Evaluation of structural and functional properties of citrus pectin film enriched with green tea extract

The effects of green tea extract (GTE) concentrations (0%, 1%, 2%, 3%, 4%, and 5%) on the thicknesses, mechanical strengths, storage/loss moduli, glass transition temperatures (Tg), chemical structures, morphologies, antioxidant activities, moisture contents, and gas permeabilities of low methoxyl p...

Full description

Saved in:
Bibliographic Details
Published inPolymer engineering and science Vol. 63; no. 8; pp. 2522 - 2533
Main Authors Wei, Huan, Pascall, Melvin A.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.08.2023
Society of Plastics Engineers, Inc
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effects of green tea extract (GTE) concentrations (0%, 1%, 2%, 3%, 4%, and 5%) on the thicknesses, mechanical strengths, storage/loss moduli, glass transition temperatures (Tg), chemical structures, morphologies, antioxidant activities, moisture contents, and gas permeabilities of low methoxyl pectin films were investigated in this study. A decrease in the percent elongation and moisture contents accompanied by an increase in the tensile strengths, Tg and elastic and storage moduli were observed with increasing, but low concentrations of GTE in the pectin films. This rate of change slowed at higher GTE concentrations. The thicknesses of the pectin films were not significantly affected by the concentrations of GTE. The FTIR results showed increasing ester and hydrogen bonding formations with increasing concentrations of GTE from 0% to 2% in the pectin. When the GTE concentration increased from 2% to 5%, there was an increase in ester, but a decrease in the H‐bonding. The x‐ray diffraction results showed that the crystallinity of the films increased as a result of increasing GTE contents. The results of the antioxidant activities and oxygen and water vapor barrier properties showed an enhancement due to the higher concentrations of GTE. Therefore, GTE can be incorporated into low methoxyl pectin in order to make films with desired mechanical strength, gas barrier, and antioxidant properties. The antioxidant efficacy and the influence of green tea extract (GTE) on the mechanical, barrier, and morphological properties of pectin films were investigated in this research. The results showed that increased the antioxidant abilities of the film without a significant impact on its functionality for as a stand‐alone packaging film.
AbstractList The effects of green tea extract (GTE) concentrations (0%, 1%, 2%, 3%, 4%, and 5%) on the thicknesses, mechanical strengths, storage/loss moduli, glass transition temperatures ([T.sub.g]), chemical structures, morphologies, antioxidant activities, moisture contents, and gas permeabilities of low methoxyl pectin films were investigated in this study. A decrease in the percent elongation and moisture contents accompanied by an increase in the tensile strengths, [T.sub.g] and elastic and storage moduli were observed with increasing, but low concentrations of GTE in the pectin films. This rate of change slowed at higher GTE concentrations. The thicknesses of the pectin films were not significantly affected by the concentrations of GTE. The FTIR results showed increasing ester and hydrogen bonding formations with increasing concentrations of GTE from 0% to 2% in the pectin. When the GTE concentration increased from 2% to 5%, there was an increase in ester, but a decrease in the H-bonding. The x-ray diffraction results showed that the crystallinity of the films increased as a result of increasing GTE contents. The results of the antioxidant activities and oxygen and water vapor barrier properties showed an enhancement due to the higher concentrations of GTE. Therefore, GTE can be incorporated into low methoxyl pectin in order to make films with desired mechanical strength, gas barrier, and antioxidant properties. KEYWORDS antioxidant, foods, green tea extract, packaging, pectin films
The effects of green tea extract (GTE) concentrations (0%, 1%, 2%, 3%, 4%, and 5%) on the thicknesses, mechanical strengths, storage/loss moduli, glass transition temperatures ([T.sub.g]), chemical structures, morphologies, antioxidant activities, moisture contents, and gas permeabilities of low methoxyl pectin films were investigated in this study. A decrease in the percent elongation and moisture contents accompanied by an increase in the tensile strengths, [T.sub.g] and elastic and storage moduli were observed with increasing, but low concentrations of GTE in the pectin films. This rate of change slowed at higher GTE concentrations. The thicknesses of the pectin films were not significantly affected by the concentrations of GTE. The FTIR results showed increasing ester and hydrogen bonding formations with increasing concentrations of GTE from 0% to 2% in the pectin. When the GTE concentration increased from 2% to 5%, there was an increase in ester, but a decrease in the H-bonding. The x-ray diffraction results showed that the crystallinity of the films increased as a result of increasing GTE contents. The results of the antioxidant activities and oxygen and water vapor barrier properties showed an enhancement due to the higher concentrations of GTE. Therefore, GTE can be incorporated into low methoxyl pectin in order to make films with desired mechanical strength, gas barrier, and antioxidant properties.
The effects of green tea extract (GTE) concentrations (0%, 1%, 2%, 3%, 4%, and 5%) on the thicknesses, mechanical strengths, storage/loss moduli, glass transition temperatures ( T g ), chemical structures, morphologies, antioxidant activities, moisture contents, and gas permeabilities of low methoxyl pectin films were investigated in this study. A decrease in the percent elongation and moisture contents accompanied by an increase in the tensile strengths, T g and elastic and storage moduli were observed with increasing, but low concentrations of GTE in the pectin films. This rate of change slowed at higher GTE concentrations. The thicknesses of the pectin films were not significantly affected by the concentrations of GTE. The FTIR results showed increasing ester and hydrogen bonding formations with increasing concentrations of GTE from 0% to 2% in the pectin. When the GTE concentration increased from 2% to 5%, there was an increase in ester, but a decrease in the H‐bonding. The x‐ray diffraction results showed that the crystallinity of the films increased as a result of increasing GTE contents. The results of the antioxidant activities and oxygen and water vapor barrier properties showed an enhancement due to the higher concentrations of GTE. Therefore, GTE can be incorporated into low methoxyl pectin in order to make films with desired mechanical strength, gas barrier, and antioxidant properties.
The effects of green tea extract (GTE) concentrations (0%, 1%, 2%, 3%, 4%, and 5%) on the thicknesses, mechanical strengths, storage/loss moduli, glass transition temperatures (Tg), chemical structures, morphologies, antioxidant activities, moisture contents, and gas permeabilities of low methoxyl pectin films were investigated in this study. A decrease in the percent elongation and moisture contents accompanied by an increase in the tensile strengths, Tg and elastic and storage moduli were observed with increasing, but low concentrations of GTE in the pectin films. This rate of change slowed at higher GTE concentrations. The thicknesses of the pectin films were not significantly affected by the concentrations of GTE. The FTIR results showed increasing ester and hydrogen bonding formations with increasing concentrations of GTE from 0% to 2% in the pectin. When the GTE concentration increased from 2% to 5%, there was an increase in ester, but a decrease in the H‐bonding. The x‐ray diffraction results showed that the crystallinity of the films increased as a result of increasing GTE contents. The results of the antioxidant activities and oxygen and water vapor barrier properties showed an enhancement due to the higher concentrations of GTE. Therefore, GTE can be incorporated into low methoxyl pectin in order to make films with desired mechanical strength, gas barrier, and antioxidant properties. The antioxidant efficacy and the influence of green tea extract (GTE) on the mechanical, barrier, and morphological properties of pectin films were investigated in this research. The results showed that increased the antioxidant abilities of the film without a significant impact on its functionality for as a stand‐alone packaging film.
The effects of green tea extract (GTE) concentrations (0%, 1%, 2%, 3%, 4%, and 5%) on the thicknesses, mechanical strengths, storage/loss moduli, glass transition temperatures (Tg), chemical structures, morphologies, antioxidant activities, moisture contents, and gas permeabilities of low methoxyl pectin films were investigated in this study. A decrease in the percent elongation and moisture contents accompanied by an increase in the tensile strengths, Tg and elastic and storage moduli were observed with increasing, but low concentrations of GTE in the pectin films. This rate of change slowed at higher GTE concentrations. The thicknesses of the pectin films were not significantly affected by the concentrations of GTE. The FTIR results showed increasing ester and hydrogen bonding formations with increasing concentrations of GTE from 0% to 2% in the pectin. When the GTE concentration increased from 2% to 5%, there was an increase in ester, but a decrease in the H‐bonding. The x‐ray diffraction results showed that the crystallinity of the films increased as a result of increasing GTE contents. The results of the antioxidant activities and oxygen and water vapor barrier properties showed an enhancement due to the higher concentrations of GTE. Therefore, GTE can be incorporated into low methoxyl pectin in order to make films with desired mechanical strength, gas barrier, and antioxidant properties.
Audience Academic
Author Pascall, Melvin A.
Wei, Huan
Author_xml – sequence: 1
  givenname: Huan
  surname: Wei
  fullname: Wei, Huan
  organization: The Ohio State University
– sequence: 2
  givenname: Melvin A.
  orcidid: 0000-0002-3601-4012
  surname: Pascall
  fullname: Pascall, Melvin A.
  email: pascall.1@osu.edu
  organization: The Ohio State University
BookMark eNp9km9rFDEQxoNU8Fp94TcI-Epwr9nNJZt9WcppC0XFP69DNjvZS9nLrkm2td_euZ5QT04JJAzze4aZyXNKTsIYgJDXJVuWjFXnE4RlJXnDn5FFKVaqwGB1QhaM8argSqkX5DSlW4YsF82CbNZ3ZphN9mOgo6Mpx9nmOZqBmtBRNwe7S2E4xXGCmD2kHWc9golOgOlAnR-2FEL0dgMdvfd5Q_sIEGgGQ-Fnjsbml-S5M0OCV7_fM_L9_frb5VVx8-nD9eXFTWEFU7xonWg7Z0rbso7LCpSUwFtTQtWW3MqyM2rFgFWmcVIJ24jSqLaqlRROCi4MPyNv9nWx4R8zpKxvxzniBElXalWLhkleP1G9GUD74MZdk1ufrL6oZVWzphECqeII1UMAXBDuHeeGQ355hMfTwdbbo4K3BwJkMu6rN3NK-vrrl0P23R9sOycfIOGVfL_JaS85VtrGMaUITk_Rb0180CXTO6totIp-tAqy53-x-L-PnsD-_fA_xT1O9PDv0vrz-uNe8QuHE9CB
CitedBy_id crossref_primary_10_1007_s42250_024_01125_8
crossref_primary_10_1080_10408398_2025_2476118
crossref_primary_10_1002_pc_27807
crossref_primary_10_3390_polysaccharides5040043
crossref_primary_10_1590_0103_8478cr20230667
crossref_primary_10_1016_j_foodhyd_2024_110549
crossref_primary_10_1002_slct_202401878
crossref_primary_10_3390_polym16081053
crossref_primary_10_1002_pen_26624
crossref_primary_10_1007_s44187_024_00238_w
crossref_primary_10_3390_membranes13100846
Cites_doi 10.1016/j.matchemphys.2015.06.019
10.1146/annurev.food.080708.100836
10.1007/s13197-015-1859-3
10.1016/j.ijbiomac.2018.06.121
10.1007/s12393-019-09205-z
10.1016/j.foodcont.2014.10.044
10.1002/pc.25360
10.1016/j.foodhyd.2019.03.011
10.1002/pc.25416
10.1016/j.foodhyd.2016.06.001
10.1016/j.foodchem.2021.131915
10.1016/j.foodhyd.2011.06.011
10.1016/j.ijbiomac.2021.10.131
10.1016/j.foodhyd.2012.03.004
10.1016/j.ijbiomac.2020.10.005
10.1016/j.jfoodeng.2013.05.020
10.1016/j.ijbiomac.2019.11.093
10.1016/j.foodhyd.2021.107046
10.1016/j.ijbiomac.2018.03.126
10.3390/polym14132696
10.1016/j.foodhyd.2020.106011
10.1016/j.foodcont.2012.09.036
10.1016/j.polymdegradstab.2020.109215
10.1016/j.foodcont.2005.11.010
10.1016/j.ijbiomac.2017.03.173
10.1016/j.fpsl.2014.06.002
10.1021/la402800j
10.3390/ijerph17238758
10.1002/adfm.202006944
10.1016/j.foodhyd.2019.105197
10.3390/nano8100837
10.1016/j.lwt.2014.04.061
10.1080/19476337.2019.1640798
10.1016/j.ijbiomac.2017.08.068
10.1016/j.lwt.2018.03.065
10.1016/j.jfoodeng.2013.04.008
10.1016/j.foodhyd.2008.09.013
10.3390/foods9111572
10.1080/10408398.2017.1393384
10.1016/j.jfoodeng.2013.01.010
10.1016/j.carbpol.2010.06.031
10.1016/j.crfs.2019.10.002
10.1016/j.carbpol.2019.03.029
10.3390/molecules26247477
10.1103/PhysRevE.80.031802
10.3390/coatings11080922
10.1016/j.foodhyd.2019.05.017
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC on behalf of Society of Plastics Engineers.
COPYRIGHT 2023 Society of Plastics Engineers, Inc.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of Society of Plastics Engineers.
– notice: COPYRIGHT 2023 Society of Plastics Engineers, Inc.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
N95
ISR
7SR
8FD
JG9
DOI 10.1002/pen.26393
DatabaseName Wiley Online Library Open Access
CrossRef
Gale Business: Insights
Gale In Context: Science
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList


CrossRef



Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1548-2634
EndPage 2533
ExternalDocumentID A762709955
10_1002_pen_26393
PEN26393
Genre researchArticle
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -~X
.-4
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
29O
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8FE
8FG
8G5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABTAH
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AIXEN
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAAKF
BAFTC
BDRZF
BENPR
BES
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IAO
ICW
IEA
IOF
ISR
ITC
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M2Q
M6K
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N95
N9A
NDZJH
NEJ
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PQQKQ
PROAC
PTHSS
PV9
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWL
RWM
RX1
RXW
RYL
RZL
S0X
SAMSI
SUPJJ
TUS
U5U
UB1
V2E
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XI7
XV2
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c5083-bf5bdfa1cb0d362e866e3ba1e2b13c61da840e02a9f685c951a8b27865f6535a3
IEDL.DBID DR2
ISSN 0032-3888
IngestDate Fri Jul 25 19:26:59 EDT 2025
Tue Jun 17 22:25:25 EDT 2025
Fri Jun 13 00:13:17 EDT 2025
Tue Jun 10 21:22:15 EDT 2025
Fri Jun 27 06:08:56 EDT 2025
Fri May 23 00:55:09 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Tue Jul 01 02:33:57 EDT 2025
Wed Jan 22 16:20:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5083-bf5bdfa1cb0d362e866e3ba1e2b13c61da840e02a9f685c951a8b27865f6535a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3601-4012
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.26393
PQID 2847590637
PQPubID 41843
PageCount 12
ParticipantIDs proquest_journals_2847590637
gale_infotracmisc_A762709955
gale_infotracgeneralonefile_A762709955
gale_infotracacademiconefile_A762709955
gale_incontextgauss_ISR_A762709955
gale_businessinsightsgauss_A762709955
crossref_primary_10_1002_pen_26393
crossref_citationtrail_10_1002_pen_26393
wiley_primary_10_1002_pen_26393_PEN26393
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Newtown
PublicationTitle Polymer engineering and science
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Society of Plastics Engineers, Inc
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: Society of Plastics Engineers, Inc
– name: Blackwell Publishing Ltd
References 2013; 29
2021; 26
2019; 94
2019; 97
2009; 80
2019; 96
2020; 165
2019; 59
2020; 17
2019; 17
2020; 13
2021; 121
2018; 8
2021; 31
2010; 1
2014; 2
2013; 119
2013; 116
2019; 23
2013; 118
2020; 9
2021; 193
2014; 59
2012; 29
2020; 178
2012; 27
2015; 162
2007; 18
2020; 41
2015; 50
2019; 1
2015; 52
2011; 5
2010; 82
2018; 2018
2022; 383
2020; 2020
2021; 11
2018; 118
2013; 31
2018; 114
2019; 215
2022; 14
2020; 15.10
2016; 61
2020; 155
2018; 93
2017; 101
2022; 04.06
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Vilma A (e_1_2_6_12_1) 2011; 5
ASTM D3985‐17 (e_1_2_6_15_1) 2020
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
ASTM E96/E96M – 22a (e_1_2_6_16_1) 2022
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 29
  start-page: 280
  issue: 2
  year: 2012
  end-page: 289
  article-title: Synergistic effects between κ‐carrageenan and locust bean gum on physicochemical properties of edible films made thereof
  publication-title: Food Hydrocoll
– volume: 29
  start-page: 12730
  issue: 41
  year: 2013
  end-page: 12736
  article-title: Coupled effects of substrate adhesion and intermolecular forces on polymer thin film glass‐transition behavior
  publication-title: Langmuir
– volume: 118
  start-page: 271
  issue: 3
  year: 2013
  end-page: 278
  article-title: Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch–chitosan films
  publication-title: J Food Eng
– volume: 1
  start-page: 24
  year: 2019
  end-page: 30
  article-title: Antioxidant active packaging systems to extend the shelf life of sliced cooked ham
  publication-title: Curr Res Food Sci
– volume: 2
  start-page: 38
  issue: 1
  year: 2014
  end-page: 49
  article-title: Optimal antimicrobial formulation and physical–mechanical properties of edible films based on açaí and pectin for food preservation
  publication-title: Food Packag Shelf Life
– volume: 14
  start-page: 2696
  issue: 13
  year: 2022
  article-title: Green tea extract enrichment: mechanical and physicochemical properties improvement of rice starch‐pectin composite film
  publication-title: Polymers
– volume: 8
  start-page: 837
  issue: 10
  year: 2018
  article-title: New antioxidant multilayer packaging with nanoselenium to enhance the shelf‐life of market food products
  publication-title: Nanomaterials
– volume: 116
  start-page: 695
  issue: 3
  year: 2013
  end-page: 702
  article-title: Physical properties and antioxidant capacity of starch–sodium caseinate films containing lipids
  publication-title: J Food Eng
– volume: 59
  start-page: 181
  issue: 1
  year: 2014
  end-page: 188
  article-title: Extension of the shelf‐life of foal meat with two antioxidant active packaging systems
  publication-title: LWT
– volume: 41
  start-page: 858
  year: 2020
  end-page: 870
  article-title: Development of bionanocomposites of pectin and nanoemulsions of carnauba wax and neem oil pectin/carnauba wax/neem oil composites
  publication-title: Polym Compos
– volume: 41
  start-page: 201
  year: 2020
  end-page: 209
  article-title: Improvement of water vapor barrier and mechanical properties of sago starch‐kaolinite nanocomposites
  publication-title: Polym Compos
– volume: 31
  start-page: 236
  issue: 1
  year: 2013
  end-page: 243
  article-title: Development of antioxidant active films containing tocopherols to extend the shelf life of fish
  publication-title: Food Control
– volume: 5
  start-page: 811
  issue: 5
  year: 2011
  end-page: 816
  article-title: The analysis of quality and antioxidant activity of green tea extracts
  publication-title: J Med Plant Res
– volume: 13
  start-page: 54
  issue: 1
  year: 2020
  end-page: 65
  article-title: Water vapor transport properties of polyurethane films for packaging of respiring foods
  publication-title: Food Eng Rev
– volume: 11
  start-page: 922
  issue: 8
  year: 2021
  article-title: Structure and applications of pectin in food, biomedical, and pharmaceutical industry: a review
  publication-title: Coatings
– volume: 80
  issue: 3
  year: 2009
  article-title: Glass transition and molecular mobility in polymer thin films
  publication-title: Phys Rev E
– volume: 96
  start-page: 102
  year: 2019
  end-page: 111
  article-title: Preparation and characterization of antioxidant, antimicrobial and pH‐sensitive films based on chitosan, silver nanoparticles and purple corn extract
  publication-title: Food Hydrocoll
– volume: 114
  start-page: 547
  year: 2018
  end-page: 555
  article-title: Preparation and characterization of chitosan‐based antimicrobial active food packaging film incorporated with apple peel polyphenols
  publication-title: Int J Biol Macromol
– volume: 52
  start-page: 7245
  issue: 11
  year: 2015
  end-page: 7253
  article-title: Development of potato starch based active packaging films loaded with antioxidants and its effect on shelf life of beef
  publication-title: J Food Sci Technol
– volume: 2020
  issue: 108
  year: 2020
  article-title: Antimicrobial and antioxidant coating based on basil seed gum incorporated with Shirazi thyme and summer savory essential oils emulsions for shelf‐life extension of refrigerated chicken fillets
  publication-title: Food Hydrocoll
– volume: 17
  start-page: 695
  issue: 1
  year: 2019
  end-page: 705
  article-title: Citrus pectin films enriched with thinned young apple polyphenols for potential use as bio‐based active packaging
  publication-title: CyTA J Food
– volume: 94
  start-page: 128
  year: 2019
  end-page: 135
  article-title: Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin‐konjac glucomannan composite edible films incorporated with tea polyphenol
  publication-title: Food Hydrocoll
– volume: 165
  start-page: 1241
  year: 2020
  end-page: 1249
  article-title: Study on physicochemical properties, antioxidant and antimicrobial activity of okara soluble dietary fiber/sodium carboxymethyl cellulose/thyme essential oil active edible composite films incorporated with pectin
  publication-title: Int J Biol Macromol
– volume: 93
  start-page: 427
  year: 2018
  end-page: 433
  article-title: Effect of oxidized phenolic compounds on cross‐linking and properties of biodegradable active packaging film composed of turmeric and gelatin
  publication-title: LWT
– volume: 2018
  start-page: 670
  issue: 106
  year: 2018
  end-page: 680
  article-title: Characterization of citrus pectin films integrated with clove bud essential oil: physical, thermal, barrier, antioxidant and antibacterial properties
  publication-title: Int J Biol Macromol
– volume: 82
  start-page: 989
  issue: 3
  year: 2010
  end-page: 996
  article-title: Biohybrid barrier films from fluidized pectin and nanoclay
  publication-title: Carbohydr Polym
– volume: 23
  start-page: 1334
  issue: 5
  year: 2019
  end-page: 1341
  article-title: Physical and chemical properties of tuna‐skin and bovine‐hide gelatin films with added aqueous oregano and rosemary extracts
  publication-title: Food Hydrocoll
– volume: 215
  start-page: 1
  year: 2019
  end-page: 7
  article-title: A functional polysaccharide film forming by pectin, chitosan, and tea polyphenols
  publication-title: Carbohydr Polym
– volume: 101
  start-page: 776
  year: 2017
  end-page: 782
  article-title: Antioxidant and ion‐induced gelation functions of pectin enabled by polyphenol conjugation
  publication-title: Int J Biol Macromol
– volume: 121
  year: 2021
  article-title: Development and characterisation of a pectin‐based edible film that contains mulberry leaf extract and its bio‐active components
  publication-title: Food Hydrocoll
– volume: 15.10
  start-page: 271
  year: 2020
  end-page: 277
– volume: 9
  start-page: 1572
  issue: 11
  year: 2020
  article-title: Pectin‐based films with cocoa bean shell waste extract and ZnO/Zn‐NPs with enhanced oxygen barrier, ultraviolet screen and photocatalytic properties
  publication-title: Foods
– volume: 119
  start-page: 140
  issue: 1
  year: 2013
  end-page: 149
  article-title: Physical and mechanical properties of chitosan films as affected by drying methods and addition of antimicrobial agent
  publication-title: J Food Eng
– volume: 1
  start-page: 415
  year: 2010
  end-page: 448
  article-title: Edible packaging materials
  publication-title: Annu Rev Food Sci Technol
– volume: 193
  start-page: 1138
  year: 2021
  end-page: 1150
  article-title: From mango by‐product to food packaging: pectin‐phenolic antioxidant films from mango peels
  publication-title: Int J Biol Macromol
– volume: 383
  year: 2022
  article-title: A novel colorimetric indicator film based on watermelon peel pectin and anthocyanins from purple cabbage for monitoring mutton freshness
  publication-title: Food Chem
– volume: 162
  start-page: 491
  year: 2015
  end-page: 497
  article-title: Influence of plasticizers in pectin films: microstructural changes
  publication-title: Mater Chem Phys
– volume: 17
  start-page: 8758
  issue: 23
  year: 2020
  article-title: Updating the mediterranean diet pyramid towards sustainability: focus on environmental concerns
  publication-title: Int J Environ Res Public Health
– volume: 59
  start-page: 1137
  issue: 7
  year: 2019
  end-page: 1153
  article-title: Bioactive edible films for food applications: influence of the bioactive compounds on film structure and properties
  publication-title: Crit Rev Food Sci Nutr
– volume: 18
  start-page: 430
  issue: 5
  year: 2007
  end-page: 435
  article-title: Effect of a pectin‐based edible coating containing green tea powder on the quality of irradiated pork patty
  publication-title: Food Control
– volume: 26
  start-page: 7477
  issue: 24
  year: 2021
  article-title: Bioactive pectin‐murta ( T.) seed extract films reinforced with chitin fibers
  publication-title: Molecules
– volume: 155
  start-page: 1252
  year: 2020
  end-page: 1261
  article-title: Antioxidant and antibacterial chitosan film with tea polyphenols‐mediated green synthesis silver nanoparticle via a novel one‐pot method
  publication-title: Int J Biol Macromol
– volume: 50
  start-page: 907
  year: 2015
  end-page: 912
  article-title: Antibacterial activity of pectic‐based edible films incorporated with Mexican lime essential oil
  publication-title: Food Control
– volume: 97
  year: 2019
  article-title: Enhanced performance and functionality of active edible films by incorporating tea polyphenols into thin calcium alginate hydrogels
  publication-title: Food Hydrocoll
– volume: 178
  year: 2020
  article-title: Antioxidant activity and physical properties of pH‐sensitive biocomposite using poly (vinyl alcohol) incorporated with green tea extract
  publication-title: Polym Degrad Stab
– volume: 31
  issue: 4
  year: 2021
  article-title: Multiple H‐bonding chain extender‐based ultrastiff thermoplastic polyurethanes with autonomous self‐healability, solvent‐free adhesiveness, and AIE fluorescence
  publication-title: Adv Funct Mater
– volume: 27
  start-page: 220
  issue: 1
  year: 2012
  end-page: 227
  article-title: Influence of α‐tocopherol on physicochemical properties of chitosan‐based films
  publication-title: Food Hydrocoll
– volume: 61
  start-page: 695
  year: 2016
  end-page: 702
  article-title: Improving functional properties of chitosan films as active food packaging by incorporating with propolis
  publication-title: Food Hydrocoll
– volume: 118
  start-page: 1377
  year: 2018
  end-page: 1383
  article-title: Physical properties and antioxidant activity of gelatin‐sodium alginate edible films with tea polyphenols
  publication-title: Int J Biol Macromol
– volume: 04.06
  start-page: 1
  year: 2022
  end-page: 16
– ident: e_1_2_6_19_1
  doi: 10.1016/j.matchemphys.2015.06.019
– ident: e_1_2_6_3_1
  doi: 10.1146/annurev.food.080708.100836
– ident: e_1_2_6_42_1
  doi: 10.1007/s13197-015-1859-3
– ident: e_1_2_6_50_1
  doi: 10.1016/j.ijbiomac.2018.06.121
– ident: e_1_2_6_47_1
  doi: 10.1007/s12393-019-09205-z
– ident: e_1_2_6_4_1
  doi: 10.1016/j.foodcont.2014.10.044
– ident: e_1_2_6_6_1
  doi: 10.1002/pc.25360
– start-page: 1
  volume-title: Annual Book of ASTM Standards
  year: 2022
  ident: e_1_2_6_16_1
– ident: e_1_2_6_29_1
  doi: 10.1016/j.foodhyd.2019.03.011
– ident: e_1_2_6_51_1
  doi: 10.1002/pc.25416
– ident: e_1_2_6_27_1
  doi: 10.1016/j.foodhyd.2016.06.001
– ident: e_1_2_6_23_1
  doi: 10.1016/j.foodchem.2021.131915
– ident: e_1_2_6_14_1
  doi: 10.1016/j.foodhyd.2011.06.011
– ident: e_1_2_6_21_1
  doi: 10.1016/j.ijbiomac.2021.10.131
– ident: e_1_2_6_37_1
  doi: 10.1016/j.foodhyd.2012.03.004
– ident: e_1_2_6_22_1
  doi: 10.1016/j.ijbiomac.2020.10.005
– ident: e_1_2_6_34_1
  doi: 10.1016/j.jfoodeng.2013.05.020
– ident: e_1_2_6_48_1
  doi: 10.1016/j.ijbiomac.2019.11.093
– volume: 5
  start-page: 811
  issue: 5
  year: 2011
  ident: e_1_2_6_12_1
  article-title: The analysis of quality and antioxidant activity of green tea extracts
  publication-title: J Med Plant Res
– ident: e_1_2_6_28_1
  doi: 10.1016/j.foodhyd.2021.107046
– ident: e_1_2_6_49_1
  doi: 10.1016/j.ijbiomac.2018.03.126
– ident: e_1_2_6_31_1
  doi: 10.3390/polym14132696
– ident: e_1_2_6_11_1
  doi: 10.1016/j.foodhyd.2020.106011
– ident: e_1_2_6_9_1
  doi: 10.1016/j.foodcont.2012.09.036
– ident: e_1_2_6_17_1
  doi: 10.1016/j.polymdegradstab.2020.109215
– ident: e_1_2_6_18_1
  doi: 10.1016/j.foodcont.2005.11.010
– ident: e_1_2_6_40_1
  doi: 10.1016/j.ijbiomac.2017.03.173
– ident: e_1_2_6_32_1
  doi: 10.1016/j.fpsl.2014.06.002
– ident: e_1_2_6_36_1
  doi: 10.1021/la402800j
– ident: e_1_2_6_2_1
  doi: 10.3390/ijerph17238758
– ident: e_1_2_6_30_1
  doi: 10.1002/adfm.202006944
– ident: e_1_2_6_26_1
  doi: 10.1016/j.foodhyd.2019.105197
– start-page: 271
  volume-title: Annual Book of ASTM Standards
  year: 2020
  ident: e_1_2_6_15_1
– ident: e_1_2_6_7_1
  doi: 10.3390/nano8100837
– ident: e_1_2_6_8_1
  doi: 10.1016/j.lwt.2014.04.061
– ident: e_1_2_6_20_1
  doi: 10.1080/19476337.2019.1640798
– ident: e_1_2_6_13_1
  doi: 10.1016/j.ijbiomac.2017.08.068
– ident: e_1_2_6_39_1
  doi: 10.1016/j.lwt.2018.03.065
– ident: e_1_2_6_46_1
  doi: 10.1016/j.jfoodeng.2013.04.008
– ident: e_1_2_6_38_1
  doi: 10.1016/j.foodhyd.2008.09.013
– ident: e_1_2_6_43_1
  doi: 10.3390/foods9111572
– ident: e_1_2_6_33_1
  doi: 10.1080/10408398.2017.1393384
– ident: e_1_2_6_45_1
  doi: 10.1016/j.jfoodeng.2013.01.010
– ident: e_1_2_6_44_1
  doi: 10.1016/j.carbpol.2010.06.031
– ident: e_1_2_6_10_1
  doi: 10.1016/j.crfs.2019.10.002
– ident: e_1_2_6_25_1
  doi: 10.1016/j.carbpol.2019.03.029
– ident: e_1_2_6_24_1
  doi: 10.3390/molecules26247477
– ident: e_1_2_6_35_1
  doi: 10.1103/PhysRevE.80.031802
– ident: e_1_2_6_5_1
  doi: 10.3390/coatings11080922
– ident: e_1_2_6_41_1
  doi: 10.1016/j.foodhyd.2019.05.017
SSID ssj0002359
Score 2.4489045
Snippet The effects of green tea extract (GTE) concentrations (0%, 1%, 2%, 3%, 4%, and 5%) on the thicknesses, mechanical strengths, storage/loss moduli, glass...
SourceID proquest
gale
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2522
SubjectTerms Analysis
antioxidant
Antioxidants
Chemical properties
Citrus
Citrus fruits
Elongation
foods
Glass transition temperature
Green tea
green tea extract
Hydrogen bonding
Loss modulus
Low concentrations
Materia medica, Vegetable
Mechanical properties
Moisture effects
packaging
Pectin
pectin films
Permeability
Plant extracts
Tea
Tea (Plant)
Thickness
Water vapor
Title Evaluation of structural and functional properties of citrus pectin film enriched with green tea extract
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.26393
https://www.proquest.com/docview/2847590637
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1daxQxFL3UvqgPflSltbUE8etltjPJJDOLT6VsqYKlVAt9EEKSSVaxzpZO--Kv995kZuuUCuLLsrBnl03mJufkcu8JwCtjkSabqc-QOyh1I2RmeW2yqrQu5457r6gb-dOhOjgpP57K0xV4P_TCJH-IZcKNVkbcr2mBG9vtXJuG4ml_wpFfyemTarVIEB1fW0dxIZP0FTwTeMwbXIVyvrP85oiLbu7IY7Ua6Wb_IXwd_miqMvkxubq0E_frhofjf47kETzoZSjbTXHzGFZ8uwZ394bb39bg_h9GhU_g22xpCs4WgSXTWTLsYKZtGHFjSimyc8rtX5BJK-FcbOlgsZmzZeH72U-G4UrFpw2jBDCbU9UPwzhjyBHUr_UUTvZnX_YOsv6OhsyRkXxmg7RNMIWzeYNc6GulvLCm8NwWwqmiMXiC9Dk306Bq6VDPmdryqlYyKCmkEc9gtV20fh0YKq0yt6UToa5LV9k6F-R1o6qicbYpwga8G56Wdr2BOd2jcaaT9TLXOJE6TuQGvFxCz5Nrx22g1_TIdX_bJ750lA_p5uaq6_QuskSF8llK_LGII7eMlspxEuDD5-MR6G0PCguaL9N3N-DQyGBrhHwzQs6TvfhtwK0REAPAjT8eQlX3-06nSWzIKcrOCmcrxtzfx6-PZofxzfN_h27CPY5LK1VAbsEqRpF_gars0m7DHV4ebcdF-BtHbjRB
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2Vcigc-CggCgUsxNcl28SOk6zEpaq22kK7QqWVekGW7dgLomQr0l749czYyZZURUJcopXydrW2x57n0cwbgFfaoJusxy5B30GhGyETwyudlLmxKbfcuYKqkQ9mxfQ4_3AiT1bgfV8LE_UhlgE32hnhvKYNTgHprUvVULzujzg6WHEDblJH73ChOrwUj-JCRvIreCLwotfrCqV8a_nVgTe6eiYP-WpwOLt34Uv_V2OeyffRxbkZ2V9XVBz_dyz34E7HRNl2NJ37sOKadVjb6RvArcPtP7QKH8DXyVIXnC08i7qzpNnBdFMzco8xqsjOKLz_k3RaCWdDVQcL9ZwN899OfzC0WMo_rRnFgNmcEn8YmhpDN0ElWw_heHdytDNNujYNiSUt-cR4aWqvM2vSGt2hq4rCCaMzx00mbJHVGi-RLuV67ItKWqR0ujK8rArpCymkFo9gtVk07jEwJFt5anIrfFXltjRVKkjupiiz2po68xvwrl8uZTsNc2qlcaqi-jJXOJEqTOQGvFxCz6Jwx3Wg17Tmqmv4iY-WQiLtXF-0rdpGR1Eig5YSfyzgSDCjoYycCNj7fDgAve1AfkHzpbsCBxwaaWwNkG8GyHlUGL8OuDkAogHY4eveVlV39LSK-IYcI_MscbaC0f19_OrTZBY-PPl36AtYmx4d7Kv9vdnHp3CL4z6LCZGbsIoW5Z4hSTs3z8Ne_A0kwjeF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2ITF44DJAGwywEJe9pEvs2EnF07S12rhU02DSHiZZvpaJkVZke-HXc06cdGQaEuKlqtSvVe0c-_t8dM5nQl5rAzTphj4B7sDUDReJYaVOitzYlFnmvcRu5M8TuX-cfzgRJ0vkfdcLE_0hFgk3XBnNfo0LfO7C9pVpKJz2Bwz4lS-TW7lMSwzpvaMr7yjGRdS-nCUcznmdrVDKthdf7ZHR9S25L1cbvhnfJ6fdP41lJt8HlxdmYH9dM3H8z6E8IPdaHUp3YuA8JEu-WiOru931b2vk7h9OhY_It9HCFZzOAo2us-jYQXXlKJJjzCnSOSb3f6JLK-Js09NBm27Oioaz8x8U4hWrTx3FDDCdYtkPhUCjQBLYsPWYHI9HX3f3k_aShsSik3xigjAu6Mya1AEZ-lJKz43OPDMZtzJzGo6QPmV6GGQpLAg6XRpWlFIEKbjQ_AlZqWaVXycUpFaemtzyUJa5LUyZcjS7kUXmrHFZ2CBb3dNStnUwx4s0zlX0XmYKJlI1E7lBXi2g82jbcRPoDT5y1V73CS81JkTqqb6sa7UDNFGAfhYCfqzBoV1GhfU4EXDw5agHeteCwgznS7ftDTA0dNjqId_2kNPoL34TcLMHhACw_Y-7UFXtxlMrVBtiCLqzgNlqYu7v41eHo0nz5um_Q1-S24d7Y_XpYPLxGbnDYJXFashNsgIB5Z-DQrswL5qV-Bt1UDY9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+structural+and+functional+properties+of+citrus+pectin+film+enriched+with+green+tea+extract&rft.jtitle=Polymer+engineering+and+science&rft.au=Wei%2C+Huan&rft.au=Pascall%2C+Melvin+A&rft.date=2023-08-01&rft.pub=Society+of+Plastics+Engineers%2C+Inc&rft.issn=0032-3888&rft.volume=63&rft.issue=8&rft.spage=2522&rft_id=info:doi/10.1002%2Fpen.26393&rft.externalDocID=A762709955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon