Heat-shock protein 27 (Hsp27) as a target of methylglyoxal in gastrointestinal cancer

The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal modifications in gastrointestinal tumors. Methylglyoxal is a reactive dicarbonyl compound produced from cellular glycolytic...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1812; no. 7; pp. 769 - 781
Main Authors Oya-Ito, Tomoko, Naito, Yuji, Takagi, Tomohisa, Handa, Osamu, Matsui, Hirofumi, Yamada, Masaki, Shima, Keisuke, Yoshikawa, Toshikazu
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0925-4439
0006-3002
1879-260X
DOI10.1016/j.bbadis.2011.03.017

Cover

Abstract The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal modifications in gastrointestinal tumors. Methylglyoxal is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins. By using a monoclonal antibody to methylglyoxal-modified proteins, we found that murine heat-shock protein 25 and human heat-shock protein 27 were the major adducted proteins in rat gastric carcinoma mucosal cell line and human colon cancer cell line, respectively. Furthermore, we found that heat-shock protein 27 was modified by methylglyoxal in ascending colon and rectum of patients with cancer. However, methylglyoxal-modified heat-shock protein 25/heat-shock protein 27 was not detected in non cancerous cell lines or in normal subject. Matrix-associated laser desorption/ionization mass spectrometry/mass spectrometry analysis of peptide fragments identified Arg-75, Arg-79, Arg-89, Arg-94, Arg-127, Arg-136, Arg-140, Arg-188, and Lys-123 as methylglyoxal modification sites in heat-shock protein 27 and in phosphorylated heat-shock protein 27. The transfer of methylglyoxal-modified heat-shock protein 27 into rat intestinal epithelial cell line RIE was even more effective in preventing apoptotic cell death than that of native control heat-shock protein 27. Furthermore, methylglyoxal modification of heat-shock protein 27 protected the cells against both the hydrogen peroxide- and cytochrome c-mediated caspase activation, and the hydrogen peroxide-induced production of intracellular reactive oxygen species. The levels of lactate converted from methylglyoxal were increased in carcinoma mucosal cell lines. Our results suggest that posttranslational modification of heat-shock protein 27 by methylglyoxal may have important implications for epithelial cell injury in gastrointestinal cancer. ► Hsp25/Hsp27 is modified by methylglyoxal in carcinoma but not in healthy cell lines. ► Methylglyoxal modification of Hsp27 was necessary for its enhanced anti-apoptotic effects. ► Methylglyoxal modification of Hsp27 decreases intracellular reactive oxygen species. ► Lactate converted from methylglyoxal are elevated in carcinoma mucosal cell lines.
AbstractList The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal modifications in gastrointestinal tumors. Methylglyoxal is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins. By using a monoclonal antibody to methylglyoxal-modified proteins, we found that murine heat-shock protein 25 and human heat-shock protein 27 were the major adducted proteins in rat gastric carcinoma mucosal cell line and human colon cancer cell line, respectively. Furthermore, we found that heat-shock protein 27 was modified by methylglyoxal in ascending colon and rectum of patients with cancer. However, methylglyoxal-modified heat-shock protein 25/heat-shock protein 27 was not detected in non cancerous cell lines or in normal subject. Matrix-associated laser desorption/ionization mass spectrometry/mass spectrometry analysis of peptide fragments identified Arg-75, Arg-79, Arg-89, Arg-94, Arg-127, Arg-136, Arg-140, Arg-188, and Lys-123 as methylglyoxal modification sites in heat-shock protein 27 and in phosphorylated heat-shock protein 27. The transfer of methylglyoxal-modified heat-shock protein 27 into rat intestinal epithelial cell line RIE was even more effective in preventing apoptotic cell death than that of native control heat-shock protein 27. Furthermore, methylglyoxal modification of heat-shock protein 27 protected the cells against both the hydrogen peroxide- and cytochrome c-mediated caspase activation, and the hydrogen peroxide-induced production of intracellular reactive oxygen species. The levels of lactate converted from methylglyoxal were increased in carcinoma mucosal cell lines. Our results suggest that posttranslational modification of heat-shock protein 27 by methylglyoxal may have important implications for epithelial cell injury in gastrointestinal cancer.
The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal modifications in gastrointestinal tumors. Methylglyoxal is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins. By using a monoclonal antibody to methylglyoxal-modified proteins, we found that murine heat-shock protein 25 and human heat-shock protein 27 were the major adducted proteins in rat gastric carcinoma mucosal cell line and human colon cancer cell line, respectively. Furthermore, we found that heat-shock protein 27 was modified by methylglyoxal in ascending colon and rectum of patients with cancer. However, methylglyoxal-modified heat-shock protein 25/heat-shock protein 27 was not detected in non cancerous cell lines or in normal subject. Matrix-associated laser desorption/ionization mass spectrometry/mass spectrometry analysis of peptide fragments identified Arg-75, Arg-79, Arg-89, Arg-94, Arg-127, Arg-136, Arg-140, Arg-188, and Lys-123 as methylglyoxal modification sites in heat-shock protein 27 and in phosphorylated heat-shock protein 27. The transfer of methylglyoxal-modified heat-shock protein 27 into rat intestinal epithelial cell line RIE was even more effective in preventing apoptotic cell death than that of native control heat-shock protein 27. Furthermore, methylglyoxal modification of heat-shock protein 27 protected the cells against both the hydrogen peroxide- and cytochrome c-mediated caspase activation, and the hydrogen peroxide-induced production of intracellular reactive oxygen species. The levels of lactate converted from methylglyoxal were increased in carcinoma mucosal cell lines. Our results suggest that posttranslational modification of heat-shock protein 27 by methylglyoxal may have important implications for epithelial cell injury in gastrointestinal cancer.The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal modifications in gastrointestinal tumors. Methylglyoxal is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins. By using a monoclonal antibody to methylglyoxal-modified proteins, we found that murine heat-shock protein 25 and human heat-shock protein 27 were the major adducted proteins in rat gastric carcinoma mucosal cell line and human colon cancer cell line, respectively. Furthermore, we found that heat-shock protein 27 was modified by methylglyoxal in ascending colon and rectum of patients with cancer. However, methylglyoxal-modified heat-shock protein 25/heat-shock protein 27 was not detected in non cancerous cell lines or in normal subject. Matrix-associated laser desorption/ionization mass spectrometry/mass spectrometry analysis of peptide fragments identified Arg-75, Arg-79, Arg-89, Arg-94, Arg-127, Arg-136, Arg-140, Arg-188, and Lys-123 as methylglyoxal modification sites in heat-shock protein 27 and in phosphorylated heat-shock protein 27. The transfer of methylglyoxal-modified heat-shock protein 27 into rat intestinal epithelial cell line RIE was even more effective in preventing apoptotic cell death than that of native control heat-shock protein 27. Furthermore, methylglyoxal modification of heat-shock protein 27 protected the cells against both the hydrogen peroxide- and cytochrome c-mediated caspase activation, and the hydrogen peroxide-induced production of intracellular reactive oxygen species. The levels of lactate converted from methylglyoxal were increased in carcinoma mucosal cell lines. Our results suggest that posttranslational modification of heat-shock protein 27 by methylglyoxal may have important implications for epithelial cell injury in gastrointestinal cancer.
The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal (MG) modifications in gastrointestinal tumors. MG is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins. By using a monoclonal antibody to MG-modified proteins, we found that murine heat-shock protein 25 (Hsp25) and human Hsp27 were the major adducted proteins in rat gastric carcinoma mucosal cell line and human colon cancer cell line, respectively. Furthermore, we found that Hsp27 was modified by MG in ascending colon and rectum of patients with cancer. However, MG-modified Hsp25/Hsp27 was not detected in non cancerous cell lines or in normal subject. MALDI-MS/MS analysis of peptide fragments identified Arg-75, Arg-79, Arg-89, Arg-94, Arg-127, Arg-136, Arg-140, Arg-188, and Lys-123 as MG modification sites in Hsp27 and in phosphorylated Hsp27. The transfer of MG-modified Hsp27 into rat intestinal epithelial cell line RIE was even more effective in preventing apoptotic cell death than that of native control Hsp27. Furthermore, MG modification of Hsp27 protected the cells against the both hydrogen peroxide- and cytochrome -mediated caspase activation, and the hydrogen peroxide-induced production of intracellular reactive oxygen species. The levels of lactate converted from MG were increased in carcinoma mucosal cell lines. Our results suggest that posttranslational modification of Hsp27 by MG may have important implications for epithelial cell injury in gastrointestinal cancer.
The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal modifications in gastrointestinal tumors. Methylglyoxal is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins. By using a monoclonal antibody to methylglyoxal-modified proteins, we found that murine heat-shock protein 25 and human heat-shock protein 27 were the major adducted proteins in rat gastric carcinoma mucosal cell line and human colon cancer cell line, respectively. Furthermore, we found that heat-shock protein 27 was modified by methylglyoxal in ascending colon and rectum of patients with cancer. However, methylglyoxal-modified heat-shock protein 25/heat-shock protein 27 was not detected in non cancerous cell lines or in normal subject. Matrix-associated laser desorption/ionization mass spectrometry/mass spectrometry analysis of peptide fragments identified Arg-75, Arg-79, Arg-89, Arg-94, Arg-127, Arg-136, Arg-140, Arg-188, and Lys-123 as methylglyoxal modification sites in heat-shock protein 27 and in phosphorylated heat-shock protein 27. The transfer of methylglyoxal-modified heat-shock protein 27 into rat intestinal epithelial cell line RIE was even more effective in preventing apoptotic cell death than that of native control heat-shock protein 27. Furthermore, methylglyoxal modification of heat-shock protein 27 protected the cells against both the hydrogen peroxide- and cytochrome c-mediated caspase activation, and the hydrogen peroxide-induced production of intracellular reactive oxygen species. The levels of lactate converted from methylglyoxal were increased in carcinoma mucosal cell lines. Our results suggest that posttranslational modification of heat-shock protein 27 by methylglyoxal may have important implications for epithelial cell injury in gastrointestinal cancer. ► Hsp25/Hsp27 is modified by methylglyoxal in carcinoma but not in healthy cell lines. ► Methylglyoxal modification of Hsp27 was necessary for its enhanced anti-apoptotic effects. ► Methylglyoxal modification of Hsp27 decreases intracellular reactive oxygen species. ► Lactate converted from methylglyoxal are elevated in carcinoma mucosal cell lines.
Author Naito, Yuji
Yoshikawa, Toshikazu
Takagi, Tomohisa
Matsui, Hirofumi
Oya-Ito, Tomoko
Shima, Keisuke
Handa, Osamu
Yamada, Masaki
Author_xml – sequence: 1
  givenname: Tomoko
  surname: Oya-Ito
  fullname: Oya-Ito, Tomoko
  email: oya-ito@koto.kpu-m.ac.jp
  organization: Department of Medical Proteomics, Kyoto Prefectural University of Medicine, 465 Kaji-i, Kyoto 602-8566, Japan
– sequence: 2
  givenname: Yuji
  surname: Naito
  fullname: Naito, Yuji
  organization: Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kaji-i, Kyoto 602-8566, Japan
– sequence: 3
  givenname: Tomohisa
  surname: Takagi
  fullname: Takagi, Tomohisa
  organization: Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kaji-i, Kyoto 602-8566, Japan
– sequence: 4
  givenname: Osamu
  surname: Handa
  fullname: Handa, Osamu
  organization: Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kaji-i, Kyoto 602-8566, Japan
– sequence: 5
  givenname: Hirofumi
  surname: Matsui
  fullname: Matsui, Hirofumi
  organization: Division of Gastroenterology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba 305-8575, Japan
– sequence: 6
  givenname: Masaki
  surname: Yamada
  fullname: Yamada, Masaki
  organization: Shimadzu Corporation, 1 Nishinokyo-kuwahara, Kyoto 604-8511, Japan
– sequence: 7
  givenname: Keisuke
  surname: Shima
  fullname: Shima, Keisuke
  organization: Shimadzu Corporation, 1 Nishinokyo-kuwahara, Kyoto 604-8511, Japan
– sequence: 8
  givenname: Toshikazu
  surname: Yoshikawa
  fullname: Yoshikawa, Toshikazu
  organization: Department of Medical Proteomics, Kyoto Prefectural University of Medicine, 465 Kaji-i, Kyoto 602-8566, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21497196$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00694726$$DView record in HAL
BookMark eNqFkUFvEzEQhS1URNPCP0Bob9DDLh57vc5yqFRVtEGKxIVK3KxZ7yRx2KyD7VTk3-NoWw4cwJeRRt978rx3wc5GPxJjb4FXwKH5uK26DnsXK8EBKi4rDvoFm8Fct6Vo-PczNuOtUGVdy_acXcS45fk1mr9i5wLqVkPbzNjDgjCVcePtj2IffCI3FkIXHxZxL_RVgbHAImFYUyr8qthR2hyH9XD0v3AoMrrGmIJ3Y6KY3Jh3FkdL4TV7ucIh0punecke7j5_u12Uy6_3X25vlqVVXKdyhT1QJxU2XNYAMG9FTbqprQWtGlSWC1C1mnOpoO8s2pVs85pQSQEoW3nJribfDQ5mH9wOw9F4dGZxszSnXT64rbVoHiGz7yc2n_nzkP9rdi5aGgYcyR-imTcqs0qdXN89kYduR_0f4-fUMvBpAmzwMQZaGesSJufHFNANBrg5VWS2ZqrInCoyXJpcURbXf4mf_f8ju55klPN8dBRMtI5y2L0LZJPpvfu3wW948Knj
CitedBy_id crossref_primary_10_1080_07391102_2023_2290621
crossref_primary_10_1155_2019_8346930
crossref_primary_10_1002_ange_201605366
crossref_primary_10_1007_s00726_013_1627_5
crossref_primary_10_3389_fonc_2022_857746
crossref_primary_10_3390_metabo14010003
crossref_primary_10_7554_eLife_19375
crossref_primary_10_1016_j_foodchem_2014_05_022
crossref_primary_10_3390_cancers13020313
crossref_primary_10_1007_s10719_016_9705_z
crossref_primary_10_1042_BSR20220395
crossref_primary_10_3390_nu14051061
crossref_primary_10_1016_j_diabres_2019_01_002
crossref_primary_10_1002_anie_201605366
crossref_primary_10_1016_j_semcancer_2017_05_010
crossref_primary_10_1016_j_freeradbiomed_2017_12_020
crossref_primary_10_1080_10408444_2024_2362985
crossref_primary_10_3390_life11121319
crossref_primary_10_1016_j_molp_2024_01_001
crossref_primary_10_1016_j_semcancer_2017_06_005
crossref_primary_10_1002_mas_21378
crossref_primary_10_1002_mnfr_201500759
crossref_primary_10_3390_ijms25179632
crossref_primary_10_1007_s12192_019_00979_z
crossref_primary_10_1016_j_canlet_2017_01_020
crossref_primary_10_3390_ijms25137319
crossref_primary_10_1096_fj_201902936R
crossref_primary_10_1002_anie_201810037
crossref_primary_10_1016_j_semcancer_2020_11_019
crossref_primary_10_3390_cells12091219
crossref_primary_10_7314_APJCP_2012_13_4_1663
crossref_primary_10_1007_s10719_021_10031_x
crossref_primary_10_3389_fonc_2021_645686
crossref_primary_10_1007_s10719_016_9709_8
crossref_primary_10_3390_cells12101414
crossref_primary_10_1093_glycob_cwab011
crossref_primary_10_18632_oncotarget_2121
crossref_primary_10_1371_journal_pone_0030257
crossref_primary_10_3390_ijms18010213
crossref_primary_10_1038_s41467_019_09192_z
crossref_primary_10_1002_ange_201810037
crossref_primary_10_1007_s10930_013_9480_7
crossref_primary_10_3390_metabo13040564
crossref_primary_10_1016_j_celrep_2020_01_012
crossref_primary_10_1111_jgh_12775
crossref_primary_10_1007_s12192_016_0686_4
crossref_primary_10_1007_s12192_019_00975_3
crossref_primary_10_1021_acschembio_3c00214
crossref_primary_10_1002_mas_21471
crossref_primary_10_1134_S000629791707001X
Cites_doi 10.1016/0003-9861(83)90615-X
10.1016/0014-5793(70)80546-4
10.1002/jcb.20781
10.1007/s11626-007-9067-8
10.1016/0003-2697(80)90314-0
10.1038/sj.onc.1203850
10.1074/jbc.M207485200
10.1007/BF02576298
10.1021/tx9001379
10.1021/bi052574s
10.1016/j.canlet.2005.10.042
10.1074/jbc.274.26.18492
10.1074/jbc.274.27.18947
10.1083/jcb.143.5.1361
10.1128/JB.119.2.357-362.1974
10.1126/science.123.3191.309
10.1158/0008-5472.CAN-08-4806
10.1016/j.tibs.2006.01.006
10.1007/BF00225648
10.1099/00221287-138-10-2007
10.1152/ajpgi.00563.2005
10.1074/jbc.M209264200
10.1053/gast.2001.27028
10.1016/0014-5793(92)81216-9
10.1111/j.1349-7006.2006.00220.x
10.1126/stke.3812007pe14
10.1016/j.febslet.2006.01.086
10.1016/j.febslet.2007.04.033
10.1016/S0006-2952(02)01388-6
10.1007/BF02191910
10.1379/1466-1268(1997)002<0238:TBTAAO>2.3.CO;2
10.1016/0092-8674(94)90277-1
10.1007/s00432-006-0143-3
10.1074/jbc.274.14.9378
10.1042/bj2540751
10.1016/S0014-5793(03)00874-3
10.1021/pr800376w
10.1021/bi034541n
10.1379/CSC-99r.1
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright © 2011 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: Copyright © 2011 Elsevier B.V. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
DOI 10.1016/j.bbadis.2011.03.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1879-260X
EndPage 781
ExternalDocumentID oai_HAL_hal_00694726v1
21497196
10_1016_j_bbadis_2011_03_017
S092544391100072X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABEFU
ABFNM
ABGSF
ABLVK
ABMAC
ABMZM
ABUDA
ABVKL
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
IXB
J1W
KOM
LCYCR
LX3
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UQL
WUQ
XJT
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
CITATION
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
AKRWK
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
OHT
RIG
TWZ
UHS
VH1
WH7
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
1XC
VOOES
ID FETCH-LOGICAL-c507t-fad1eb35a60341118924e764cc1756a5c02154580351dbcacf396a5ea5321a393
IEDL.DBID AIKHN
ISSN 0925-4439
0006-3002
IngestDate Fri May 09 12:21:57 EDT 2025
Fri Sep 05 13:23:48 EDT 2025
Mon Jul 21 06:04:37 EDT 2025
Thu Apr 24 22:57:25 EDT 2025
Tue Jul 01 01:16:42 EDT 2025
Fri Feb 23 02:30:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Heat-shock protein 27
Hsp25
Hsp27
MALDI-MS
FACS
RIE
Posttranslational modification
Methylglyoxal
YAMC
ROS
APF
Proteomics
RGM
MG
MG-Hsp27
AGE
Apoptosis
Cancer
heat-shock protein 27
proteomics
posttranslational modification
apoptosis
AGEs
glycation
methylglyoxal
cancer
phosphorylation
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2011 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-fad1eb35a60341118924e764cc1756a5c02154580351dbcacf396a5ea5321a393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S092544391100072X
PMID 21497196
PQID 865694559
PQPubID 23479
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_00694726v1
proquest_miscellaneous_865694559
pubmed_primary_21497196
crossref_citationtrail_10_1016_j_bbadis_2011_03_017
crossref_primary_10_1016_j_bbadis_2011_03_017
elsevier_sciencedirect_doi_10_1016_j_bbadis_2011_03_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-07-01
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Decroos, Li, Bertho, Frapart, Mansuy, Boucher (bb0030) 2009; 22
Puskas, Fredd, Gazdar, Peterkofsky (bb0145) 1983; 223
Huot, Houle, Rousseau, Deschesnes, Shah, Landry (bb0190) 1998; 143
Oya-Ito, Liu, Nagaraj (bb0045) 2006; 99
Dai, Jia, Wu, Isenberg, Ridnour, Bandle, Wink, Roberts, Karger (bb0170) 2008; 7
Biswas, Miller, Oya-Ito, Santhoshkumar, Bhat, Nagaraj (bb0200) 2006; 45
Hirayama, Kami, Sugimoto, Sugawara, Toki, Onozuka, Kinoshita, Saito, Ochiai, Tomita, Esumi, Soga (bb0010) 2009; 69
Calderwood, Khaleque, Sawyer, Ciocca (bb0095) 2006; 31
Mazzanti, Solazzo, Fantappie, Elfering, Pantaleo, Bechi, Cianchi, Ettl, Giulivi (bb0115) 2006; 290
Negre-Aminou, van Leeuwen, van Thiel, van den Ijssel, de Jong, Quinlan, Cohen (bb0185) 2002; 64
Lambert, Charette, Bernier, Guimond, Landry (bb0080) 1999; 274
Kondoh, Kawase, Kawakami, Ohmori (bb0135) 1992; 192
Ackerman, Cozzarelli, Epstein (bb0140) 1974; 119
Warburg (bb0005) 1956; 123
Padival, Crabb, Nagaraj (bb0180) 2003; 551
Bruey, Paul, Fromentin, Hilpert, Arrigo, Solary, Garrido (bb0160) 2000; 19
Rogalla, Ehrnsperger, Preville, Kotlyarov, Lutsch, Ducasse, Paul, Wieske, Arrigo, Buchner, Gaestel (bb0075) 1999; 274
Kadner, Murphy, Stephens (bb0150) 1992; 138
Garrido, Fromentin, Bonnotte, Favre, Moutet, Arrigo, Mehlen, Solary (bb0100) 1998; 58
Koukourakis, Giatromanolaki, Polychronidis, Simopoulos, Gatter, Harris, Sivridis (bb0110) 2006; 97
Shimokawa, Matsui, Nagano, Kaneko, Shibahara, Nakahara, Hyodo, Yanaka, Majima, Nakamura, Matsuzaki (bb0050) 2008; 44
Stokoe, Engel, Campbell, Cohen, Gaestel (bb0035) 1992; 313
Titov, Dmitriev, Krylin, Dmitriev (bb0105) 2010
Rouse, Cohen, Trigon, Morange, Alonso-Llamazares, Zamanillo, Hunt, Nebreda (bb0040) 1994; 78
Gonin, Fabre-Jonca, Diaz-Latoud, Rouault, Arrigo (bb0070) 1997; 2
Muller, Neuhofer, Ohno, Rucker, Thurau, Beck (bb0065) 1996; 431
Brandt, Siegel, Waters, Bloch (bb0055) 1980; 102
Cooper, Anderson (bb0130) 1970; 11
Schalkwijk, van Bezu, van der Schors, Uchida, Stehouwer, van Hinsbergh (bb0175) 2006; 580
Ren, Musch, Kojima, Boone, Ma, Chang (bb0025) 2001; 121
van Heijst, Niessen, Musters, van Hinsbergh, Hoekman, Schalkwijk (bb0015) 2006; 241
Argiles, Azcon-Bieto (bb0120) 1988; 81
Arrigo, Simon, Gibert, Kretz-Remy, Nivon, Czekalla, Guillet, Moulin, Diaz-Latoud, Vicart (bb0020) 2007; 581
Ciocca, Calderwood (bb0090) 2005; 10
Sakamoto, Mashima, Yamamoto, Tsuruo (bb0205) 2002; 277
Oya, Hattori, Mizuno, Miyata, Maeda, Osawa, Uchida (bb0060) 1999; 274
Setsukinai, Urano, Kakinuma, Majima, Nagano (bb0085) 2003; 278
Thornalley (bb0155) 1988; 254
Nagaraj, Oya-Ito, Padayatti, Kumar, Mehta, West, Levison, Sun, Crabb, Padival (bb0165) 2003; 42
Pan, Mak (bb0125) 2007; 2007
Lee, Sun, Cho, Kim, Hong, Kim, Lee (bb0195) 2007; 133
Rouse (10.1016/j.bbadis.2011.03.017_bb0040) 1994; 78
Kondoh (10.1016/j.bbadis.2011.03.017_bb0135) 1992; 192
Decroos (10.1016/j.bbadis.2011.03.017_bb0030) 2009; 22
Muller (10.1016/j.bbadis.2011.03.017_bb0065) 1996; 431
Cooper (10.1016/j.bbadis.2011.03.017_bb0130) 1970; 11
Puskas (10.1016/j.bbadis.2011.03.017_bb0145) 1983; 223
Brandt (10.1016/j.bbadis.2011.03.017_bb0055) 1980; 102
Bruey (10.1016/j.bbadis.2011.03.017_bb0160) 2000; 19
Sakamoto (10.1016/j.bbadis.2011.03.017_bb0205) 2002; 277
Garrido (10.1016/j.bbadis.2011.03.017_bb0100) 1998; 58
Pan (10.1016/j.bbadis.2011.03.017_bb0125) 2007; 2007
Ackerman (10.1016/j.bbadis.2011.03.017_bb0140) 1974; 119
Negre-Aminou (10.1016/j.bbadis.2011.03.017_bb0185) 2002; 64
Gonin (10.1016/j.bbadis.2011.03.017_bb0070) 1997; 2
Padival (10.1016/j.bbadis.2011.03.017_bb0180) 2003; 551
Argiles (10.1016/j.bbadis.2011.03.017_bb0120) 1988; 81
Ciocca (10.1016/j.bbadis.2011.03.017_bb0090) 2005; 10
Kadner (10.1016/j.bbadis.2011.03.017_bb0150) 1992; 138
Ren (10.1016/j.bbadis.2011.03.017_bb0025) 2001; 121
Schalkwijk (10.1016/j.bbadis.2011.03.017_bb0175) 2006; 580
Arrigo (10.1016/j.bbadis.2011.03.017_bb0020) 2007; 581
Oya (10.1016/j.bbadis.2011.03.017_bb0060) 1999; 274
Warburg (10.1016/j.bbadis.2011.03.017_bb0005) 1956; 123
Lee (10.1016/j.bbadis.2011.03.017_bb0195) 2007; 133
Shimokawa (10.1016/j.bbadis.2011.03.017_bb0050) 2008; 44
Titov (10.1016/j.bbadis.2011.03.017_bb0105) 2010
Lambert (10.1016/j.bbadis.2011.03.017_bb0080) 1999; 274
Mazzanti (10.1016/j.bbadis.2011.03.017_bb0115) 2006; 290
Thornalley (10.1016/j.bbadis.2011.03.017_bb0155) 1988; 254
Dai (10.1016/j.bbadis.2011.03.017_bb0170) 2008; 7
Huot (10.1016/j.bbadis.2011.03.017_bb0190) 1998; 143
Rogalla (10.1016/j.bbadis.2011.03.017_bb0075) 1999; 274
Setsukinai (10.1016/j.bbadis.2011.03.017_bb0085) 2003; 278
Calderwood (10.1016/j.bbadis.2011.03.017_bb0095) 2006; 31
Biswas (10.1016/j.bbadis.2011.03.017_bb0200) 2006; 45
van Heijst (10.1016/j.bbadis.2011.03.017_bb0015) 2006; 241
Oya-Ito (10.1016/j.bbadis.2011.03.017_bb0045) 2006; 99
Nagaraj (10.1016/j.bbadis.2011.03.017_bb0165) 2003; 42
Koukourakis (10.1016/j.bbadis.2011.03.017_bb0110) 2006; 97
Stokoe (10.1016/j.bbadis.2011.03.017_bb0035) 1992; 313
Hirayama (10.1016/j.bbadis.2011.03.017_bb0010) 2009; 69
References_xml – volume: 278
  start-page: 3170
  year: 2003
  end-page: 3175
  ident: bb0085
  article-title: Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species
  publication-title: J. Biol. Chem.
– volume: 274
  start-page: 9378
  year: 1999
  end-page: 9385
  ident: bb0080
  article-title: HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus
  publication-title: J. Biol. Chem.
– volume: 44
  start-page: 26
  year: 2008
  end-page: 30
  ident: bb0050
  article-title: Neoplastic transformation and induction of H+, K+ −
  publication-title: In Vitro Cell. Dev. Biol. Anim.
– volume: 31
  start-page: 164
  year: 2006
  end-page: 172
  ident: bb0095
  article-title: Heat shock proteins in cancer: chaperones of tumorigenesis
  publication-title: Trends Biochem. Sci.
– volume: 241
  start-page: 309
  year: 2006
  end-page: 319
  ident: bb0015
  article-title: Argpyrimidine-modified heat shock protein 27 in human non-small cell lung cancer: a possible mechanism for evasion of apoptosis
  publication-title: Cancer Lett.
– volume: 143
  start-page: 1361
  year: 1998
  end-page: 1373
  ident: bb0190
  article-title: SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis
  publication-title: J. Cell Biol.
– volume: 313
  start-page: 307
  year: 1992
  end-page: 313
  ident: bb0035
  article-title: Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins
  publication-title: FEBS Lett.
– volume: 11
  start-page: 273
  year: 1970
  end-page: 276
  ident: bb0130
  article-title: The formation and catabolism of methylglyoxal during glycolysis in
  publication-title: FEBS Lett.
– volume: 64
  start-page: 1483
  year: 2002
  end-page: 1491
  ident: bb0185
  article-title: Differential effect of simvastatin on activation of Rac(1) vs. activation of the heat shock protein 27-mediated pathway upon oxidative stress, in human smooth muscle cells
  publication-title: Biochem. Pharmacol.
– volume: 192
  start-page: 407
  year: 1992
  end-page: 414
  ident: bb0135
  article-title: Concentrations of
  publication-title: Res. Exp. Med. (Berl.)
– volume: 58
  start-page: 5495
  year: 1998
  end-page: 5499
  ident: bb0100
  article-title: Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones
  publication-title: Cancer Res.
– volume: 123
  start-page: 309
  year: 1956
  end-page: 314
  ident: bb0005
  article-title: On the origin of cancer cells
  publication-title: Science
– volume: 2
  start-page: 238
  year: 1997
  end-page: 251
  ident: bb0070
  article-title: Transformation by T-antigen and other oncogenes delays Hsp25 accumulation in heat shocked NIH 3T3 fibroblasts
  publication-title: Cell Stress Chaperones
– volume: 97
  start-page: 582
  year: 2006
  end-page: 588
  ident: bb0110
  article-title: Endogenous markers of hypoxia/anaerobic metabolism and anemia in primary colorectal cancer
  publication-title: Cancer Sci.
– volume: 581
  start-page: 3665
  year: 2007
  end-page: 3674
  ident: bb0020
  article-title: Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets
  publication-title: FEBS Lett.
– volume: 119
  start-page: 357
  year: 1974
  end-page: 362
  ident: bb0140
  article-title: Accumulation of toxic concentrations of methylglyoxal by wild-type
  publication-title: J. Bacteriol.
– volume: 81
  start-page: 3
  year: 1988
  end-page: 17
  ident: bb0120
  article-title: The metabolic environment of cancer
  publication-title: Mol. Cell. Biochem.
– volume: 133
  start-page: 37
  year: 2007
  end-page: 46
  ident: bb0195
  article-title: Overexpression of human 27
  publication-title: J. Cancer Res. Clin. Oncol.
– volume: 22
  start-page: 1342
  year: 2009
  end-page: 1350
  ident: bb0030
  article-title: Oxidative and reductive metabolism of tris(p-carboxyltetrathiaaryl)methyl radicals by liver microsomes
  publication-title: Chem. Res. Toxicol.
– start-page: 22
  year: 2010
  end-page: 36
  ident: bb0105
  article-title: Methylglyoxal—a test for impaired biological functions of exotrophy and endoecology, low glucose level in the cytosol and gluconeogenesis from fatty acids (a lecture)
  publication-title: Klin. Lab. Diagn.
– volume: 580
  start-page: 1565
  year: 2006
  end-page: 1570
  ident: bb0175
  article-title: Heat-shock protein 27 is a major methylglyoxal-modified protein in endothelial cells
  publication-title: FEBS Lett.
– volume: 99
  start-page: 279
  year: 2006
  end-page: 291
  ident: bb0045
  article-title: Effect of methylglyoxal modification and phosphorylation on the chaperone and anti-apoptotic properties of heat shock protein 27
  publication-title: J. Cell. Biochem.
– volume: 10
  start-page: 86
  year: 2005
  end-page: 103
  ident: bb0090
  article-title: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications
  publication-title: Cell Stress Chaperones
– volume: 223
  start-page: 503
  year: 1983
  end-page: 513
  ident: bb0145
  article-title: Methylglyoxal-mediated growth inhibition in an
  publication-title: Arch. Biochem. Biophys.
– volume: 274
  start-page: 18492
  year: 1999
  end-page: 18502
  ident: bb0060
  article-title: Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal–arginine adducts
  publication-title: J. Biol. Chem.
– volume: 2007
  start-page: e14
  year: 2007
  ident: bb0125
  article-title: Metabolic targeting as an anticancer strategy: dawn of a new era?
  publication-title: Sci. STKE
– volume: 42
  start-page: 10746
  year: 2003
  end-page: 10755
  ident: bb0165
  article-title: Enhancement of chaperone function of alpha-crystallin by methylglyoxal modification
  publication-title: Biochemistry
– volume: 102
  start-page: 39
  year: 1980
  end-page: 46
  ident: bb0055
  article-title: Spectrophotometric assay for
  publication-title: Anal. Biochem.
– volume: 277
  start-page: 45770
  year: 2002
  end-page: 45775
  ident: bb0205
  article-title: Modulation of heat-shock protein 27 (Hsp27) anti-apoptotic activity by methylglyoxal modification
  publication-title: J. Biol. Chem.
– volume: 254
  start-page: 751
  year: 1988
  end-page: 755
  ident: bb0155
  article-title: Modification of the glyoxalase system in human red blood cells by glucose in vitro
  publication-title: Biochem. J.
– volume: 19
  start-page: 4855
  year: 2000
  end-page: 4863
  ident: bb0160
  article-title: Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo
  publication-title: Oncogene
– volume: 138
  start-page: 2007
  year: 1992
  end-page: 2014
  ident: bb0150
  article-title: Two mechanisms for growth inhibition by elevated transport of sugar phosphates in
  publication-title: J. Gen. Microbiol.
– volume: 69
  start-page: 4918
  year: 2009
  end-page: 4925
  ident: bb0010
  article-title: Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry
  publication-title: Cancer Res.
– volume: 274
  start-page: 18947
  year: 1999
  end-page: 18956
  ident: bb0075
  article-title: Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation
  publication-title: J. Biol. Chem.
– volume: 78
  start-page: 1027
  year: 1994
  end-page: 1037
  ident: bb0040
  article-title: A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins
  publication-title: Cell
– volume: 290
  start-page: G1329
  year: 2006
  end-page: G1338
  ident: bb0115
  article-title: Differential expression proteomics of human colon cancer
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 121
  start-page: 631
  year: 2001
  end-page: 639
  ident: bb0025
  article-title: Short-chain fatty acids induce intestinal epithelial heat shock protein 25 expression in rats and IEC 18 cells
  publication-title: Gastroenterology
– volume: 7
  start-page: 4384
  year: 2008
  end-page: 4395
  ident: bb0170
  article-title: Comprehensive characterization of heat shock protein 27 phosphorylation in human endothelial cells stimulated by the microbial dithiole thiolutin
  publication-title: J. Proteome Res.
– volume: 431
  start-page: 608
  year: 1996
  end-page: 617
  ident: bb0065
  article-title: Heat shock proteins HSP25, HSP60, HSP72, HSP73 in isoosmotic cortex and hyperosmotic medulla of rat kidney
  publication-title: Pflugers Arch.
– volume: 45
  start-page: 4569
  year: 2006
  end-page: 4577
  ident: bb0200
  article-title: Effect of site-directed mutagenesis of methylglyoxal-modifiable arginine residues on the structure and chaperone function of human alphaA-crystallin
  publication-title: Biochemistry
– volume: 551
  start-page: 113
  year: 2003
  end-page: 118
  ident: bb0180
  article-title: Methylglyoxal modifies heat shock protein 27 in glomerular mesangial cells
  publication-title: FEBS Lett.
– volume: 223
  start-page: 503
  year: 1983
  ident: 10.1016/j.bbadis.2011.03.017_bb0145
  article-title: Methylglyoxal-mediated growth inhibition in an Escherichia coli cAMP receptor protein mutant
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(83)90615-X
– volume: 11
  start-page: 273
  year: 1970
  ident: 10.1016/j.bbadis.2011.03.017_bb0130
  article-title: The formation and catabolism of methylglyoxal during glycolysis in Escherichia coli
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(70)80546-4
– volume: 99
  start-page: 279
  year: 2006
  ident: 10.1016/j.bbadis.2011.03.017_bb0045
  article-title: Effect of methylglyoxal modification and phosphorylation on the chaperone and anti-apoptotic properties of heat shock protein 27
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.20781
– volume: 44
  start-page: 26
  year: 2008
  ident: 10.1016/j.bbadis.2011.03.017_bb0050
  article-title: Neoplastic transformation and induction of H+, K+ −adenosine triphosphatase by N-methyl-N′-nitro-N-nitrosoguanidine in the gastric epithelial RGM-1 cell line
  publication-title: In Vitro Cell. Dev. Biol. Anim.
  doi: 10.1007/s11626-007-9067-8
– volume: 102
  start-page: 39
  year: 1980
  ident: 10.1016/j.bbadis.2011.03.017_bb0055
  article-title: Spectrophotometric assay for d-(−)-lactate in plasma
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(80)90314-0
– volume: 19
  start-page: 4855
  year: 2000
  ident: 10.1016/j.bbadis.2011.03.017_bb0160
  article-title: Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203850
– volume: 277
  start-page: 45770
  year: 2002
  ident: 10.1016/j.bbadis.2011.03.017_bb0205
  article-title: Modulation of heat-shock protein 27 (Hsp27) anti-apoptotic activity by methylglyoxal modification
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M207485200
– volume: 192
  start-page: 407
  year: 1992
  ident: 10.1016/j.bbadis.2011.03.017_bb0135
  article-title: Concentrations of d-lactate and its related metabolic intermediates in liver, blood, and muscle of diabetic and starved rats
  publication-title: Res. Exp. Med. (Berl.)
  doi: 10.1007/BF02576298
– volume: 22
  start-page: 1342
  year: 2009
  ident: 10.1016/j.bbadis.2011.03.017_bb0030
  article-title: Oxidative and reductive metabolism of tris(p-carboxyltetrathiaaryl)methyl radicals by liver microsomes
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx9001379
– volume: 45
  start-page: 4569
  year: 2006
  ident: 10.1016/j.bbadis.2011.03.017_bb0200
  article-title: Effect of site-directed mutagenesis of methylglyoxal-modifiable arginine residues on the structure and chaperone function of human alphaA-crystallin
  publication-title: Biochemistry
  doi: 10.1021/bi052574s
– volume: 58
  start-page: 5495
  year: 1998
  ident: 10.1016/j.bbadis.2011.03.017_bb0100
  article-title: Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones
  publication-title: Cancer Res.
– volume: 241
  start-page: 309
  year: 2006
  ident: 10.1016/j.bbadis.2011.03.017_bb0015
  article-title: Argpyrimidine-modified heat shock protein 27 in human non-small cell lung cancer: a possible mechanism for evasion of apoptosis
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2005.10.042
– volume: 274
  start-page: 18492
  year: 1999
  ident: 10.1016/j.bbadis.2011.03.017_bb0060
  article-title: Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal–arginine adducts
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.26.18492
– volume: 274
  start-page: 18947
  year: 1999
  ident: 10.1016/j.bbadis.2011.03.017_bb0075
  article-title: Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.27.18947
– volume: 143
  start-page: 1361
  year: 1998
  ident: 10.1016/j.bbadis.2011.03.017_bb0190
  article-title: SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.143.5.1361
– volume: 119
  start-page: 357
  year: 1974
  ident: 10.1016/j.bbadis.2011.03.017_bb0140
  article-title: Accumulation of toxic concentrations of methylglyoxal by wild-type Escherichia coli K-12
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.119.2.357-362.1974
– volume: 123
  start-page: 309
  year: 1956
  ident: 10.1016/j.bbadis.2011.03.017_bb0005
  article-title: On the origin of cancer cells
  publication-title: Science
  doi: 10.1126/science.123.3191.309
– volume: 69
  start-page: 4918
  year: 2009
  ident: 10.1016/j.bbadis.2011.03.017_bb0010
  article-title: Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-4806
– volume: 31
  start-page: 164
  year: 2006
  ident: 10.1016/j.bbadis.2011.03.017_bb0095
  article-title: Heat shock proteins in cancer: chaperones of tumorigenesis
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2006.01.006
– volume: 81
  start-page: 3
  year: 1988
  ident: 10.1016/j.bbadis.2011.03.017_bb0120
  article-title: The metabolic environment of cancer
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/BF00225648
– volume: 138
  start-page: 2007
  year: 1992
  ident: 10.1016/j.bbadis.2011.03.017_bb0150
  article-title: Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-138-10-2007
– volume: 290
  start-page: G1329
  year: 2006
  ident: 10.1016/j.bbadis.2011.03.017_bb0115
  article-title: Differential expression proteomics of human colon cancer
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00563.2005
– volume: 278
  start-page: 3170
  year: 2003
  ident: 10.1016/j.bbadis.2011.03.017_bb0085
  article-title: Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M209264200
– volume: 121
  start-page: 631
  year: 2001
  ident: 10.1016/j.bbadis.2011.03.017_bb0025
  article-title: Short-chain fatty acids induce intestinal epithelial heat shock protein 25 expression in rats and IEC 18 cells
  publication-title: Gastroenterology
  doi: 10.1053/gast.2001.27028
– volume: 313
  start-page: 307
  year: 1992
  ident: 10.1016/j.bbadis.2011.03.017_bb0035
  article-title: Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(92)81216-9
– volume: 97
  start-page: 582
  year: 2006
  ident: 10.1016/j.bbadis.2011.03.017_bb0110
  article-title: Endogenous markers of hypoxia/anaerobic metabolism and anemia in primary colorectal cancer
  publication-title: Cancer Sci.
  doi: 10.1111/j.1349-7006.2006.00220.x
– volume: 2007
  start-page: e14
  year: 2007
  ident: 10.1016/j.bbadis.2011.03.017_bb0125
  article-title: Metabolic targeting as an anticancer strategy: dawn of a new era?
  publication-title: Sci. STKE
  doi: 10.1126/stke.3812007pe14
– volume: 580
  start-page: 1565
  year: 2006
  ident: 10.1016/j.bbadis.2011.03.017_bb0175
  article-title: Heat-shock protein 27 is a major methylglyoxal-modified protein in endothelial cells
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2006.01.086
– volume: 581
  start-page: 3665
  year: 2007
  ident: 10.1016/j.bbadis.2011.03.017_bb0020
  article-title: Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.04.033
– volume: 64
  start-page: 1483
  year: 2002
  ident: 10.1016/j.bbadis.2011.03.017_bb0185
  article-title: Differential effect of simvastatin on activation of Rac(1) vs. activation of the heat shock protein 27-mediated pathway upon oxidative stress, in human smooth muscle cells
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/S0006-2952(02)01388-6
– volume: 431
  start-page: 608
  year: 1996
  ident: 10.1016/j.bbadis.2011.03.017_bb0065
  article-title: Heat shock proteins HSP25, HSP60, HSP72, HSP73 in isoosmotic cortex and hyperosmotic medulla of rat kidney
  publication-title: Pflugers Arch.
  doi: 10.1007/BF02191910
– volume: 2
  start-page: 238
  year: 1997
  ident: 10.1016/j.bbadis.2011.03.017_bb0070
  article-title: Transformation by T-antigen and other oncogenes delays Hsp25 accumulation in heat shocked NIH 3T3 fibroblasts
  publication-title: Cell Stress Chaperones
  doi: 10.1379/1466-1268(1997)002<0238:TBTAAO>2.3.CO;2
– volume: 78
  start-page: 1027
  year: 1994
  ident: 10.1016/j.bbadis.2011.03.017_bb0040
  article-title: A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90277-1
– volume: 133
  start-page: 37
  year: 2007
  ident: 10.1016/j.bbadis.2011.03.017_bb0195
  article-title: Overexpression of human 27kDa heat shock protein in laryngeal cancer cells confers chemoresistance associated with cell growth delay
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-006-0143-3
– volume: 274
  start-page: 9378
  year: 1999
  ident: 10.1016/j.bbadis.2011.03.017_bb0080
  article-title: HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.14.9378
– volume: 254
  start-page: 751
  year: 1988
  ident: 10.1016/j.bbadis.2011.03.017_bb0155
  article-title: Modification of the glyoxalase system in human red blood cells by glucose in vitro
  publication-title: Biochem. J.
  doi: 10.1042/bj2540751
– volume: 551
  start-page: 113
  year: 2003
  ident: 10.1016/j.bbadis.2011.03.017_bb0180
  article-title: Methylglyoxal modifies heat shock protein 27 in glomerular mesangial cells
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(03)00874-3
– volume: 7
  start-page: 4384
  year: 2008
  ident: 10.1016/j.bbadis.2011.03.017_bb0170
  article-title: Comprehensive characterization of heat shock protein 27 phosphorylation in human endothelial cells stimulated by the microbial dithiole thiolutin
  publication-title: J. Proteome Res.
  doi: 10.1021/pr800376w
– start-page: 22
  year: 2010
  ident: 10.1016/j.bbadis.2011.03.017_bb0105
  article-title: Methylglyoxal—a test for impaired biological functions of exotrophy and endoecology, low glucose level in the cytosol and gluconeogenesis from fatty acids (a lecture)
  publication-title: Klin. Lab. Diagn.
– volume: 42
  start-page: 10746
  year: 2003
  ident: 10.1016/j.bbadis.2011.03.017_bb0165
  article-title: Enhancement of chaperone function of alpha-crystallin by methylglyoxal modification
  publication-title: Biochemistry
  doi: 10.1021/bi034541n
– volume: 10
  start-page: 86
  year: 2005
  ident: 10.1016/j.bbadis.2011.03.017_bb0090
  article-title: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications
  publication-title: Cell Stress Chaperones
  doi: 10.1379/CSC-99r.1
SSID ssj0000670
ssj0025309
Score 2.2482507
Snippet The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 769
SubjectTerms Animals
Apoptosis
Biochemistry, Molecular Biology
Cancer
Cell Line
Cell Line, Tumor
Gastrointestinal Neoplasms - metabolism
Gastrointestinal Neoplasms - pathology
Heat-shock protein 27
HSP27 Heat-Shock Proteins - metabolism
Humans
Immunoprecipitation
Life Sciences
Methylglyoxal
Posttranslational modification
Proteomics
Pyruvaldehyde - metabolism
Rats
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Title Heat-shock protein 27 (Hsp27) as a target of methylglyoxal in gastrointestinal cancer
URI https://dx.doi.org/10.1016/j.bbadis.2011.03.017
https://www.ncbi.nlm.nih.gov/pubmed/21497196
https://www.proquest.com/docview/865694559
https://hal.science/hal-00694726
Volume 1812
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB41qRBcKihQwiNaIQ5w2Mb22t74GCIql5QKFSJyW43XdhsU2VGdVuTCb2fGjwgkUCVOltb70sxoHruz3wC8sTZV5KUqSdYUpR_mKCONniRL40eZm1OYy6-RP52H8dz_uAgWezDt3sJwWmWr-xudXmvrtmXUUnO0Xi5HX5yI4bVUxKBnjvYWPdj3VBQGfdifnM7i898Vcn3UQv0lD-he0NVpXkmC6bJqsTzVsVNXLvurhepdcarkv_zQ2h6dPISD1pEUk2avj2AvKw7hXlNacnsI96ddJbfHMI9J4crqilSfqHEZloXwtHgbV2tPvxNYCRRNRrgoc8E1pbery9W2_EHzU9dLpGlKxpUgdcBrWpaU6ycwP_nwdRrLtpyCtOT0bWSOqUuhc4ChQ6aLAgsKvTId-taSCxFiYNn8-8GY7xbTxKLNiZoYZBgoz0UVqafQL8oiewZCj4PEU36UOOj6KTHYj8hzwAAxDbVGPQDVkdDYFmucS16sTJdU9t00hDdMeOMoQ4QfgNyNWjdYG3f01x13zB8yY8gc3DHyNTFztwhDbMeTM8NtDN3say-8dQcgOl4bYhhfpGCRlTeVGZMTHPkUiw3gqJGB3VQeRZyatNrz_97bC3jQnFtzSvBL6G-ub7JX5PhskiH0jn-6QxLv6cXZ52Er5vydXXyb0d_Txftf72sB5A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61qVC5IChQwnOFOMBhie1de-NjFFG5NM2FRsptNV7bbVBkR3WKyL9nxo8IJFAlrqt9aWb1zczu7DcAH5zLFHmpSpI1RamjAmVsMJBkaXSc-wWFufwb-XIeJQv9dRkuD2Da_4XhtMoO-1tMb9C6axl10hxtVqvRNy9mei0VM-mZZ4LlIRzpkKK9ARxNzi-S-e-A3Fy1UH_JA_ofdE2aV5pitqo7Lk_12Wsql_3VQh3ecKrkv_zQxh6dPYZHnSMpJu1en8BBXp7Ag7a05O4Ejqd9JbensEgIcGV9Q9AnGl6GVSkCIz4m9SYwnwTWAkWbES6qQnBN6d36er2rftL81PUaaZqKeSUIDnhNxyfl9hkszr5cTRPZlVOQjpy-rSww8yl0DjHyyHRRYEGhV24i7Ry5EBGGjs2_Dsf8tpilDl2hYmrOMVSBjypWz2FQVmX-AoQZh2mgdJx66OuMFKxj8hwwRMwiY9AMQfUitK7jGueSF2vbJ5V9t63gLQveesqS4Icg96M2LdfGPf1Nrx37x5mxZA7uGfmelLlfhCm2k8nMchtTN2sTRD_8IYhe15YUxg8pWObVXW3H5ATHmmKxIZy2Z2A_VUARpyFUe_nfe3sHx8nV5czOzucXr-Bhe4fN6cGvYbC9vcvfkBO0Td92h_wXCWP_iA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat-shock+protein+27+%28Hsp27%29+as+a+target+of+methylglyoxal+in+gastrointestinal+cancer&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Oya-Ito%2C+Tomoko&rft.au=Naito%2C+Yuji&rft.au=Takagi%2C+Tomohisa&rft.au=Handa%2C+Osamu&rft.date=2011-07-01&rft.issn=0006-3002&rft.volume=1812&rft.issue=7&rft.spage=769&rft_id=info:doi/10.1016%2Fj.bbadis.2011.03.017&rft_id=info%3Apmid%2F21497196&rft.externalDocID=21497196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4439&client=summon