Bayesian clinical trials in action
Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements in computational algorithms and computer hardware have greatly enhanced the alternative Bayesian paradigm. Compared with its frequentist coun...
Saved in:
Published in | Statistics in medicine Vol. 31; no. 25; pp. 2955 - 2972 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
10.11.2012
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 1097-0258 |
DOI | 10.1002/sim.5404 |
Cover
Loading…
Abstract | Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements in computational algorithms and computer hardware have greatly enhanced the alternative Bayesian paradigm. Compared with its frequentist counterpart, the Bayesian framework has several unique advantages, and its incorporation into clinical trial design is occurring more frequently. Using an extensive literature review to assess how Bayesian methods are used in clinical trials, we find them most commonly used for dose finding, efficacy monitoring, toxicity monitoring, diagnosis/decision making, and studying pharmacokinetics/pharmacodynamics. The additional infrastructure required for implementing Bayesian methods in clinical trials may include specialized software programs to run the study design, simulation and analysis, and web‐based applications, all of which are particularly useful for timely data entry and analysis. Trial success requires not only the development of proper tools but also timely and accurate execution of data entry, quality control, adaptive randomization, and Bayesian computation. The relative merit of the Bayesian and frequentist approaches continues to be the subject of debate in statistics. However, more evidence can be found showing the convergence of the two camps, at least at the practical level. Ultimately, better clinical trial methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and better outcomes for patients enrolled in the trials. Bayesian methods offer attractive alternatives for better trials. More Bayesian trials should be designed and conducted to refine the approach and demonstrate their real benefit in action. Copyright © 2012 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements in computational algorithms and computer hardware have greatly enhanced the alternative Bayesian paradigm. Compared with its frequentist counterpart, the Bayesian framework has several unique advantages, and its incorporation into clinical trial design is occurring more frequently. Using an extensive literature review to assess how Bayesian methods are used in clinical trials, we find them most commonly used for dose finding, efficacy monitoring, toxicity monitoring, diagnosis/decision making, and studying pharmacokinetics/pharmacodynamics. The additional infrastructure required for implementing Bayesian methods in clinical trials may include specialized software programs to run the study design, simulation and analysis, and web-based applications, all of which are particularly useful for timely data entry and analysis. Trial success requires not only the development of proper tools but also timely and accurate execution of data entry, quality control, adaptive randomization, and Bayesian computation. The relative merit of the Bayesian and frequentist approaches continues to be the subject of debate in statistics. However, more evidence can be found showing the convergence of the two camps, at least at the practical level. Ultimately, better clinical trial methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and better outcomes for patients enrolled in the trials. Bayesian methods offer attractive alternatives for better trials. More Bayesian trials should be designed and conducted to refine the approach and demonstrate their real benefit in action. Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. The alternative Bayesian paradigm has been greatly enhanced by advancements in computational algorithms and computer hardware. Compared to its frequentist counterpart, the Bayesian framework has several unique advantages, and its incorporation into clinical trial design is occurring more frequently. Using an extensive literature review to assess how Bayesian methods are used in clinical trials, we find them most commonly used for dose finding, efficacy monitoring, toxicity monitoring, diagnosis/decision making, and for studying pharmacokinetics/pharmacodynamics. The additional infrastructure required for implementing Bayesian methods in clinical trials may include specialized software programs to run the study design, simulation, and analysis, and Web-based applications, which are particularly useful for timely data entry and analysis. Trial success requires not only the development of proper tools but also timely and accurate execution of data entry, quality control, adaptive randomization, and Bayesian computation. The relative merit of the Bayesian and frequentist approaches continues to be the subject of debate in statistics. However, more evidence can be found showing the convergence of the two camps, at least at the practical level. Ultimately, better clinical trial methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and better outcomes for patients enrolled in the trials. Bayesian methods offer attractive alternatives for better trials. More such trials should be designed and conducted to refine the approach and demonstrate its real benefit in action. Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements in computational algorithms and computer hardware have greatly enhanced the alternative Bayesian paradigm. Compared with its frequentist counterpart, the Bayesian framework has several unique advantages, and its incorporation into clinical trial design is occurring more frequently. Using an extensive literature review to assess how Bayesian methods are used in clinical trials, we find them most commonly used for dose finding, efficacy monitoring, toxicity monitoring, diagnosis/decision making, and studying pharmacokinetics/pharmacodynamics. The additional infrastructure required for implementing Bayesian methods in clinical trials may include specialized software programs to run the study design, simulation and analysis, and web-based applications, all of which are particularly useful for timely data entry and analysis. Trial success requires not only the development of proper tools but also timely and accurate execution of data entry, quality control, adaptive randomization, and Bayesian computation. The relative merit of the Bayesian and frequentist approaches continues to be the subject of debate in statistics. However, more evidence can be found showing the convergence of the two camps, at least at the practical level. Ultimately, better clinical trial methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and better outcomes for patients enrolled in the trials. Bayesian methods offer attractive alternatives for better trials. More Bayesian trials should be designed and conducted to refine the approach and demonstrate their real benefit in action.Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements in computational algorithms and computer hardware have greatly enhanced the alternative Bayesian paradigm. Compared with its frequentist counterpart, the Bayesian framework has several unique advantages, and its incorporation into clinical trial design is occurring more frequently. Using an extensive literature review to assess how Bayesian methods are used in clinical trials, we find them most commonly used for dose finding, efficacy monitoring, toxicity monitoring, diagnosis/decision making, and studying pharmacokinetics/pharmacodynamics. The additional infrastructure required for implementing Bayesian methods in clinical trials may include specialized software programs to run the study design, simulation and analysis, and web-based applications, all of which are particularly useful for timely data entry and analysis. Trial success requires not only the development of proper tools but also timely and accurate execution of data entry, quality control, adaptive randomization, and Bayesian computation. The relative merit of the Bayesian and frequentist approaches continues to be the subject of debate in statistics. However, more evidence can be found showing the convergence of the two camps, at least at the practical level. Ultimately, better clinical trial methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and better outcomes for patients enrolled in the trials. Bayesian methods offer attractive alternatives for better trials. More Bayesian trials should be designed and conducted to refine the approach and demonstrate their real benefit in action. Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements in computational algorithms and computer hardware have greatly enhanced the alternative Bayesian paradigm. Compared with its frequentist counterpart, the Bayesian framework has several unique advantages, and its incorporation into clinical trial design is occurring more frequently. Using an extensive literature review to assess how Bayesian methods are used in clinical trials, we find them most commonly used for dose finding, efficacy monitoring, toxicity monitoring, diagnosis/decision making, and studying pharmacokinetics/pharmacodynamics. The additional infrastructure required for implementing Bayesian methods in clinical trials may include specialized software programs to run the study design, simulation and analysis, and web‐based applications, all of which are particularly useful for timely data entry and analysis. Trial success requires not only the development of proper tools but also timely and accurate execution of data entry, quality control, adaptive randomization, and Bayesian computation. The relative merit of the Bayesian and frequentist approaches continues to be the subject of debate in statistics. However, more evidence can be found showing the convergence of the two camps, at least at the practical level. Ultimately, better clinical trial methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and better outcomes for patients enrolled in the trials. Bayesian methods offer attractive alternatives for better trials. More Bayesian trials should be designed and conducted to refine the approach and demonstrate their real benefit in action. Copyright © 2012 John Wiley & Sons, Ltd. Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements in computational algorithms and computer hardware have greatly enhanced the alternative Bayesian paradigm. Compared with its frequentist counterpart, the Bayesian framework has several unique advantages, and its incorporation into clinical trial design is occurring more frequently. Using an extensive literature review to assess how Bayesian methods are used in clinical trials, we find them most commonly used for dose finding, efficacy monitoring, toxicity monitoring, diagnosis/decision making, and studying pharmacokinetics/pharmacodynamics. The additional infrastructure required for implementing Bayesian methods in clinical trials may include specialized software programs to run the study design, simulation and analysis, and web-based applications, all of which are particularly useful for timely data entry and analysis. Trial success requires not only the development of proper tools but also timely and accurate execution of data entry, quality control, adaptive randomization, and Bayesian computation. The relative merit of the Bayesian and frequentist approaches continues to be the subject of debate in statistics. However, more evidence can be found showing the convergence of the two camps, at least at the practical level. Ultimately, better clinical trial methods lead to more efficient designs, lower sample sizes, more accurate conclusions, and better outcomes for patients enrolled in the trials. Bayesian methods offer attractive alternatives for better trials. More Bayesian trials should be designed and conducted to refine the approach and demonstrate their real benefit in action. [PUBLICATION ABSTRACT] |
Author | Chu, Caleb T. Jack Lee, J. |
Author_xml | – sequence: 1 givenname: J. surname: Jack Lee fullname: Jack Lee, J. email: J. Jack Lee, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1411, Houston, TX 77030, U.S.A., jjlee@mdanderson.org organization: Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX 77030, Houston, U.S.A – sequence: 2 givenname: Caleb T. surname: Chu fullname: Chu, Caleb T. organization: Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX 77030, Houston, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22711340$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kVtPGzEQhS0EKgEq8QuqqH3pywZf1reXSpRCQOLyQAu8jbyOt5huvKm9KeTf4xAIFxVLI0vjb46O52yg1dAGh9A2wQOCMd1JfjzgJS5XUI9gLQtMuVpFPUylLIQkfB1tpHSDMSGcyg9onVJJCCtxD33-bmYueRP6tvHBW9P0u-hNk_o-9I3tfBu20FqdG-7j472Jfh3s_9w7LI7Phkd7u8eF5ViVhdKYOYqxFZUjVikltFM8l2J1ZYlkemSEqCvGR7XllhOOKyk1YUKPaqEI20TfFrqTaTV2I-tCF00Dk-jHJs6gNR5evwR_Db_bf8BKzbWUWeDro0Bs_05d6mDsk3VNY4JrpwlIPopLpXhGv7xBb9ppDPl7D5TghFKdqU8vHS2tPK0vA4MFYGObUnQ1WN-Z-dKyQd8AwTDPB3I-MM_n2eJy4EnzP2ixQG9942bvcnB-dPKa96lzd0vexD8gJJMcLk-HcPFDXh2Ww1Mo2T2frqsW |
CODEN | SMEDDA |
CitedBy_id | crossref_primary_10_1177_00033197241235957 crossref_primary_10_1007_s00125_016_4122_1 crossref_primary_10_1097_CCM_0000000000000576 crossref_primary_10_1007_s00280_014_2546_1 crossref_primary_10_1080_23311835_2016_1193927 crossref_primary_10_1016_j_jcrc_2020_12_003 crossref_primary_10_1089_acm_2016_0094 crossref_primary_10_1542_hpeds_2023_007160 crossref_primary_10_1177_1740774519871471 crossref_primary_10_1200_PO_21_00212 crossref_primary_10_1542_peds_2021_050400 crossref_primary_10_3109_10601333_2015_1079217 crossref_primary_10_1016_j_jclinepi_2023_05_019 crossref_primary_10_3390_ijerph18020530 crossref_primary_10_1016_j_reth_2016_09_001 crossref_primary_10_1155_2017_3624075 crossref_primary_10_1016_j_jtho_2018_08_2019 crossref_primary_10_1002_psp4_12696 crossref_primary_10_1080_00031305_2019_1566091 crossref_primary_10_2139_ssrn_3141043 crossref_primary_10_1016_j_conctc_2020_100658 crossref_primary_10_1186_s12874_016_0166_7 crossref_primary_10_1016_j_jclinepi_2024_111651 crossref_primary_10_1177_2168479018778282 crossref_primary_10_1016_j_hlc_2023_11_004 crossref_primary_10_1111_risa_13337 crossref_primary_10_1186_s12874_022_01813_4 crossref_primary_10_1017_cts_2023_537 crossref_primary_10_1016_j_mayocp_2023_04_013 crossref_primary_10_2217_fca_2017_0040 crossref_primary_10_1177_1740774514531352 crossref_primary_10_1186_s12874_019_0699_7 crossref_primary_10_1007_s10555_020_09856_z crossref_primary_10_1053_j_gastro_2022_02_036 crossref_primary_10_1371_journal_pmed_1001887 crossref_primary_10_1177_2168479013513889 crossref_primary_10_1186_s12885_016_2308_z crossref_primary_10_3390_jof8121284 crossref_primary_10_1016_j_cjca_2020_04_025 crossref_primary_10_1088_2632_2153_acf6aa crossref_primary_10_1681_ASN_0000000565 crossref_primary_10_1053_j_jvca_2019_09_003 crossref_primary_10_1016_j_cct_2024_107560 crossref_primary_10_1016_j_enpol_2015_08_020 crossref_primary_10_1200_CCI_20_00122 crossref_primary_10_1186_s12916_019_1348_z crossref_primary_10_1002_pst_2339 crossref_primary_10_1371_journal_pone_0131524 crossref_primary_10_1080_10543406_2021_2009498 crossref_primary_10_1080_19466315_2020_1797867 crossref_primary_10_2196_40730 crossref_primary_10_3390_healthcare9050591 crossref_primary_10_1002_sim_10130 crossref_primary_10_1080_19466315_2019_1629996 crossref_primary_10_1186_s13643_021_01622_8 crossref_primary_10_1161_STROKEAHA_117_016720 crossref_primary_10_1186_s12874_022_01526_8 crossref_primary_10_1371_journal_pone_0149803 crossref_primary_10_1007_s11245_018_9542_8 crossref_primary_10_1016_j_jacc_2021_09_1367 crossref_primary_10_1002_pst_1595 crossref_primary_10_1002_pst_1991 crossref_primary_10_1080_14992027_2017_1385862 crossref_primary_10_3390_life14060661 crossref_primary_10_1002_pst_1755 crossref_primary_10_1002_psp4_12092 crossref_primary_10_3389_fonc_2021_636561 crossref_primary_10_1111_epi_13090 crossref_primary_10_1016_j_jacc_2018_10_033 crossref_primary_10_1016_S2213_2600_20_30471_9 crossref_primary_10_1007_s11245_018_9554_4 crossref_primary_10_1186_s13023_022_02342_5 crossref_primary_10_1177_1740774514568875 crossref_primary_10_1176_appi_ajp_20240042 crossref_primary_10_12688_f1000research_17952_2 crossref_primary_10_1186_s13063_016_1544_5 crossref_primary_10_1002_sim_6403 crossref_primary_10_1080_10543406_2016_1198367 crossref_primary_10_1186_s13063_022_06240_w crossref_primary_10_1186_s13063_022_06877_7 crossref_primary_10_2139_ssrn_3713924 crossref_primary_10_1007_s12561_014_9124_2 crossref_primary_10_1002_sim_9115 crossref_primary_10_1186_s13063_025_08737_6 crossref_primary_10_1016_S0140_6736_24_01295_9 crossref_primary_10_1016_j_jtho_2020_05_005 crossref_primary_10_1016_j_jclinepi_2021_04_010 crossref_primary_10_1186_s12874_023_02097_y crossref_primary_10_3389_fphar_2025_1548997 crossref_primary_10_1158_1078_0432_CCR_23_2378 crossref_primary_10_1093_jamiaopen_ooab107 crossref_primary_10_1016_j_compchemeng_2020_106774 crossref_primary_10_1177_17407745241247334 crossref_primary_10_1007_s10928_020_09671_7 crossref_primary_10_2196_10873 crossref_primary_10_4155_fdd_2019_0021 crossref_primary_10_1002_pbc_30187 crossref_primary_10_1186_s13054_023_04717_x crossref_primary_10_1542_peds_2024_065799 crossref_primary_10_1186_s12874_024_02235_0 crossref_primary_10_1016_j_softx_2023_101358 crossref_primary_10_1093_jnci_djx013 crossref_primary_10_1007_s00540_022_03044_9 crossref_primary_10_3390_ijerph18020595 crossref_primary_10_1002_bimj_201700275 crossref_primary_10_3390_ijerph18041833 crossref_primary_10_1002_asmb_2249 crossref_primary_10_1287_mnsc_2021_4096 crossref_primary_10_1016_j_ctrv_2018_12_003 crossref_primary_10_1136_ijgc_2024_005634 crossref_primary_10_15446_ede_v28n53_75382 crossref_primary_10_1002_pst_2139 crossref_primary_10_1186_s13063_024_07935_y |
Cites_doi | 10.1214/06‐BA115 10.1001/jama.272.2.129 10.1200/JCO.2007.12.1012 10.1002/sim.4363 10.2307/2289776 10.1158/2159‐8274.CD‐10‐0010 10.1038/sj.leu.2405014 10.1002/9780470316870 10.1016/0197-2456(81)90038-6 10.2307/2529851 10.1002/sim.2672 10.2307/2531628 10.1002/(SICI)1097-0258(19980530)17:10<1103::AID-SIM793>3.0.CO;2-9 10.2307/2981538 10.1002/sim.3175 10.1136/bmj.2.4582.769 10.1208/aapsj0901007 10.1038/nrd1927 10.1214/088342304000000116 10.1007/BF01060053 10.1177/1740774509104992 10.1177/096228020101000404 10.1002/pst.315 10.1146/annurev.pa.32.040192.001153 10.1038/clpt.2009.68 10.1007/s10463-006-0046-8 10.1002/sim.4780090804 10.1177/0272989X04267012 10.1200/JCO.2007.14.0665 10.1214/ss/1056397485 10.1038/nrclinonc.2011.165 10.1111/j.1467‐9469.2011.00737.x 10.1177/1740774508091815 10.1002/sim.2204 10.1109/TPAMI.1984.4767596 10.1214/10‐STS333 10.1198/016214505000000033 10.1214/ss/1032280216 10.1200/JCO.2005.07.032 10.1198/000313006X117837 10.1111/j.1467-9469.2011.00750.x 10.1002/sim.4780090803 10.1002/0470092602 10.2165/00003088‐198611050‐00004 10.1002/sim.3680 10.1214/06‐BA116C 10.1214/06‐BA116 |
ContentType | Journal Article |
Copyright | Copyright © 2012 John Wiley & Sons, Ltd. Copyright John Wiley and Sons, Limited Nov 10, 2012 |
Copyright_xml | – notice: Copyright © 2012 John Wiley & Sons, Ltd. – notice: Copyright John Wiley and Sons, Limited Nov 10, 2012 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1002/sim.5404 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 2972 |
ExternalDocumentID | PMC3495977 2787503491 22711340 10_1002_sim_5404 SIM5404 ark_67375_WNG_VD7XH4GN_4 |
Genre | article Journal Article Review Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: National Cancer Institute funderid: CA016672; CA097007 – fundername: NCI NIH HHS grantid: CA097007 – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: NCI NIH HHS grantid: P01 CA091844 – fundername: NCI NIH HHS grantid: P50 CA097007 – fundername: NCI NIH HHS grantid: CA016672 – fundername: National Cancer Institute : NCI grantid: P01 CA091844 || CA – fundername: National Cancer Institute : NCI grantid: P50 CA097007 || CA |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG AMVHM CITATION CGR CUY CVF ECM EIF NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5084-8903e200c6be1c88869e859e883fbc1739da66fb35dfc5c5150b7791369df6813 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 18:21:11 EDT 2025 Fri Jul 11 14:31:26 EDT 2025 Fri Jul 25 03:47:21 EDT 2025 Thu Apr 03 07:03:36 EDT 2025 Tue Jul 01 03:28:03 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 Wed Jan 22 16:20:18 EST 2025 Wed Oct 30 09:52:55 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2012 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5084-8903e200c6be1c88869e859e883fbc1739da66fb35dfc5c5150b7791369df6813 |
Notes | ArticleID:SIM5404 istex:21C9A25AC4D0D01E2AEEB39BC6CFB3B2FF122086 ark:/67375/WNG-VD7XH4GN-4 National Cancer Institute - No. CA016672; No. CA097007 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 22711340 |
PQID | 1111651229 |
PQPubID | 48361 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3495977 proquest_miscellaneous_1111857885 proquest_journals_1111651229 pubmed_primary_22711340 crossref_citationtrail_10_1002_sim_5404 crossref_primary_10_1002_sim_5404 wiley_primary_10_1002_sim_5404_SIM5404 istex_primary_ark_67375_WNG_VD7XH4GN_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 November 2012 |
PublicationDateYYYYMMDD | 2012-11-10 |
PublicationDate_xml | – month: 11 year: 2012 text: 10 November 2012 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Statist. Med |
PublicationYear | 2012 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | Jennison C, Turnbull BW. Group Sequential Methods with Applications to Clinical Trials. Chapman & Hall/CRC:Boca Raton, FL, 2000. Ashby D. Bayesian statistics in medicine: a 25 year review. Statistics in Medicine 2006; 25(21):3589-3631, DOI: 10.1002/sim.2672. Meier P. Jerome Cornfield and the methodology of clinical trials. Controlled Clinical Trials 1981; 1(4):339-345. Whiting B, Kelman AW, Grevel J. Population pharmacokinetics. Theory and clinical application. Clinical Pharmacokinetics 1986; 11:387-401, DOI:10.2165/00003088-198611050-00004. Sheiner LB, Beal SL. Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. Journal of Pharmacokinetics and Biopharmaceutics 1980; 8:553-571, DOI: 10.1007/BF01060053. Streptomycin-in-Tuberculosis-Trials-Committee. Streptomycin treatment of pulmonary tuberculosis: a Medical Research Council investigation. British Medical Journal 1948; 2:769-782, DOI: 10.1136/bmj.2.4582.769. Bayes T. An essay towards solving a problem in the doctrine of chances. 1763. M.D. Computing: Computers in Medical Practice 1991; 8:157-171. Gehan EA. Methodological issues in cancer clinical trials: the comparison of therapies. Biomedicine and Pharmacotherapy 1988; 42(3):161-165. Bernardo JM. The concept of exchangeability and its applications. Far East Journal of Mathematical Sciences 1996; 4:111-121. Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984; PAMI-6:721-741, DOI: 10.1109/TPAMI.1984.4767596. Dmitrienko A, Wang MD. Bayesian predictive approach to interim monitoring in clinical trials. Statistics in Medicine 2006; 25(13):2178-2195, DOI:10.1002/sim.2204. Berry DA. Bayesian clinical trials. Nature Reviews Drug Discovery 2006; 5(1):27-36, DOI: 10.1038/nrd1927. Goldstein M. Subjective Bayesian analysis: principles and practice. Bayesian Analysis 2006; 1:403-420, DOI: 10.1214/06-BA116. Bauer RJ, Guzy S, Ng C. A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples. The AAPS Journal 2007; 9:E60-E83, DOI: 10.1208/aapsj0901007. Arjas E. On future directions in statistical methodologies-some speculations. Scandinavian Journal of Statistics 2011; 38:185-194, DOI:10.1111/j.1467-9469.2011.00737.x. Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian Approaches to Clinical Trials and Health-Care Evaluation. Wiley:West Sussex, 2004. Berger JO, Christensen R. Could Fisher, Jeffreys and Neyman have agreed on testing? Statistical Science 2003; 18(1):1-32. Gehan EA, Schneiderman MA. Historical and methodological developments in clinical trials at the National Cancer Institute. Statistics in Medicine 1990; 9:871-880, DOI: 10.1002/sim.4780090803. Kim ES, Herbst RS, Wistuba II, Lee JJ, Jr. GRB, Tsao A, Stewart DJ, Hicks ME, Jr JE, Gupta S, Alden CM, Liu S, Tang X, Khuri FR, Tran HT, Johnson BE, Heymach JV, Mao L, Fossella F, Kies MS, Papadimitrakopoulou V, Davis SE, Lippman SM, Hong WK. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discovery 2011; 1:44-53, DOI:10.1158/2159-8274.CD-10-0010. Berry DA. Adaptive clinical trials in oncology. Nature Reviews Clinical Oncology 2012; 9:199-207, DOI: 10.1038/nrclinonc.2011.165. Betrò B, Bodini A, Guglielmi A. Generalized moment theory and Bayesian robustness analysis for hierarchical mixture models. Annals of the Institute of Statistical Mathematics 2006; 58(4):721-738. Buzdar AU, Ibrahim NK, Francis D, Booser DJ, Thomas ES, Theriault RL, Pusztai L, Green MC, Arun BK, Giordano SH, Cristofanilli M, Frye DK, Smith TL, Hunt KK, Singletary SE, Sahin AA, Ewer MS, Buchholz TA, Berry D, Hortobagyi GN. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. Journal of Clinical Oncology 2005; 23:3676-3685. DOI:10.1200/JCO.2005.07.032. Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA, Esserman LJ. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clinical Pharmacology and Therapeutics 2009; 86:97-100, DOI:10.1038/clpt.2009.68. de Lima M, Champlin RE, Thall PF, Wang X, Martin TG 3rd, Cook JD, McCormick G, Qazilbash M, Kebriaei P, Couriel D, Shpall EJ, Khouri I, Anderlini P, Hosing C, Chan KW, Andersson BS, Patah PA, Caldera Z, Jabbour E, Giralt S. Phase I/II study of gemtuzumab ozogamicin added to fludarabine, melphalan and allogeneic hematopoietic stem cell transplantation for high-risk CD33 positive myeloid leukemias and myelodysplastic syndrome. Leukemia 2008; 22(2):258-264. Chevret S. Bayesian adaptive clinical trials: a dream for statisticians only? Statistics in Medicine 2011, DOI: 10.1002/sim.4363. [Sept 9 Epub ahead of print]. O'Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics 1990; 46:33-48, DOI:10.2307/2531628. Fienberg SE. Does it make sense to be an " objective Bayesian" ? (Comment on articles by Berger and by Goldstein). Bayesian Analysis 2006; 1:429-432. DOI:10.1214/06-BA116C. Gelfand AE, Smith AFM. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 1990; 85:398-409, DOI:10.2307/2289776. Center for Devices and Radiological Health, Food and Drug Administration. Guidance for the Use of Bayesian statistics in Medical Device Clinical Trials. U.S. Department of Health and Human Services:Rockville, MD, 2010. Accessed 10/14/2011; available at http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071121.pdf. Stigler SM. The history of statistics in 1933. Statistical Science 1996; 11:244-252, DOI: 10.1214/ss/1032280216. Bernardo JM, Smith AFM. Bayesian Theory. Wiley:West Sussex, 1994. Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: evolution, critique and future directions. Statistics in Medicine 2009; 28:3049-3067, DOI:10.1002/sim.3680. Julian TB, Blumencranz P, Deck K, Whitworth P, Berry DA, Berry SM, Rosenberg A, Chagpar AB, Reintgen D, Beitsch P, Simmons R, Saha S, Mamounas EP, Giuliano A. Novel intraoperative molecular test for sentinel lymph node metastases in patients with early-stage breast cancer. Journal of Clinical Oncology 2008; 26:3338-3345, DOI: 10.1200/JCO.2007.14.0665. Sutton AJ, Abrams KR. Bayesian methods in meta-analysis and evidence synthesis. Statistical Methods in Medical Research 2001; 10(4):277-303, DOI:10.1177/096228020101000404. Center for Drug Evaluation and Research, Food and Drug Administration. Guidance for Industry: Adaptive Design Clinical Trials for Drugs and Biologics. U.S. Department of Health and Human Services:Rockville, MD, 2010. Accessed 10/14/2011; available at http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM201790.pdf. Rogatko A, Schoeneck D, Jonas W, Tighiouart M, Khuri FR, Porter A. Translation of innovative designs into phase I trials. Journal of Clinical Oncology 2007; 25:4982-4986, DOI: 10.1200/JCO.2007.12.1012. Stigler SM. Thomas Bayes' Bayesian inference. Journal of the Royal Statistical Society, Series A 1982; 145:250-258, DOI: 10.2307/2981538. Little RJ. Calibrated Bayes: a Bayes/frequentist roadmap. American Statistician 2006; 60:213-223, DOI: 10.1198/000313006X117837. Bayarri MJ, Berger JO. The interplay of Bayesian and frequentist analysis. Statistical Science 2004; 19:58-80, DOI: 10.1214/088342304000000116. Brutti P, De Santis F, Gubbiotti S. Robust Bayesian sample size determination in clinical trials. Statistics in Medicine 2008; 27(13):2290-2306. Zhou X, Liu S, Kim ES, Herbst RS, Lee JJ. Bayesian adaptive design for targeted therapy development in lung cancer-a step toward personalized medicine. Clinical Trials 2008; 5:181-193, DOI: 10.1177/1740774508091815. Berry DA. Adaptive trial design. Clinical Advances in Hematology and Oncology 2007; 5(7):522-524. http://www.clinicaladvances.com/article\_pdfs/ho-article-200707-drugdev.pdf. Grieve AP. 25 years of Bayesian methods in the pharmaceutical industry: a personal, statistical bummel. Pharmaceutical Statistics 2007; 6:261-281, DOI:10.1002/pst.315. Altman DG, Goodman SN. Transfer of technology from statistical journals to the biomedical literature-past trends and future predictions. JAMA 1994; 272:129-132, DOI: 10.1001/jama.272.2.129. Tighiouart M, Rogatko A. Dose finding with escalation with overdose control (EWOC) in cancer clinical trials. Statistical Science 2010; 25:217-226, DOI:10.1214/10-STS333. Resnic FS, Zou KH, Do DV, Apostolakis G, Ohno-Machado L. Exploration of a Bayesian updating methodology to monitor the safety of interventional cardiovascular procedures. Medical Decision Making 2004; 24(4):399-407. Ederer F. Jerome Cornfield's contributions to the conduct of clinical trials. Biometrics 1982; 38 Suppl:25-32. Biswas S, Liu DD, Lee JJ, Berry DA. Bayesian clinical trials at the University of Texas M. D. Anderson Cancer Center. Clinical Trials 2009; 6:205-216, DOI:10.1177/1740774509104992. Andrade JAA, O'Hagan A. Bayesian robustness modelling of location and scale parameters. Scandinavian Journal of Statistics 2011; 38(4):691-711. Halperin M, DeMets DL, Ware JH. Early methodological developments for clinical trials at the National Heart, Lung and Blood Institute. Statistics in Medicine 1990; 9(8):881-892, DOI: 10.1002/sim.4780090804. Berger JO, Wolpert RL. The Likelihood Principle. SS Gupta, ed. Institute of Mathematical Statistics:Hayward, CA, 1984. http://projecteuclid.org/euclid.lnms/1215466210. Babb J, Rogatko A, Zacks S. Cancer phase I clinical trials: efficient dose escalation with overdose control. Statistics in Medicine 1998; 17:1103-1120, DOI: 10.1002/(SICI)1097-0258(19980530)17:10 < 1103::AID-SIM793 > 3.0.CO;2-9. Efron B. Bayesians, frequentists, and scientists. Journal 2009; 86 1984; PAMI‐6 2004; 24 1982; 145 2008; 5 2003; 18 2005; 23 1990; 85 2006; 60 1998; 17 1990; 46 2010; 25 1982; 38 Suppl 2000 2005; 100 1948; 2 2006; 25 2008; 27 2007; 9 2008; 26 2007; 6 1984 2007; 5 2008; 22 1988; 42 1996; 4 2007; 25 2001; 10 2011; 1 2011 1981; 1 2010 1986; 11 2006; 58 1994; 272 2009 2006; 5 1994 2005 2004 2006; 1 2002 2011; 38 1992; 32 1991; 8 1996; 11 2009; 28 2004; 19 1980; 8 2009; 6 1990; 9 2012; 9 e_1_2_12_4_1 Bernardo JM (e_1_2_12_17_1) 1996; 4 e_1_2_12_19_1 e_1_2_12_2_1 Bayes T (e_1_2_12_8_1) 1991; 8 e_1_2_12_38_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_24_1 e_1_2_12_45_1 Gehan EA (e_1_2_12_6_1) 1988; 42 e_1_2_12_47_1 Center for Devices and Radiological Health, Food and Drug Administration (e_1_2_12_52_1) 2010 e_1_2_12_60_1 Jennison C (e_1_2_12_23_1) 2000 e_1_2_12_28_1 e_1_2_12_49_1 Center for Drug Evaluation and Research, Food and Drug Administration (e_1_2_12_26_1) 2010 e_1_2_12_31_1 e_1_2_12_33_1 e_1_2_12_54_1 e_1_2_12_35_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_58_1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_10_1 Berry DA (e_1_2_12_25_1) 2007; 5 e_1_2_12_50_1 e_1_2_12_3_1 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_16_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_46_1 e_1_2_12_48_1 Berger JO (e_1_2_12_15_1) 1984 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_9_1 |
References_xml | – reference: Gelfand AE, Smith AFM. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 1990; 85:398-409, DOI:10.2307/2289776. – reference: Kim ES, Herbst RS, Wistuba II, Lee JJ, Jr. GRB, Tsao A, Stewart DJ, Hicks ME, Jr JE, Gupta S, Alden CM, Liu S, Tang X, Khuri FR, Tran HT, Johnson BE, Heymach JV, Mao L, Fossella F, Kies MS, Papadimitrakopoulou V, Davis SE, Lippman SM, Hong WK. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discovery 2011; 1:44-53, DOI:10.1158/2159-8274.CD-10-0010. – reference: Berger JO, Wolpert RL. The Likelihood Principle. SS Gupta, ed. Institute of Mathematical Statistics:Hayward, CA, 1984. http://projecteuclid.org/euclid.lnms/1215466210. – reference: Betrò B, Bodini A, Guglielmi A. Generalized moment theory and Bayesian robustness analysis for hierarchical mixture models. Annals of the Institute of Statistical Mathematics 2006; 58(4):721-738. – reference: Sheiner LB, Ludden TM. Population pharmacokinetics/dynamics. Annual Review of Pharmacology and Toxicology 1992; 32:185-209, DOI:10.1146/annurev.pa.32.040192.001153. – reference: Brutti P, De Santis F, Gubbiotti S. Robust Bayesian sample size determination in clinical trials. Statistics in Medicine 2008; 27(13):2290-2306. – reference: Bayarri MJ, Berger JO. The interplay of Bayesian and frequentist analysis. Statistical Science 2004; 19:58-80, DOI: 10.1214/088342304000000116. – reference: Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian Approaches to Clinical Trials and Health-Care Evaluation. Wiley:West Sussex, 2004. – reference: O'Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics 1990; 46:33-48, DOI:10.2307/2531628. – reference: Ederer F. Jerome Cornfield's contributions to the conduct of clinical trials. Biometrics 1982; 38 Suppl:25-32. – reference: Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA, Esserman LJ. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clinical Pharmacology and Therapeutics 2009; 86:97-100, DOI:10.1038/clpt.2009.68. – reference: Resnic FS, Zou KH, Do DV, Apostolakis G, Ohno-Machado L. Exploration of a Bayesian updating methodology to monitor the safety of interventional cardiovascular procedures. Medical Decision Making 2004; 24(4):399-407. – reference: Berger J. The case for objective Bayesian analysis. Bayesian Analysis 2006; 1:385-402, DOI: 10.1214/06-BA115. – reference: Bauer RJ, Guzy S, Ng C. A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples. The AAPS Journal 2007; 9:E60-E83, DOI: 10.1208/aapsj0901007. – reference: Berry DA. Adaptive trial design. Clinical Advances in Hematology and Oncology 2007; 5(7):522-524. http://www.clinicaladvances.com/article\_pdfs/ho-article-200707-drugdev.pdf. – reference: Fienberg SE. Does it make sense to be an " objective Bayesian" ? (Comment on articles by Berger and by Goldstein). Bayesian Analysis 2006; 1:429-432. DOI:10.1214/06-BA116C. – reference: Bernardo JM. The concept of exchangeability and its applications. Far East Journal of Mathematical Sciences 1996; 4:111-121. – reference: Sutton AJ, Abrams KR. Bayesian methods in meta-analysis and evidence synthesis. Statistical Methods in Medical Research 2001; 10(4):277-303, DOI:10.1177/096228020101000404. – reference: Sheiner LB, Beal SL. Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. Journal of Pharmacokinetics and Biopharmaceutics 1980; 8:553-571, DOI: 10.1007/BF01060053. – reference: Rogatko A, Schoeneck D, Jonas W, Tighiouart M, Khuri FR, Porter A. Translation of innovative designs into phase I trials. Journal of Clinical Oncology 2007; 25:4982-4986, DOI: 10.1200/JCO.2007.12.1012. – reference: Buzdar AU, Ibrahim NK, Francis D, Booser DJ, Thomas ES, Theriault RL, Pusztai L, Green MC, Arun BK, Giordano SH, Cristofanilli M, Frye DK, Smith TL, Hunt KK, Singletary SE, Sahin AA, Ewer MS, Buchholz TA, Berry D, Hortobagyi GN. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. Journal of Clinical Oncology 2005; 23:3676-3685. DOI:10.1200/JCO.2005.07.032. – reference: de Lima M, Champlin RE, Thall PF, Wang X, Martin TG 3rd, Cook JD, McCormick G, Qazilbash M, Kebriaei P, Couriel D, Shpall EJ, Khouri I, Anderlini P, Hosing C, Chan KW, Andersson BS, Patah PA, Caldera Z, Jabbour E, Giralt S. Phase I/II study of gemtuzumab ozogamicin added to fludarabine, melphalan and allogeneic hematopoietic stem cell transplantation for high-risk CD33 positive myeloid leukemias and myelodysplastic syndrome. Leukemia 2008; 22(2):258-264. – reference: Goldstein M. Subjective Bayesian analysis: principles and practice. Bayesian Analysis 2006; 1:403-420, DOI: 10.1214/06-BA116. – reference: Halperin M, DeMets DL, Ware JH. Early methodological developments for clinical trials at the National Heart, Lung and Blood Institute. Statistics in Medicine 1990; 9(8):881-892, DOI: 10.1002/sim.4780090804. – reference: Center for Drug Evaluation and Research, Food and Drug Administration. Guidance for Industry: Adaptive Design Clinical Trials for Drugs and Biologics. U.S. Department of Health and Human Services:Rockville, MD, 2010. Accessed 10/14/2011; available at http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM201790.pdf. – reference: Meier P. Jerome Cornfield and the methodology of clinical trials. Controlled Clinical Trials 1981; 1(4):339-345. – reference: Berry DA. Bayesian clinical trials. Nature Reviews Drug Discovery 2006; 5(1):27-36, DOI: 10.1038/nrd1927. – reference: Zhou X, Liu S, Kim ES, Herbst RS, Lee JJ. Bayesian adaptive design for targeted therapy development in lung cancer-a step toward personalized medicine. Clinical Trials 2008; 5:181-193, DOI: 10.1177/1740774508091815. – reference: Stigler SM. The history of statistics in 1933. Statistical Science 1996; 11:244-252, DOI: 10.1214/ss/1032280216. – reference: Berry DA. Adaptive clinical trials in oncology. Nature Reviews Clinical Oncology 2012; 9:199-207, DOI: 10.1038/nrclinonc.2011.165. – reference: Arjas E. On future directions in statistical methodologies-some speculations. Scandinavian Journal of Statistics 2011; 38:185-194, DOI:10.1111/j.1467-9469.2011.00737.x. – reference: Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: evolution, critique and future directions. Statistics in Medicine 2009; 28:3049-3067, DOI:10.1002/sim.3680. – reference: Dmitrienko A, Wang MD. Bayesian predictive approach to interim monitoring in clinical trials. Statistics in Medicine 2006; 25(13):2178-2195, DOI:10.1002/sim.2204. – reference: Jennison C, Turnbull BW. Group Sequential Methods with Applications to Clinical Trials. Chapman & Hall/CRC:Boca Raton, FL, 2000. – reference: Altman DG, Goodman SN. Transfer of technology from statistical journals to the biomedical literature-past trends and future predictions. JAMA 1994; 272:129-132, DOI: 10.1001/jama.272.2.129. – reference: Ashby D. Bayesian statistics in medicine: a 25 year review. Statistics in Medicine 2006; 25(21):3589-3631, DOI: 10.1002/sim.2672. – reference: Julian TB, Blumencranz P, Deck K, Whitworth P, Berry DA, Berry SM, Rosenberg A, Chagpar AB, Reintgen D, Beitsch P, Simmons R, Saha S, Mamounas EP, Giuliano A. Novel intraoperative molecular test for sentinel lymph node metastases in patients with early-stage breast cancer. Journal of Clinical Oncology 2008; 26:3338-3345, DOI: 10.1200/JCO.2007.14.0665. – reference: Berger JO, Christensen R. Could Fisher, Jeffreys and Neyman have agreed on testing? Statistical Science 2003; 18(1):1-32. – reference: Whiting B, Kelman AW, Grevel J. Population pharmacokinetics. Theory and clinical application. Clinical Pharmacokinetics 1986; 11:387-401, DOI:10.2165/00003088-198611050-00004. – reference: Bernardo JM, Smith AFM. Bayesian Theory. Wiley:West Sussex, 1994. – reference: Andrade JAA, O'Hagan A. Bayesian robustness modelling of location and scale parameters. Scandinavian Journal of Statistics 2011; 38(4):691-711. – reference: Tighiouart M, Rogatko A. Dose finding with escalation with overdose control (EWOC) in cancer clinical trials. Statistical Science 2010; 25:217-226, DOI:10.1214/10-STS333. – reference: Bayes T. An essay towards solving a problem in the doctrine of chances. 1763. M.D. Computing: Computers in Medical Practice 1991; 8:157-171. – reference: Babb J, Rogatko A, Zacks S. Cancer phase I clinical trials: efficient dose escalation with overdose control. Statistics in Medicine 1998; 17:1103-1120, DOI: 10.1002/(SICI)1097-0258(19980530)17:10 < 1103::AID-SIM793 > 3.0.CO;2-9. – reference: Center for Devices and Radiological Health, Food and Drug Administration. Guidance for the Use of Bayesian statistics in Medical Device Clinical Trials. U.S. Department of Health and Human Services:Rockville, MD, 2010. Accessed 10/14/2011; available at http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071121.pdf. – reference: Stigler SM. Thomas Bayes' Bayesian inference. Journal of the Royal Statistical Society, Series A 1982; 145:250-258, DOI: 10.2307/2981538. – reference: Gehan EA. Methodological issues in cancer clinical trials: the comparison of therapies. Biomedicine and Pharmacotherapy 1988; 42(3):161-165. – reference: Streptomycin-in-Tuberculosis-Trials-Committee. Streptomycin treatment of pulmonary tuberculosis: a Medical Research Council investigation. British Medical Journal 1948; 2:769-782, DOI: 10.1136/bmj.2.4582.769. – reference: Grieve AP. 25 years of Bayesian methods in the pharmaceutical industry: a personal, statistical bummel. Pharmaceutical Statistics 2007; 6:261-281, DOI:10.1002/pst.315. – reference: Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984; PAMI-6:721-741, DOI: 10.1109/TPAMI.1984.4767596. – reference: Chevret S. Bayesian adaptive clinical trials: a dream for statisticians only? Statistics in Medicine 2011, DOI: 10.1002/sim.4363. [Sept 9 Epub ahead of print]. – reference: Little RJ. Calibrated Bayes: a Bayes/frequentist roadmap. American Statistician 2006; 60:213-223, DOI: 10.1198/000313006X117837. – reference: Gehan EA, Schneiderman MA. Historical and methodological developments in clinical trials at the National Cancer Institute. Statistics in Medicine 1990; 9:871-880, DOI: 10.1002/sim.4780090803. – reference: Efron B. Bayesians, frequentists, and scientists. Journal of the American Statistical Association 2005; 100:1-5, DOI: 10.1198/016214505000000033. – reference: Biswas S, Liu DD, Lee JJ, Berry DA. Bayesian clinical trials at the University of Texas M. D. Anderson Cancer Center. Clinical Trials 2009; 6:205-216, DOI:10.1177/1740774509104992. – volume: 5 start-page: 181 year: 2008 end-page: 193 article-title: Bayesian adaptive design for targeted therapy development in lung cancer—a step toward personalized medicine publication-title: Clinical Trials – volume: 1 start-page: 403 year: 2006 end-page: 420 article-title: Subjective Bayesian analysis: principles and practice publication-title: Bayesian Analysis – year: 2009 – volume: 272 start-page: 129 year: 1994 end-page: 132 article-title: Transfer of technology from statistical journals to the biomedical literature—past trends and future predictions publication-title: JAMA – volume: PAMI‐6 start-page: 721 year: 1984 end-page: 741 article-title: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 4 start-page: 111 year: 1996 end-page: 121 article-title: The concept of exchangeability and its applications publication-title: Far East Journal of Mathematical Sciences – volume: 85 start-page: 398 year: 1990 end-page: 409 article-title: Sampling‐based approaches to calculating marginal densities publication-title: Journal of the American Statistical Association – volume: 1 start-page: 429 year: 2006 end-page: 432 article-title: Does it make sense to be an " objective Bayesian" ? (Comment on articles by Berger and by Goldstein) publication-title: Bayesian Analysis – volume: 5 start-page: 522 issue: 7 year: 2007 end-page: 524 article-title: Adaptive trial design publication-title: Clinical Advances in Hematology and Oncology – volume: 18 start-page: 1 issue: 1 year: 2003 end-page: 32 article-title: Could Fisher, Jeffreys and Neyman have agreed on testing? publication-title: Statistical Science – volume: 42 start-page: 161 issue: 3 year: 1988 end-page: 165 article-title: Methodological issues in cancer clinical trials: the comparison of therapies publication-title: Biomedicine and Pharmacotherapy – volume: 38 Suppl start-page: 25 year: 1982 end-page: 32 article-title: Jerome Cornfield's contributions to the conduct of clinical trials publication-title: Biometrics – year: 1994 – volume: 25 start-page: 3589 issue: 21 year: 2006 end-page: 3631 article-title: Bayesian statistics in medicine: a 25 year review publication-title: Statistics in Medicine – volume: 6 start-page: 205 year: 2009 end-page: 216 article-title: Bayesian clinical trials at the University of Texas M. D. Anderson Cancer Center publication-title: Clinical Trials – volume: 9 start-page: 199 year: 2012 end-page: 207 article-title: Adaptive clinical trials in oncology publication-title: Nature Reviews Clinical Oncology – volume: 5 start-page: 27 issue: 1 year: 2006 end-page: 36 article-title: Bayesian clinical trials publication-title: Nature Reviews Drug Discovery – year: 2004 – volume: 1 start-page: 385 year: 2006 end-page: 402 article-title: The case for objective Bayesian analysis publication-title: Bayesian Analysis – volume: 1 start-page: 339 issue: 4 year: 1981 end-page: 345 article-title: Jerome Cornfield and the methodology of clinical trials publication-title: Controlled Clinical Trials – volume: 86 start-page: 97 year: 2009 end-page: 100 article-title: I‐SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy publication-title: Clinical Pharmacology and Therapeutics – volume: 28 start-page: 3049 year: 2009 end-page: 3067 article-title: The BUGS project: evolution, critique and future directions publication-title: Statistics in Medicine – volume: 38 start-page: 185 year: 2011 end-page: 194 article-title: On future directions in statistical methodologies—some speculations publication-title: Scandinavian Journal of Statistics – volume: 19 start-page: 58 year: 2004 end-page: 80 article-title: The interplay of Bayesian and frequentist analysis publication-title: Statistical Science – volume: 8 start-page: 157 year: 1991 end-page: 171 article-title: An essay towards solving a problem in the doctrine of chances. 1763 publication-title: M.D. Computing: Computers in Medical Practice – volume: 145 start-page: 250 year: 1982 end-page: 258 article-title: Thomas Bayes’ Bayesian inference publication-title: Journal of the Royal Statistical Society, Series A – volume: 27 start-page: 2290 issue: 13 year: 2008 end-page: 2306 article-title: Robust Bayesian sample size determination in clinical trials publication-title: Statistics in Medicine – volume: 23 start-page: 3676 year: 2005 end-page: 3685 article-title: Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2‐positive operable breast cancer publication-title: Journal of Clinical Oncology – volume: 26 start-page: 3338 year: 2008 end-page: 3345 article-title: Novel intraoperative molecular test for sentinel lymph node metastases in patients with early‐stage breast cancer publication-title: Journal of Clinical Oncology – volume: 46 start-page: 33 year: 1990 end-page: 48 article-title: Continual reassessment method: a practical design for phase 1 clinical trials in cancer publication-title: Biometrics – volume: 10 start-page: 277 issue: 4 year: 2001 end-page: 303 article-title: Bayesian methods in meta‐analysis and evidence synthesis publication-title: Statistical Methods in Medical Research – volume: 32 start-page: 185 year: 1992 end-page: 209 article-title: Population pharmacokinetics/dynamics publication-title: Annual Review of Pharmacology and Toxicology – volume: 9 start-page: E60 year: 2007 end-page: E83 article-title: A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples publication-title: The AAPS Journal – volume: 38 start-page: 691 issue: 4 year: 2011 end-page: 711 article-title: Bayesian robustness modelling of location and scale parameters publication-title: Scandinavian Journal of Statistics – volume: 1 start-page: 44 year: 2011 end-page: 53 article-title: The BATTLE trial: personalizing therapy for lung cancer publication-title: Cancer Discovery – volume: 25 start-page: 217 year: 2010 end-page: 226 article-title: Dose finding with escalation with overdose control (EWOC) in cancer clinical trials publication-title: Statistical Science – volume: 100 start-page: 1 year: 2005 end-page: 5 article-title: Bayesians, frequentists, and scientists publication-title: Journal of the American Statistical Association – volume: 25 start-page: 4982 year: 2007 end-page: 4986 article-title: Translation of innovative designs into phase I trials publication-title: Journal of Clinical Oncology – year: 2000 – volume: 8 start-page: 553 year: 1980 end-page: 571 article-title: Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis‐Menten model: routine clinical pharmacokinetic data publication-title: Journal of Pharmacokinetics and Biopharmaceutics – volume: 22 start-page: 258 issue: 2 year: 2008 end-page: 264 article-title: Phase I/II study of gemtuzumab ozogamicin added to fludarabine, melphalan and allogeneic hematopoietic stem cell transplantation for high‐risk CD33 positive myeloid leukemias and myelodysplastic syndrome publication-title: Leukemia – start-page: 1045 year: 2005 – volume: 9 start-page: 871 year: 1990 end-page: 880 article-title: Historical and methodological developments in clinical trials at the National Cancer Institute publication-title: Statistics in Medicine – volume: 6 start-page: 261 year: 2007 end-page: 281 article-title: 25 years of Bayesian methods in the pharmaceutical industry: a personal, statistical bummel publication-title: Pharmaceutical Statistics – volume: 58 start-page: 721 issue: 4 year: 2006 end-page: 738 article-title: Generalized moment theory and Bayesian robustness analysis for hierarchical mixture models publication-title: Annals of the Institute of Statistical Mathematics – year: 2010 – year: 1984 – volume: 17 start-page: 1103 year: 1998 end-page: 1120 article-title: Cancer phase I clinical trials: efficient dose escalation with overdose control publication-title: Statistics in Medicine – volume: 2 start-page: 769 year: 1948 end-page: 782 article-title: Streptomycin treatment of pulmonary tuberculosis: a Medical Research Council investigation publication-title: British Medical Journal – year: 2002 – volume: 60 start-page: 213 year: 2006 end-page: 223 article-title: Calibrated Bayes: a Bayes/frequentist roadmap publication-title: American Statistician – volume: 9 start-page: 881 issue: 8 year: 1990 end-page: 892 article-title: Early methodological developments for clinical trials at the National Heart, Lung and Blood Institute publication-title: Statistics in Medicine – volume: 25 start-page: 2178 issue: 13 year: 2006 end-page: 2195 article-title: Bayesian predictive approach to interim monitoring in clinical trials publication-title: Statistics in Medicine – volume: 24 start-page: 399 issue: 4 year: 2004 end-page: 407 article-title: Exploration of a Bayesian updating methodology to monitor the safety of interventional cardiovascular procedures publication-title: Medical Decision Making – volume: 11 start-page: 387 year: 1986 end-page: 401 article-title: Population pharmacokinetics. Theory and clinical application publication-title: Clinical Pharmacokinetics – year: 2011 article-title: Bayesian adaptive clinical trials: a dream for statisticians only? publication-title: Statistics in Medicine – volume: 11 start-page: 244 year: 1996 end-page: 252 article-title: The history of statistics in 1933 publication-title: Statistical Science – ident: e_1_2_12_31_1 doi: 10.1214/06‐BA115 – ident: e_1_2_12_54_1 doi: 10.1001/jama.272.2.129 – ident: e_1_2_12_48_1 doi: 10.1200/JCO.2007.12.1012 – ident: e_1_2_12_44_1 doi: 10.1002/sim.4363 – ident: e_1_2_12_28_1 doi: 10.2307/2289776 – ident: e_1_2_12_39_1 doi: 10.1158/2159‐8274.CD‐10‐0010 – ident: e_1_2_12_41_1 doi: 10.1038/sj.leu.2405014 – ident: e_1_2_12_10_1 doi: 10.1002/9780470316870 – ident: e_1_2_12_11_1 doi: 10.1016/0197-2456(81)90038-6 – ident: e_1_2_12_12_1 doi: 10.2307/2529851 – ident: e_1_2_12_13_1 doi: 10.1002/sim.2672 – volume-title: Guidance for the Use of Bayesian statistics in Medical Device Clinical Trials year: 2010 ident: e_1_2_12_52_1 – ident: e_1_2_12_42_1 doi: 10.2307/2531628 – ident: e_1_2_12_43_1 doi: 10.1002/(SICI)1097-0258(19980530)17:10<1103::AID-SIM793>3.0.CO;2-9 – ident: e_1_2_12_51_1 – ident: e_1_2_12_9_1 doi: 10.2307/2981538 – ident: e_1_2_12_19_1 doi: 10.1002/sim.3175 – ident: e_1_2_12_2_1 doi: 10.1136/bmj.2.4582.769 – ident: e_1_2_12_49_1 – ident: e_1_2_12_37_1 doi: 10.1208/aapsj0901007 – ident: e_1_2_12_22_1 doi: 10.1038/nrd1927 – ident: e_1_2_12_7_1 doi: 10.1214/088342304000000116 – ident: e_1_2_12_34_1 doi: 10.1007/BF01060053 – ident: e_1_2_12_53_1 – ident: e_1_2_12_45_1 doi: 10.1177/1740774509104992 – ident: e_1_2_12_21_1 doi: 10.1177/096228020101000404 – ident: e_1_2_12_14_1 doi: 10.1002/pst.315 – ident: e_1_2_12_35_1 doi: 10.1146/annurev.pa.32.040192.001153 – volume-title: Guidance for Industry: Adaptive Design Clinical Trials for Drugs and Biologics year: 2010 ident: e_1_2_12_26_1 – volume: 42 start-page: 161 issue: 3 year: 1988 ident: e_1_2_12_6_1 article-title: Methodological issues in cancer clinical trials: the comparison of therapies publication-title: Biomedicine and Pharmacotherapy – ident: e_1_2_12_56_1 doi: 10.1038/clpt.2009.68 – volume-title: Group Sequential Methods with Applications to Clinical Trials year: 2000 ident: e_1_2_12_23_1 – ident: e_1_2_12_18_1 doi: 10.1007/s10463-006-0046-8 – ident: e_1_2_12_3_1 doi: 10.1002/sim.4780090804 – ident: e_1_2_12_50_1 doi: 10.1177/0272989X04267012 – volume: 4 start-page: 111 year: 1996 ident: e_1_2_12_17_1 article-title: The concept of exchangeability and its applications publication-title: Far East Journal of Mathematical Sciences – ident: e_1_2_12_16_1 – ident: e_1_2_12_40_1 doi: 10.1200/JCO.2007.14.0665 – ident: e_1_2_12_57_1 doi: 10.1214/ss/1056397485 – volume-title: The Likelihood Principle year: 1984 ident: e_1_2_12_15_1 – ident: e_1_2_12_55_1 doi: 10.1038/nrclinonc.2011.165 – ident: e_1_2_12_60_1 doi: 10.1111/j.1467‐9469.2011.00737.x – volume: 8 start-page: 157 year: 1991 ident: e_1_2_12_8_1 article-title: An essay towards solving a problem in the doctrine of chances. 1763 publication-title: M.D. Computing: Computers in Medical Practice – ident: e_1_2_12_46_1 doi: 10.1177/1740774508091815 – ident: e_1_2_12_24_1 doi: 10.1002/sim.2204 – volume: 5 start-page: 522 issue: 7 year: 2007 ident: e_1_2_12_25_1 article-title: Adaptive trial design publication-title: Clinical Advances in Hematology and Oncology – ident: e_1_2_12_27_1 doi: 10.1109/TPAMI.1984.4767596 – ident: e_1_2_12_47_1 doi: 10.1214/10‐STS333 – ident: e_1_2_12_58_1 doi: 10.1198/016214505000000033 – ident: e_1_2_12_5_1 doi: 10.1214/ss/1032280216 – ident: e_1_2_12_38_1 doi: 10.1200/JCO.2005.07.032 – ident: e_1_2_12_59_1 doi: 10.1198/000313006X117837 – ident: e_1_2_12_20_1 doi: 10.1111/j.1467-9469.2011.00750.x – ident: e_1_2_12_4_1 doi: 10.1002/sim.4780090803 – ident: e_1_2_12_33_1 doi: 10.1002/0470092602 – ident: e_1_2_12_36_1 doi: 10.2165/00003088‐198611050‐00004 – ident: e_1_2_12_29_1 doi: 10.1002/sim.3680 – ident: e_1_2_12_32_1 doi: 10.1214/06‐BA116C – ident: e_1_2_12_30_1 doi: 10.1214/06‐BA116 |
SSID | ssj0011527 |
Score | 2.4317768 |
SecondaryResourceType | review_article |
Snippet | Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. Advancements... Although the frequentist paradigm has been the predominant approach to clinical trial design since the 1940s, it has several notable limitations. The... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2955 |
SubjectTerms | adaptive trial design Bayes Theorem Bayesian analysis Bayesian paradigm clinical trial conduct Clinical trials Clinical Trials as Topic - ethics Clinical Trials as Topic - standards Clinical Trials as Topic - statistics & numerical data Design of experiments frequentist paradigm Likelihood Functions Research Design Software Technological change trial efficiency trial ethics |
Title | Bayesian clinical trials in action |
URI | https://api.istex.fr/ark:/67375/WNG-VD7XH4GN-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.5404 https://www.ncbi.nlm.nih.gov/pubmed/22711340 https://www.proquest.com/docview/1111651229 https://www.proquest.com/docview/1111857885 https://pubmed.ncbi.nlm.nih.gov/PMC3495977 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRaoqIR7La6FFASE4ZZuXHzmWQrsg7R6AwkocLNtxxKqQou6uBPz6zthJYGkrIQ5JDp4oGY_H_mzPfAZ4RgzqnGcylqXL4qIubKyNE3hjCLYzbRJPVj2Z8vFx8XbGZm1UJeXCBH6IfsGNPMP31-Tg2iz2fpOGLubfRgg3iAqUQrUID73rmaPS7rRW2qHkImUd72yS7XUvro1E16hSf1wGMy9GS_6JYv0wdHgTPncKhOiTk9FqaUb211_cjv-n4S240aLTaD80p9uw4ZoBbE3a_fcBXA-rfFFIXhrANmHVQPV8B56-1D8d5WRGXbpl5M8EWUTzJgr5E3fh-PD1h4Nx3B7BEFtEbgVaMMkdOpLlxqUWZ8u8dJLhJfPa2FTkZaU5r03Oqtoyi-AoMUKUaJCyqrlM83uw2Zw27gFEGn29Jiob69KC6QqRiajKvMQOVsvKySG86MyhbMtPTsdkfFWBWTlTWB-K6mMIT3rJ74GT4xKZ596ivYA-O6EYNsHUp-mR-vhKzMbF0VSh4E5nctW678JPizhCoazEb_XF6Hi0m6Ibd7oKMhL7O8mGcD-0kP5jqFqa5kUyBLHWdnoBIvVeL2nmXzy5d44zVsTk-P--aVypoHr_ZkLPh_8q-Ai2EexlsQ9h3IHN5dnK7SKgWprH3nXOAVi4Glo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTYJJiI8yoGNAQAie0sVx_BHxBIytg7UPsLE-IFmO44hqkE1rKwF_PWc7CRSGhHhI8uCLEtt39s_23e8AnjgGdc5TGcvcpnFWZSbWhRV4Ywi2U10knqx6NObDo-zNhE1W4HkbCxP4IboNN2cZfrx2Bu42pLd_sobOpl8GiDeyS7DmEnq79AU77zruKNLma3VnlFwQ1jLPJul2--bSXLTmmvXrRUDzT3_JX3Gsn4h2r8PHtgrB_-RksJgXA_P9N3bH_6zjDbjWANToRdCom7Bi6x5cHjVH8D24Gjb6ohC_1IN1B1cD2_MtePxSf7MuLDNqIy4jnxZkFk3rKIRQbMDR7uvDV8O4ycIQGwRvGXZiQi3akuGFJQYXzDy3kuElaVUYImheas6rgrKyMswgPkoKIXJCeV5WXBJ6G1br09rehUijuVeOzcZYkjFdIjgRZU5zHGO1LK3sw7O2P5RpKMpdpozPKpArpwrbQ7n26MOjTvIs0HJcIPPUd2knoM9PnBubYOp4vKc-7IjJMNsbKxTcavtcNRY88ysjp1Vpjt_qitH23IGKru3pIshIHPIk68OdoCLdx7BqhNAs6YNYUp5OwPF6L5fU00-e35viohVhOf6_142_VlC93x-55-a_Cj6EK8PD0YE62B-_vQfriP3S2Hs0bsHq_Hxh7yO-mhcPvB39AOW7HnQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJk2TEB-FQdmAgBA8pYvj-COPwOg6oBUCBpX2YDmOI6pBNq2tNPjrOdtJoDAkxEOSB1-U2L6zf7bvfgfw2DGoc57KWOY2jbMqM7EurMAbQ7Cd6iLxZNXjCR8dZq-mbNp4VbpYmMAP0W24Ocvw47Uz8NOy2v1JGjqffR0g3Mguw3rG0VYcIHrXUUeRNl2rO6LkgrCWeDZJd9s3V6aiddeq5xfhzD_dJX-FsX4eGl6Do7YGwf3keLBcFAPz_Tdyx_-r4nW42sDT6FnQpxtwydY92Bg3B_A9uBK2-aIQvdSDTQdWA9fzTXj0XH-zLigzauMtI58UZB7N6igEUNyCw-HLDy9GcZODITYI3TLswoRatCTDC0sMLpd5biXDS9KqMETQvNScVwVlZWWYQXSUFELkhPK8rLgkdAvW6pPa3oFIo7FXjsvGWJIxXSI0EWVOcxxhtSyt7MPTtjuUaQjKXZ6MLypQK6cK20O59ujDw07yNJByXCDzxPdoJ6DPjp0Tm2Dq02RffdwT01G2P1EouNN2uWrsd-7XRRyxUJrjt7pitDx3nKJre7IMMhIHPMn6cDtoSPcxrBohNEv6IFZ0pxNwrN6rJfXss2f3prhkRVCO_-9V468VVO8Pxu55918FH8DG272henMweb0Nmwj80ti7M-7A2uJsae8huFoU970V_QCS1x0s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+clinical+trials+in+action&rft.jtitle=Statistics+in+medicine&rft.au=Jack+Lee%2C+J.&rft.au=Chu%2C+Caleb+T.&rft.date=2012-11-10&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=31&rft.issue=25&rft.spage=2955&rft.epage=2972&rft_id=info:doi/10.1002%2Fsim.5404&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VD7XH4GN_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |