Passive daytime radiative cooling: Fundamentals, material designs, and applications
Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming. In this review, we summarize gene...
Saved in:
Published in | EcoMat (Beijing, China) Vol. 4; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming. In this review, we summarize general strategies implemented for achieving PDRC and various applications of PDRC technologies. We first introduce heat transfer processes involved in PDRC, including radiative and nonradiative heat transfer processes, to evaluate the PDRC performance. Subsequently, we summarize the general material designs used for controlling PDRC performance, such as tuning the thermal mid‐infrared emittance and solar reflectance. Finally, we discuss the diverse applications of PDRC technologies to overcome problems in space cooling, solar cell cooling, water harvesting, and electricity generation.
This review discussed the fundamentals, material designs, and applications of passive daytime radiative cooling (PDRC), focusing on how to tune the thermal emittance and solar reflectance of inorganic dielectric and organic polymer materials, including selective emitters, angle‐dependent emitters, colored emitters, and switchable emitters in the PDRC. The applications of PDRC in space and solar cell cooling, water harvesting, and electricity generation are also discussed. |
---|---|
AbstractList | Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming. In this review, we summarize general strategies implemented for achieving PDRC and various applications of PDRC technologies. We first introduce heat transfer processes involved in PDRC, including radiative and nonradiative heat transfer processes, to evaluate the PDRC performance. Subsequently, we summarize the general material designs used for controlling PDRC performance, such as tuning the thermal mid‐infrared emittance and solar reflectance. Finally, we discuss the diverse applications of PDRC technologies to overcome problems in space cooling, solar cell cooling, water harvesting, and electricity generation. Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming. In this review, we summarize general strategies implemented for achieving PDRC and various applications of PDRC technologies. We first introduce heat transfer processes involved in PDRC, including radiative and nonradiative heat transfer processes, to evaluate the PDRC performance. Subsequently, we summarize the general material designs used for controlling PDRC performance, such as tuning the thermal mid‐infrared emittance and solar reflectance. Finally, we discuss the diverse applications of PDRC technologies to overcome problems in space cooling, solar cell cooling, water harvesting, and electricity generation. image Abstract Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming. In this review, we summarize general strategies implemented for achieving PDRC and various applications of PDRC technologies. We first introduce heat transfer processes involved in PDRC, including radiative and nonradiative heat transfer processes, to evaluate the PDRC performance. Subsequently, we summarize the general material designs used for controlling PDRC performance, such as tuning the thermal mid‐infrared emittance and solar reflectance. Finally, we discuss the diverse applications of PDRC technologies to overcome problems in space cooling, solar cell cooling, water harvesting, and electricity generation. Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming. In this review, we summarize general strategies implemented for achieving PDRC and various applications of PDRC technologies. We first introduce heat transfer processes involved in PDRC, including radiative and nonradiative heat transfer processes, to evaluate the PDRC performance. Subsequently, we summarize the general material designs used for controlling PDRC performance, such as tuning the thermal mid‐infrared emittance and solar reflectance. Finally, we discuss the diverse applications of PDRC technologies to overcome problems in space cooling, solar cell cooling, water harvesting, and electricity generation. This review discussed the fundamentals, material designs, and applications of passive daytime radiative cooling (PDRC), focusing on how to tune the thermal emittance and solar reflectance of inorganic dielectric and organic polymer materials, including selective emitters, angle‐dependent emitters, colored emitters, and switchable emitters in the PDRC. The applications of PDRC in space and solar cell cooling, water harvesting, and electricity generation are also discussed. |
Author | Chen, Xingyu Pang, Dan Yang, Yuan Yan, Hongjie Chen, Meijie |
Author_xml | – sequence: 1 givenname: Meijie surname: Chen fullname: Chen, Meijie email: chenmeijie@csu.edu.cn organization: Central South University – sequence: 2 givenname: Dan surname: Pang fullname: Pang, Dan organization: Central South University – sequence: 3 givenname: Xingyu surname: Chen fullname: Chen, Xingyu organization: Central South University – sequence: 4 givenname: Hongjie surname: Yan fullname: Yan, Hongjie organization: Central South University – sequence: 5 givenname: Yuan orcidid: 0000-0003-0264-2640 surname: Yang fullname: Yang, Yuan email: yy2664@columbia.edu organization: Columbia University |
BookMark | eNp9kd1LHDEUxUNR8Gtf-hcM9K24Nh-TyaRvItoKioL2OdxN7ixZZpJtMmvZ_77ZHZEiUgjccPidc0POCTkIMSAhnxm9YJTybxgHfsE4k-ITOeayUXPBlDj4535EZjmvaIElrXnNjsnTI-TsX7BysB39gFUC52HcKTbG3ofl9-pmExwMGEbo83k1wIjJQ185zH4ZigLBVbBe994WYwz5jBx2BcXZ6zwlv26un69-zu8eftxeXd7NraStmGsGrRA1q7mmLQeEptNUAkWn9EKBoJo2rEPsWqprbMBZqW2Lkjve1dJqcUpup1wXYWXWyQ-QtiaCN3shpqWBNHrbo6kbxVktVLcbIHFBQZb1mne8nFaVrC9T1jrF3xvMo1nFTQrl-YY3jLVKNS0t1NeJsinmnLB728qo2XVgdh2YfQcFpu9g68f9D40JfP-xhU2WP77H7X_CzfXDPZ88fwH-nZjm |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2022_119403 crossref_primary_10_1002_smll_202309397 crossref_primary_10_1021_acsaenm_3c00341 crossref_primary_10_1002_aenm_202202932 crossref_primary_10_1002_adom_202202163 crossref_primary_10_1016_j_buildenv_2023_110348 crossref_primary_10_1007_s42114_023_00819_w crossref_primary_10_1016_j_solmat_2022_111836 crossref_primary_10_3390_biomimetics9100630 crossref_primary_10_1016_j_pmatsci_2023_101144 crossref_primary_10_1002_adfm_202406393 crossref_primary_10_1016_j_jcis_2023_11_043 crossref_primary_10_1016_j_applthermaleng_2023_121655 crossref_primary_10_3390_nano13030467 crossref_primary_10_1016_j_enbuild_2022_112716 crossref_primary_10_1021_acsami_4c09365 crossref_primary_10_1016_j_solener_2024_112544 crossref_primary_10_1080_01971360_2024_2390709 crossref_primary_10_1021_acsami_4c02298 crossref_primary_10_1002_adma_202414300 crossref_primary_10_3390_en16041832 crossref_primary_10_1016_j_applthermaleng_2023_120561 crossref_primary_10_3390_mi15030292 crossref_primary_10_1016_j_porgcoat_2024_108772 crossref_primary_10_1021_acsami_4c17112 crossref_primary_10_1021_acs_nanolett_4c04958 crossref_primary_10_1007_s00170_024_13998_7 crossref_primary_10_1016_j_enbuild_2023_113330 crossref_primary_10_1016_j_solmat_2023_112463 crossref_primary_10_1021_acsmaterialslett_4c00337 crossref_primary_10_1002_pat_6005 crossref_primary_10_1002_advs_202309871 crossref_primary_10_3390_molecules30020421 crossref_primary_10_1364_OE_488376 crossref_primary_10_1016_j_nxener_2024_100108 crossref_primary_10_1021_acsami_3c14310 crossref_primary_10_1002_advs_202202061 crossref_primary_10_1016_j_mtcomm_2025_112198 crossref_primary_10_3390_su16166936 crossref_primary_10_1002_aenm_202402202 crossref_primary_10_1002_mame_202200384 crossref_primary_10_1021_acsami_4c15984 crossref_primary_10_1002_aesr_202300239 crossref_primary_10_1002_admt_202301174 crossref_primary_10_1016_j_apenergy_2023_122051 crossref_primary_10_1016_j_mtener_2024_101575 crossref_primary_10_1016_j_cej_2022_139739 crossref_primary_10_1002_smll_202412221 crossref_primary_10_1021_acsami_4c10050 crossref_primary_10_1021_acsenergylett_2c01969 crossref_primary_10_1117_1_JPE_14_028001 crossref_primary_10_1016_j_applthermaleng_2022_119125 crossref_primary_10_26599_CF_2025_9200033 crossref_primary_10_3390_en17112627 crossref_primary_10_1016_j_cej_2024_158664 crossref_primary_10_1016_j_isci_2022_104726 crossref_primary_10_1021_acs_chemrev_3c00507 crossref_primary_10_1016_j_porgcoat_2023_107708 crossref_primary_10_1007_s10765_025_03529_1 crossref_primary_10_1002_aenm_202401776 crossref_primary_10_1021_acsphotonics_4c02043 crossref_primary_10_1007_s10853_022_07292_8 crossref_primary_10_1007_s11431_023_2603_2 crossref_primary_10_1021_acsapm_3c02194 crossref_primary_10_1007_s10853_024_09560_1 crossref_primary_10_1002_adfm_202206962 crossref_primary_10_1016_j_cej_2024_153938 crossref_primary_10_1021_acsaom_4c00099 crossref_primary_10_3390_buildings13112868 crossref_primary_10_1021_acsaom_4c00519 crossref_primary_10_1088_1742_6596_2548_1_012016 crossref_primary_10_3390_aerospace11040275 crossref_primary_10_1016_j_porgcoat_2024_108901 crossref_primary_10_1002_admt_202400713 crossref_primary_10_1002_eom2_12509 crossref_primary_10_1364_OE_509800 crossref_primary_10_1016_j_mattod_2024_03_012 crossref_primary_10_1007_s10765_025_03532_6 crossref_primary_10_1039_D4TA03388D crossref_primary_10_1007_s11082_024_07175_z crossref_primary_10_1016_j_indcrop_2024_119094 crossref_primary_10_26599_NRE_2023_9120107 crossref_primary_10_1002_aenm_202300260 crossref_primary_10_1364_OE_554717 crossref_primary_10_1016_j_wasman_2024_08_033 crossref_primary_10_1063_5_0134951 crossref_primary_10_1016_j_applthermaleng_2022_119860 crossref_primary_10_1088_1361_6463_ac9fde crossref_primary_10_1016_j_optlastec_2023_109690 crossref_primary_10_1021_acsaelm_3c01023 crossref_primary_10_1039_D2TC00834C crossref_primary_10_1093_nsr_nwac208 crossref_primary_10_1021_acsaem_2c00421 crossref_primary_10_3390_polym17030275 crossref_primary_10_1038_s41467_024_45095_4 crossref_primary_10_1021_acsaom_3c00368 crossref_primary_10_1021_acs_langmuir_4c02567 crossref_primary_10_1016_j_cej_2024_151176 crossref_primary_10_1103_PhysRevMaterials_6_090201 crossref_primary_10_1002_adsu_202400773 crossref_primary_10_1039_D3TA02397D crossref_primary_10_1002_marc_202400770 crossref_primary_10_3390_en16041975 crossref_primary_10_1021_acs_nanolett_3c03055 |
Cites_doi | 10.1038/s41565-020-00800-4 10.1364/OE.26.00A777 10.1016/j.solmat.2021.111205 10.1038/nenergy.2017.143 10.1016/j.solmat.2017.10.002 10.1016/j.ijheatmasstransfer.2016.08.009 10.1016/j.jqsrt.2018.12.023 10.1126/science.abc5381 10.1021/acs.nanolett.0c04810 10.1016/j.cej.2020.127104 10.1021/acsami.0c05803 10.1016/j.energy.2019.116322 10.1126/sciadv.aaz5413 10.1016/j.enconman.2013.06.024 10.7567/APEX.10.112601 10.1038/ncomms13729 10.1364/OE.397714 10.1063/5.0035138 10.1103/PhysRevApplied.13.064052 10.1126/science.abe4476 10.1021/nl4004283 10.1016/j.nanoen.2020.105461 10.1016/j.solmat.2019.110319 10.1063/5.0017838 10.1016/j.jaridenv.2015.02.002 10.1016/j.rser.2014.01.053 10.1364/OE.401368 10.1021/acsami.0c09374 10.1002/admt.201901007 10.1016/j.physe.2020.114471 10.1016/j.jqsrt.2020.107163 10.1080/15567265.2020.1722300 10.1021/acsphotonics.6b00991 10.1364/AO.51.006789 10.1016/j.ijheatmasstransfer.2021.121263 10.1073/pnas.2019292118 10.1364/OPTICA.1.000032 10.1016/j.egyr.2020.11.127 10.1021/acsami.0c21204 10.1016/j.joule.2018.10.006 10.1016/j.mtphys.2021.100389 10.1177/0958305X18787340 10.1016/j.ijheatmasstransfer.2018.11.059 10.1016/j.proeng.2016.10.048 10.1016/j.solener.2008.10.008 10.1364/OE.418650 10.1126/sciadv.aat9480 10.1016/j.rinp.2017.05.024 10.1016/j.solmat.2019.110320 10.1126/science.aai7899 10.1364/AO.20.002606 10.1016/j.apenergy.2018.12.018 10.1364/AO.46.008118 10.1021/acsami.6b16248 10.1016/j.joule.2020.10.004 10.1016/j.solener.2020.10.013 10.1088/0004-637X/707/2/916 10.1021/acsami.1c02368 10.1016/j.solmat.2018.01.015 10.1021/acsphotonics.7b00089 10.1016/j.jobe.2020.101631 10.1016/j.solmat.2019.02.015 10.1016/j.solmat.2017.04.020 10.1016/j.solmat.2004.09.003 10.1021/acsphotonics.7b01492 10.1038/s41467-020-19790-x 10.1038/s41893-018-0023-2 10.1002/adma.202000870 10.1016/j.solmat.2020.110739 10.1038/s41893-019-0348-5 10.1021/acsami.1c02145 10.1364/OE.23.0A1120 10.1021/la3013987 10.1016/j.enconman.2019.112395 10.1016/j.enbuild.2012.02.055 10.1007/s11431-020-1586-9 10.1016/j.solmat.2020.110700 10.1063/1.4893616 10.1016/j.enbuild.2010.07.003 10.1557/mre.2020.18 10.1063/1.5087281 10.1126/science.aat9513 10.1016/j.nanoen.2021.106259 10.12693/APhysPolA.116.585 10.1016/j.solener.2012.08.017 10.1364/AO.21.004381 10.1002/adom.201600250 10.1007/s10570-021-04112-1 10.1038/s41598-020-63591-7 10.1073/pnas.2001802117 10.1063/1.4835995 10.1016/j.renene.2019.06.119 10.1007/s12273-018-0474-4 10.1021/acsphotonics.0c00513 10.1038/s41377-018-0033-x 10.1021/acs.nanolett.0c04241 10.1126/science.abi5484 10.1016/j.renene.2019.10.032 10.1080/1573062X.2013.765494 10.1126/science.abb0971 10.1126/sciadv.aaq0919 10.1038/s43246-020-00098-8 10.1063/5.0010190 10.1016/j.joule.2019.09.016 10.1016/j.enbuild.2007.01.004 10.1016/j.apenergy.2019.04.116 10.1016/j.enbuild.2015.07.027 10.1088/1361-6463/abfb19 10.1016/j.joule.2019.08.009 10.1126/science.aaf5471 10.1016/j.energy.2020.119045 10.1007/s40899-015-0038-z 10.1016/j.jqsrt.2017.01.014 10.1016/j.nanoen.2020.105517 10.1016/j.enbuild.2015.05.026 10.1016/j.esd.2020.04.008 10.1016/j.energy.2017.03.075 10.1021/acsnano.7b07121 10.1063/5.0015650 10.1002/adfm.201907562 10.3390/buildings8120168 10.1016/j.mtphys.2019.100127 10.1016/j.nanoen.2020.105600 10.1021/acs.nanolett.0c01457 10.1016/j.applthermaleng.2017.08.131 10.1126/science.aau1217 10.1016/j.apenergy.2018.04.115 10.1002/smll.201905290 10.1016/j.solener.2016.01.021 10.1016/j.buildenv.2011.08.011 10.1038/nature13883 10.1016/j.nanoen.2021.105971 10.1016/j.jqsrt.2020.107063 10.1002/adma.201705421 10.1016/j.solmat.2020.110563 10.1016/j.renene.2020.03.136 10.1021/acsami.9b16742 10.1103/PhysRevLett.17.1286 10.1016/j.enbuild.2019.109453 10.1016/j.xcrp.2020.100221 10.1002/adfm.202010334 10.1016/j.rser.2017.04.030 10.1038/s41598-020-63027-2 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ KB. PATMY PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY DOA |
DOI | 10.1002/eom2.12153 |
DatabaseName | Wiley Online Library Open Access - NZ CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Materials Science Database Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3173 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_46721437f7214a5eb0a51a892f22f287 10_1002_eom2_12153 EOM212153 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Central South University funderid: None – fundername: National Natural Science Foundation of China funderid: 52006246 – fundername: National Science Foundation funderid: 2005747 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EDH GROUPED_DOAJ HCIFZ IAO ITC KB. M~E PATMY PDBOC PIMPY PYCSY WIN AAYXX CITATION IEP PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c5083-91a83341429082aea6f905a0ed79b7a309061feef8094e6adc59c8e52d2f45c93 |
IEDL.DBID | BENPR |
ISSN | 2567-3173 |
IngestDate | Wed Aug 27 01:25:52 EDT 2025 Wed Aug 13 09:24:16 EDT 2025 Thu Apr 24 23:06:48 EDT 2025 Tue Jul 01 02:50:12 EDT 2025 Wed Jan 22 16:26:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5083-91a83341429082aea6f905a0ed79b7a309061feef8094e6adc59c8e52d2f45c93 |
Notes | Funding information Central South University, Grant/Award Number: None; National Natural Science Foundation of China, Grant/Award Number: 52006246; National Science Foundation, Grant/Award Number: 2005747 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0264-2640 |
OpenAccessLink | https://www.proquest.com/docview/2611877680?pq-origsite=%requestingapplication% |
PQID | 2611877680 |
PQPubID | 5066170 |
PageCount | 28 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_46721437f7214a5eb0a51a892f22f287 proquest_journals_2611877680 crossref_primary_10_1002_eom2_12153 crossref_citationtrail_10_1002_eom2_12153 wiley_primary_10_1002_eom2_12153_EOM212153 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Beijing |
PublicationTitle | EcoMat (Beijing, China) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2021; 64 2020; 20 2009; 83 2019; 10 2019; 15 2019; 203 2020; 206 2020; 205 2020; 13 2020; 12 2020; 11 2020; 10 2009; 116 2018; 7 2021; 79 2018; 174 2018; 8 2018; 5 2018; 4 2018; 1 2017; 77 2018; 178 2020; 217 2020; 216 2018; 30 2012; 28 2020; 213 2020; 212 2017; 168 2021; 85 2014; 11 2021; 81 2021; 80 2019; 3 2019; 6 2019; 5 2019; 30 2019; 2 2018; 224 2019; 225 2013; 103 2005; 86 2020; 146 2020; 32 2020; 147 2016; 169 2017; 137 1981; 20 2018; 26 2016; 4 2016; 7 2010; 42 2021; 54 2016; 2 2020; 30 2015; 116 2013; 75 2020; 28 2020; 155 2021; 373 2020; 24 2021; 372 2012; 48 2018; 12 2018; 11 2014; 32 2018; 362 2021; 407 2007; 39 2017; 7 2021; 21 1966; 17 2017; 2 2017; 4 2021; 126 2021; 29 2021; 28 2019; 248 2020; 128 2020; 57 2017; 197 2015; 107 2017; 355 2012; 55 2017; 9 2012; 51 2019; 363 2014; 1 2020; 7 2020; 6 2020; 5 2020; 4 2021; 31 2020; 1 2021; 33 2013; 13 2020; 253 2020; 252 1982; 21 2020; 370 2021; 118 2019; 236 2016; 353 2021; 230 2016; 114 2019; 194 2017; 127 2014; 515 2021; 88 2016; 128 2021; 13 2015; 23 2021; 16 2014; 105 2020; 190 2009; 707 2021; 12 2021; 11 2020 2017; 16 2021; 18 2017; 10 2020; 117 2021; 173 2017; 104 2007; 46 2012; 86 2019; 131 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 Liu Z (e_1_2_8_123_1) 2017; 16 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Li X (e_1_2_8_43_1) 2020; 1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_1 Wang T (e_1_2_8_68_1) 2021; 12 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 26 start-page: A777 issue: 18 year: 2018 end-page: A787 article-title: Self‐adaptive radiative cooling based on phase change materials publication-title: Opt Express – volume: 197 start-page: 76 year: 2017 end-page: 83 article-title: Vanadium dioxide based Fabry‐Perot emitter for dynamic radiative cooling applications publication-title: J Quant Spectrosc Radiat Transf – volume: 30 start-page: 235 issue: 2 year: 2019 end-page: 253 article-title: Potential for cooling load reduction in residential buildings using cool roofs in the harsh climate of Saudi Arabia publication-title: Energy Environ – volume: 4 start-page: 626 issue: 3 year: 2017 end-page: 630 article-title: Daytime radiative cooling using near‐black infrared emitters publication-title: ACS Photonics – volume: 253 start-page: 788 year: 2020 end-page: 798 article-title: Performance analysis of solar thermophotovoltaic system with selective absorber/emitter publication-title: J Quant Spectrosc Radiat Transf – volume: 213 year: 2020 article-title: Sustainable cooling system for Kuwait hot climate combining diurnal radiative cooling and indirect evaporative cooling system publication-title: Energy – volume: 75 start-page: 241 year: 2013 end-page: 248 article-title: Integration of thermal insulation coating and moving‐air‐cavity in a cool roof system for attic temperature reduction publication-title: Energy Convers Manag – volume: 126 year: 2021 article-title: Theoretical design of nanoparticle‐based spectrally emitter for thermophotovoltaic applications publication-title: Phys E Low‐Dimensional Syst Nanostructures – volume: 212 start-page: 125 year: 2020 end-page: 151 article-title: Development of radiative cooling and its integration with buildings: a comprehensive review publication-title: Sol Energy – volume: 127 start-page: 1564 year: 2017 end-page: 1573 article-title: Modelling study of the low‐pump‐power demand constructal T‐shaped pipe network for a large scale radiative cooled‐cold storage system publication-title: Appl Therm Eng – volume: 21 start-page: 1493 issue: 3 year: 2021 end-page: 1499 article-title: Three‐dimensional printable Nanoporous polymer matrix composites for daytime radiative cooling publication-title: Nano Lett – volume: 355 start-page: 1062 issue: 6329 year: 2017 end-page: 1066 article-title: Scalable‐manufactured randomized glass‐polymer hybrid metamaterial for daytime radiative cooling publication-title: Science – volume: 236 start-page: 489 year: 2019 end-page: 513 article-title: Radiative cooling: a review of fundamentals, materials, applications, and prospects publication-title: Appl Energy – volume: 85 year: 2021 article-title: Bilayer porous polymer for efficient passive building cooling publication-title: Nano Energy – volume: 16 start-page: 153 issue: 2 year: 2021 end-page: 158 article-title: Scalable and hierarchically designed polymer film as a selective thermal emitter for high‐performance all‐day radiative cooling publication-title: Nat Nanotechnol – volume: 155 start-page: 90 year: 2020 end-page: 99 article-title: Field investigation and performance evaluation of sub‐ambient radiative cooling in low latitude seaside publication-title: Renew Energy – volume: 24 start-page: 43 issue: 1 year: 2020 end-page: 52 article-title: Fundamental limits of the dew‐harvesting technology publication-title: Nanoscale Microscale Thermophys Eng – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 6 article-title: Whitish daytime radiative cooling using diffuse reflection of non‐resonant silica nanoshells publication-title: Sci Rep – volume: 190 year: 2020 article-title: Radiative sky cooling‐assisted thermoelectric cooling system for building applications publication-title: Energy – volume: 116 start-page: 63 year: 2015 end-page: 70 article-title: Dew condensation on different natural and artificial passive surfaces in a semiarid climate publication-title: J Arid Environ – volume: 206 year: 2020 article-title: Polymer solar filter for enabling direct daytime radiative cooling publication-title: Sol Energy Mater Sol Cells – volume: 118 issue: 14 year: 2021 article-title: Vapor condensation with daytime radiative cooling publication-title: Proc Natl Acad Sci U S A – volume: 18 start-page: 100389 year: 2021 article-title: Scalable and paint‐format microparticle–polymer composite enabling high‐performance daytime radiative cooling publication-title: Mater Today Phys – volume: 2 start-page: 71 issue: 1 year: 2016 end-page: 86 article-title: A review: dew water collection from radiative passive collectors to recent developments of active collectors publication-title: Sustain Water Resour Manag – volume: 107 start-page: 37 year: 2015 end-page: 48 article-title: Modelling and experimental analysis of three radioconvective panels for night cooling publication-title: Energ Buildings – volume: 12 start-page: 2151 issue: 3 year: 2018 end-page: 2159 article-title: Real‐time tunable colors from microfluidic reconfigurable all‐dielectric metasurfaces publication-title: ACS Nano – volume: 77 start-page: 451 year: 2017 end-page: 460 article-title: A review of benefits and limitations of static and switchable cool roof systems publication-title: Renew Sust Energ Rev – volume: 57 start-page: 22 year: 2020 end-page: 31 article-title: Energy for sustainable development daytime radiative cooling of enclosed water using spectral selective metamaterial based cooling surfaces publication-title: Energy Sustain Dev – volume: 54 issue: 29 year: 2021 article-title: Enhancing infrared emission behavior of polymer coatings for radiative cooling applications publication-title: J Phys D Appl Phys – volume: 146 start-page: 44 year: 2020 end-page: 55 article-title: Field investigation of a photonic multi‐layered TiO2 passive radiative cooler in sub‐tropical climate publication-title: Renew Energy – start-page: 1 year: 2020 end-page: 13 – volume: 83 start-page: 614 issue: 5 year: 2009 end-page: 624 article-title: On the temperature dependence of photovoltaic module electrical performance: a review of efficiency / power correlations publication-title: Sol Energy – volume: 31 issue: 19 year: 2021 article-title: Scalable aqueous processing‐based passive daytime radiative cooling coatings publication-title: Adv Funct Mater – volume: 33 year: 2021 article-title: Comprehensive evaluation of thermal and energy performance of radiative roof cooling in buildings publication-title: J Build Eng – volume: 5 start-page: 1181 issue: 4 year: 2018 end-page: 1187 article-title: Effective Radiative cooling by paint‐format microsphere‐based photonic random media publication-title: ACS Photonics – volume: 81 year: 2021 article-title: 3D porous polymer film with designed pore architecture and auto‐deposited SiO2 for highly efficient passive radiative cooling publication-title: Nano Energy – volume: 21 start-page: 4381 issue: 23 year: 1982 end-page: 4388 article-title: Radiative cooling computed for model atmospheres publication-title: Appl Opt – volume: 16 start-page: 255 issue: 3 year: 2017 end-page: 267 article-title: Experimental investigation on night sky radiant cooling performance of duct‐type heat exchanger publication-title: Int J Vent – volume: 10 issue: 11 year: 2017 article-title: Ultra‐broadband large‐scale infrared perfect absorber with optical transparency publication-title: Appl Phys Express – volume: 9 start-page: 13676 issue: 15 year: 2017 end-page: 13684 article-title: Patterned polymer coatings increase the efficiency of dew harvesting publication-title: ACS Appl Mater Interfaces – volume: 362 start-page: 315 issue: 6412 year: 2018 end-page: 319 article-title: Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling publication-title: Science – volume: 131 start-page: 487 year: 2019 end-page: 494 article-title: A strategy of hierarchical particle sizes in nanoparticle composite for enhancing solar reflection publication-title: Int J Heat Mass Transf – volume: 203 year: 2019 article-title: Roof‐integrated radiative air‐cooling system to achieve cooler attic for building energy saving publication-title: Energ Buildings – volume: 363 start-page: 619 issue: 6427 year: 2019 end-page: 623 article-title: Dynamic gating of infrared radiation in a textile publication-title: Science – volume: 1 year: 2020 article-title: Full daytime sub‐ambient Radiative cooling with high figure of merit in commercial‐like paints publication-title: SSRN Electron J – volume: 147 start-page: 2279 year: 2020 end-page: 2294 article-title: Optimization of cool roof and night ventilation in office buildings: a case study in Xiamen, China publication-title: Renew Energy – volume: 46 start-page: 8118 issue: 33 year: 2007 end-page: 8133 article-title: Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature publication-title: Appl Opt – volume: 86 start-page: 451 issue: 4 year: 2005 end-page: 483 article-title: Cooling of photovoltaic cells under concentrated illumination: a critical review publication-title: Sol Energy Mater Sol Cells – volume: 353 start-page: 1019 issue: 6303 year: 2016 end-page: 1023 article-title: Radiative human body cooling by nanoporous polyethylene textile publication-title: Science – volume: 30 issue: 5 year: 2020 article-title: Scalable flexible hybrid membranes with photonic structures for daytime Radiative cooling publication-title: Adv Funct Mater – volume: 178 start-page: 115 issue: 178 year: 2018 end-page: 128 article-title: A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling publication-title: Sol Energy Mater Sol Cells – volume: 7 start-page: 1 issue: 1 year: 2020 end-page: 8 article-title: Passive daytime radiative cooling: principle, application, and economic analysis publication-title: MRS Energy Sustain – volume: 174 start-page: 607 year: 2018 end-page: 615 article-title: Mid‐infrared emissivity of crystalline silicon solar cells publication-title: Sol Energy Mater Sol Cells – volume: 64 start-page: 1017 issue: 5 year: 2021 end-page: 1029 article-title: Optical properties and cooling performance analyses of single‐layer radiative cooling coating with mixture of TiO particles and SiO2 particles publication-title: Sci China Technol Sci – volume: 230 year: 2021 article-title: Effective daytime radiative cooling via a template method based PDMS sponge emitter with synergistic thermo‐optical activity publication-title: Sol Energy Mater Sol Cells – volume: 7 start-page: 13729 year: 2016 article-title: Radiative cooling to deep sub‐freezing temperatures through a 24‐h day‐night cycle publication-title: Nat Commun – volume: 370 start-page: 784 issue: 6518 year: 2020 end-page: 785 article-title: Photon‐engineered radiative cooling textiles publication-title: Science – volume: 173 year: 2021 article-title: Investigating the effective radiative cooling performance of random dielectric microsphere coatings publication-title: Int J Heat Mass Transf – volume: 7 start-page: 1 issue: 1 year: 2018 end-page: 9 article-title: Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization publication-title: Light Sci Appl – volume: 2 start-page: 718 issue: 8 year: 2019 end-page: 724 article-title: A polydimethylsiloxane‐coated metal structure for all‐day radiative cooling publication-title: Nat Sustain – volume: 5 issue: 5 year: 2020 article-title: Fundamentals, materials, and applications for daytime Radiative cooling publication-title: Adv Mater Technol – volume: 42 start-page: 2131 issue: 11 year: 2010 end-page: 2138 article-title: A two‐stage system of nocturnal radiative and indirect evaporative cooling for conditions in Tehran publication-title: Energ Buildings – volume: 205 year: 2020 article-title: Research on the performance of radiative cooling and solar heating coupling module to direct control indoor temperature publication-title: Energy Convers Manag – volume: 128 start-page: 61 year: 2016 end-page: 94 article-title: Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change publication-title: Sol Energy – volume: 8 start-page: 168 issue: 12 year: 2018 article-title: Recent progress in daytime radiative cooling: is it the air conditioner of the future? publication-title: Buildings – volume: 194 start-page: 222 year: 2019 end-page: 228 article-title: Black body‐like radiative cooling for flexible thin‐film solar cells publication-title: Sol Energy Mater Sol Cells – volume: 5 start-page: eaat9480 issue: 10 year: 2019 article-title: High‐performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel publication-title: Sci Adv – volume: 213 year: 2020 article-title: Low‐cost radiative cooling blade coating with ultrahigh visible light transmittance and emission within an “atmospheric window publication-title: Sol Energy Mater Sol Cells – volume: 252 year: 2020 article-title: Complex refractive indices measurements of polymers in infrared bands publication-title: J Quant Spectrosc Radiat Transf – volume: 4 start-page: 774 issue: 4 year: 2017 end-page: 782 article-title: A comprehensive photonic approach for solar cell cooling publication-title: ACS Photonics – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 10 article-title: Cool white polymer coatings based on glass bubbles for buildings publication-title: Sci Rep – volume: 10 year: 2019 article-title: Selection of polymers with functional groups for daytime radiative cooling publication-title: Mater Today Phys – volume: 20 start-page: 2606 issue: 15 year: 1981 end-page: 2615 article-title: Radiative heating and cooling with spectrally selective surfaces publication-title: Appl Opt – volume: 105 issue: 7 year: 2014 article-title: Switchable wavelength‐selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer publication-title: Appl Phys Lett – volume: 116 start-page: 585 issue: 4 year: 2009 end-page: 587 article-title: Dispersion properties of optical polymers publication-title: Acta Phys Pol A – volume: 30 issue: 10 year: 2018 article-title: VO /TiN Plasmonic Thermochromic smart coatings for room‐temperature applications publication-title: Adv Mater – volume: 32 issue: 29 year: 2020 article-title: Switchable cavitation in silicone coatings for energy‐saving cooling and heating publication-title: Adv Mater – volume: 4 start-page: 2702 issue: 12 year: 2020 end-page: 2717 article-title: Lightweight, passive radiative cooling to enhance concentrating photovoltaics publication-title: Joule – volume: 39 start-page: 1167 issue: 11 year: 2007 end-page: 1174 article-title: Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions publication-title: Energ Buildings – volume: 55 start-page: 2 year: 2012 end-page: 6 article-title: Global cooling updates: reflective roofs and pavements publication-title: Energ Buildings – volume: 372 start-page: 393 issue: 6540 year: 2021 end-page: 397 article-title: Broadband directional control of thermal emission publication-title: Science – volume: 7 start-page: 1959 year: 2017 end-page: 1964 article-title: Numerical modelling of lawsonite thin film as radiative cooling minerals for dew harvesting publication-title: Results Phys – volume: 28 start-page: 29703 issue: 20 year: 2020 end-page: 29713 article-title: Microstructured surfaces for colored and non‐colored sky radiative cooling publication-title: Opt Express – volume: 11 start-page: 6101 issue: 1 year: 2020 end-page: 6109 article-title: Integration of daytime radiative cooling and solar heating for year‐round energy saving in buildings publication-title: Nat Commun – volume: 407 year: 2021 article-title: Self‐cleaning and spectrally selective coating on cotton fabric for passive daytime radiative cooling publication-title: Chem Eng J – volume: 7 start-page: 1312 issue: 5 year: 2020 end-page: 1322 article-title: Colored Radiative cooling coatings with nanoparticles publication-title: ACS Photonics – volume: 51 start-page: 6789 issue: 28 year: 2012 end-page: 6798 article-title: Mid‐infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride publication-title: Appl Opt – volume: 3 start-page: 3088 issue: 12 year: 2019 end-page: 3099 article-title: Porous polymers with switchable optical transmittance for optical and thermal regulation publication-title: Joule – volume: 86 start-page: 3331 issue: 11 year: 2012 end-page: 3344 article-title: Theoretical and experimental analysis of a novel low emissivity water pond in summer publication-title: Sol Energy – volume: 3 start-page: 111 issue: 1 year: 2019 end-page: 123 article-title: Subambient cooling of water: toward real‐world applications of daytime radiative cooling publication-title: Joule – volume: 17 start-page: 1286 issue: 26 year: 1966 end-page: 1289 article-title: Infrared optical properties of vanadium dioxide above and below the transition temperature publication-title: Phys Rev Lett – volume: 6 start-page: 814 year: 2020 end-page: 821 article-title: Consideration of reducing purchased power using photovoltaic excess power by thermal radiative cooling / heating system publication-title: Energy Rep – volume: 29 start-page: 11416 issue: 8 year: 2021 end-page: 11432 article-title: Wrinkled surface microstructure for enhancing the infrared spectral performance of radiative cooling publication-title: Opt Express – volume: 11 issue: 2 year: 2021 article-title: Quasi‐periodic selective multilayer emitter for sub‐ambient daytime radiative cooling publication-title: AIP Adv – volume: 32 start-page: 642 year: 2014 end-page: 650 article-title: Potential energy savings by radiative cooling system for a building in tropical climate publication-title: Renew Sust Energ Rev – volume: 4 start-page: 1780 issue: 11 year: 2016 end-page: 1786 article-title: Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range publication-title: Adv Opt Mater – volume: 4 start-page: eaaq0919 issue: 3 year: 2018 article-title: Hydrophilic directional slippery rough surfaces for water harvesting publication-title: Sci Adv – volume: 12 start-page: 1 issue: 1 year: 2021 end-page: 11 article-title: A structural polymer for highly efficient all‐day passive radiative cooling publication-title: Nat Commun – volume: 137 start-page: 419 year: 2017 end-page: 430 article-title: Preliminary thermal analysis of a combined photovoltaic e photothermic e nocturnal radiative cooling system publication-title: Energy – volume: 1 start-page: 1 issue: 1 year: 2020 end-page: 7 article-title: Continuously variable emission for mechanical deformation induced radiative cooling publication-title: Commun Mater – volume: 13 issue: 6 year: 2020 article-title: Directional and spectral control of thermal emission and its application in radiative cooling and infrared light sources publication-title: Phys Rev Appl – volume: 248 start-page: 589 year: 2019 end-page: 599 article-title: Performance evaluation of a metamaterial‐based new cool roof using improved roof thermal transfer value model publication-title: Appl Energy – volume: 20 start-page: 6974 issue: 10 year: 2020 end-page: 6980 article-title: Plasmon‐enhanced infrared emission approaching the theoretical limit of Radiative cooling ability publication-title: Nano Lett – volume: 3 start-page: 2679 issue: 11 year: 2019 end-page: 2686 article-title: Generating light from darkness publication-title: Joule – volume: 13 start-page: 1457 issue: 4 year: 2013 end-page: 1461 article-title: Ultrabroadband photonic structures to achieve high‐performance daytime radiative cooling publication-title: Nano Lett – volume: 206 year: 2020 article-title: Daytime radiative cooling with silica fiber network publication-title: Sol Energy Mater Sol Cells – volume: 217 year: 2020 article-title: Spectrally‐selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling publication-title: Sol Energy Mater Sol Cells – volume: 13 start-page: 14132 issue: 12 year: 2021 end-page: 14140 article-title: Mechanically robust and spectrally selective convection shield for daytime subambient radiative cooling publication-title: ACS Appl Mater Interfaces – volume: 80 year: 2021 article-title: Radiative cooling: fundamental physics, atmospheric influences, materials and structural engineering, applications and beyond publication-title: Nano Energy – volume: 117 issue: 1 year: 2020 article-title: Radiative cooling for continuous thermoelectric power generation in day and night publication-title: Appl Phys Lett – volume: 1 start-page: 105 issue: 2 year: 2018 end-page: 112 article-title: Nanoporous polyethylene microfibres for large‐scale radiative cooling fabric publication-title: Nat Sustain – volume: 373 start-page: 692 issue: 6555 year: 2021 end-page: 696 article-title: Hierarchical‐morphology metafabric for scalable passive daytime radiative cooling publication-title: Science – volume: 6 start-page: eaaz5413 issue: 17 year: 2020 article-title: Colored and paintable bilayer coatings with high solar‐infrared reflectance for efficient cooling publication-title: Sci Adv – volume: 104 start-page: 890 year: 2017 end-page: 896 article-title: Nanoparticle embedded double‐layer coating for daytime radiative cooling publication-title: Int J Heat Mass Transf – volume: 12 start-page: 43553 issue: 39 year: 2020 end-page: 43559 article-title: Selectively enhancing solar scattering for direct radiative cooling through control of polymer nanofiber morphology publication-title: ACS Appl Mater Interfaces – volume: 23 start-page: A1120 issue: 19 year: 2015 end-page: A1128 article-title: Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments publication-title: Opt Express – volume: 12 start-page: 8073 issue: 7 year: 2020 end-page: 8081 article-title: Spectrally selective inorganic‐based multilayer emitter for daytime radiative cooling publication-title: ACS Appl Mater Interfaces – volume: 707 start-page: 916 issue: 2 year: 2009 end-page: 920 article-title: The temperature of the cosmic microwave background publication-title: Astrophys J – volume: 515 start-page: 540 issue: 7528 year: 2014 end-page: 544 article-title: Passive radiative cooling below ambient air temperature under direct sunlight publication-title: Nature – volume: 13 start-page: 19282 issue: 16 year: 2021 end-page: 19290 article-title: Flexible daytime radiative cooling enhanced by enabling three‐phase composites with scattering interfaces between silica microspheres and hierarchical porous coatings publication-title: ACS Appl Mater Interfaces – volume: 2 start-page: 1 issue: 9 year: 2017 end-page: 7 article-title: Sub‐ambient non‐evaporative fluid cooling with the sky publication-title: Nat Energy – volume: 114 start-page: 180 year: 2016 end-page: 190 article-title: Experimental in‐lab and in‐field analysis of waterproof membranes for cool roof application and urban heat Island mitigation publication-title: Energ Buildings – volume: 6 issue: 2 year: 2019 article-title: Radiative sky cooling: fundamental principles, materials, and applications publication-title: Appl Phys Rev – volume: 1 issue: 10 year: 2020 article-title: Full daytime sub‐ambient radiative cooling in commercial‐like paints with high figure of merit publication-title: Cell Reports Phys Sci – volume: 128 issue: 5 year: 2020 article-title: Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters publication-title: J Appl Phys – volume: 1 start-page: 32 issue: 1 year: 2014 article-title: Radiative cooling of solar cells publication-title: Optica – volume: 11 start-page: 175 issue: 3 year: 2014 end-page: 184 article-title: Radiative‐ and artificial‐cooling enhanced dew collection in a coastal area of South Australia publication-title: Urban Water J – volume: 88 year: 2021 article-title: Review of radiative cooling materials: performance evaluation and design approaches publication-title: Nano Energy – volume: 28 start-page: 25460 issue: 17 year: 2020 end-page: 25470 article-title: Maximal nighttime electrical power generation via optimal radiative cooling publication-title: Opt Express – volume: 79 year: 2021 article-title: Colored emitters with silica‐embedded perovskite nanocrystals for efficient daytime radiative cooling publication-title: Nano Energy – volume: 169 start-page: 392 year: 2016 end-page: 399 article-title: Life cycle analysis of cool roof in tropical areas publication-title: Procedia Eng – volume: 28 start-page: 10183 issue: 27 year: 2012 end-page: 10191 article-title: Water harvest via dewing publication-title: Langmuir – volume: 216 year: 2020 article-title: Hydrophilic radiative cooler for direct water condensation in humid weather publication-title: Sol Energy Mater Sol Cells – volume: 224 start-page: 371 year: 2018 end-page: 381 article-title: Energy saving and economic analysis of a new hybrid radiative cooling system for single‐family houses in the USA publication-title: Appl Energy – volume: 168 start-page: 78 year: 2017 end-page: 84 article-title: Double‐layer nanoparticle‐based coatings for efficient terrestrial radiative cooling publication-title: Sol Energy Mater Sol Cells – volume: 15 start-page: 1 issue: 52 year: 2019 end-page: 9 article-title: A self‐assembled 2D thermofunctional material for radiative cooling publication-title: Small – volume: 28 start-page: 9383 issue: 14 year: 2021 end-page: 9393 article-title: Reflective and transparent cellulose‐based passive radiative coolers publication-title: Cellulose – volume: 21 start-page: 1412 issue: 3 year: 2021 end-page: 1418 article-title: Designing mesoporous photonic structures for high‐performance passive daytime radiative cooling publication-title: Nano Lett – volume: 225 start-page: 50 year: 2019 end-page: 57 article-title: Local temperature control of hybrid plasmonic nano‐antennas publication-title: J Quant Spectrosc Radiat Transf – volume: 12 start-page: 27241 issue: 24 year: 2020 end-page: 27248 article-title: Easy way to achieve self‐adaptive cooling of passive radiative materials publication-title: ACS Appl Mater Interfaces – volume: 117 issue: 9 year: 2020 article-title: Ultrahigh emissivity of grating‐patterned PDMS film from 8 to 13 μ m wavelength regime publication-title: Appl Phys Lett – volume: 370 start-page: 786 issue: 6518 year: 2020 end-page: 791 article-title: Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source publication-title: Science – volume: 117 start-page: 14657 issue: 26 year: 2020 end-page: 14666 article-title: Biologically inspired flexible photonic films for efficient passive radiative cooling publication-title: Proc Natl Acad Sci U S A – volume: 13 start-page: 21733 issue: 18 year: 2021 end-page: 21739 article-title: Ultrawhite BaSO4Paints and films for remarkable daytime subambient radiative cooling publication-title: ACS Appl Mater Interfaces – volume: 103 issue: 22 year: 2013 article-title: Color‐preserving daytime radiative cooling publication-title: Appl Phys Lett – volume: 48 start-page: 1 issue: 1 year: 2012 end-page: 6 article-title: Quantifying the direct benefits of cool roofs in an urban setting: reduced cooling energy use and lowered greenhouse gas emissions publication-title: Build Environ – volume: 11 start-page: 1011 issue: 5 year: 2018 end-page: 1028 article-title: A numerical study of daytime passive radiative coolers for space cooling in buildings publication-title: Build Simul – ident: e_1_2_8_77_1 doi: 10.1038/s41565-020-00800-4 – ident: e_1_2_8_87_1 doi: 10.1364/OE.26.00A777 – ident: e_1_2_8_69_1 doi: 10.1016/j.solmat.2021.111205 – ident: e_1_2_8_101_1 doi: 10.1038/nenergy.2017.143 – ident: e_1_2_8_129_1 doi: 10.1016/j.solmat.2017.10.002 – ident: e_1_2_8_24_1 doi: 10.1016/j.ijheatmasstransfer.2016.08.009 – ident: e_1_2_8_4_1 doi: 10.1016/j.jqsrt.2018.12.023 – ident: e_1_2_8_79_1 doi: 10.1126/science.abc5381 – ident: e_1_2_8_54_1 doi: 10.1021/acs.nanolett.0c04810 – ident: e_1_2_8_52_1 doi: 10.1016/j.cej.2020.127104 – ident: e_1_2_8_93_1 doi: 10.1021/acsami.0c05803 – ident: e_1_2_8_117_1 doi: 10.1016/j.energy.2019.116322 – ident: e_1_2_8_23_1 doi: 10.1126/sciadv.aaz5413 – ident: e_1_2_8_108_1 doi: 10.1016/j.enconman.2013.06.024 – ident: e_1_2_8_130_1 doi: 10.7567/APEX.10.112601 – ident: e_1_2_8_20_1 doi: 10.1038/ncomms13729 – ident: e_1_2_8_145_1 doi: 10.1364/OE.397714 – ident: e_1_2_8_59_1 doi: 10.1063/5.0035138 – ident: e_1_2_8_78_1 doi: 10.1103/PhysRevApplied.13.064052 – ident: e_1_2_8_71_1 doi: 10.1126/science.abe4476 – ident: e_1_2_8_12_1 doi: 10.1021/nl4004283 – ident: e_1_2_8_86_1 doi: 10.1016/j.nanoen.2020.105461 – ident: e_1_2_8_102_1 doi: 10.1016/j.solmat.2019.110319 – ident: e_1_2_8_30_1 doi: 10.1063/5.0017838 – ident: e_1_2_8_138_1 doi: 10.1016/j.jaridenv.2015.02.002 – ident: e_1_2_8_2_1 doi: 10.1016/j.rser.2014.01.053 – ident: e_1_2_8_41_1 doi: 10.1364/OE.401368 – ident: e_1_2_8_73_1 doi: 10.1021/acsami.0c09374 – ident: e_1_2_8_28_1 doi: 10.1002/admt.201901007 – ident: e_1_2_8_143_1 doi: 10.1016/j.physe.2020.114471 – ident: e_1_2_8_142_1 doi: 10.1016/j.jqsrt.2020.107163 – ident: e_1_2_8_135_1 doi: 10.1080/15567265.2020.1722300 – ident: e_1_2_8_35_1 doi: 10.1021/acsphotonics.6b00991 – ident: e_1_2_8_61_1 doi: 10.1364/AO.51.006789 – ident: e_1_2_8_65_1 doi: 10.1016/j.ijheatmasstransfer.2021.121263 – ident: e_1_2_8_134_1 doi: 10.1073/pnas.2019292118 – ident: e_1_2_8_126_1 doi: 10.1364/OPTICA.1.000032 – ident: e_1_2_8_114_1 doi: 10.1016/j.egyr.2020.11.127 – ident: e_1_2_8_55_1 doi: 10.1021/acsami.0c21204 – ident: e_1_2_8_34_1 doi: 10.1016/j.joule.2018.10.006 – ident: e_1_2_8_58_1 doi: 10.1016/j.mtphys.2021.100389 – ident: e_1_2_8_99_1 doi: 10.1177/0958305X18787340 – volume: 12 start-page: 1 issue: 1 year: 2021 ident: e_1_2_8_68_1 article-title: A structural polymer for highly efficient all‐day passive radiative cooling publication-title: Nat Commun – ident: e_1_2_8_80_1 doi: 10.1016/j.ijheatmasstransfer.2018.11.059 – ident: e_1_2_8_111_1 doi: 10.1016/j.proeng.2016.10.048 – ident: e_1_2_8_125_1 doi: 10.1016/j.solener.2008.10.008 – ident: e_1_2_8_51_1 doi: 10.1364/OE.418650 – ident: e_1_2_8_37_1 doi: 10.1126/sciadv.aat9480 – ident: e_1_2_8_137_1 doi: 10.1016/j.rinp.2017.05.024 – ident: e_1_2_8_18_1 doi: 10.1016/j.solmat.2019.110320 – ident: e_1_2_8_19_1 doi: 10.1126/science.aai7899 – ident: e_1_2_8_11_1 doi: 10.1364/AO.20.002606 – ident: e_1_2_8_8_1 doi: 10.1016/j.apenergy.2018.12.018 – ident: e_1_2_8_60_1 doi: 10.1364/AO.46.008118 – ident: e_1_2_8_139_1 doi: 10.1021/acsami.6b16248 – ident: e_1_2_8_127_1 doi: 10.1016/j.joule.2020.10.004 – ident: e_1_2_8_112_1 doi: 10.1016/j.solener.2020.10.013 – ident: e_1_2_8_7_1 doi: 10.1088/0004-637X/707/2/916 – ident: e_1_2_8_83_1 doi: 10.1021/acsami.1c02368 – ident: e_1_2_8_9_1 doi: 10.1016/j.solmat.2018.01.015 – ident: e_1_2_8_128_1 doi: 10.1021/acsphotonics.7b00089 – ident: e_1_2_8_100_1 doi: 10.1016/j.jobe.2020.101631 – ident: e_1_2_8_39_1 doi: 10.1016/j.solmat.2019.02.015 – ident: e_1_2_8_22_1 doi: 10.1016/j.solmat.2017.04.020 – ident: e_1_2_8_124_1 doi: 10.1016/j.solmat.2004.09.003 – ident: e_1_2_8_21_1 doi: 10.1021/acsphotonics.7b01492 – ident: e_1_2_8_90_1 doi: 10.1038/s41467-020-19790-x – ident: e_1_2_8_72_1 doi: 10.1038/s41893-018-0023-2 – ident: e_1_2_8_48_1 doi: 10.1002/adma.202000870 – ident: e_1_2_8_94_1 doi: 10.1016/j.solmat.2020.110739 – ident: e_1_2_8_31_1 doi: 10.1038/s41893-019-0348-5 – ident: e_1_2_8_81_1 doi: 10.1021/acsami.1c02145 – ident: e_1_2_8_131_1 doi: 10.1364/OE.23.0A1120 – ident: e_1_2_8_132_1 doi: 10.1021/la3013987 – ident: e_1_2_8_6_1 doi: 10.1016/j.enconman.2019.112395 – ident: e_1_2_8_106_1 doi: 10.1016/j.enbuild.2012.02.055 – ident: e_1_2_8_44_1 doi: 10.1007/s11431-020-1586-9 – ident: e_1_2_8_141_1 doi: 10.1016/j.solmat.2020.110700 – ident: e_1_2_8_91_1 doi: 10.1063/1.4893616 – ident: e_1_2_8_115_1 doi: 10.1016/j.enbuild.2010.07.003 – ident: e_1_2_8_13_1 doi: 10.1557/mre.2020.18 – ident: e_1_2_8_14_1 doi: 10.1063/1.5087281 – ident: e_1_2_8_32_1 – ident: e_1_2_8_16_1 doi: 10.1126/science.aat9513 – ident: e_1_2_8_26_1 doi: 10.1016/j.nanoen.2021.106259 – ident: e_1_2_8_64_1 doi: 10.12693/APhysPolA.116.585 – ident: e_1_2_8_121_1 doi: 10.1016/j.solener.2012.08.017 – ident: e_1_2_8_10_1 doi: 10.1364/AO.21.004381 – ident: e_1_2_8_62_1 doi: 10.1002/adom.201600250 – volume: 1 start-page: 100221 year: 2020 ident: e_1_2_8_43_1 article-title: Full daytime sub‐ambient Radiative cooling with high figure of merit in commercial‐like paints publication-title: SSRN Electron J – ident: e_1_2_8_36_1 doi: 10.1007/s10570-021-04112-1 – ident: e_1_2_8_40_1 doi: 10.1038/s41598-020-63591-7 – ident: e_1_2_8_42_1 doi: 10.1073/pnas.2001802117 – ident: e_1_2_8_85_1 doi: 10.1063/1.4835995 – ident: e_1_2_8_17_1 doi: 10.1016/j.renene.2019.06.119 – ident: e_1_2_8_116_1 doi: 10.1007/s12273-018-0474-4 – ident: e_1_2_8_47_1 doi: 10.1021/acsphotonics.0c00513 – ident: e_1_2_8_75_1 doi: 10.1038/s41377-018-0033-x – ident: e_1_2_8_57_1 doi: 10.1021/acs.nanolett.0c04241 – ident: e_1_2_8_76_1 doi: 10.1126/science.abi5484 – ident: e_1_2_8_110_1 doi: 10.1016/j.renene.2019.10.032 – ident: e_1_2_8_140_1 doi: 10.1080/1573062X.2013.765494 – ident: e_1_2_8_25_1 doi: 10.1126/science.abb0971 – ident: e_1_2_8_136_1 doi: 10.1126/sciadv.aaq0919 – ident: e_1_2_8_89_1 doi: 10.1038/s43246-020-00098-8 – ident: e_1_2_8_146_1 doi: 10.1063/5.0010190 – volume: 16 start-page: 255 issue: 3 year: 2017 ident: e_1_2_8_123_1 article-title: Experimental investigation on night sky radiant cooling performance of duct‐type heat exchanger publication-title: Int J Vent – ident: e_1_2_8_88_1 doi: 10.1016/j.joule.2019.09.016 – ident: e_1_2_8_103_1 doi: 10.1016/j.enbuild.2007.01.004 – ident: e_1_2_8_104_1 doi: 10.1016/j.apenergy.2019.04.116 – ident: e_1_2_8_122_1 doi: 10.1016/j.enbuild.2015.07.027 – ident: e_1_2_8_67_1 doi: 10.1088/1361-6463/abfb19 – ident: e_1_2_8_144_1 doi: 10.1016/j.joule.2019.08.009 – ident: e_1_2_8_148_1 doi: 10.1126/science.aaf5471 – ident: e_1_2_8_120_1 doi: 10.1016/j.energy.2020.119045 – ident: e_1_2_8_133_1 doi: 10.1007/s40899-015-0038-z – ident: e_1_2_8_92_1 doi: 10.1016/j.jqsrt.2017.01.014 – ident: e_1_2_8_27_1 doi: 10.1016/j.nanoen.2020.105517 – ident: e_1_2_8_107_1 doi: 10.1016/j.enbuild.2015.05.026 – ident: e_1_2_8_118_1 doi: 10.1016/j.esd.2020.04.008 – ident: e_1_2_8_113_1 doi: 10.1016/j.energy.2017.03.075 – ident: e_1_2_8_97_1 doi: 10.1021/acsnano.7b07121 – ident: e_1_2_8_84_1 doi: 10.1063/5.0015650 – ident: e_1_2_8_45_1 doi: 10.1002/adfm.201907562 – ident: e_1_2_8_29_1 doi: 10.3390/buildings8120168 – ident: e_1_2_8_66_1 doi: 10.1016/j.mtphys.2019.100127 – ident: e_1_2_8_53_1 doi: 10.1016/j.nanoen.2020.105600 – ident: e_1_2_8_33_1 doi: 10.1021/acs.nanolett.0c01457 – ident: e_1_2_8_147_1 doi: 10.1016/j.applthermaleng.2017.08.131 – ident: e_1_2_8_74_1 doi: 10.1126/science.aau1217 – ident: e_1_2_8_119_1 doi: 10.1016/j.apenergy.2018.04.115 – ident: e_1_2_8_38_1 doi: 10.1002/smll.201905290 – ident: e_1_2_8_3_1 doi: 10.1016/j.solener.2016.01.021 – ident: e_1_2_8_105_1 doi: 10.1016/j.buildenv.2011.08.011 – ident: e_1_2_8_5_1 doi: 10.1038/nature13883 – ident: e_1_2_8_56_1 doi: 10.1016/j.nanoen.2021.105971 – ident: e_1_2_8_63_1 doi: 10.1016/j.jqsrt.2020.107063 – ident: e_1_2_8_96_1 doi: 10.1002/adma.201705421 – ident: e_1_2_8_46_1 doi: 10.1016/j.solmat.2020.110563 – ident: e_1_2_8_149_1 doi: 10.1126/science.abi5484 – ident: e_1_2_8_15_1 doi: 10.1016/j.renene.2020.03.136 – ident: e_1_2_8_49_1 doi: 10.1021/acsami.9b16742 – ident: e_1_2_8_95_1 doi: 10.1103/PhysRevLett.17.1286 – ident: e_1_2_8_98_1 doi: 10.1016/j.enbuild.2019.109453 – ident: e_1_2_8_82_1 doi: 10.1016/j.xcrp.2020.100221 – ident: e_1_2_8_70_1 doi: 10.1002/adfm.202010334 – ident: e_1_2_8_109_1 doi: 10.1016/j.rser.2017.04.030 – ident: e_1_2_8_50_1 doi: 10.1038/s41598-020-63027-2 |
SSID | ssj0002504241 |
Score | 2.5310576 |
SecondaryResourceType | review_article |
Snippet | Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution.... Abstract Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Atmosphere Climate change coating Cold Cooling Daytime Electricity Emittance Environmental impact Global warming Heat transfer Performance evaluation Photovoltaic cells Polymers Radiation radiative cooling Solar cells solar reflectance Space cooling (buildings) Temperature thermal emittance Water harvesting |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA6yJ30Qf-J0SkBfFMu6NGka31Q2hjAVdLC3kKSpL9rJNh_8771L6-hA9EUotA33EO6S--7a3HeEnDnOjEozHhlrWcRzbiIlvIoEvAppAYEUFieP7tPhmN9NxKTR6gvPhFX0wJXiurCRGWC6LPBmhLexET2TKVYwuLJQRw6Y10im0AcjMRdg05KPlHX99I0FKoVkBYECUf9KdNmMUQPIDLbIZh0d0utqVttkzZc7ZKPBGbhLnh4h3AUXRXPziY3h6QzZBdBpUTfFDjwvV3SA5R0Va__8kkJMGpYZzcNpDRgxZU6bf673yHjQf74dRnVnhMghfTt4KJMlgD8AJgDhxpu0ULEwsc-lstIksQKYLrwvMsjefGpyJ5TLvGA5K7hwKtknrXJa-gNCewnnjjsIk7zkaeqRjj2R3KoitplXsk3Ov7WlXU0bjt0rXnVFeMw0alYHzbbJ6VL2vSLL-FHqBpW-lECC6zAAZte12fVfZm-TzrfJdL3r5hqywV4mIYGK2-QimPGXaej-w4iFp8P_mNARWWdYGRG-znRIazH78McQryzsSViaXxQk47Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access - NZ dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X_RB_MT5RUBfFMu6NGka8UXFIcJU0MHeQpKme9FNtvngf-9d2nUTRBAKbcMV0qR3v8s19ztCTh1nRqUZj4y1LOI5N5ESXkUCboW0gEAKk5O7j-l9jz_0RX-JXM1yYUp-iDrghpoR7DUquLGT1pw01I_eWeBGSJbJCubW4oY-xp_rCAuSc7FQuhJgHYNxMqn5SVlr_vgPRArE_T-8zUWfNYBOZ4OsV94ivS6nd5Ms-eEWWVvgENwmL8_g_oLJorn5wkLxdIxsA2jEqBthRZ7BJe1gukfJ4j-5oOCjhs-O5mH3BrSYYU4X_2TvkF7n7vX2PqoqJUQO6dzBYpksATwCcAFIN96khYqFiX0ulZUmiRXAduF9kcFqzqcmd0K5zAuWs4ILp5Jd0hiOhn6P0HbCueMO3CYveZp6pGdPJLeqiG3mlWySs9loaVfRiGM1izddEiAzjSOrw8g2yUkt-1GSZ_wqdYODXksg4XVoGI0HutIfDfacgWsnCzwZ4W1sBLy0YgWDI4NuHc6mTFdaONGwOmxnEhZUcZOch2n8oxv67qnLwtX-f4QPyCrDjIgQlTkkjen40x-BnzK1x-Fz_Ab5598Y priority: 102 providerName: Wiley-Blackwell |
Title | Passive daytime radiative cooling: Fundamentals, material designs, and applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12153 https://www.proquest.com/docview/2611877680 https://doaj.org/article/46721437f7214a5eb0a51a892f22f287 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT9swFH4a5cIOCBho5UdliV02LSI4dmJzQQO1VJPKqg0kbpbjOFygKW058N_znut2RUJIUX5YVuTYzvs-P9vfA_jmBLc6VyKxZckTUQmbaOl1IvFRFiUikKbNyYPrvH8rft_Ju-hwm8ZllQubGAx11TjykZ8g0z9VBZLj9Hz8lFDUKJpdjSE01mAdTbBSLVi_6F4P_y69LCTQhRi11CXlJ7555EFSIXuDREGw_w3LXOWqAWx6W7AZWSL7NW_WbfjkRzvweUU78Av8GyLtRVPFKvtCAeLZhFQGyHgx11Aknvsz1qNtHnP1_ulPhtw0dDdWhVUbmGJHFVudwd6F21735rKfxAgJiSMZd7RUVmWIQwgqCOXW27zWqbSprwpdFjZLNcJ17X2tcBTnc1s5qZ3ykle8FtLpbA9ao2bkvwI7zYRwwiFd8oXIc0-y7FkhSl2npfK6aMP3RW0ZF-XDKYrFg5kLH3NDNWtCzbbheJl3PBfNeDfXBVX6MgcJXYeEZnJv4n9j0I5zpHRFTRcrfZlaiR-tec3xUFisw0WTmfj3Tc3_vtKGH6EZPyiG6f4Z8HC3__G7DmCD096H4H85hNZs8uyPkJHMyg6scTHEs-pddWIX7ITR_SsVE-DC |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS-QwEB9EH-58OPQ8cU89A3c-KBZrmrSNcIjeubd-rAoq-BbTNPVFt7qriP-Uf6MzabuucPgmFNqGUNLJZOaXj_kNwC8ruFFxKgKTZTwQuTCBkk4FEl9lkqEHUhSc3D2KO-di_0JejMFzEwtDxyobm-gNdV5aWiNfR6S_kSYIjsOt27uAskbR7mqTQqNSiwP39IhTtsHvvb_Yv8uct3fP_nSCOqtAYIn6HEe3SSO03WiI0f0ZZ-JChdKELk9UlpgoVOjiCueKFGc-Lja5lcqmTvKcF0JaIl9Ckz8hIvTkFJne_jdc0yE6MPSIQxZUvu7KG-4JHKI3fs-nB3iDaUeRsXdt7Sn4UmNStl0p0TSMud5XmBxhKpyB0xME2WgYWW6eKB096xOnAZlKZkvK-3O1ydoUVFLlChisMUTCXrlZ7s-IYInp5Wx0v_wbnH-I5GZhvFf23BywjUgIKyyCM5eIOHZEAh8lIlNFmKVOJS1YaaSlbU1WTjkzrnVFs8w1SVZ7ybbg57DubUXR8d9aOyT0YQ2i1fYFZf9K16NUo9fgCCCTgm5Guiw0En9a8YLjlWKzFpou0_VYH-hXzWzBqu_Gd5qhd4-73D99f_9bS_Cpc9Y91Id7Rwfz8JlT1IVf-VmA8fv-g1tELHSf_fAKyODyozX-BSC8GKE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fS9xAEB7kBGkfSmtbeq3WhbYPLQ0XN7vZrCCl6h1a6_VoK_i2bjYbX_Ri7yziv-Zf58wmOU8Q34RAkmUJm9nZmW9_zDcAH53gVqeZiGye80gUwkZaeh1JfJUqRw-kKTj5YJjuHoofR_JoAa7bWBg6VtnaxGCoi8rRGnkPkf56phAcx72yORYx2hl8O_8XUQYp2mlt02nUKrLvry5x-jbd3NvBvv7E-aD_d3s3ajIMRI5o0HGk2yxBO45GGV2h9TYtdSxt7Aulc2WTWKO7K70vM5wF-dQWTmqXeckLXgrpiIgJzf-iollRBxa3-sPR79kKD5GDoX-ccaLynq_OeKBzSO54wZAs4A7CncfJwdENnsOzBqGy77VKvYAFP16Gp3O8hS_hzwghN5pJVtgrSk7PJsRwQIaTuYqyAJ1ssAGFmNSZA6ZfGeLioOqsCCdGsMSOCza_e_4KDh9Fdq-hM67G_g2w9UQIJxxCNa9EmnqihE-UyHUZ55nXqgufW2kZ11CXUwaNU1OTLnNDkjVBsl34MKt7XhN23Ftri4Q-q0Ek26GgmpyYZswa9CEc4aQq6Walz2Mr8ac1LzleGTZrpe0y04z8qbnV0y58Cd34QDNM_9cBD09vH_7WGiyhtpufe8P9d_CEUwhGWAZagc7F5L9fRWB0kb9vNJDB8WMr_Q3z-B4z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passive+daytime+radiative+cooling%3A+Fundamentals%2C+material+designs%2C+and+applications&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Chen%2C+Meijie&rft.au=Pang%2C+Dan&rft.au=Chen%2C+Xingyu&rft.au=Yan%2C+Hongjie&rft.date=2022-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2567-3173&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1002%2Feom2.12153&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon |