Passive daytime radiative cooling: Fundamentals, material designs, and applications

Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming. In this review, we summarize gene...

Full description

Saved in:
Bibliographic Details
Published inEcoMat (Beijing, China) Vol. 4; no. 1
Main Authors Chen, Meijie, Pang, Dan, Chen, Xingyu, Yan, Hongjie, Yang, Yuan
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming. In this review, we summarize general strategies implemented for achieving PDRC and various applications of PDRC technologies. We first introduce heat transfer processes involved in PDRC, including radiative and nonradiative heat transfer processes, to evaluate the PDRC performance. Subsequently, we summarize the general material designs used for controlling PDRC performance, such as tuning the thermal mid‐infrared emittance and solar reflectance. Finally, we discuss the diverse applications of PDRC technologies to overcome problems in space cooling, solar cell cooling, water harvesting, and electricity generation. This review discussed the fundamentals, material designs, and applications of passive daytime radiative cooling (PDRC), focusing on how to tune the thermal emittance and solar reflectance of inorganic dielectric and organic polymer materials, including selective emitters, angle‐dependent emitters, colored emitters, and switchable emitters in the PDRC. The applications of PDRC in space and solar cell cooling, water harvesting, and electricity generation are also discussed.
AbstractList Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming. In this review, we summarize general strategies implemented for achieving PDRC and various applications of PDRC technologies. We first introduce heat transfer processes involved in PDRC, including radiative and nonradiative heat transfer processes, to evaluate the PDRC performance. Subsequently, we summarize the general material designs used for controlling PDRC performance, such as tuning the thermal mid‐infrared emittance and solar reflectance. Finally, we discuss the diverse applications of PDRC technologies to overcome problems in space cooling, solar cell cooling, water harvesting, and electricity generation.
Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming. In this review, we summarize general strategies implemented for achieving PDRC and various applications of PDRC technologies. We first introduce heat transfer processes involved in PDRC, including radiative and nonradiative heat transfer processes, to evaluate the PDRC performance. Subsequently, we summarize the general material designs used for controlling PDRC performance, such as tuning the thermal mid‐infrared emittance and solar reflectance. Finally, we discuss the diverse applications of PDRC technologies to overcome problems in space cooling, solar cell cooling, water harvesting, and electricity generation. image
Abstract Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming. In this review, we summarize general strategies implemented for achieving PDRC and various applications of PDRC technologies. We first introduce heat transfer processes involved in PDRC, including radiative and nonradiative heat transfer processes, to evaluate the PDRC performance. Subsequently, we summarize the general material designs used for controlling PDRC performance, such as tuning the thermal mid‐infrared emittance and solar reflectance. Finally, we discuss the diverse applications of PDRC technologies to overcome problems in space cooling, solar cell cooling, water harvesting, and electricity generation.
Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming. In this review, we summarize general strategies implemented for achieving PDRC and various applications of PDRC technologies. We first introduce heat transfer processes involved in PDRC, including radiative and nonradiative heat transfer processes, to evaluate the PDRC performance. Subsequently, we summarize the general material designs used for controlling PDRC performance, such as tuning the thermal mid‐infrared emittance and solar reflectance. Finally, we discuss the diverse applications of PDRC technologies to overcome problems in space cooling, solar cell cooling, water harvesting, and electricity generation. This review discussed the fundamentals, material designs, and applications of passive daytime radiative cooling (PDRC), focusing on how to tune the thermal emittance and solar reflectance of inorganic dielectric and organic polymer materials, including selective emitters, angle‐dependent emitters, colored emitters, and switchable emitters in the PDRC. The applications of PDRC in space and solar cell cooling, water harvesting, and electricity generation are also discussed.
Author Chen, Xingyu
Pang, Dan
Yang, Yuan
Yan, Hongjie
Chen, Meijie
Author_xml – sequence: 1
  givenname: Meijie
  surname: Chen
  fullname: Chen, Meijie
  email: chenmeijie@csu.edu.cn
  organization: Central South University
– sequence: 2
  givenname: Dan
  surname: Pang
  fullname: Pang, Dan
  organization: Central South University
– sequence: 3
  givenname: Xingyu
  surname: Chen
  fullname: Chen, Xingyu
  organization: Central South University
– sequence: 4
  givenname: Hongjie
  surname: Yan
  fullname: Yan, Hongjie
  organization: Central South University
– sequence: 5
  givenname: Yuan
  orcidid: 0000-0003-0264-2640
  surname: Yang
  fullname: Yang, Yuan
  email: yy2664@columbia.edu
  organization: Columbia University
BookMark eNp9kd1LHDEUxUNR8Gtf-hcM9K24Nh-TyaRvItoKioL2OdxN7ixZZpJtMmvZ_77ZHZEiUgjccPidc0POCTkIMSAhnxm9YJTybxgHfsE4k-ITOeayUXPBlDj4535EZjmvaIElrXnNjsnTI-TsX7BysB39gFUC52HcKTbG3ofl9-pmExwMGEbo83k1wIjJQ185zH4ZigLBVbBe994WYwz5jBx2BcXZ6zwlv26un69-zu8eftxeXd7NraStmGsGrRA1q7mmLQeEptNUAkWn9EKBoJo2rEPsWqprbMBZqW2Lkjve1dJqcUpup1wXYWXWyQ-QtiaCN3shpqWBNHrbo6kbxVktVLcbIHFBQZb1mne8nFaVrC9T1jrF3xvMo1nFTQrl-YY3jLVKNS0t1NeJsinmnLB728qo2XVgdh2YfQcFpu9g68f9D40JfP-xhU2WP77H7X_CzfXDPZ88fwH-nZjm
CitedBy_id crossref_primary_10_1016_j_apenergy_2022_119403
crossref_primary_10_1002_smll_202309397
crossref_primary_10_1021_acsaenm_3c00341
crossref_primary_10_1002_aenm_202202932
crossref_primary_10_1002_adom_202202163
crossref_primary_10_1016_j_buildenv_2023_110348
crossref_primary_10_1007_s42114_023_00819_w
crossref_primary_10_1016_j_solmat_2022_111836
crossref_primary_10_3390_biomimetics9100630
crossref_primary_10_1016_j_pmatsci_2023_101144
crossref_primary_10_1002_adfm_202406393
crossref_primary_10_1016_j_jcis_2023_11_043
crossref_primary_10_1016_j_applthermaleng_2023_121655
crossref_primary_10_3390_nano13030467
crossref_primary_10_1016_j_enbuild_2022_112716
crossref_primary_10_1021_acsami_4c09365
crossref_primary_10_1016_j_solener_2024_112544
crossref_primary_10_1080_01971360_2024_2390709
crossref_primary_10_1021_acsami_4c02298
crossref_primary_10_1002_adma_202414300
crossref_primary_10_3390_en16041832
crossref_primary_10_1016_j_applthermaleng_2023_120561
crossref_primary_10_3390_mi15030292
crossref_primary_10_1016_j_porgcoat_2024_108772
crossref_primary_10_1021_acsami_4c17112
crossref_primary_10_1021_acs_nanolett_4c04958
crossref_primary_10_1007_s00170_024_13998_7
crossref_primary_10_1016_j_enbuild_2023_113330
crossref_primary_10_1016_j_solmat_2023_112463
crossref_primary_10_1021_acsmaterialslett_4c00337
crossref_primary_10_1002_pat_6005
crossref_primary_10_1002_advs_202309871
crossref_primary_10_3390_molecules30020421
crossref_primary_10_1364_OE_488376
crossref_primary_10_1016_j_nxener_2024_100108
crossref_primary_10_1021_acsami_3c14310
crossref_primary_10_1002_advs_202202061
crossref_primary_10_1016_j_mtcomm_2025_112198
crossref_primary_10_3390_su16166936
crossref_primary_10_1002_aenm_202402202
crossref_primary_10_1002_mame_202200384
crossref_primary_10_1021_acsami_4c15984
crossref_primary_10_1002_aesr_202300239
crossref_primary_10_1002_admt_202301174
crossref_primary_10_1016_j_apenergy_2023_122051
crossref_primary_10_1016_j_mtener_2024_101575
crossref_primary_10_1016_j_cej_2022_139739
crossref_primary_10_1002_smll_202412221
crossref_primary_10_1021_acsami_4c10050
crossref_primary_10_1021_acsenergylett_2c01969
crossref_primary_10_1117_1_JPE_14_028001
crossref_primary_10_1016_j_applthermaleng_2022_119125
crossref_primary_10_26599_CF_2025_9200033
crossref_primary_10_3390_en17112627
crossref_primary_10_1016_j_cej_2024_158664
crossref_primary_10_1016_j_isci_2022_104726
crossref_primary_10_1021_acs_chemrev_3c00507
crossref_primary_10_1016_j_porgcoat_2023_107708
crossref_primary_10_1007_s10765_025_03529_1
crossref_primary_10_1002_aenm_202401776
crossref_primary_10_1021_acsphotonics_4c02043
crossref_primary_10_1007_s10853_022_07292_8
crossref_primary_10_1007_s11431_023_2603_2
crossref_primary_10_1021_acsapm_3c02194
crossref_primary_10_1007_s10853_024_09560_1
crossref_primary_10_1002_adfm_202206962
crossref_primary_10_1016_j_cej_2024_153938
crossref_primary_10_1021_acsaom_4c00099
crossref_primary_10_3390_buildings13112868
crossref_primary_10_1021_acsaom_4c00519
crossref_primary_10_1088_1742_6596_2548_1_012016
crossref_primary_10_3390_aerospace11040275
crossref_primary_10_1016_j_porgcoat_2024_108901
crossref_primary_10_1002_admt_202400713
crossref_primary_10_1002_eom2_12509
crossref_primary_10_1364_OE_509800
crossref_primary_10_1016_j_mattod_2024_03_012
crossref_primary_10_1007_s10765_025_03532_6
crossref_primary_10_1039_D4TA03388D
crossref_primary_10_1007_s11082_024_07175_z
crossref_primary_10_1016_j_indcrop_2024_119094
crossref_primary_10_26599_NRE_2023_9120107
crossref_primary_10_1002_aenm_202300260
crossref_primary_10_1364_OE_554717
crossref_primary_10_1016_j_wasman_2024_08_033
crossref_primary_10_1063_5_0134951
crossref_primary_10_1016_j_applthermaleng_2022_119860
crossref_primary_10_1088_1361_6463_ac9fde
crossref_primary_10_1016_j_optlastec_2023_109690
crossref_primary_10_1021_acsaelm_3c01023
crossref_primary_10_1039_D2TC00834C
crossref_primary_10_1093_nsr_nwac208
crossref_primary_10_1021_acsaem_2c00421
crossref_primary_10_3390_polym17030275
crossref_primary_10_1038_s41467_024_45095_4
crossref_primary_10_1021_acsaom_3c00368
crossref_primary_10_1021_acs_langmuir_4c02567
crossref_primary_10_1016_j_cej_2024_151176
crossref_primary_10_1103_PhysRevMaterials_6_090201
crossref_primary_10_1002_adsu_202400773
crossref_primary_10_1039_D3TA02397D
crossref_primary_10_1002_marc_202400770
crossref_primary_10_3390_en16041975
crossref_primary_10_1021_acs_nanolett_3c03055
Cites_doi 10.1038/s41565-020-00800-4
10.1364/OE.26.00A777
10.1016/j.solmat.2021.111205
10.1038/nenergy.2017.143
10.1016/j.solmat.2017.10.002
10.1016/j.ijheatmasstransfer.2016.08.009
10.1016/j.jqsrt.2018.12.023
10.1126/science.abc5381
10.1021/acs.nanolett.0c04810
10.1016/j.cej.2020.127104
10.1021/acsami.0c05803
10.1016/j.energy.2019.116322
10.1126/sciadv.aaz5413
10.1016/j.enconman.2013.06.024
10.7567/APEX.10.112601
10.1038/ncomms13729
10.1364/OE.397714
10.1063/5.0035138
10.1103/PhysRevApplied.13.064052
10.1126/science.abe4476
10.1021/nl4004283
10.1016/j.nanoen.2020.105461
10.1016/j.solmat.2019.110319
10.1063/5.0017838
10.1016/j.jaridenv.2015.02.002
10.1016/j.rser.2014.01.053
10.1364/OE.401368
10.1021/acsami.0c09374
10.1002/admt.201901007
10.1016/j.physe.2020.114471
10.1016/j.jqsrt.2020.107163
10.1080/15567265.2020.1722300
10.1021/acsphotonics.6b00991
10.1364/AO.51.006789
10.1016/j.ijheatmasstransfer.2021.121263
10.1073/pnas.2019292118
10.1364/OPTICA.1.000032
10.1016/j.egyr.2020.11.127
10.1021/acsami.0c21204
10.1016/j.joule.2018.10.006
10.1016/j.mtphys.2021.100389
10.1177/0958305X18787340
10.1016/j.ijheatmasstransfer.2018.11.059
10.1016/j.proeng.2016.10.048
10.1016/j.solener.2008.10.008
10.1364/OE.418650
10.1126/sciadv.aat9480
10.1016/j.rinp.2017.05.024
10.1016/j.solmat.2019.110320
10.1126/science.aai7899
10.1364/AO.20.002606
10.1016/j.apenergy.2018.12.018
10.1364/AO.46.008118
10.1021/acsami.6b16248
10.1016/j.joule.2020.10.004
10.1016/j.solener.2020.10.013
10.1088/0004-637X/707/2/916
10.1021/acsami.1c02368
10.1016/j.solmat.2018.01.015
10.1021/acsphotonics.7b00089
10.1016/j.jobe.2020.101631
10.1016/j.solmat.2019.02.015
10.1016/j.solmat.2017.04.020
10.1016/j.solmat.2004.09.003
10.1021/acsphotonics.7b01492
10.1038/s41467-020-19790-x
10.1038/s41893-018-0023-2
10.1002/adma.202000870
10.1016/j.solmat.2020.110739
10.1038/s41893-019-0348-5
10.1021/acsami.1c02145
10.1364/OE.23.0A1120
10.1021/la3013987
10.1016/j.enconman.2019.112395
10.1016/j.enbuild.2012.02.055
10.1007/s11431-020-1586-9
10.1016/j.solmat.2020.110700
10.1063/1.4893616
10.1016/j.enbuild.2010.07.003
10.1557/mre.2020.18
10.1063/1.5087281
10.1126/science.aat9513
10.1016/j.nanoen.2021.106259
10.12693/APhysPolA.116.585
10.1016/j.solener.2012.08.017
10.1364/AO.21.004381
10.1002/adom.201600250
10.1007/s10570-021-04112-1
10.1038/s41598-020-63591-7
10.1073/pnas.2001802117
10.1063/1.4835995
10.1016/j.renene.2019.06.119
10.1007/s12273-018-0474-4
10.1021/acsphotonics.0c00513
10.1038/s41377-018-0033-x
10.1021/acs.nanolett.0c04241
10.1126/science.abi5484
10.1016/j.renene.2019.10.032
10.1080/1573062X.2013.765494
10.1126/science.abb0971
10.1126/sciadv.aaq0919
10.1038/s43246-020-00098-8
10.1063/5.0010190
10.1016/j.joule.2019.09.016
10.1016/j.enbuild.2007.01.004
10.1016/j.apenergy.2019.04.116
10.1016/j.enbuild.2015.07.027
10.1088/1361-6463/abfb19
10.1016/j.joule.2019.08.009
10.1126/science.aaf5471
10.1016/j.energy.2020.119045
10.1007/s40899-015-0038-z
10.1016/j.jqsrt.2017.01.014
10.1016/j.nanoen.2020.105517
10.1016/j.enbuild.2015.05.026
10.1016/j.esd.2020.04.008
10.1016/j.energy.2017.03.075
10.1021/acsnano.7b07121
10.1063/5.0015650
10.1002/adfm.201907562
10.3390/buildings8120168
10.1016/j.mtphys.2019.100127
10.1016/j.nanoen.2020.105600
10.1021/acs.nanolett.0c01457
10.1016/j.applthermaleng.2017.08.131
10.1126/science.aau1217
10.1016/j.apenergy.2018.04.115
10.1002/smll.201905290
10.1016/j.solener.2016.01.021
10.1016/j.buildenv.2011.08.011
10.1038/nature13883
10.1016/j.nanoen.2021.105971
10.1016/j.jqsrt.2020.107063
10.1002/adma.201705421
10.1016/j.solmat.2020.110563
10.1016/j.renene.2020.03.136
10.1021/acsami.9b16742
10.1103/PhysRevLett.17.1286
10.1016/j.enbuild.2019.109453
10.1016/j.xcrp.2020.100221
10.1002/adfm.202010334
10.1016/j.rser.2017.04.030
10.1038/s41598-020-63027-2
ContentType Journal Article
Copyright 2021 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOA
DOI 10.1002/eom2.12153
DatabaseName Wiley Online Library Open Access - NZ
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Materials Science Database
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3173
EndPage n/a
ExternalDocumentID oai_doaj_org_article_46721437f7214a5eb0a51a892f22f287
10_1002_eom2_12153
EOM212153
Genre reviewArticle
GrantInformation_xml – fundername: Central South University
  funderid: None
– fundername: National Natural Science Foundation of China
  funderid: 52006246
– fundername: National Science Foundation
  funderid: 2005747
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
M~E
PATMY
PDBOC
PIMPY
PYCSY
WIN
AAYXX
CITATION
IEP
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c5083-91a83341429082aea6f905a0ed79b7a309061feef8094e6adc59c8e52d2f45c93
IEDL.DBID BENPR
ISSN 2567-3173
IngestDate Wed Aug 27 01:25:52 EDT 2025
Wed Aug 13 09:24:16 EDT 2025
Thu Apr 24 23:06:48 EDT 2025
Tue Jul 01 02:50:12 EDT 2025
Wed Jan 22 16:26:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5083-91a83341429082aea6f905a0ed79b7a309061feef8094e6adc59c8e52d2f45c93
Notes Funding information
Central South University, Grant/Award Number: None; National Natural Science Foundation of China, Grant/Award Number: 52006246; National Science Foundation, Grant/Award Number: 2005747
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0264-2640
OpenAccessLink https://www.proquest.com/docview/2611877680?pq-origsite=%requestingapplication%
PQID 2611877680
PQPubID 5066170
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_46721437f7214a5eb0a51a892f22f287
proquest_journals_2611877680
crossref_primary_10_1002_eom2_12153
crossref_citationtrail_10_1002_eom2_12153
wiley_primary_10_1002_eom2_12153_EOM212153
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Beijing
PublicationTitle EcoMat (Beijing, China)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 64
2020; 20
2009; 83
2019; 10
2019; 15
2019; 203
2020; 206
2020; 205
2020; 13
2020; 12
2020; 11
2020; 10
2009; 116
2018; 7
2021; 79
2018; 174
2018; 8
2018; 5
2018; 4
2018; 1
2017; 77
2018; 178
2020; 217
2020; 216
2018; 30
2012; 28
2020; 213
2020; 212
2017; 168
2021; 85
2014; 11
2021; 81
2021; 80
2019; 3
2019; 6
2019; 5
2019; 30
2019; 2
2018; 224
2019; 225
2013; 103
2005; 86
2020; 146
2020; 32
2020; 147
2016; 169
2017; 137
1981; 20
2018; 26
2016; 4
2016; 7
2010; 42
2021; 54
2016; 2
2020; 30
2015; 116
2013; 75
2020; 28
2020; 155
2021; 373
2020; 24
2021; 372
2012; 48
2018; 12
2018; 11
2014; 32
2018; 362
2021; 407
2007; 39
2017; 7
2021; 21
1966; 17
2017; 2
2017; 4
2021; 126
2021; 29
2021; 28
2019; 248
2020; 128
2020; 57
2017; 197
2015; 107
2017; 355
2012; 55
2017; 9
2012; 51
2019; 363
2014; 1
2020; 7
2020; 6
2020; 5
2020; 4
2021; 31
2020; 1
2021; 33
2013; 13
2020; 253
2020; 252
1982; 21
2020; 370
2021; 118
2019; 236
2016; 353
2021; 230
2016; 114
2019; 194
2017; 127
2014; 515
2021; 88
2016; 128
2021; 13
2015; 23
2021; 16
2014; 105
2020; 190
2009; 707
2021; 12
2021; 11
2020
2017; 16
2021; 18
2017; 10
2020; 117
2021; 173
2017; 104
2007; 46
2012; 86
2019; 131
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
Liu Z (e_1_2_8_123_1) 2017; 16
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Li X (e_1_2_8_43_1) 2020; 1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_17_1
Wang T (e_1_2_8_68_1) 2021; 12
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 26
  start-page: A777
  issue: 18
  year: 2018
  end-page: A787
  article-title: Self‐adaptive radiative cooling based on phase change materials
  publication-title: Opt Express
– volume: 197
  start-page: 76
  year: 2017
  end-page: 83
  article-title: Vanadium dioxide based Fabry‐Perot emitter for dynamic radiative cooling applications
  publication-title: J Quant Spectrosc Radiat Transf
– volume: 30
  start-page: 235
  issue: 2
  year: 2019
  end-page: 253
  article-title: Potential for cooling load reduction in residential buildings using cool roofs in the harsh climate of Saudi Arabia
  publication-title: Energy Environ
– volume: 4
  start-page: 626
  issue: 3
  year: 2017
  end-page: 630
  article-title: Daytime radiative cooling using near‐black infrared emitters
  publication-title: ACS Photonics
– volume: 253
  start-page: 788
  year: 2020
  end-page: 798
  article-title: Performance analysis of solar thermophotovoltaic system with selective absorber/emitter
  publication-title: J Quant Spectrosc Radiat Transf
– volume: 213
  year: 2020
  article-title: Sustainable cooling system for Kuwait hot climate combining diurnal radiative cooling and indirect evaporative cooling system
  publication-title: Energy
– volume: 75
  start-page: 241
  year: 2013
  end-page: 248
  article-title: Integration of thermal insulation coating and moving‐air‐cavity in a cool roof system for attic temperature reduction
  publication-title: Energy Convers Manag
– volume: 126
  year: 2021
  article-title: Theoretical design of nanoparticle‐based spectrally emitter for thermophotovoltaic applications
  publication-title: Phys E Low‐Dimensional Syst Nanostructures
– volume: 212
  start-page: 125
  year: 2020
  end-page: 151
  article-title: Development of radiative cooling and its integration with buildings: a comprehensive review
  publication-title: Sol Energy
– volume: 127
  start-page: 1564
  year: 2017
  end-page: 1573
  article-title: Modelling study of the low‐pump‐power demand constructal T‐shaped pipe network for a large scale radiative cooled‐cold storage system
  publication-title: Appl Therm Eng
– volume: 21
  start-page: 1493
  issue: 3
  year: 2021
  end-page: 1499
  article-title: Three‐dimensional printable Nanoporous polymer matrix composites for daytime radiative cooling
  publication-title: Nano Lett
– volume: 355
  start-page: 1062
  issue: 6329
  year: 2017
  end-page: 1066
  article-title: Scalable‐manufactured randomized glass‐polymer hybrid metamaterial for daytime radiative cooling
  publication-title: Science
– volume: 236
  start-page: 489
  year: 2019
  end-page: 513
  article-title: Radiative cooling: a review of fundamentals, materials, applications, and prospects
  publication-title: Appl Energy
– volume: 85
  year: 2021
  article-title: Bilayer porous polymer for efficient passive building cooling
  publication-title: Nano Energy
– volume: 16
  start-page: 153
  issue: 2
  year: 2021
  end-page: 158
  article-title: Scalable and hierarchically designed polymer film as a selective thermal emitter for high‐performance all‐day radiative cooling
  publication-title: Nat Nanotechnol
– volume: 155
  start-page: 90
  year: 2020
  end-page: 99
  article-title: Field investigation and performance evaluation of sub‐ambient radiative cooling in low latitude seaside
  publication-title: Renew Energy
– volume: 24
  start-page: 43
  issue: 1
  year: 2020
  end-page: 52
  article-title: Fundamental limits of the dew‐harvesting technology
  publication-title: Nanoscale Microscale Thermophys Eng
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 6
  article-title: Whitish daytime radiative cooling using diffuse reflection of non‐resonant silica nanoshells
  publication-title: Sci Rep
– volume: 190
  year: 2020
  article-title: Radiative sky cooling‐assisted thermoelectric cooling system for building applications
  publication-title: Energy
– volume: 116
  start-page: 63
  year: 2015
  end-page: 70
  article-title: Dew condensation on different natural and artificial passive surfaces in a semiarid climate
  publication-title: J Arid Environ
– volume: 206
  year: 2020
  article-title: Polymer solar filter for enabling direct daytime radiative cooling
  publication-title: Sol Energy Mater Sol Cells
– volume: 118
  issue: 14
  year: 2021
  article-title: Vapor condensation with daytime radiative cooling
  publication-title: Proc Natl Acad Sci U S A
– volume: 18
  start-page: 100389
  year: 2021
  article-title: Scalable and paint‐format microparticle–polymer composite enabling high‐performance daytime radiative cooling
  publication-title: Mater Today Phys
– volume: 2
  start-page: 71
  issue: 1
  year: 2016
  end-page: 86
  article-title: A review: dew water collection from radiative passive collectors to recent developments of active collectors
  publication-title: Sustain Water Resour Manag
– volume: 107
  start-page: 37
  year: 2015
  end-page: 48
  article-title: Modelling and experimental analysis of three radioconvective panels for night cooling
  publication-title: Energ Buildings
– volume: 12
  start-page: 2151
  issue: 3
  year: 2018
  end-page: 2159
  article-title: Real‐time tunable colors from microfluidic reconfigurable all‐dielectric metasurfaces
  publication-title: ACS Nano
– volume: 77
  start-page: 451
  year: 2017
  end-page: 460
  article-title: A review of benefits and limitations of static and switchable cool roof systems
  publication-title: Renew Sust Energ Rev
– volume: 57
  start-page: 22
  year: 2020
  end-page: 31
  article-title: Energy for sustainable development daytime radiative cooling of enclosed water using spectral selective metamaterial based cooling surfaces
  publication-title: Energy Sustain Dev
– volume: 54
  issue: 29
  year: 2021
  article-title: Enhancing infrared emission behavior of polymer coatings for radiative cooling applications
  publication-title: J Phys D Appl Phys
– volume: 146
  start-page: 44
  year: 2020
  end-page: 55
  article-title: Field investigation of a photonic multi‐layered TiO2 passive radiative cooler in sub‐tropical climate
  publication-title: Renew Energy
– start-page: 1
  year: 2020
  end-page: 13
– volume: 83
  start-page: 614
  issue: 5
  year: 2009
  end-page: 624
  article-title: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency / power correlations
  publication-title: Sol Energy
– volume: 31
  issue: 19
  year: 2021
  article-title: Scalable aqueous processing‐based passive daytime radiative cooling coatings
  publication-title: Adv Funct Mater
– volume: 33
  year: 2021
  article-title: Comprehensive evaluation of thermal and energy performance of radiative roof cooling in buildings
  publication-title: J Build Eng
– volume: 5
  start-page: 1181
  issue: 4
  year: 2018
  end-page: 1187
  article-title: Effective Radiative cooling by paint‐format microsphere‐based photonic random media
  publication-title: ACS Photonics
– volume: 81
  year: 2021
  article-title: 3D porous polymer film with designed pore architecture and auto‐deposited SiO2 for highly efficient passive radiative cooling
  publication-title: Nano Energy
– volume: 21
  start-page: 4381
  issue: 23
  year: 1982
  end-page: 4388
  article-title: Radiative cooling computed for model atmospheres
  publication-title: Appl Opt
– volume: 16
  start-page: 255
  issue: 3
  year: 2017
  end-page: 267
  article-title: Experimental investigation on night sky radiant cooling performance of duct‐type heat exchanger
  publication-title: Int J Vent
– volume: 10
  issue: 11
  year: 2017
  article-title: Ultra‐broadband large‐scale infrared perfect absorber with optical transparency
  publication-title: Appl Phys Express
– volume: 9
  start-page: 13676
  issue: 15
  year: 2017
  end-page: 13684
  article-title: Patterned polymer coatings increase the efficiency of dew harvesting
  publication-title: ACS Appl Mater Interfaces
– volume: 362
  start-page: 315
  issue: 6412
  year: 2018
  end-page: 319
  article-title: Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling
  publication-title: Science
– volume: 131
  start-page: 487
  year: 2019
  end-page: 494
  article-title: A strategy of hierarchical particle sizes in nanoparticle composite for enhancing solar reflection
  publication-title: Int J Heat Mass Transf
– volume: 203
  year: 2019
  article-title: Roof‐integrated radiative air‐cooling system to achieve cooler attic for building energy saving
  publication-title: Energ Buildings
– volume: 363
  start-page: 619
  issue: 6427
  year: 2019
  end-page: 623
  article-title: Dynamic gating of infrared radiation in a textile
  publication-title: Science
– volume: 1
  year: 2020
  article-title: Full daytime sub‐ambient Radiative cooling with high figure of merit in commercial‐like paints
  publication-title: SSRN Electron J
– volume: 147
  start-page: 2279
  year: 2020
  end-page: 2294
  article-title: Optimization of cool roof and night ventilation in office buildings: a case study in Xiamen, China
  publication-title: Renew Energy
– volume: 46
  start-page: 8118
  issue: 33
  year: 2007
  end-page: 8133
  article-title: Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature
  publication-title: Appl Opt
– volume: 86
  start-page: 451
  issue: 4
  year: 2005
  end-page: 483
  article-title: Cooling of photovoltaic cells under concentrated illumination: a critical review
  publication-title: Sol Energy Mater Sol Cells
– volume: 353
  start-page: 1019
  issue: 6303
  year: 2016
  end-page: 1023
  article-title: Radiative human body cooling by nanoporous polyethylene textile
  publication-title: Science
– volume: 30
  issue: 5
  year: 2020
  article-title: Scalable flexible hybrid membranes with photonic structures for daytime Radiative cooling
  publication-title: Adv Funct Mater
– volume: 178
  start-page: 115
  issue: 178
  year: 2018
  end-page: 128
  article-title: A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling
  publication-title: Sol Energy Mater Sol Cells
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  end-page: 8
  article-title: Passive daytime radiative cooling: principle, application, and economic analysis
  publication-title: MRS Energy Sustain
– volume: 174
  start-page: 607
  year: 2018
  end-page: 615
  article-title: Mid‐infrared emissivity of crystalline silicon solar cells
  publication-title: Sol Energy Mater Sol Cells
– volume: 64
  start-page: 1017
  issue: 5
  year: 2021
  end-page: 1029
  article-title: Optical properties and cooling performance analyses of single‐layer radiative cooling coating with mixture of TiO particles and SiO2 particles
  publication-title: Sci China Technol Sci
– volume: 230
  year: 2021
  article-title: Effective daytime radiative cooling via a template method based PDMS sponge emitter with synergistic thermo‐optical activity
  publication-title: Sol Energy Mater Sol Cells
– volume: 7
  start-page: 13729
  year: 2016
  article-title: Radiative cooling to deep sub‐freezing temperatures through a 24‐h day‐night cycle
  publication-title: Nat Commun
– volume: 370
  start-page: 784
  issue: 6518
  year: 2020
  end-page: 785
  article-title: Photon‐engineered radiative cooling textiles
  publication-title: Science
– volume: 173
  year: 2021
  article-title: Investigating the effective radiative cooling performance of random dielectric microsphere coatings
  publication-title: Int J Heat Mass Transf
– volume: 7
  start-page: 1
  issue: 1
  year: 2018
  end-page: 9
  article-title: Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization
  publication-title: Light Sci Appl
– volume: 2
  start-page: 718
  issue: 8
  year: 2019
  end-page: 724
  article-title: A polydimethylsiloxane‐coated metal structure for all‐day radiative cooling
  publication-title: Nat Sustain
– volume: 5
  issue: 5
  year: 2020
  article-title: Fundamentals, materials, and applications for daytime Radiative cooling
  publication-title: Adv Mater Technol
– volume: 42
  start-page: 2131
  issue: 11
  year: 2010
  end-page: 2138
  article-title: A two‐stage system of nocturnal radiative and indirect evaporative cooling for conditions in Tehran
  publication-title: Energ Buildings
– volume: 205
  year: 2020
  article-title: Research on the performance of radiative cooling and solar heating coupling module to direct control indoor temperature
  publication-title: Energy Convers Manag
– volume: 128
  start-page: 61
  year: 2016
  end-page: 94
  article-title: Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change
  publication-title: Sol Energy
– volume: 8
  start-page: 168
  issue: 12
  year: 2018
  article-title: Recent progress in daytime radiative cooling: is it the air conditioner of the future?
  publication-title: Buildings
– volume: 194
  start-page: 222
  year: 2019
  end-page: 228
  article-title: Black body‐like radiative cooling for flexible thin‐film solar cells
  publication-title: Sol Energy Mater Sol Cells
– volume: 5
  start-page: eaat9480
  issue: 10
  year: 2019
  article-title: High‐performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel
  publication-title: Sci Adv
– volume: 213
  year: 2020
  article-title: Low‐cost radiative cooling blade coating with ultrahigh visible light transmittance and emission within an “atmospheric window
  publication-title: Sol Energy Mater Sol Cells
– volume: 252
  year: 2020
  article-title: Complex refractive indices measurements of polymers in infrared bands
  publication-title: J Quant Spectrosc Radiat Transf
– volume: 4
  start-page: 774
  issue: 4
  year: 2017
  end-page: 782
  article-title: A comprehensive photonic approach for solar cell cooling
  publication-title: ACS Photonics
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 10
  article-title: Cool white polymer coatings based on glass bubbles for buildings
  publication-title: Sci Rep
– volume: 10
  year: 2019
  article-title: Selection of polymers with functional groups for daytime radiative cooling
  publication-title: Mater Today Phys
– volume: 20
  start-page: 2606
  issue: 15
  year: 1981
  end-page: 2615
  article-title: Radiative heating and cooling with spectrally selective surfaces
  publication-title: Appl Opt
– volume: 105
  issue: 7
  year: 2014
  article-title: Switchable wavelength‐selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer
  publication-title: Appl Phys Lett
– volume: 116
  start-page: 585
  issue: 4
  year: 2009
  end-page: 587
  article-title: Dispersion properties of optical polymers
  publication-title: Acta Phys Pol A
– volume: 30
  issue: 10
  year: 2018
  article-title: VO /TiN Plasmonic Thermochromic smart coatings for room‐temperature applications
  publication-title: Adv Mater
– volume: 32
  issue: 29
  year: 2020
  article-title: Switchable cavitation in silicone coatings for energy‐saving cooling and heating
  publication-title: Adv Mater
– volume: 4
  start-page: 2702
  issue: 12
  year: 2020
  end-page: 2717
  article-title: Lightweight, passive radiative cooling to enhance concentrating photovoltaics
  publication-title: Joule
– volume: 39
  start-page: 1167
  issue: 11
  year: 2007
  end-page: 1174
  article-title: Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions
  publication-title: Energ Buildings
– volume: 55
  start-page: 2
  year: 2012
  end-page: 6
  article-title: Global cooling updates: reflective roofs and pavements
  publication-title: Energ Buildings
– volume: 372
  start-page: 393
  issue: 6540
  year: 2021
  end-page: 397
  article-title: Broadband directional control of thermal emission
  publication-title: Science
– volume: 7
  start-page: 1959
  year: 2017
  end-page: 1964
  article-title: Numerical modelling of lawsonite thin film as radiative cooling minerals for dew harvesting
  publication-title: Results Phys
– volume: 28
  start-page: 29703
  issue: 20
  year: 2020
  end-page: 29713
  article-title: Microstructured surfaces for colored and non‐colored sky radiative cooling
  publication-title: Opt Express
– volume: 11
  start-page: 6101
  issue: 1
  year: 2020
  end-page: 6109
  article-title: Integration of daytime radiative cooling and solar heating for year‐round energy saving in buildings
  publication-title: Nat Commun
– volume: 407
  year: 2021
  article-title: Self‐cleaning and spectrally selective coating on cotton fabric for passive daytime radiative cooling
  publication-title: Chem Eng J
– volume: 7
  start-page: 1312
  issue: 5
  year: 2020
  end-page: 1322
  article-title: Colored Radiative cooling coatings with nanoparticles
  publication-title: ACS Photonics
– volume: 51
  start-page: 6789
  issue: 28
  year: 2012
  end-page: 6798
  article-title: Mid‐infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride
  publication-title: Appl Opt
– volume: 3
  start-page: 3088
  issue: 12
  year: 2019
  end-page: 3099
  article-title: Porous polymers with switchable optical transmittance for optical and thermal regulation
  publication-title: Joule
– volume: 86
  start-page: 3331
  issue: 11
  year: 2012
  end-page: 3344
  article-title: Theoretical and experimental analysis of a novel low emissivity water pond in summer
  publication-title: Sol Energy
– volume: 3
  start-page: 111
  issue: 1
  year: 2019
  end-page: 123
  article-title: Subambient cooling of water: toward real‐world applications of daytime radiative cooling
  publication-title: Joule
– volume: 17
  start-page: 1286
  issue: 26
  year: 1966
  end-page: 1289
  article-title: Infrared optical properties of vanadium dioxide above and below the transition temperature
  publication-title: Phys Rev Lett
– volume: 6
  start-page: 814
  year: 2020
  end-page: 821
  article-title: Consideration of reducing purchased power using photovoltaic excess power by thermal radiative cooling / heating system
  publication-title: Energy Rep
– volume: 29
  start-page: 11416
  issue: 8
  year: 2021
  end-page: 11432
  article-title: Wrinkled surface microstructure for enhancing the infrared spectral performance of radiative cooling
  publication-title: Opt Express
– volume: 11
  issue: 2
  year: 2021
  article-title: Quasi‐periodic selective multilayer emitter for sub‐ambient daytime radiative cooling
  publication-title: AIP Adv
– volume: 32
  start-page: 642
  year: 2014
  end-page: 650
  article-title: Potential energy savings by radiative cooling system for a building in tropical climate
  publication-title: Renew Sust Energ Rev
– volume: 4
  start-page: 1780
  issue: 11
  year: 2016
  end-page: 1786
  article-title: Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range
  publication-title: Adv Opt Mater
– volume: 4
  start-page: eaaq0919
  issue: 3
  year: 2018
  article-title: Hydrophilic directional slippery rough surfaces for water harvesting
  publication-title: Sci Adv
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  end-page: 11
  article-title: A structural polymer for highly efficient all‐day passive radiative cooling
  publication-title: Nat Commun
– volume: 137
  start-page: 419
  year: 2017
  end-page: 430
  article-title: Preliminary thermal analysis of a combined photovoltaic e photothermic e nocturnal radiative cooling system
  publication-title: Energy
– volume: 1
  start-page: 1
  issue: 1
  year: 2020
  end-page: 7
  article-title: Continuously variable emission for mechanical deformation induced radiative cooling
  publication-title: Commun Mater
– volume: 13
  issue: 6
  year: 2020
  article-title: Directional and spectral control of thermal emission and its application in radiative cooling and infrared light sources
  publication-title: Phys Rev Appl
– volume: 248
  start-page: 589
  year: 2019
  end-page: 599
  article-title: Performance evaluation of a metamaterial‐based new cool roof using improved roof thermal transfer value model
  publication-title: Appl Energy
– volume: 20
  start-page: 6974
  issue: 10
  year: 2020
  end-page: 6980
  article-title: Plasmon‐enhanced infrared emission approaching the theoretical limit of Radiative cooling ability
  publication-title: Nano Lett
– volume: 3
  start-page: 2679
  issue: 11
  year: 2019
  end-page: 2686
  article-title: Generating light from darkness
  publication-title: Joule
– volume: 13
  start-page: 1457
  issue: 4
  year: 2013
  end-page: 1461
  article-title: Ultrabroadband photonic structures to achieve high‐performance daytime radiative cooling
  publication-title: Nano Lett
– volume: 206
  year: 2020
  article-title: Daytime radiative cooling with silica fiber network
  publication-title: Sol Energy Mater Sol Cells
– volume: 217
  year: 2020
  article-title: Spectrally‐selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling
  publication-title: Sol Energy Mater Sol Cells
– volume: 13
  start-page: 14132
  issue: 12
  year: 2021
  end-page: 14140
  article-title: Mechanically robust and spectrally selective convection shield for daytime subambient radiative cooling
  publication-title: ACS Appl Mater Interfaces
– volume: 80
  year: 2021
  article-title: Radiative cooling: fundamental physics, atmospheric influences, materials and structural engineering, applications and beyond
  publication-title: Nano Energy
– volume: 117
  issue: 1
  year: 2020
  article-title: Radiative cooling for continuous thermoelectric power generation in day and night
  publication-title: Appl Phys Lett
– volume: 1
  start-page: 105
  issue: 2
  year: 2018
  end-page: 112
  article-title: Nanoporous polyethylene microfibres for large‐scale radiative cooling fabric
  publication-title: Nat Sustain
– volume: 373
  start-page: 692
  issue: 6555
  year: 2021
  end-page: 696
  article-title: Hierarchical‐morphology metafabric for scalable passive daytime radiative cooling
  publication-title: Science
– volume: 6
  start-page: eaaz5413
  issue: 17
  year: 2020
  article-title: Colored and paintable bilayer coatings with high solar‐infrared reflectance for efficient cooling
  publication-title: Sci Adv
– volume: 104
  start-page: 890
  year: 2017
  end-page: 896
  article-title: Nanoparticle embedded double‐layer coating for daytime radiative cooling
  publication-title: Int J Heat Mass Transf
– volume: 12
  start-page: 43553
  issue: 39
  year: 2020
  end-page: 43559
  article-title: Selectively enhancing solar scattering for direct radiative cooling through control of polymer nanofiber morphology
  publication-title: ACS Appl Mater Interfaces
– volume: 23
  start-page: A1120
  issue: 19
  year: 2015
  end-page: A1128
  article-title: Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments
  publication-title: Opt Express
– volume: 12
  start-page: 8073
  issue: 7
  year: 2020
  end-page: 8081
  article-title: Spectrally selective inorganic‐based multilayer emitter for daytime radiative cooling
  publication-title: ACS Appl Mater Interfaces
– volume: 707
  start-page: 916
  issue: 2
  year: 2009
  end-page: 920
  article-title: The temperature of the cosmic microwave background
  publication-title: Astrophys J
– volume: 515
  start-page: 540
  issue: 7528
  year: 2014
  end-page: 544
  article-title: Passive radiative cooling below ambient air temperature under direct sunlight
  publication-title: Nature
– volume: 13
  start-page: 19282
  issue: 16
  year: 2021
  end-page: 19290
  article-title: Flexible daytime radiative cooling enhanced by enabling three‐phase composites with scattering interfaces between silica microspheres and hierarchical porous coatings
  publication-title: ACS Appl Mater Interfaces
– volume: 2
  start-page: 1
  issue: 9
  year: 2017
  end-page: 7
  article-title: Sub‐ambient non‐evaporative fluid cooling with the sky
  publication-title: Nat Energy
– volume: 114
  start-page: 180
  year: 2016
  end-page: 190
  article-title: Experimental in‐lab and in‐field analysis of waterproof membranes for cool roof application and urban heat Island mitigation
  publication-title: Energ Buildings
– volume: 6
  issue: 2
  year: 2019
  article-title: Radiative sky cooling: fundamental principles, materials, and applications
  publication-title: Appl Phys Rev
– volume: 1
  issue: 10
  year: 2020
  article-title: Full daytime sub‐ambient radiative cooling in commercial‐like paints with high figure of merit
  publication-title: Cell Reports Phys Sci
– volume: 128
  issue: 5
  year: 2020
  article-title: Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters
  publication-title: J Appl Phys
– volume: 1
  start-page: 32
  issue: 1
  year: 2014
  article-title: Radiative cooling of solar cells
  publication-title: Optica
– volume: 11
  start-page: 175
  issue: 3
  year: 2014
  end-page: 184
  article-title: Radiative‐ and artificial‐cooling enhanced dew collection in a coastal area of South Australia
  publication-title: Urban Water J
– volume: 88
  year: 2021
  article-title: Review of radiative cooling materials: performance evaluation and design approaches
  publication-title: Nano Energy
– volume: 28
  start-page: 25460
  issue: 17
  year: 2020
  end-page: 25470
  article-title: Maximal nighttime electrical power generation via optimal radiative cooling
  publication-title: Opt Express
– volume: 79
  year: 2021
  article-title: Colored emitters with silica‐embedded perovskite nanocrystals for efficient daytime radiative cooling
  publication-title: Nano Energy
– volume: 169
  start-page: 392
  year: 2016
  end-page: 399
  article-title: Life cycle analysis of cool roof in tropical areas
  publication-title: Procedia Eng
– volume: 28
  start-page: 10183
  issue: 27
  year: 2012
  end-page: 10191
  article-title: Water harvest via dewing
  publication-title: Langmuir
– volume: 216
  year: 2020
  article-title: Hydrophilic radiative cooler for direct water condensation in humid weather
  publication-title: Sol Energy Mater Sol Cells
– volume: 224
  start-page: 371
  year: 2018
  end-page: 381
  article-title: Energy saving and economic analysis of a new hybrid radiative cooling system for single‐family houses in the USA
  publication-title: Appl Energy
– volume: 168
  start-page: 78
  year: 2017
  end-page: 84
  article-title: Double‐layer nanoparticle‐based coatings for efficient terrestrial radiative cooling
  publication-title: Sol Energy Mater Sol Cells
– volume: 15
  start-page: 1
  issue: 52
  year: 2019
  end-page: 9
  article-title: A self‐assembled 2D thermofunctional material for radiative cooling
  publication-title: Small
– volume: 28
  start-page: 9383
  issue: 14
  year: 2021
  end-page: 9393
  article-title: Reflective and transparent cellulose‐based passive radiative coolers
  publication-title: Cellulose
– volume: 21
  start-page: 1412
  issue: 3
  year: 2021
  end-page: 1418
  article-title: Designing mesoporous photonic structures for high‐performance passive daytime radiative cooling
  publication-title: Nano Lett
– volume: 225
  start-page: 50
  year: 2019
  end-page: 57
  article-title: Local temperature control of hybrid plasmonic nano‐antennas
  publication-title: J Quant Spectrosc Radiat Transf
– volume: 12
  start-page: 27241
  issue: 24
  year: 2020
  end-page: 27248
  article-title: Easy way to achieve self‐adaptive cooling of passive radiative materials
  publication-title: ACS Appl Mater Interfaces
– volume: 117
  issue: 9
  year: 2020
  article-title: Ultrahigh emissivity of grating‐patterned PDMS film from 8 to 13 μ m wavelength regime
  publication-title: Appl Phys Lett
– volume: 370
  start-page: 786
  issue: 6518
  year: 2020
  end-page: 791
  article-title: Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source
  publication-title: Science
– volume: 117
  start-page: 14657
  issue: 26
  year: 2020
  end-page: 14666
  article-title: Biologically inspired flexible photonic films for efficient passive radiative cooling
  publication-title: Proc Natl Acad Sci U S A
– volume: 13
  start-page: 21733
  issue: 18
  year: 2021
  end-page: 21739
  article-title: Ultrawhite BaSO4Paints and films for remarkable daytime subambient radiative cooling
  publication-title: ACS Appl Mater Interfaces
– volume: 103
  issue: 22
  year: 2013
  article-title: Color‐preserving daytime radiative cooling
  publication-title: Appl Phys Lett
– volume: 48
  start-page: 1
  issue: 1
  year: 2012
  end-page: 6
  article-title: Quantifying the direct benefits of cool roofs in an urban setting: reduced cooling energy use and lowered greenhouse gas emissions
  publication-title: Build Environ
– volume: 11
  start-page: 1011
  issue: 5
  year: 2018
  end-page: 1028
  article-title: A numerical study of daytime passive radiative coolers for space cooling in buildings
  publication-title: Build Simul
– ident: e_1_2_8_77_1
  doi: 10.1038/s41565-020-00800-4
– ident: e_1_2_8_87_1
  doi: 10.1364/OE.26.00A777
– ident: e_1_2_8_69_1
  doi: 10.1016/j.solmat.2021.111205
– ident: e_1_2_8_101_1
  doi: 10.1038/nenergy.2017.143
– ident: e_1_2_8_129_1
  doi: 10.1016/j.solmat.2017.10.002
– ident: e_1_2_8_24_1
  doi: 10.1016/j.ijheatmasstransfer.2016.08.009
– ident: e_1_2_8_4_1
  doi: 10.1016/j.jqsrt.2018.12.023
– ident: e_1_2_8_79_1
  doi: 10.1126/science.abc5381
– ident: e_1_2_8_54_1
  doi: 10.1021/acs.nanolett.0c04810
– ident: e_1_2_8_52_1
  doi: 10.1016/j.cej.2020.127104
– ident: e_1_2_8_93_1
  doi: 10.1021/acsami.0c05803
– ident: e_1_2_8_117_1
  doi: 10.1016/j.energy.2019.116322
– ident: e_1_2_8_23_1
  doi: 10.1126/sciadv.aaz5413
– ident: e_1_2_8_108_1
  doi: 10.1016/j.enconman.2013.06.024
– ident: e_1_2_8_130_1
  doi: 10.7567/APEX.10.112601
– ident: e_1_2_8_20_1
  doi: 10.1038/ncomms13729
– ident: e_1_2_8_145_1
  doi: 10.1364/OE.397714
– ident: e_1_2_8_59_1
  doi: 10.1063/5.0035138
– ident: e_1_2_8_78_1
  doi: 10.1103/PhysRevApplied.13.064052
– ident: e_1_2_8_71_1
  doi: 10.1126/science.abe4476
– ident: e_1_2_8_12_1
  doi: 10.1021/nl4004283
– ident: e_1_2_8_86_1
  doi: 10.1016/j.nanoen.2020.105461
– ident: e_1_2_8_102_1
  doi: 10.1016/j.solmat.2019.110319
– ident: e_1_2_8_30_1
  doi: 10.1063/5.0017838
– ident: e_1_2_8_138_1
  doi: 10.1016/j.jaridenv.2015.02.002
– ident: e_1_2_8_2_1
  doi: 10.1016/j.rser.2014.01.053
– ident: e_1_2_8_41_1
  doi: 10.1364/OE.401368
– ident: e_1_2_8_73_1
  doi: 10.1021/acsami.0c09374
– ident: e_1_2_8_28_1
  doi: 10.1002/admt.201901007
– ident: e_1_2_8_143_1
  doi: 10.1016/j.physe.2020.114471
– ident: e_1_2_8_142_1
  doi: 10.1016/j.jqsrt.2020.107163
– ident: e_1_2_8_135_1
  doi: 10.1080/15567265.2020.1722300
– ident: e_1_2_8_35_1
  doi: 10.1021/acsphotonics.6b00991
– ident: e_1_2_8_61_1
  doi: 10.1364/AO.51.006789
– ident: e_1_2_8_65_1
  doi: 10.1016/j.ijheatmasstransfer.2021.121263
– ident: e_1_2_8_134_1
  doi: 10.1073/pnas.2019292118
– ident: e_1_2_8_126_1
  doi: 10.1364/OPTICA.1.000032
– ident: e_1_2_8_114_1
  doi: 10.1016/j.egyr.2020.11.127
– ident: e_1_2_8_55_1
  doi: 10.1021/acsami.0c21204
– ident: e_1_2_8_34_1
  doi: 10.1016/j.joule.2018.10.006
– ident: e_1_2_8_58_1
  doi: 10.1016/j.mtphys.2021.100389
– ident: e_1_2_8_99_1
  doi: 10.1177/0958305X18787340
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: e_1_2_8_68_1
  article-title: A structural polymer for highly efficient all‐day passive radiative cooling
  publication-title: Nat Commun
– ident: e_1_2_8_80_1
  doi: 10.1016/j.ijheatmasstransfer.2018.11.059
– ident: e_1_2_8_111_1
  doi: 10.1016/j.proeng.2016.10.048
– ident: e_1_2_8_125_1
  doi: 10.1016/j.solener.2008.10.008
– ident: e_1_2_8_51_1
  doi: 10.1364/OE.418650
– ident: e_1_2_8_37_1
  doi: 10.1126/sciadv.aat9480
– ident: e_1_2_8_137_1
  doi: 10.1016/j.rinp.2017.05.024
– ident: e_1_2_8_18_1
  doi: 10.1016/j.solmat.2019.110320
– ident: e_1_2_8_19_1
  doi: 10.1126/science.aai7899
– ident: e_1_2_8_11_1
  doi: 10.1364/AO.20.002606
– ident: e_1_2_8_8_1
  doi: 10.1016/j.apenergy.2018.12.018
– ident: e_1_2_8_60_1
  doi: 10.1364/AO.46.008118
– ident: e_1_2_8_139_1
  doi: 10.1021/acsami.6b16248
– ident: e_1_2_8_127_1
  doi: 10.1016/j.joule.2020.10.004
– ident: e_1_2_8_112_1
  doi: 10.1016/j.solener.2020.10.013
– ident: e_1_2_8_7_1
  doi: 10.1088/0004-637X/707/2/916
– ident: e_1_2_8_83_1
  doi: 10.1021/acsami.1c02368
– ident: e_1_2_8_9_1
  doi: 10.1016/j.solmat.2018.01.015
– ident: e_1_2_8_128_1
  doi: 10.1021/acsphotonics.7b00089
– ident: e_1_2_8_100_1
  doi: 10.1016/j.jobe.2020.101631
– ident: e_1_2_8_39_1
  doi: 10.1016/j.solmat.2019.02.015
– ident: e_1_2_8_22_1
  doi: 10.1016/j.solmat.2017.04.020
– ident: e_1_2_8_124_1
  doi: 10.1016/j.solmat.2004.09.003
– ident: e_1_2_8_21_1
  doi: 10.1021/acsphotonics.7b01492
– ident: e_1_2_8_90_1
  doi: 10.1038/s41467-020-19790-x
– ident: e_1_2_8_72_1
  doi: 10.1038/s41893-018-0023-2
– ident: e_1_2_8_48_1
  doi: 10.1002/adma.202000870
– ident: e_1_2_8_94_1
  doi: 10.1016/j.solmat.2020.110739
– ident: e_1_2_8_31_1
  doi: 10.1038/s41893-019-0348-5
– ident: e_1_2_8_81_1
  doi: 10.1021/acsami.1c02145
– ident: e_1_2_8_131_1
  doi: 10.1364/OE.23.0A1120
– ident: e_1_2_8_132_1
  doi: 10.1021/la3013987
– ident: e_1_2_8_6_1
  doi: 10.1016/j.enconman.2019.112395
– ident: e_1_2_8_106_1
  doi: 10.1016/j.enbuild.2012.02.055
– ident: e_1_2_8_44_1
  doi: 10.1007/s11431-020-1586-9
– ident: e_1_2_8_141_1
  doi: 10.1016/j.solmat.2020.110700
– ident: e_1_2_8_91_1
  doi: 10.1063/1.4893616
– ident: e_1_2_8_115_1
  doi: 10.1016/j.enbuild.2010.07.003
– ident: e_1_2_8_13_1
  doi: 10.1557/mre.2020.18
– ident: e_1_2_8_14_1
  doi: 10.1063/1.5087281
– ident: e_1_2_8_32_1
– ident: e_1_2_8_16_1
  doi: 10.1126/science.aat9513
– ident: e_1_2_8_26_1
  doi: 10.1016/j.nanoen.2021.106259
– ident: e_1_2_8_64_1
  doi: 10.12693/APhysPolA.116.585
– ident: e_1_2_8_121_1
  doi: 10.1016/j.solener.2012.08.017
– ident: e_1_2_8_10_1
  doi: 10.1364/AO.21.004381
– ident: e_1_2_8_62_1
  doi: 10.1002/adom.201600250
– volume: 1
  start-page: 100221
  year: 2020
  ident: e_1_2_8_43_1
  article-title: Full daytime sub‐ambient Radiative cooling with high figure of merit in commercial‐like paints
  publication-title: SSRN Electron J
– ident: e_1_2_8_36_1
  doi: 10.1007/s10570-021-04112-1
– ident: e_1_2_8_40_1
  doi: 10.1038/s41598-020-63591-7
– ident: e_1_2_8_42_1
  doi: 10.1073/pnas.2001802117
– ident: e_1_2_8_85_1
  doi: 10.1063/1.4835995
– ident: e_1_2_8_17_1
  doi: 10.1016/j.renene.2019.06.119
– ident: e_1_2_8_116_1
  doi: 10.1007/s12273-018-0474-4
– ident: e_1_2_8_47_1
  doi: 10.1021/acsphotonics.0c00513
– ident: e_1_2_8_75_1
  doi: 10.1038/s41377-018-0033-x
– ident: e_1_2_8_57_1
  doi: 10.1021/acs.nanolett.0c04241
– ident: e_1_2_8_76_1
  doi: 10.1126/science.abi5484
– ident: e_1_2_8_110_1
  doi: 10.1016/j.renene.2019.10.032
– ident: e_1_2_8_140_1
  doi: 10.1080/1573062X.2013.765494
– ident: e_1_2_8_25_1
  doi: 10.1126/science.abb0971
– ident: e_1_2_8_136_1
  doi: 10.1126/sciadv.aaq0919
– ident: e_1_2_8_89_1
  doi: 10.1038/s43246-020-00098-8
– ident: e_1_2_8_146_1
  doi: 10.1063/5.0010190
– volume: 16
  start-page: 255
  issue: 3
  year: 2017
  ident: e_1_2_8_123_1
  article-title: Experimental investigation on night sky radiant cooling performance of duct‐type heat exchanger
  publication-title: Int J Vent
– ident: e_1_2_8_88_1
  doi: 10.1016/j.joule.2019.09.016
– ident: e_1_2_8_103_1
  doi: 10.1016/j.enbuild.2007.01.004
– ident: e_1_2_8_104_1
  doi: 10.1016/j.apenergy.2019.04.116
– ident: e_1_2_8_122_1
  doi: 10.1016/j.enbuild.2015.07.027
– ident: e_1_2_8_67_1
  doi: 10.1088/1361-6463/abfb19
– ident: e_1_2_8_144_1
  doi: 10.1016/j.joule.2019.08.009
– ident: e_1_2_8_148_1
  doi: 10.1126/science.aaf5471
– ident: e_1_2_8_120_1
  doi: 10.1016/j.energy.2020.119045
– ident: e_1_2_8_133_1
  doi: 10.1007/s40899-015-0038-z
– ident: e_1_2_8_92_1
  doi: 10.1016/j.jqsrt.2017.01.014
– ident: e_1_2_8_27_1
  doi: 10.1016/j.nanoen.2020.105517
– ident: e_1_2_8_107_1
  doi: 10.1016/j.enbuild.2015.05.026
– ident: e_1_2_8_118_1
  doi: 10.1016/j.esd.2020.04.008
– ident: e_1_2_8_113_1
  doi: 10.1016/j.energy.2017.03.075
– ident: e_1_2_8_97_1
  doi: 10.1021/acsnano.7b07121
– ident: e_1_2_8_84_1
  doi: 10.1063/5.0015650
– ident: e_1_2_8_45_1
  doi: 10.1002/adfm.201907562
– ident: e_1_2_8_29_1
  doi: 10.3390/buildings8120168
– ident: e_1_2_8_66_1
  doi: 10.1016/j.mtphys.2019.100127
– ident: e_1_2_8_53_1
  doi: 10.1016/j.nanoen.2020.105600
– ident: e_1_2_8_33_1
  doi: 10.1021/acs.nanolett.0c01457
– ident: e_1_2_8_147_1
  doi: 10.1016/j.applthermaleng.2017.08.131
– ident: e_1_2_8_74_1
  doi: 10.1126/science.aau1217
– ident: e_1_2_8_119_1
  doi: 10.1016/j.apenergy.2018.04.115
– ident: e_1_2_8_38_1
  doi: 10.1002/smll.201905290
– ident: e_1_2_8_3_1
  doi: 10.1016/j.solener.2016.01.021
– ident: e_1_2_8_105_1
  doi: 10.1016/j.buildenv.2011.08.011
– ident: e_1_2_8_5_1
  doi: 10.1038/nature13883
– ident: e_1_2_8_56_1
  doi: 10.1016/j.nanoen.2021.105971
– ident: e_1_2_8_63_1
  doi: 10.1016/j.jqsrt.2020.107063
– ident: e_1_2_8_96_1
  doi: 10.1002/adma.201705421
– ident: e_1_2_8_46_1
  doi: 10.1016/j.solmat.2020.110563
– ident: e_1_2_8_149_1
  doi: 10.1126/science.abi5484
– ident: e_1_2_8_15_1
  doi: 10.1016/j.renene.2020.03.136
– ident: e_1_2_8_49_1
  doi: 10.1021/acsami.9b16742
– ident: e_1_2_8_95_1
  doi: 10.1103/PhysRevLett.17.1286
– ident: e_1_2_8_98_1
  doi: 10.1016/j.enbuild.2019.109453
– ident: e_1_2_8_82_1
  doi: 10.1016/j.xcrp.2020.100221
– ident: e_1_2_8_70_1
  doi: 10.1002/adfm.202010334
– ident: e_1_2_8_109_1
  doi: 10.1016/j.rser.2017.04.030
– ident: e_1_2_8_50_1
  doi: 10.1038/s41598-020-63027-2
SSID ssj0002504241
Score 2.5310576
SecondaryResourceType review_article
Snippet Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution....
Abstract Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atmosphere
Climate change
coating
Cold
Cooling
Daytime
Electricity
Emittance
Environmental impact
Global warming
Heat transfer
Performance evaluation
Photovoltaic cells
Polymers
Radiation
radiative cooling
Solar cells
solar reflectance
Space cooling (buildings)
Temperature
thermal emittance
Water harvesting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA6yJ30Qf-J0SkBfFMu6NGka31Q2hjAVdLC3kKSpL9rJNh_8771L6-hA9EUotA33EO6S--7a3HeEnDnOjEozHhlrWcRzbiIlvIoEvAppAYEUFieP7tPhmN9NxKTR6gvPhFX0wJXiurCRGWC6LPBmhLexET2TKVYwuLJQRw6Y10im0AcjMRdg05KPlHX99I0FKoVkBYECUf9KdNmMUQPIDLbIZh0d0utqVttkzZc7ZKPBGbhLnh4h3AUXRXPziY3h6QzZBdBpUTfFDjwvV3SA5R0Va__8kkJMGpYZzcNpDRgxZU6bf673yHjQf74dRnVnhMghfTt4KJMlgD8AJgDhxpu0ULEwsc-lstIksQKYLrwvMsjefGpyJ5TLvGA5K7hwKtknrXJa-gNCewnnjjsIk7zkaeqRjj2R3KoitplXsk3Ov7WlXU0bjt0rXnVFeMw0alYHzbbJ6VL2vSLL-FHqBpW-lECC6zAAZte12fVfZm-TzrfJdL3r5hqywV4mIYGK2-QimPGXaej-w4iFp8P_mNARWWdYGRG-znRIazH78McQryzsSViaXxQk47Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access - NZ
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X_RB_MT5RUBfFMu6NGka8UXFIcJU0MHeQpKme9FNtvngf-9d2nUTRBAKbcMV0qR3v8s19ztCTh1nRqUZj4y1LOI5N5ESXkUCboW0gEAKk5O7j-l9jz_0RX-JXM1yYUp-iDrghpoR7DUquLGT1pw01I_eWeBGSJbJCubW4oY-xp_rCAuSc7FQuhJgHYNxMqn5SVlr_vgPRArE_T-8zUWfNYBOZ4OsV94ivS6nd5Ms-eEWWVvgENwmL8_g_oLJorn5wkLxdIxsA2jEqBthRZ7BJe1gukfJ4j-5oOCjhs-O5mH3BrSYYU4X_2TvkF7n7vX2PqoqJUQO6dzBYpksATwCcAFIN96khYqFiX0ulZUmiRXAduF9kcFqzqcmd0K5zAuWs4ILp5Jd0hiOhn6P0HbCueMO3CYveZp6pGdPJLeqiG3mlWySs9loaVfRiGM1izddEiAzjSOrw8g2yUkt-1GSZ_wqdYODXksg4XVoGI0HutIfDfacgWsnCzwZ4W1sBLy0YgWDI4NuHc6mTFdaONGwOmxnEhZUcZOch2n8oxv67qnLwtX-f4QPyCrDjIgQlTkkjen40x-BnzK1x-Fz_Ab5598Y
  priority: 102
  providerName: Wiley-Blackwell
Title Passive daytime radiative cooling: Fundamentals, material designs, and applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12153
https://www.proquest.com/docview/2611877680
https://doaj.org/article/46721437f7214a5eb0a51a892f22f287
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT9swFH4a5cIOCBho5UdliV02LSI4dmJzQQO1VJPKqg0kbpbjOFygKW058N_znut2RUJIUX5YVuTYzvs-P9vfA_jmBLc6VyKxZckTUQmbaOl1IvFRFiUikKbNyYPrvH8rft_Ju-hwm8ZllQubGAx11TjykZ8g0z9VBZLj9Hz8lFDUKJpdjSE01mAdTbBSLVi_6F4P_y69LCTQhRi11CXlJ7555EFSIXuDREGw_w3LXOWqAWx6W7AZWSL7NW_WbfjkRzvweUU78Av8GyLtRVPFKvtCAeLZhFQGyHgx11Aknvsz1qNtHnP1_ulPhtw0dDdWhVUbmGJHFVudwd6F21735rKfxAgJiSMZd7RUVmWIQwgqCOXW27zWqbSprwpdFjZLNcJ17X2tcBTnc1s5qZ3ykle8FtLpbA9ao2bkvwI7zYRwwiFd8oXIc0-y7FkhSl2npfK6aMP3RW0ZF-XDKYrFg5kLH3NDNWtCzbbheJl3PBfNeDfXBVX6MgcJXYeEZnJv4n9j0I5zpHRFTRcrfZlaiR-tec3xUFisw0WTmfj3Tc3_vtKGH6EZPyiG6f4Z8HC3__G7DmCD096H4H85hNZs8uyPkJHMyg6scTHEs-pddWIX7ITR_SsVE-DC
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS-QwEB9EH-58OPQ8cU89A3c-KBZrmrSNcIjeubd-rAoq-BbTNPVFt7qriP-Uf6MzabuucPgmFNqGUNLJZOaXj_kNwC8ruFFxKgKTZTwQuTCBkk4FEl9lkqEHUhSc3D2KO-di_0JejMFzEwtDxyobm-gNdV5aWiNfR6S_kSYIjsOt27uAskbR7mqTQqNSiwP39IhTtsHvvb_Yv8uct3fP_nSCOqtAYIn6HEe3SSO03WiI0f0ZZ-JChdKELk9UlpgoVOjiCueKFGc-Lja5lcqmTvKcF0JaIl9Ckz8hIvTkFJne_jdc0yE6MPSIQxZUvu7KG-4JHKI3fs-nB3iDaUeRsXdt7Sn4UmNStl0p0TSMud5XmBxhKpyB0xME2WgYWW6eKB096xOnAZlKZkvK-3O1ydoUVFLlChisMUTCXrlZ7s-IYInp5Wx0v_wbnH-I5GZhvFf23BywjUgIKyyCM5eIOHZEAh8lIlNFmKVOJS1YaaSlbU1WTjkzrnVFs8w1SVZ7ybbg57DubUXR8d9aOyT0YQ2i1fYFZf9K16NUo9fgCCCTgm5Guiw0En9a8YLjlWKzFpou0_VYH-hXzWzBqu_Gd5qhd4-73D99f_9bS_Cpc9Y91Id7Rwfz8JlT1IVf-VmA8fv-g1tELHSf_fAKyODyozX-BSC8GKE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fS9xAEB7kBGkfSmtbeq3WhbYPLQ0XN7vZrCCl6h1a6_VoK_i2bjYbX_Ri7yziv-Zf58wmOU8Q34RAkmUJm9nZmW9_zDcAH53gVqeZiGye80gUwkZaeh1JfJUqRw-kKTj5YJjuHoofR_JoAa7bWBg6VtnaxGCoi8rRGnkPkf56phAcx72yORYx2hl8O_8XUQYp2mlt02nUKrLvry5x-jbd3NvBvv7E-aD_d3s3ajIMRI5o0HGk2yxBO45GGV2h9TYtdSxt7Aulc2WTWKO7K70vM5wF-dQWTmqXeckLXgrpiIgJzf-iollRBxa3-sPR79kKD5GDoX-ccaLynq_OeKBzSO54wZAs4A7CncfJwdENnsOzBqGy77VKvYAFP16Gp3O8hS_hzwghN5pJVtgrSk7PJsRwQIaTuYqyAJ1ssAGFmNSZA6ZfGeLioOqsCCdGsMSOCza_e_4KDh9Fdq-hM67G_g2w9UQIJxxCNa9EmnqihE-UyHUZ55nXqgufW2kZ11CXUwaNU1OTLnNDkjVBsl34MKt7XhN23Ftri4Q-q0Ek26GgmpyYZswa9CEc4aQq6Walz2Mr8ac1LzleGTZrpe0y04z8qbnV0y58Cd34QDNM_9cBD09vH_7WGiyhtpufe8P9d_CEUwhGWAZagc7F5L9fRWB0kb9vNJDB8WMr_Q3z-B4z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passive+daytime+radiative+cooling%3A+Fundamentals%2C+material+designs%2C+and+applications&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Chen%2C+Meijie&rft.au=Pang%2C+Dan&rft.au=Chen%2C+Xingyu&rft.au=Yan%2C+Hongjie&rft.date=2022-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2567-3173&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1002%2Feom2.12153&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon