A sound velocity method for determining isobaric specific heat capacity
Isobaric specific heat capacity (Cp) is an important parameter not only in physics but also for most materials. Its accurate measurement is particularly critical for performance evaluation of thermoelectric materials, but the experiments by differential scanning calorimetry (DSC) often lead to large...
Saved in:
Published in | InfoMat Vol. 4; no. 12 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melbourne
John Wiley & Sons, Inc
01.12.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Isobaric specific heat capacity (Cp) is an important parameter not only in physics but also for most materials. Its accurate measurement is particularly critical for performance evaluation of thermoelectric materials, but the experiments by differential scanning calorimetry (DSC) often lead to large uncertainties in the measurements, especially at elevated temperatures. In this study, we propose a simple method to determine Cp by measuring the sound velocity (υ) based on lattice vibration and expansion theory. The relative standard error of the υ is smaller than 1%, showing good accuracy and repeatability. The calculated Cp at elevated temperature (>300 K) increases slightly with increasing temperature due to the lattice expansion, which is more reasonable than the Dulong–Petit value.
Specific heat capacity can be accurately measured even at elevated temperature by a simple and easy‐to‐implement sound velocity method. |
---|---|
AbstractList | Isobaric specific heat capacity (Cp) is an important parameter not only in physics but also for most materials. Its accurate measurement is particularly critical for performance evaluation of thermoelectric materials, but the experiments by differential scanning calorimetry (DSC) often lead to large uncertainties in the measurements, especially at elevated temperatures. In this study, we propose a simple method to determine Cp by measuring the sound velocity (υ) based on lattice vibration and expansion theory. The relative standard error of the υ is smaller than 1%, showing good accuracy and repeatability. The calculated Cp at elevated temperature (>300 K) increases slightly with increasing temperature due to the lattice expansion, which is more reasonable than the Dulong–Petit value.
Specific heat capacity can be accurately measured even at elevated temperature by a simple and easy‐to‐implement sound velocity method. Abstract Isobaric specific heat capacity (Cp) is an important parameter not only in physics but also for most materials. Its accurate measurement is particularly critical for performance evaluation of thermoelectric materials, but the experiments by differential scanning calorimetry (DSC) often lead to large uncertainties in the measurements, especially at elevated temperatures. In this study, we propose a simple method to determine Cp by measuring the sound velocity (υ) based on lattice vibration and expansion theory. The relative standard error of the υ is smaller than 1%, showing good accuracy and repeatability. The calculated Cp at elevated temperature (>300 K) increases slightly with increasing temperature due to the lattice expansion, which is more reasonable than the Dulong–Petit value. Isobaric specific heat capacity (Cp) is an important parameter not only in physics but also for most materials. Its accurate measurement is particularly critical for performance evaluation of thermoelectric materials, but the experiments by differential scanning calorimetry (DSC) often lead to large uncertainties in the measurements, especially at elevated temperatures. In this study, we propose a simple method to determine Cp by measuring the sound velocity (υ) based on lattice vibration and expansion theory. The relative standard error of the υ is smaller than 1%, showing good accuracy and repeatability. The calculated Cp at elevated temperature (>300 K) increases slightly with increasing temperature due to the lattice expansion, which is more reasonable than the Dulong–Petit value. Isobaric specific heat capacity ( C p ) is an important parameter not only in physics but also for most materials. Its accurate measurement is particularly critical for performance evaluation of thermoelectric materials, but the experiments by differential scanning calorimetry (DSC) often lead to large uncertainties in the measurements, especially at elevated temperatures. In this study, we propose a simple method to determine C p by measuring the sound velocity ( υ ) based on lattice vibration and expansion theory. The relative standard error of the υ is smaller than 1%, showing good accuracy and repeatability. The calculated C p at elevated temperature (>300 K) increases slightly with increasing temperature due to the lattice expansion, which is more reasonable than the Dulong–Petit value. image |
Author | Pei, Jun Li, Hezhang Cai, Bowen Jiang, Yilin Li, Jing‐Wei Su, Bin Dong, Jinfeng Li, Jing‐Feng Hu, Haihua Zhao, Li‐Dong Zhuang, Hua‐Lu |
Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0003-4718-7792 surname: Pei fullname: Pei, Jun organization: Tsinghua University – sequence: 2 givenname: Hezhang orcidid: 0000-0002-6356-321X surname: Li fullname: Li, Hezhang organization: National Institute for Materials Science (NIMS) – sequence: 3 givenname: Hua‐Lu orcidid: 0000-0002-5648-1187 surname: Zhuang fullname: Zhuang, Hua‐Lu organization: Tsinghua University – sequence: 4 givenname: Jinfeng orcidid: 0000-0002-3026-8054 surname: Dong fullname: Dong, Jinfeng organization: Tsinghua University – sequence: 5 givenname: Bowen orcidid: 0000-0002-7935-4420 surname: Cai fullname: Cai, Bowen organization: Tsinghua University – sequence: 6 givenname: Haihua orcidid: 0000-0002-2210-8384 surname: Hu fullname: Hu, Haihua organization: Tsinghua University – sequence: 7 givenname: Jing‐Wei orcidid: 0000-0002-2705-9833 surname: Li fullname: Li, Jing‐Wei organization: Tsinghua University – sequence: 8 givenname: Yilin orcidid: 0000-0002-8815-4260 surname: Jiang fullname: Jiang, Yilin organization: Tsinghua University – sequence: 9 givenname: Bin orcidid: 0000-0002-5547-8664 surname: Su fullname: Su, Bin organization: Tsinghua University – sequence: 10 givenname: Li‐Dong orcidid: 0000-0003-1247-4345 surname: Zhao fullname: Zhao, Li‐Dong email: zhaolidong@buaa.edu.cn organization: Beihang University – sequence: 11 givenname: Jing‐Feng orcidid: 0000-0002-0185-0512 surname: Li fullname: Li, Jing‐Feng email: jingfeng@mail.tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNp9kE9LxDAQxYMo-PfiJyh4E1YnSZPUo4iuC6IXPYdpOtEs3WZNusp-e7tWQUQ8zTDze4-Zt8-2u9gRY8cczjiAOA-dF2dcSCO22J5Q2kwk12r7R7_LjnKewwArKIXie2x6WeS46prijdroQr8uFtS_xKbwMRUN9ZQWoQvdcxFyrDEFV-QlueCH5oWwLxwucSM7ZDse20xHX_WAPd1cP17dTu4eprOry7uJU1CJiXS8QsO9E16DaYg8OVBNhcOCS--qunYXhGXjvFdw4cqSCwMSBW4wIHnAZqNvE3FulyksMK1txGA_BzE9W0x9cC1ZNF55T7U2TpbalBU0oCqpZa1qo50fvE5Gr2WKryvKvZ3HVeqG860wpdIaNIeBgpFyKeacyNvhX-xD7PqEobUc7CZ9u0nffqY_SE5_Sb4P_RPmI_weWlr_Q9rZ_Y0YNR_mKZZ5 |
CitedBy_id | crossref_primary_10_1021_acs_accounts_2c00467 crossref_primary_10_36074_grail_of_science_14_04_2023_035 crossref_primary_10_1021_acs_inorgchem_3c02777 crossref_primary_10_1098_rsos_231797 crossref_primary_10_1002_inf2_12481 crossref_primary_10_1039_D4SC06615D crossref_primary_10_1016_j_mtphys_2023_101200 crossref_primary_10_7566_JPSJ_94_024601 |
Cites_doi | 10.1016/j.joule.2018.10.020 10.1002/adma.201902980 10.1088/0953-8984/14/44/478 10.1134/1.1666949 10.1016/j.mtphys.2018.10.001 10.1039/C4EE01320D 10.1039/D2EE00119E 10.1007/s10765-014-1829-4 10.1002/advs.201700259 10.1007/BF01983270 10.1103/PhysRevB.79.134103 10.1016/S0040-6031(01)00631-1 10.1103/PhysRevB.98.075144 10.1039/D1EE03802H 10.1038/asiamat.2010.138 10.1016/0040-6031(95)90466-2 10.1103/PhysRevB.54.6058 10.1103/PhysRevB.72.075209 10.1103/PhysRevB.74.144109 10.1103/PhysRevLett.100.035502 10.1080/18811248.1975.9733082 10.1016/S0966-9795(02)00127-9 10.1103/PhysRevB.53.3013 10.1016/S0040-6031(02)00212-5 10.1007/BF02548519 10.1103/PhysRevB.36.7888 10.1115/1.2739585 10.1007/s10765-015-1863-x 10.1063/1.2009828 10.1039/C1EE02497C 10.1016/j.tca.2004.02.008 10.1103/PhysRevB.80.184302 10.1016/j.jallcom.2004.06.051 10.1103/PhysRevLett.99.185701 10.1039/C9EE00317G 10.1103/PhysRevB.94.125203 10.1007/b136496 10.1016/j.polymertesting.2010.04.004 10.1088/0957-0233/12/3/201 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.1002/inf2.12372 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection ProQuest Materials Science Database ProQuest Engineering Collection ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3165 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_a7f5ffeb67c3467480d058363b5b76cf 10_1002_inf2_12372 INF212372 |
Genre | article |
GrantInformation_xml | – fundername: Basic Science Center Project of NSFC funderid: 51788104 – fundername: National Key R&D Program of China funderid: 2018YFB0703603 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC KB. M7S OK1 PDBOC PIMPY PTHSS WIN AAYXX ADMLS CITATION PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c5082-3c18a71fc2f607deefec05d8a3c113fc8bbc9ea4dcff509c4412703a2ac05d0e3 |
IEDL.DBID | BENPR |
ISSN | 2567-3165 |
IngestDate | Wed Aug 27 01:28:46 EDT 2025 Wed Aug 13 10:54:47 EDT 2025 Tue Jul 01 01:33:44 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Wed Jan 22 16:21:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5082-3c18a71fc2f607deefec05d8a3c113fc8bbc9ea4dcff509c4412703a2ac05d0e3 |
Notes | Funding information Basic Science Center Project of NSFC, Grant/Award Number: 51788104; National Key R&D Program of China, Grant/Award Number: 2018YFB0703603 Jun Pei and Hezhang Li contributed equally to this study as first authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2210-8384 0000-0002-0185-0512 0000-0002-6356-321X 0000-0003-4718-7792 0000-0002-3026-8054 0000-0002-5648-1187 0000-0002-7935-4420 0000-0002-8815-4260 0000-0002-5547-8664 0000-0003-1247-4345 0000-0002-2705-9833 |
OpenAccessLink | https://www.proquest.com/docview/2745660610?pq-origsite=%requestingapplication% |
PQID | 2745660610 |
PQPubID | 5068510 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a7f5ffeb67c3467480d058363b5b76cf proquest_journals_2745660610 crossref_citationtrail_10_1002_inf2_12372 crossref_primary_10_1002_inf2_12372 wiley_primary_10_1002_inf2_12372_INF212372 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Melbourne |
PublicationPlace_xml | – name: Melbourne – name: Beijing |
PublicationTitle | InfoMat |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 1987; 36 2002; 14 2015; 36 2007; 129 2006; 74 2017; 4 2019; 31 2002; 395 2009; 80 2001; 380 2019; 12 1975; 12 2005; 87 2005 2016; 94 2004 2008; 100 2015; 8 2007; 99 1996; 54 1996; 53 2003; 11 1994; 42 2018; 6 2004; 30 2009; 79 2018; 2 2010; 29 2005; 387 2022; 15 2005; 72 1983; 28 2010; 2 2001; 12 2018; 98 2012; 5 1995; 260 2004; 419 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 Kittel C (e_1_2_8_25_1) 2005 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 100 issue: 3 year: 2008 article-title: Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in a diamond anvil cell: application to the stability study of alpdmn publication-title: Phys Rev Lett – volume: 15 issue: 5 year: 2022 article-title: High ZT in ‐type thermoelectric (Bi,Sb) Te with built‐in nanopores publication-title: Energy Environ Sci – volume: 2 start-page: 2183 issue: 11 year: 2018 end-page: 2188 article-title: How to measure thermoelectric properties reliably publication-title: Joule – volume: 31 issue: 35 year: 2019 article-title: Phase transformation contributions to heat capacity and impact on thermal diffusivity, thermal conductivity, and thermoelectric performance publication-title: Adv Mater – year: 2005 – volume: 12 start-page: 1396 issue: 4 year: 2019 end-page: 1403 article-title: Medium‐temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance publication-title: Energy Environ Sci – volume: 74 issue: 14 year: 2006 article-title: Effect of point defects on the thermal transport properties of (La Gd ) Zr O : experiment and theoretical model publication-title: Phys Rev B – volume: 260 start-page: 1 year: 1995 end-page: 16 article-title: A comparison of different evaluation methods in modulated temperature DSC publication-title: Thermochim Acta – volume: 4 issue: 11 year: 2017 article-title: Self‐tuning ‐type Bi (Te,Se) /SiC thermoelectric nanocomposites to realize high performances up to 300 °C publication-title: Adv Sci – volume: 53 start-page: 3013 issue: 6 year: 1996 end-page: 3022 article-title: High‐temperature heat capacity and thermal expansion of SrTiO and SrZrO perovskites publication-title: Phys Rev B – volume: 12 start-page: 133 issue: 3 year: 1975 end-page: 144 article-title: Measurement of thermal properties of nuclear materials by laser flash method publication-title: J Nucl Sci Technol – volume: 36 start-page: 7888 issue: 15 year: 1987 end-page: 7890 article-title: Enhanced specific‐heat‐capacity ( ) measurements (150 300 K) of nanometer‐sized crystalline materials publication-title: Phys Rev B – volume: 419 start-page: 135 issue: 1–2 year: 2004 end-page: 141 article-title: Heat capacity, thermal conductivity, and thermal expansion of barium titanate‐based ceramics publication-title: Thermochim Acta – volume: 12 start-page: R1 issue: 3 year: 2001 end-page: R15 article-title: A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures publication-title: Meas Sci Technol – volume: 15 year: 2022 article-title: Carrier grain boundary scattering in thermoelectric materials publication-title: Energy Environ Sci – volume: 98 issue: 7 year: 2018 article-title: Modeling of the electrical conductivity, thermal conductivity, and specific heat capacity of VO publication-title: Phys Rev B – volume: 36 start-page: 658 issue: 4 year: 2015 end-page: 691 article-title: Thermal‐diffusivity and heat‐capacity measurements of sandstone at high temperatures using laser flash and DSC methods publication-title: Int J Thermophys – volume: 54 start-page: 6058 issue: 9 year: 1996 end-page: 6061 article-title: Heat‐capacity comparison among the nanocrystalline, amorphous, and coarse‐grained polycrystalline states in element selenium publication-title: Phys Rev B – volume: 2 start-page: 152 issue: 4 year: 2010 end-page: 158 article-title: High‐performance nanostructured thermoelectric materials publication-title: NPG Asia Mater – volume: 8 start-page: 423 issue: 2 year: 2015 end-page: 435 article-title: Measuring thermoelectric transport properties of materials publication-title: Energy Environ Sci – volume: 79 issue: 13 year: 2009 article-title: Neutron diffraction and heat capacity studies of PrCoO and NdCoO publication-title: Phys Rev B – volume: 11 start-page: 23 issue: 1 year: 2003 end-page: 32 article-title: Ab‐initio calculation of the elastic constants and thermal expansion coefficients of laves phases publication-title: Intermetallics – volume: 29 start-page: 759 issue: 6 year: 2010 end-page: 765 article-title: Determination and review of specific heat capacity measurements during isothermal cure of an epoxy using TM‐DSC and standard DSC techniques publication-title: Polym Test – volume: 30 start-page: 91 issue: 2 year: 2004 end-page: 93 article-title: The acoustical Grüneisen constants of solids publication-title: Tech Phys Lett – volume: 99 issue: 18 year: 2007 article-title: Measuring the configurational heat capacity of liquids publication-title: Phys Rev Lett – volume: 28 start-page: 349 issue: 2 year: 1983 end-page: 358 article-title: Heat capacity, enthalpy and crystallinity for a linear polyethylene obtained by DSC publication-title: J Thermal Anal – volume: 395 start-page: 201 issue: 1‐2 year: 2002 end-page: 208 article-title: New heat flux DSC measurement technique publication-title: Thermochim Acta – year: 2004 – volume: 6 start-page: 83 year: 2018 end-page: 88 article-title: Heat capacity of Mg Sb , Mg Bi , and their alloys at high temperature publication-title: Mater Today Phys – volume: 129 start-page: 1119 issue: 9 year: 2007 end-page: 1126 article-title: The error analysis of a steady‐state thermal conductivity measurement method with single constant temperature region publication-title: J Heat Transfer – volume: 42 start-page: 307 issue: 2‐3 year: 1994 end-page: 330 article-title: Heat capacity measurement by modulated DSC at constant temperature publication-title: J Thermal Anal – volume: 36 start-page: 1530 issue: 7 year: 2015 end-page: 1544 article-title: Critical review of industrial techniques for thermal‐conductivity measurements of thermal insulation materials publication-title: Int J Thermophys – volume: 87 issue: 6 year: 2005 article-title: Ag TlTe : a high‐performance thermoelectric bulk material with extremely low thermal conductivity publication-title: Appl Phys Lett – volume: 94 issue: 12 year: 2016 article-title: Origin of low thermal conductivity in SnSe publication-title: Phys Rev B – volume: 5 start-page: 5147 issue: 1 year: 2012 end-page: 5162 article-title: Perspectives on thermoelectrics: from fundamentals to device applications publication-title: Energy Environ Sci – volume: 380 start-page: 5 issue: 1 year: 2001 end-page: 12 article-title: Step response analysis in DSC: a fast way to generate heat capacity spectra publication-title: Thermochim Acta – volume: 14 start-page: 11337 issue: 44 year: 2002 end-page: 11342 article-title: Sound velocity measurement using transfer function method publication-title: J Phys Condens Matter – volume: 387 start-page: 52 issue: 1‐2 year: 2005 end-page: 55 article-title: Thermoelectric properties of Ag Pb SbTe (x = 0, 0.1, 0.3) publication-title: J Alloys Compd – volume: 72 issue: 7 year: 2005 article-title: Heat capacity of α‐GaN: isotope effects publication-title: Phys Rev B – volume: 80 issue: 18 year: 2009 article-title: Phonon density of states and heat capacity of La Te publication-title: Phys Rev B – ident: e_1_2_8_4_1 doi: 10.1016/j.joule.2018.10.020 – ident: e_1_2_8_24_1 doi: 10.1002/adma.201902980 – ident: e_1_2_8_35_1 doi: 10.1088/0953-8984/14/44/478 – ident: e_1_2_8_37_1 doi: 10.1134/1.1666949 – ident: e_1_2_8_23_1 doi: 10.1016/j.mtphys.2018.10.001 – ident: e_1_2_8_5_1 doi: 10.1039/C4EE01320D – ident: e_1_2_8_31_1 doi: 10.1039/D2EE00119E – ident: e_1_2_8_8_1 doi: 10.1007/s10765-014-1829-4 – ident: e_1_2_8_30_1 doi: 10.1002/advs.201700259 – ident: e_1_2_8_13_1 doi: 10.1007/BF01983270 – ident: e_1_2_8_20_1 doi: 10.1103/PhysRevB.79.134103 – ident: e_1_2_8_14_1 doi: 10.1016/S0040-6031(01)00631-1 – ident: e_1_2_8_22_1 doi: 10.1103/PhysRevB.98.075144 – ident: e_1_2_8_32_1 doi: 10.1039/D1EE03802H – ident: e_1_2_8_3_1 doi: 10.1038/asiamat.2010.138 – ident: e_1_2_8_9_1 doi: 10.1016/0040-6031(95)90466-2 – ident: e_1_2_8_16_1 doi: 10.1103/PhysRevB.54.6058 – ident: e_1_2_8_17_1 doi: 10.1103/PhysRevB.72.075209 – ident: e_1_2_8_28_1 doi: 10.1103/PhysRevB.74.144109 – ident: e_1_2_8_29_1 doi: 10.1103/PhysRevLett.100.035502 – ident: e_1_2_8_21_1 doi: 10.1080/18811248.1975.9733082 – ident: e_1_2_8_26_1 doi: 10.1016/S0966-9795(02)00127-9 – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevB.53.3013 – ident: e_1_2_8_38_1 doi: 10.1016/S0040-6031(02)00212-5 – ident: e_1_2_8_12_1 doi: 10.1007/BF02548519 – ident: e_1_2_8_15_1 doi: 10.1103/PhysRevB.36.7888 – volume-title: Introduction to Solid State Physics year: 2005 ident: e_1_2_8_25_1 – ident: e_1_2_8_7_1 doi: 10.1115/1.2739585 – ident: e_1_2_8_10_1 doi: 10.1007/s10765-015-1863-x – ident: e_1_2_8_27_1 doi: 10.1063/1.2009828 – ident: e_1_2_8_2_1 doi: 10.1039/C1EE02497C – ident: e_1_2_8_39_1 doi: 10.1016/j.tca.2004.02.008 – ident: e_1_2_8_19_1 doi: 10.1103/PhysRevB.80.184302 – ident: e_1_2_8_40_1 doi: 10.1016/j.jallcom.2004.06.051 – ident: e_1_2_8_18_1 doi: 10.1103/PhysRevLett.99.185701 – ident: e_1_2_8_33_1 doi: 10.1039/C9EE00317G – ident: e_1_2_8_41_1 doi: 10.1103/PhysRevB.94.125203 – ident: e_1_2_8_6_1 doi: 10.1007/b136496 – ident: e_1_2_8_11_1 doi: 10.1016/j.polymertesting.2010.04.004 – ident: e_1_2_8_36_1 doi: 10.1088/0957-0233/12/3/201 |
SSID | ssj0002504251 |
Score | 2.2634637 |
Snippet | Isobaric specific heat capacity (Cp) is an important parameter not only in physics but also for most materials. Its accurate measurement is particularly... Isobaric specific heat capacity ( C p ) is an important parameter not only in physics but also for most materials. Its accurate measurement is particularly... Abstract Isobaric specific heat capacity (Cp) is an important parameter not only in physics but also for most materials. Its accurate measurement is... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Accuracy Acoustic velocity Heat heat capacity High temperature Hot pressing Lasers Lattice vibration Performance evaluation Plasma sintering sound velocity Specific heat Standard error Temperature thermoelectric Thermoelectric materials Velocity Vibration measurement |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF3Ekx7ET4xWWdCLQmyym80mxyrWKtiThd6W_QRBqtj6_53ZpCUF0Yu3kExgMy878xZm3hBy6avMMR94GiBXpIUUeWqYF2lhgPsXThhRYzfy87gcTYqnqZh2Rn1hTVgjD9w4rq9lECF4U0rL42SMzGWi4iU3wsjSBoy-kPM6hymMwSjMBZl7pUfK-oAXu4EwLdlaBopC_WvssstRY5IZ7pKdlh3SQbOqPbLhZ_tku6MZeEAeBnSOo5AoFvtY4NC0GQJNgX1S1xa3gCV9ncNWhShHsZkSC4Ioxl1qITvia4dkMrx_uRul7TSE1AKJYim3eaVlHiwLZSad98HbTLhKw4OcB1sZY2uvC2dDABZggecw2M6aaTTLPD8im7P3mT8mlLtC1hoyeRVQYd5r5qT0tZUWgNNFnpCrpYeUbaXCcWLFm2pEjplCb6rozYRcrGw_GoGMH61u0dErCxS1jjcAatVCrf6COiG9JUyq3WlzBadqYKTwLVlCriN0vyxDPY6HLF6d_MeCTskWw26IWN3SI5uLzy9_BhxlYc7j7_gN4s_jNg priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6KXvQgPrFaZUEvCrHJJptNwUsVaxUsHiz0tuxTBGmlrf_fmU2atiCCt5DMQjKzM_NlmfmGkEtXxJY5n0YeckWUCZ5EmjkeZRqwf2a55h3sRn4Z5P1h9jziowa5XfTClPwQ9YEbekaI1-jgSs_aS9JQMAC7gbgrIABvYm8tFvSx7LU-YUFyLhbmL0Jax8O4nNf8pKy9XL6WkQJx_xraXMWsIen0dslOhRZptzTvHmm48T7ZXuEQPCCPXTrD0UgUi38MYGpaDoWmgEaprYpdQJJ-zMB1IepRbK7EAiGKcZgayJa47JAMew9v9_2omo4QGQBVLEpNUiiReMN8HgvrnHcm5rZQ8CBJvSm0Nh2nMmu8B1RgAPcwcG_FFIrFLj0iG-PJ2B0TmtpMdBRk9sIj47xTzArhOkYYMKTKkia5WmhImoo6HCdYfMqS9JhJ1KYM2mySi1r2qyTM-FXqDhVdSyDJdbgxmb7LymekEp5773QuTBqGosQ25kWap5prkRvfJK2FmWTleTMJf9mAUOFb4ia5Dqb74zXk06DHwtXJf4RPyRbDLohQ1dIiG_PptzsDbDLX52EL_gBWZdzy priority: 102 providerName: Wiley-Blackwell |
Title | A sound velocity method for determining isobaric specific heat capacity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12372 https://www.proquest.com/docview/2745660610 https://doaj.org/article/a7f5ffeb67c3467480d058363b5b76cf |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxtBEB40eakPpWqLaTUs6EuFq3d7t7ebpxLFJAoNIgq-LfuzFEpijf7_zmw2qYL4chx3c8cxszPz7d7sNwBHQZWeh1gXEXNF0UhRFZYHUTQWsX_jhRUD2o38a9pObpvLO3GXF9wWuaxyFRNToPZzR2vkJzh7QuSB2af8ef-voK5R9Hc1t9DYhC6GYKU60D09n15dr1dZiKALM_ial5SfoN34DwzXkr_KRImw_xXKfIlVU7IZfYKPGSWy4dKs27ARZjuw9YI7cBfGQ7aglkiMin4cYmm2bAbNEIUyn4tcUJL9WaDLYrRjtKmSCoMYxV_mMEvSY5_hdnR-czYpcleEwiGY4kXtKmVkFR2PbSl9CDG4Unhl8EZVR6esdYNgGu9iRDTgEO9wdGvDDYmVof4Cndl8FvaA1b6RA4M6VZGY5oPhXsowcNKhAU1T9eD7SkPaZcpw6lzxVy_JjrkmbeqkzR4crmXvl0QZb0qdkqLXEkRunS7MH37r7CvayChiDLaVrk7NUEpfClW3tRVWti72YH9lJp09bqH_j48eHCfTvfMZ-mI64uns6_vv-gYfOO13SPUr-9B5fHgKB4hCHm0fNnlzhUc1GvfzsOunGf0zOvrejA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcEPQhtkCx1PbQSimJHcfZQ1VRYNktsCeQuLl-VpXQLmWpKv4Uv7EzTrIFqeLGLUomVjQez3x2ZuYDeBfq3PMQRRYxVmSlkkVmeZBZaRH7l15a2adq5JNxNTwrv53L8wW47WphKK2y84nJUfupozPyHdw9IfLA6JN_ufyVEWsU_V3tKDQaszgKN39wyzb7PNrH-X3P-eDgdG-YtawCmUMwwjPhitqoIjoeq1z5EGJwufS1wQeFiK621vWDKb2LEaOpQ7zAcVkYbkgsDwLHfQJLpcBITpXpg8P5mQ61A0O8MO-CynfQSvgnDA6K34t7iR7gHqa9i4xTaBuswkqLSdluY0RrsBAmz2H5TqfCF3C4y2ZEwMQoxcghcmcN9TRDzMt8m1KDkuznDB0E-lZGJZyUhsTI2zOHMZleewlnj6KtV7A4mU7COjDhS9U3OIN1pL72wXCvVOg75dBcTFn04EOnIe3aBuXEk3Ghm9bKXJM2ddJmD97OZS-bthz_lfpKip5LUCvtdGN69UO3K1MbFWWMwVbKiUS9kvtc1qISVlpVudiDzW6adLu-Z_qfNfbgY5q6Bz5Dj8YDnq5ePzzWNjwdnp4c6-PR-GgDnnGqtEiZM5uweH31O2wh_rm2b5LRMfj-2Fb-F16lGRM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS9xAEB_sCaU-lH6JZ61daPvQQrxkk83mHkS0evVqe4go-Lbupwhyd3qW0n-tf50zm-SqUHzzLSSTJczOzvx2MzM_gI--Sh33IU8CxoqkkCJLDPciKQxi_8IJI_pUjfxzVO6fFN9PxekC_G1rYSitsvWJ0VG7iaUz8h7unhB5YPRJe6FJizjcHWxNrxJikKI_rS2dRm0iB_7Pb9y-zTaHuzjXnzgf7B1_3U8ahoHEIjDhSW6zSsssWB7KVDrvg7epcJXGB1kebGWM7XtdOBsCRlaL2IHjEtFck1jqcxz3CSxK2hV1YHFnb3R4ND_hoeZgiB7mPVF5D22Gb2CokPxeFIxkAfcQ7l2cHAPd4AU8bxAq265N6iUs-PErWLrTt_A1fNtmM6JjYpRwZBHHs5qImiECZq5JsEFJdjFDd4GellFBJyUlMfL9zGKEptfewMmj6GsZOuPJ2K8Ay10h-xrnswrU5d5r7qT0fSstGo8usi58bjWkbNOunFgzLlXdaJkr0qaK2uzCh7nstG7S8V-pHVL0XIIaa8cbk-tz1axTpWUQIXhTSptHIpbUpaLKy9wII0sburDWTpNqVvtM_bPNLnyJU_fAZ6jhaMDj1erDY72Hp2jh6sdwdPAWnnEqu4hpNGvQubn-5d8hGLox643VMTh7bEO_BfFHHqU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sound+velocity+method+for+determining+isobaric+specific+heat+capacity&rft.jtitle=InfoMat&rft.au=Pei%2C+Jun&rft.au=Li%2C+Hezhang&rft.au=Hua%E2%80%90Lu+Zhuang&rft.au=Dong%2C+Jinfeng&rft.date=2022-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2567-3165&rft.volume=4&rft.issue=12&rft_id=info:doi/10.1002%2Finf2.12372&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon |