration. Guidance for the Use of Bayesian statistics in Medical Device Clinical Trials. U.S. Department of Health and Human Services:Rockville, MD, 2010. Accessed 10/14/2011; available at http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071121.pdf.
– reference: Stigler SM. Thomas Bayes' Bayesian inference. Journal of the Royal Statistical Society, Series A 1982; 145:250-258, DOI: 10.2307/2981538.
– reference: Gehan EA. Methodological issues in cancer clinical trials: the comparison of therapies. Biomedicine and Pharmacotherapy 1988; 42(3):161-165.
– reference: Streptomycin-in-Tuberculosis-Trials-Committee. Streptomycin treatment of pulmonary tuberculosis: a Medical Research Council investigation. British Medical Journal 1948; 2:769-782, DOI: 10.1136/bmj.2.4582.769.
– reference: Grieve AP. 25 years of Bayesian methods in the pharmaceutical industry: a personal, statistical bummel. Pharmaceutical Statistics 2007; 6:261-281, DOI:10.1002/pst.315.
– reference: Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984; PAMI-6:721-741, DOI: 10.1109/TPAMI.1984.4767596.
– reference: Chevret S. Bayesian adaptive clinical trials: a dream for statisticians only? Statistics in Medicine 2011, DOI: 10.1002/sim.4363. [Sept 9 Epub ahead of print].
– reference: Little RJ. Calibrated Bayes: a Bayes/frequentist roadmap. American Statistician 2006; 60:213-223, DOI: 10.1198/000313006X117837.
– reference: Gehan EA, Schneiderman MA. Historical and methodological developments in clinical trials at the National Cancer Institute. Statistics in Medicine 1990; 9:871-880, DOI: 10.1002/sim.4780090803.
– reference: Efron B. Bayesians, frequentists, and scientists. Journal of the American Statistical Association 2005; 100:1-5, DOI: 10.1198/016214505000000033.
– reference: Biswas S, Liu DD, Lee JJ, Berry DA. Bayesian clinical trials at the University of Texas M. D. Anderson Cancer Center. Clinical Trials 2009; 6:205-216, DOI:10.1177/1740774509104992.
– volume: 5
  start-page: 181
  year: 2008
  end-page: 193
  article-title: Bayesian adaptive design for targeted therapy development in lung cancer—a step toward personalized medicine
  publication-title: Clinical Trials
– volume: 1
  start-page: 403
  year: 2006
  end-page: 420
  article-title: Subjective Bayesian analysis: principles and practice
  publication-title: Bayesian Analysis
– year: 2009
– volume: 272
  start-page: 129
  year: 1994
  end-page: 132
  article-title: Transfer of technology from statistical journals to the biomedical literature—past trends and future predictions
  publication-title: JAMA
– volume: PAMI‐6
  start-page: 721
  year: 1984
  end-page: 741
  article-title: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 4
  start-page: 111
  year: 1996
  end-page: 121
  article-title: The concept of exchangeability and its applications
  publication-title: Far East Journal of Mathematical Sciences
– volume: 85
  start-page: 398
  year: 1990
  end-page: 409
  article-title: Sampling‐based approaches to calculating marginal densities
  publication-title: Journal of the American Statistical Association
– volume: 1
  start-page: 429
  year: 2006
  end-page: 432
  article-title: Does it make sense to be an " objective Bayesian" ? (Comment on articles by Berger and by Goldstein)
  publication-title: Bayesian Analysis
– volume: 5
  start-page: 522
  issue: 7
  year: 2007
  end-page: 524
  article-title: Adaptive trial design
  publication-title: Clinical Advances in Hematology and Oncology
– volume: 18
  start-page: 1
  issue: 1
  year: 2003
  end-page: 32
  article-title: Could Fisher, Jeffreys and Neyman have agreed on testing?
  publication-title: Statistical Science
– volume: 42
  start-page: 161
  issue: 3
  year: 1988
  end-page: 165
  article-title: Methodological issues in cancer clinical trials: the comparison of therapies
  publication-title: Biomedicine and Pharmacotherapy
– volume: 38 Suppl
  start-page: 25
  year: 1982
  end-page: 32
  article-title: Jerome Cornfield's contributions to the conduct of clinical trials
  publication-title: Biometrics
– year: 1994
– volume: 25
  start-page: 3589
  issue: 21
  year: 2006
  end-page: 3631
  article-title: Bayesian statistics in medicine: a 25 year review
  publication-title: Statistics in Medicine
– volume: 6
  start-page: 205
  year: 2009
  end-page: 216
  article-title: Bayesian clinical trials at the University of Texas M. D. Anderson Cancer Center
  publication-title: Clinical Trials
– volume: 9
  start-page: 199
  year: 2012
  end-page: 207
  article-title: Adaptive clinical trials in oncology
  publication-title: Nature Reviews Clinical Oncology
– volume: 5
  start-page: 27
  issue: 1
  year: 2006
  end-page: 36
  article-title: Bayesian clinical trials
  publication-title: Nature Reviews Drug Discovery
– year: 2004
– volume: 1
  start-page: 385
  year: 2006
  end-page: 402
  article-title: The case for objective Bayesian analysis
  publication-title: Bayesian Analysis
– volume: 1
  start-page: 339
  issue: 4
  year: 1981
  end-page: 345
  article-title: Jerome Cornfield and the methodology of clinical trials
  publication-title: Controlled Clinical Trials
– volume: 86
  start-page: 97
  year: 2009
  end-page: 100
  article-title: I‐SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy
  publication-title: Clinical Pharmacology and Therapeutics
– volume: 28
  start-page: 3049
  year: 2009
  end-page: 3067
  article-title: The BUGS project: evolution, critique and future directions
  publication-title: Statistics in Medicine
– volume: 38
  start-page: 185
  year: 2011
  end-page: 194
  article-title: On future directions in statistical methodologies—some speculations
  publication-title: Scandinavian Journal of Statistics
– volume: 19
  start-page: 58
  year: 2004
  end-page: 80
  article-title: The interplay of Bayesian and frequentist analysis
  publication-title: Statistical Science
– volume: 8
  start-page: 157
  year: 1991
  end-page: 171
  article-title: An essay towards solving a problem in the doctrine of chances. 1763
  publication-title: M.D. Computing: Computers in Medical Practice
– volume: 145
  start-page: 250
  year: 1982
  end-page: 258
  article-title: Thomas Bayes’ Bayesian inference
  publication-title: Journal of the Royal Statistical Society, Series A
– volume: 27
  start-page: 2290
  issue: 13
  year: 2008
  end-page: 2306
  article-title: Robust Bayesian sample size determination in clinical trials
  publication-title: Statistics in Medicine
– volume: 23
  start-page: 3676
  year: 2005
  end-page: 3685
  article-title: Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2‐positive operable breast cancer
  publication-title: Journal of Clinical Oncology
– volume: 26
  start-page: 3338
  year: 2008
  end-page: 3345
  article-title: Novel intraoperative molecular test for sentinel lymph node metastases in patients with early‐stage breast cancer
  publication-title: Journal of Clinical Oncology
– volume: 46
  start-page: 33
  year: 1990
  end-page: 48
  article-title: Continual reassessment method: a practical design for phase 1 clinical trials in cancer
  publication-title: Biometrics
– volume: 10
  start-page: 277
  issue: 4
  year: 2001
  end-page: 303
  article-title: Bayesian methods in meta‐analysis and evidence synthesis
  publication-title: Statistical Methods in Medical Research
– volume: 32
  start-page: 185
  year: 1992
  end-page: 209
  article-title: Population pharmacokinetics/dynamics
  publication-title: Annual Review of Pharmacology and Toxicology
– volume: 9
  start-page: E60
  year: 2007
  end-page: E83
  article-title: A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples
  publication-title: The AAPS Journal
– volume: 38
  start-page: 691
  issue: 4
  year: 2011
  end-page: 711
  article-title: Bayesian robustness modelling of location and scale parameters
  publication-title: Scandinavian Journal of Statistics
– volume: 1
  start-page: 44
  year: 2011
  end-page: 53
  article-title: The BATTLE trial: personalizing therapy for lung cancer
  publication-title: Cancer Discovery
– volume: 25
  start-page: 217
  year: 2010
  end-page: 226
  article-title: Dose finding with escalation with overdose control (EWOC) in cancer clinical trials
  publication-title: Statistical Science
– volume: 100
  start-page: 1
  year: 2005
  end-page: 5
  article-title: Bayesians, frequentists, and scientists
  publication-title: Journal of the American Statistical Association
– volume: 25
  start-page: 4982
  year: 2007
  end-page: 4986
  article-title: Translation of innovative designs into phase I trials
  publication-title: Journal of Clinical Oncology
– year: 2000
– volume: 8
  start-page: 553
  year: 1980
  end-page: 571
  article-title: Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis‐Menten model: routine clinical pharmacokinetic data
  publication-title: Journal of Pharmacokinetics and Biopharmaceutics
– volume: 22
  start-page: 258
  issue: 2
  year: 2008
  end-page: 264
  article-title: Phase I/II study of gemtuzumab ozogamicin added to fludarabine, melphalan and allogeneic hematopoietic stem cell transplantation for high‐risk CD33 positive myeloid leukemias and myelodysplastic syndrome
  publication-title: Leukemia
– start-page: 1045
  year: 2005
– volume: 9
  start-page: 871
  year: 1990
  end-page: 880
  article-title: Historical and methodological developments in clinical trials at the National Cancer Institute
  publication-title: Statistics in Medicine
– volume: 6
  start-page: 261
  year: 2007
  end-page: 281
  article-title: 25 years of Bayesian methods in the pharmaceutical industry: a personal, statistical bummel
  publication-title: Pharmaceutical Statistics
– volume: 58
  start-page: 721
  issue: 4
  year: 2006
  end-page: 738
  article-title: Generalized moment theory and Bayesian robustness analysis for hierarchical mixture models
  publication-title: Annals of the Institute of Statistical Mathematics
– year: 2010
– year: 1984
– volume: 17
  start-page: 1103
  year: 1998
  end-page: 1120
  article-title: Cancer phase I clinical trials: efficient dose escalation with overdose control
  publication-title: Statistics in Medicine
– volume: 2
  start-page: 769
  year: 1948
  end-page: 782
  article-title: Streptomycin treatment of pulmonary tuberculosis: a Medical Research Council investigation
  publication-title: British Medical Journal
– year: 2002
– volume: 60
  start-page: 213
  year: 2006
  end-page: 223
  article-title: Calibrated Bayes: a Bayes/frequentist roadmap
  publication-title: American Statistician
– volume: 9
  start-page: 881
  issue: 8
  year: 1990
  end-page: 892
  article-title: Early methodological developments for clinical trials at the National Heart, Lung and Blood Institute
  publication-title: Statistics in Medicine
– volume: 25
  start-page: 2178
  issue: 13
  year: 2006
  end-page: 2195
  article-title: Bayesian predictive approach to interim monitoring in clinical trials
  publication-title: Statistics in Medicine
– volume: 24
  start-page: 399
  issue: 4
  year: 2004
  end-page: 407
  article-title: Exploration of a Bayesian updating methodology to monitor the safety of interventional cardiovascular procedures
  publication-title: Medical Decision Making
– volume: 11
  start-page: 387
  year: 1986
  end-page: 401
  article-title: Population pharmacokinetics. Theory and clinical application
  publication-title: Clinical Pharmacokinetics
– year: 2011
  article-title: Bayesian adaptive clinical trials: a dream for statisticians only?
  publication-title: Statistics in Medicine
– volume: 11
  start-page: 244
  year: 1996
  end-page: 252
  article-title: The history of statistics in 1933
  publication-title: Statistical Science
– ident: e_1_2_12_31_1
  doi: 10.1214/06‐BA115
– ident: e_1_2_12_54_1
  doi: 10.1001/jama.272.2.129
– ident: e_1_2_12_48_1
  doi: 10.1200/JCO.2007.12.1012
– ident: e_1_2_12_44_1
  doi: 10.1002/sim.4363
– ident: e_1_2_12_28_1
  doi: 10.2307/2289776
– ident: e_1_2_12_39_1
  doi: 10.1158/2159‐8274.CD‐10‐0010
– ident: e_1_2_12_41_1
  doi: 10.1038/sj.leu.2405014
– ident: e_1_2_12_10_1
  doi: 10.1002/9780470316870
– ident: e_1_2_12_11_1
  doi: 10.1016/0197-2456(81)90038-6
– ident: e_1_2_12_12_1
  doi: 10.2307/2529851
– ident: e_1_2_12_13_1
  doi: 10.1002/sim.2672
– volume-title: Guidance for the Use of Bayesian statistics in Medical Device Clinical Trials
  year: 2010
  ident: e_1_2_12_52_1
– ident: e_1_2_12_42_1
  doi: 10.2307/2531628
– ident: e_1_2_12_43_1
  doi: 10.1002/(SICI)1097-0258(19980530)17:10<1103::AID-SIM793>3.0.CO;2-9
– ident: e_1_2_12_51_1
– ident: e_1_2_12_9_1
  doi: 10.2307/2981538
– ident: e_1_2_12_19_1
  doi: 10.1002/sim.3175
– ident: e_1_2_12_2_1
  doi: 10.1136/bmj.2.4582.769
– ident: e_1_2_12_49_1
– ident: e_1_2_12_37_1
  doi: 10.1208/aapsj0901007
– ident: e_1_2_12_22_1
  doi: 10.1038/nrd1927
– ident: e_1_2_12_7_1
  doi: 10.1214/088342304000000116
– ident: e_1_2_12_34_1
  doi: 10.1007/BF01060053
– ident: e_1_2_12_53_1
– ident: e_1_2_12_45_1
  doi: 10.1177/1740774509104992
– ident: e_1_2_12_21_1
  doi: 10.1177/096228020101000404
– ident: e_1_2_12_14_1
  doi: 10.1002/pst.315
– ident: e_1_2_12_35_1
  doi: 10.1146/annurev.pa.32.040192.001153
– volume-title: Guidance for Industry: Adaptive Design Clinical Trials for Drugs and Biologics
  year: 2010
  ident: e_1_2_12_26_1
– volume: 42
  start-page: 161
  issue: 3
  year: 1988
  ident: e_1_2_12_6_1
  article-title: Methodological issues in cancer clinical trials: the comparison of therapies
  publication-title: Biomedicine and Pharmacotherapy
– ident: e_1_2_12_56_1
  doi: 10.1038/clpt.2009.68
– volume-title: Group Sequential Methods with Applications to Clinical Trials
  year: 2000
  ident: e_1_2_12_23_1
– ident: e_1_2_12_18_1
  doi: 10.1007/s10463-006-0046-8
– ident: e_1_2_12_3_1
  doi: 10.1002/sim.4780090804
– ident: e_1_2_12_50_1
  doi: 10.1177/0272989X04267012
– volume: 4
  start-page: 111
  year: 1996
  ident: e_1_2_12_17_1
  article-title: The concept of exchangeability and its applications
  publication-title: Far East Journal of Mathematical Sciences
– ident: e_1_2_12_16_1
– ident: e_1_2_12_40_1
  doi: 10.1200/JCO.2007.14.0665
– ident: e_1_2_12_57_1
  doi: 10.1214/ss/1056397485
– volume-title: The Likelihood Principle
  year: 1984
  ident: e_1_2_12_15_1
– ident: e_1_2_12_55_1
  doi: 10.1038/nrclinonc.2011.165
– ident: e_1_2_12_60_1
  doi: 10.1111/j.1467‐9469.2011.00737.x
– volume: 8
  start-page: 157
  year: 1991
  ident: e_1_2_12_8_1
  article-title: An essay towards solving a problem in the doctrine of chances. 1763
  publication-title: M.D. Computing: Computers in Medical Practice
– ident: e_1_2_12_46_1
  doi: 10.1177/1740774508091815
– ident: e_1_2_12_24_1
  doi: 10.1002/sim.2204
– volume: 5
  start-page: 522
  issue: 7
  year: 2007
  ident: e_1_2_12_25_1
  article-title: Adaptive trial design
  publication-title: Clinical Advances in Hematology and Oncology
– ident: e_1_2_12_27_1
  doi: 10.1109/TPAMI.1984.4767596
– ident: e_1_2_12_47_1
  doi: 10.1214/10‐STS333
– ident: e_1_2_12_58_1
  doi: 10.1198/016214505000000033
– ident: e_1_2_12_5_1
  doi: 10.1214/ss/1032280216
– ident: e_1_2_12_38_1
  doi: 10.1200/JCO.2005.07.032
– ident: e_1_2_12_59_1
  doi: 10.1198/000313006X117837
– ident: e_1_2_12_20_1
  doi: 10.1111/j.1467-9469.2011.00750.x
– ident: e_1_2_12_4_1
  doi: 10.1002/sim.4780090803
– ident: e_1_2_12_33_1
  doi: 10.1002/0470092602
– ident: e_1_2_12_36_1
  doi: 10.2165/00003088‐198611050‐00004
– ident: e_1_2_12_29_1
  doi: 10.1002/sim.3680
– ident: e_1_2_12_32_1
  doi: 10.1214/06‐BA116C
– ident: e_1_2_12_30_1
  doi: 10.1214/06‐BA116
SSID ssj0011527
Score 2.4317768
SecondaryResourceType review_article
Snippet Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements...
Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. The...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2955
SubjectTerms adaptive trial design
Bayes Theorem
Bayesian analysis
Bayesian paradigm
clinical trial conduct
Clinical trials
Clinical Trials as Topic - ethics
Clinical Trials as Topic - standards
Clinical Trials as Topic - statistics & numerical data
Design of experiments
frequentist paradigm
Likelihood Functions
Research Design
Software
Technological change
trial efficiency
trial ethics
Title Bayesian clinical trials in action
URI https://api.istex.fr/ark:/67375/WNG-VD7XH4GN-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.5404
https://www.ncbi.nlm.nih.gov/pubmed/22711340
https://www.proquest.com/docview/1111651229
https://www.proquest.com/docview/1111857885
https://pubmed.ncbi.nlm.nih.gov/PMC3495977
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRaoqIR7La6FFASE4ZZuXHzmWQrsg7R6AwkocLNtxxKqQou6uBPz6zthJYGkrIQ5JDp4oGY_H_mzPfAZ4RgzqnGcylqXL4qIubKyNE3hjCLYzbRJPVj2Z8vFx8XbGZm1UJeXCBH6IfsGNPMP31-Tg2iz2fpOGLubfRgg3iAqUQrUID73rmaPS7rRW2qHkImUd72yS7XUvro1E16hSf1wGMy9GS_6JYv0wdHgTPncKhOiTk9FqaUb211_cjv-n4S240aLTaD80p9uw4ZoBbE3a_fcBXA-rfFFIXhrANmHVQPV8B56-1D8d5WRGXbpl5M8EWUTzJgr5E3fh-PD1h4Nx3B7BEFtEbgVaMMkdOpLlxqUWZ8u8dJLhJfPa2FTkZaU5r03Oqtoyi-AoMUKUaJCyqrlM83uw2Zw27gFEGn29Jiob69KC6QqRiajKvMQOVsvKySG86MyhbMtPTsdkfFWBWTlTWB-K6mMIT3rJ74GT4xKZ596ivYA-O6EYNsHUp-mR-vhKzMbF0VSh4E5nctW678JPizhCoazEb_XF6Hi0m6Ibd7oKMhL7O8mGcD-0kP5jqFqa5kUyBLHWdnoBIvVeL2nmXzy5d44zVsTk-P--aVypoHr_ZkLPh_8q-Ai2EexlsQ9h3IHN5dnK7SKgWprH3nXOAVi4Glo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTYJJiI8yoGNAQAie0sVx_BHxBIytg7UPsLE-IFmO44hqkE1rKwF_PWc7CRSGhHhI8uCLEtt39s_23e8AnjgGdc5TGcvcpnFWZSbWhRV4Ywi2U10knqx6NObDo-zNhE1W4HkbCxP4IboNN2cZfrx2Bu42pLd_sobOpl8GiDeyS7DmEnq79AU77zruKNLma3VnlFwQ1jLPJul2--bSXLTmmvXrRUDzT3_JX3Gsn4h2r8PHtgrB_-RksJgXA_P9N3bH_6zjDbjWANToRdCom7Bi6x5cHjVH8D24Gjb6ohC_1IN1B1cD2_MtePxSf7MuLDNqIy4jnxZkFk3rKIRQbMDR7uvDV8O4ycIQGwRvGXZiQi3akuGFJQYXzDy3kuElaVUYImheas6rgrKyMswgPkoKIXJCeV5WXBJ6G1br09rehUijuVeOzcZYkjFdIjgRZU5zHGO1LK3sw7O2P5RpKMpdpozPKpArpwrbQ7n26MOjTvIs0HJcIPPUd2knoM9PnBubYOp4vKc-7IjJMNsbKxTcavtcNRY88ysjp1Vpjt_qitH23IGKru3pIshIHPIk68OdoCLdx7BqhNAs6YNYUp5OwPF6L5fU00-e35viohVhOf6_142_VlC93x-55-a_Cj6EK8PD0YE62B-_vQfriP3S2Hs0bsHq_Hxh7yO-mhcPvB39AOW7HnQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJk2TEB-FQdmAgBA8pYvj-COPwOg6oBUCBpX2YDmOI6pBNq2tNPjrOdtJoDAkxEOSB1-U2L6zf7bvfgfw2DGoc57KWOY2jbMqM7EurMAbQ7Cd6iLxZNXjCR8dZq-mbNp4VbpYmMAP0W24Ocvw47Uz8NOy2v1JGjqffR0g3Mguw3rG0VYcIHrXUUeRNl2rO6LkgrCWeDZJd9s3V6aiddeq5xfhzD_dJX-FsX4eGl6Do7YGwf3keLBcFAPz_Tdyx_-r4nW42sDT6FnQpxtwydY92Bg3B_A9uBK2-aIQvdSDTQdWA9fzTXj0XH-zLigzauMtI58UZB7N6igEUNyCw-HLDy9GcZODITYI3TLswoRatCTDC0sMLpd5biXDS9KqMETQvNScVwVlZWWYQXSUFELkhPK8rLgkdAvW6pPa3oFIo7FXjsvGWJIxXSI0EWVOcxxhtSyt7MPTtjuUaQjKXZ6MLypQK6cK20O59ujDw07yNJByXCDzxPdoJ6DPjp0Tm2Dq02RffdwT01G2P1EouNN2uWrsd-7XRRyxUJrjt7pitDx3nKJre7IMMhIHPMn6cDtoSPcxrBohNEv6IFZ0pxNwrN6rJfXss2f3prhkRVCO_-9V468VVO8Pxu55918FH8DG272henMweb0Nmwj80ti7M-7A2uJsae8huFoU970V_QCS1x0s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+clinical+trials+in+action&rft.jtitle=Statistics+in+medicine&rft.au=Jack+Lee%2C+J.&rft.au=Chu%2C+Caleb+T.&rft.date=2012-11-10&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=31&rft.issue=25&rft.spage=2955&rft.epage=2972&rft_id=info:doi/10.1002%2Fsim.5404&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VD7XH4GN_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon