Heat-shock protein 27 (Hsp27) as a target of methylglyoxal in gastrointestinal cancer
The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal modifications in gastrointestinal tumors. Methylglyoxal is a reactive dicarbonyl compound produced from cellular glycolytic...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1812; no. 7; pp. 769 - 781 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2011
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0925-4439 0006-3002 1879-260X |
DOI | 10.1016/j.bbadis.2011.03.017 |
Cover
Abstract | The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal modifications in gastrointestinal tumors. Methylglyoxal is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins. By using a monoclonal antibody to methylglyoxal-modified proteins, we found that murine heat-shock protein 25 and human heat-shock protein 27 were the major adducted proteins in rat gastric carcinoma mucosal cell line and human colon cancer cell line, respectively. Furthermore, we found that heat-shock protein 27 was modified by methylglyoxal in ascending colon and rectum of patients with cancer. However, methylglyoxal-modified heat-shock protein 25/heat-shock protein 27 was not detected in non cancerous cell lines or in normal subject. Matrix-associated laser desorption/ionization mass spectrometry/mass spectrometry analysis of peptide fragments identified Arg-75, Arg-79, Arg-89, Arg-94, Arg-127, Arg-136, Arg-140, Arg-188, and Lys-123 as methylglyoxal modification sites in heat-shock protein 27 and in phosphorylated heat-shock protein 27. The transfer of methylglyoxal-modified heat-shock protein 27 into rat intestinal epithelial cell line RIE was even more effective in preventing apoptotic cell death than that of native control heat-shock protein 27. Furthermore, methylglyoxal modification of heat-shock protein 27 protected the cells against both the hydrogen peroxide- and cytochrome
c-mediated caspase activation, and the hydrogen peroxide-induced production of intracellular reactive oxygen species. The levels of lactate converted from methylglyoxal were increased in carcinoma mucosal cell lines. Our results suggest that posttranslational modification of heat-shock protein 27 by methylglyoxal may have important implications for epithelial cell injury in gastrointestinal cancer.
► Hsp25/Hsp27 is modified by methylglyoxal in carcinoma but not in healthy cell lines. ► Methylglyoxal modification of Hsp27 was necessary for its enhanced anti-apoptotic effects. ► Methylglyoxal modification of Hsp27 decreases intracellular reactive oxygen species. ► Lactate converted from methylglyoxal are elevated in carcinoma mucosal cell lines. |
---|---|
AbstractList | The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal modifications in gastrointestinal tumors. Methylglyoxal is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins. By using a monoclonal antibody to methylglyoxal-modified proteins, we found that murine heat-shock protein 25 and human heat-shock protein 27 were the major adducted proteins in rat gastric carcinoma mucosal cell line and human colon cancer cell line, respectively. Furthermore, we found that heat-shock protein 27 was modified by methylglyoxal in ascending colon and rectum of patients with cancer. However, methylglyoxal-modified heat-shock protein 25/heat-shock protein 27 was not detected in non cancerous cell lines or in normal subject. Matrix-associated laser desorption/ionization mass spectrometry/mass spectrometry analysis of peptide fragments identified Arg-75, Arg-79, Arg-89, Arg-94, Arg-127, Arg-136, Arg-140, Arg-188, and Lys-123 as methylglyoxal modification sites in heat-shock protein 27 and in phosphorylated heat-shock protein 27. The transfer of methylglyoxal-modified heat-shock protein 27 into rat intestinal epithelial cell line RIE was even more effective in preventing apoptotic cell death than that of native control heat-shock protein 27. Furthermore, methylglyoxal modification of heat-shock protein 27 protected the cells against both the hydrogen peroxide- and cytochrome c-mediated caspase activation, and the hydrogen peroxide-induced production of intracellular reactive oxygen species. The levels of lactate converted from methylglyoxal were increased in carcinoma mucosal cell lines. Our results suggest that posttranslational modification of heat-shock protein 27 by methylglyoxal may have important implications for epithelial cell injury in gastrointestinal cancer. The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal modifications in gastrointestinal tumors. Methylglyoxal is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins. By using a monoclonal antibody to methylglyoxal-modified proteins, we found that murine heat-shock protein 25 and human heat-shock protein 27 were the major adducted proteins in rat gastric carcinoma mucosal cell line and human colon cancer cell line, respectively. Furthermore, we found that heat-shock protein 27 was modified by methylglyoxal in ascending colon and rectum of patients with cancer. However, methylglyoxal-modified heat-shock protein 25/heat-shock protein 27 was not detected in non cancerous cell lines or in normal subject. Matrix-associated laser desorption/ionization mass spectrometry/mass spectrometry analysis of peptide fragments identified Arg-75, Arg-79, Arg-89, Arg-94, Arg-127, Arg-136, Arg-140, Arg-188, and Lys-123 as methylglyoxal modification sites in heat-shock protein 27 and in phosphorylated heat-shock protein 27. The transfer of methylglyoxal-modified heat-shock protein 27 into rat intestinal epithelial cell line RIE was even more effective in preventing apoptotic cell death than that of native control heat-shock protein 27. Furthermore, methylglyoxal modification of heat-shock protein 27 protected the cells against both the hydrogen peroxide- and cytochrome c-mediated caspase activation, and the hydrogen peroxide-induced production of intracellular reactive oxygen species. The levels of lactate converted from methylglyoxal were increased in carcinoma mucosal cell lines. Our results suggest that posttranslational modification of heat-shock protein 27 by methylglyoxal may have important implications for epithelial cell injury in gastrointestinal cancer.The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal modifications in gastrointestinal tumors. Methylglyoxal is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins. By using a monoclonal antibody to methylglyoxal-modified proteins, we found that murine heat-shock protein 25 and human heat-shock protein 27 were the major adducted proteins in rat gastric carcinoma mucosal cell line and human colon cancer cell line, respectively. Furthermore, we found that heat-shock protein 27 was modified by methylglyoxal in ascending colon and rectum of patients with cancer. However, methylglyoxal-modified heat-shock protein 25/heat-shock protein 27 was not detected in non cancerous cell lines or in normal subject. Matrix-associated laser desorption/ionization mass spectrometry/mass spectrometry analysis of peptide fragments identified Arg-75, Arg-79, Arg-89, Arg-94, Arg-127, Arg-136, Arg-140, Arg-188, and Lys-123 as methylglyoxal modification sites in heat-shock protein 27 and in phosphorylated heat-shock protein 27. The transfer of methylglyoxal-modified heat-shock protein 27 into rat intestinal epithelial cell line RIE was even more effective in preventing apoptotic cell death than that of native control heat-shock protein 27. Furthermore, methylglyoxal modification of heat-shock protein 27 protected the cells against both the hydrogen peroxide- and cytochrome c-mediated caspase activation, and the hydrogen peroxide-induced production of intracellular reactive oxygen species. The levels of lactate converted from methylglyoxal were increased in carcinoma mucosal cell lines. Our results suggest that posttranslational modification of heat-shock protein 27 by methylglyoxal may have important implications for epithelial cell injury in gastrointestinal cancer. The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal (MG) modifications in gastrointestinal tumors. MG is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins. By using a monoclonal antibody to MG-modified proteins, we found that murine heat-shock protein 25 (Hsp25) and human Hsp27 were the major adducted proteins in rat gastric carcinoma mucosal cell line and human colon cancer cell line, respectively. Furthermore, we found that Hsp27 was modified by MG in ascending colon and rectum of patients with cancer. However, MG-modified Hsp25/Hsp27 was not detected in non cancerous cell lines or in normal subject. MALDI-MS/MS analysis of peptide fragments identified Arg-75, Arg-79, Arg-89, Arg-94, Arg-127, Arg-136, Arg-140, Arg-188, and Lys-123 as MG modification sites in Hsp27 and in phosphorylated Hsp27. The transfer of MG-modified Hsp27 into rat intestinal epithelial cell line RIE was even more effective in preventing apoptotic cell death than that of native control Hsp27. Furthermore, MG modification of Hsp27 protected the cells against the both hydrogen peroxide- and cytochrome -mediated caspase activation, and the hydrogen peroxide-induced production of intracellular reactive oxygen species. The levels of lactate converted from MG were increased in carcinoma mucosal cell lines. Our results suggest that posttranslational modification of Hsp27 by MG may have important implications for epithelial cell injury in gastrointestinal cancer. The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role of methylglyoxal modifications in gastrointestinal tumors. Methylglyoxal is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins. By using a monoclonal antibody to methylglyoxal-modified proteins, we found that murine heat-shock protein 25 and human heat-shock protein 27 were the major adducted proteins in rat gastric carcinoma mucosal cell line and human colon cancer cell line, respectively. Furthermore, we found that heat-shock protein 27 was modified by methylglyoxal in ascending colon and rectum of patients with cancer. However, methylglyoxal-modified heat-shock protein 25/heat-shock protein 27 was not detected in non cancerous cell lines or in normal subject. Matrix-associated laser desorption/ionization mass spectrometry/mass spectrometry analysis of peptide fragments identified Arg-75, Arg-79, Arg-89, Arg-94, Arg-127, Arg-136, Arg-140, Arg-188, and Lys-123 as methylglyoxal modification sites in heat-shock protein 27 and in phosphorylated heat-shock protein 27. The transfer of methylglyoxal-modified heat-shock protein 27 into rat intestinal epithelial cell line RIE was even more effective in preventing apoptotic cell death than that of native control heat-shock protein 27. Furthermore, methylglyoxal modification of heat-shock protein 27 protected the cells against both the hydrogen peroxide- and cytochrome c-mediated caspase activation, and the hydrogen peroxide-induced production of intracellular reactive oxygen species. The levels of lactate converted from methylglyoxal were increased in carcinoma mucosal cell lines. Our results suggest that posttranslational modification of heat-shock protein 27 by methylglyoxal may have important implications for epithelial cell injury in gastrointestinal cancer. ► Hsp25/Hsp27 is modified by methylglyoxal in carcinoma but not in healthy cell lines. ► Methylglyoxal modification of Hsp27 was necessary for its enhanced anti-apoptotic effects. ► Methylglyoxal modification of Hsp27 decreases intracellular reactive oxygen species. ► Lactate converted from methylglyoxal are elevated in carcinoma mucosal cell lines. |
Author | Naito, Yuji Yoshikawa, Toshikazu Takagi, Tomohisa Matsui, Hirofumi Oya-Ito, Tomoko Shima, Keisuke Handa, Osamu Yamada, Masaki |
Author_xml | – sequence: 1 givenname: Tomoko surname: Oya-Ito fullname: Oya-Ito, Tomoko email: oya-ito@koto.kpu-m.ac.jp organization: Department of Medical Proteomics, Kyoto Prefectural University of Medicine, 465 Kaji-i, Kyoto 602-8566, Japan – sequence: 2 givenname: Yuji surname: Naito fullname: Naito, Yuji organization: Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kaji-i, Kyoto 602-8566, Japan – sequence: 3 givenname: Tomohisa surname: Takagi fullname: Takagi, Tomohisa organization: Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kaji-i, Kyoto 602-8566, Japan – sequence: 4 givenname: Osamu surname: Handa fullname: Handa, Osamu organization: Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kaji-i, Kyoto 602-8566, Japan – sequence: 5 givenname: Hirofumi surname: Matsui fullname: Matsui, Hirofumi organization: Division of Gastroenterology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba 305-8575, Japan – sequence: 6 givenname: Masaki surname: Yamada fullname: Yamada, Masaki organization: Shimadzu Corporation, 1 Nishinokyo-kuwahara, Kyoto 604-8511, Japan – sequence: 7 givenname: Keisuke surname: Shima fullname: Shima, Keisuke organization: Shimadzu Corporation, 1 Nishinokyo-kuwahara, Kyoto 604-8511, Japan – sequence: 8 givenname: Toshikazu surname: Yoshikawa fullname: Yoshikawa, Toshikazu organization: Department of Medical Proteomics, Kyoto Prefectural University of Medicine, 465 Kaji-i, Kyoto 602-8566, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21497196$$D View this record in MEDLINE/PubMed https://hal.science/hal-00694726$$DView record in HAL |
BookMark | eNqFkUFvEzEQhS1URNPCP0Bob9DDLh57vc5yqFRVtEGKxIVK3KxZ7yRx2KyD7VTk3-NoWw4cwJeRRt978rx3wc5GPxJjb4FXwKH5uK26DnsXK8EBKi4rDvoFm8Fct6Vo-PczNuOtUGVdy_acXcS45fk1mr9i5wLqVkPbzNjDgjCVcePtj2IffCI3FkIXHxZxL_RVgbHAImFYUyr8qthR2hyH9XD0v3AoMrrGmIJ3Y6KY3Jh3FkdL4TV7ucIh0punecke7j5_u12Uy6_3X25vlqVVXKdyhT1QJxU2XNYAMG9FTbqprQWtGlSWC1C1mnOpoO8s2pVs85pQSQEoW3nJribfDQ5mH9wOw9F4dGZxszSnXT64rbVoHiGz7yc2n_nzkP9rdi5aGgYcyR-imTcqs0qdXN89kYduR_0f4-fUMvBpAmzwMQZaGesSJufHFNANBrg5VWS2ZqrInCoyXJpcURbXf4mf_f8ju55klPN8dBRMtI5y2L0LZJPpvfu3wW948Knj |
CitedBy_id | crossref_primary_10_1080_07391102_2023_2290621 crossref_primary_10_1155_2019_8346930 crossref_primary_10_1002_ange_201605366 crossref_primary_10_1007_s00726_013_1627_5 crossref_primary_10_3389_fonc_2022_857746 crossref_primary_10_3390_metabo14010003 crossref_primary_10_7554_eLife_19375 crossref_primary_10_1016_j_foodchem_2014_05_022 crossref_primary_10_3390_cancers13020313 crossref_primary_10_1007_s10719_016_9705_z crossref_primary_10_1042_BSR20220395 crossref_primary_10_3390_nu14051061 crossref_primary_10_1016_j_diabres_2019_01_002 crossref_primary_10_1002_anie_201605366 crossref_primary_10_1016_j_semcancer_2017_05_010 crossref_primary_10_1016_j_freeradbiomed_2017_12_020 crossref_primary_10_1080_10408444_2024_2362985 crossref_primary_10_3390_life11121319 crossref_primary_10_1016_j_molp_2024_01_001 crossref_primary_10_1016_j_semcancer_2017_06_005 crossref_primary_10_1002_mas_21378 crossref_primary_10_1002_mnfr_201500759 crossref_primary_10_3390_ijms25179632 crossref_primary_10_1007_s12192_019_00979_z crossref_primary_10_1016_j_canlet_2017_01_020 crossref_primary_10_3390_ijms25137319 crossref_primary_10_1096_fj_201902936R crossref_primary_10_1002_anie_201810037 crossref_primary_10_1016_j_semcancer_2020_11_019 crossref_primary_10_3390_cells12091219 crossref_primary_10_7314_APJCP_2012_13_4_1663 crossref_primary_10_1007_s10719_021_10031_x crossref_primary_10_3389_fonc_2021_645686 crossref_primary_10_1007_s10719_016_9709_8 crossref_primary_10_3390_cells12101414 crossref_primary_10_1093_glycob_cwab011 crossref_primary_10_18632_oncotarget_2121 crossref_primary_10_1371_journal_pone_0030257 crossref_primary_10_3390_ijms18010213 crossref_primary_10_1038_s41467_019_09192_z crossref_primary_10_1002_ange_201810037 crossref_primary_10_1007_s10930_013_9480_7 crossref_primary_10_3390_metabo13040564 crossref_primary_10_1016_j_celrep_2020_01_012 crossref_primary_10_1111_jgh_12775 crossref_primary_10_1007_s12192_016_0686_4 crossref_primary_10_1007_s12192_019_00975_3 crossref_primary_10_1021_acschembio_3c00214 crossref_primary_10_1002_mas_21471 crossref_primary_10_1134_S000629791707001X |
Cites_doi | 10.1016/0003-9861(83)90615-X 10.1016/0014-5793(70)80546-4 10.1002/jcb.20781 10.1007/s11626-007-9067-8 10.1016/0003-2697(80)90314-0 10.1038/sj.onc.1203850 10.1074/jbc.M207485200 10.1007/BF02576298 10.1021/tx9001379 10.1021/bi052574s 10.1016/j.canlet.2005.10.042 10.1074/jbc.274.26.18492 10.1074/jbc.274.27.18947 10.1083/jcb.143.5.1361 10.1128/JB.119.2.357-362.1974 10.1126/science.123.3191.309 10.1158/0008-5472.CAN-08-4806 10.1016/j.tibs.2006.01.006 10.1007/BF00225648 10.1099/00221287-138-10-2007 10.1152/ajpgi.00563.2005 10.1074/jbc.M209264200 10.1053/gast.2001.27028 10.1016/0014-5793(92)81216-9 10.1111/j.1349-7006.2006.00220.x 10.1126/stke.3812007pe14 10.1016/j.febslet.2006.01.086 10.1016/j.febslet.2007.04.033 10.1016/S0006-2952(02)01388-6 10.1007/BF02191910 10.1379/1466-1268(1997)002<0238:TBTAAO>2.3.CO;2 10.1016/0092-8674(94)90277-1 10.1007/s00432-006-0143-3 10.1074/jbc.274.14.9378 10.1042/bj2540751 10.1016/S0014-5793(03)00874-3 10.1021/pr800376w 10.1021/bi034541n 10.1379/CSC-99r.1 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. Copyright © 2011 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: Copyright © 2011 Elsevier B.V. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES |
DOI | 10.1016/j.bbadis.2011.03.017 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1879-260X |
EndPage | 781 |
ExternalDocumentID | oai_HAL_hal_00694726v1 21497196 10_1016_j_bbadis_2011_03_017 S092544391100072X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABEFU ABFNM ABGSF ABLVK ABMAC ABMZM ABUDA ABVKL ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AEXQZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE IXB J1W KOM LCYCR LX3 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K UQL WUQ XJT XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ADNMO ADVLN AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP CITATION -~X .55 .GJ AAYJJ ABJNI AFFNX AI. AKRWK CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM OHT RIG TWZ UHS VH1 WH7 X7M Y6R YYP ZE2 ZGI ~KM 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c507t-fad1eb35a60341118924e764cc1756a5c02154580351dbcacf396a5ea5321a393 |
IEDL.DBID | AIKHN |
ISSN | 0925-4439 0006-3002 |
IngestDate | Fri May 09 12:21:57 EDT 2025 Fri Sep 05 13:23:48 EDT 2025 Mon Jul 21 06:04:37 EDT 2025 Thu Apr 24 22:57:25 EDT 2025 Tue Jul 01 01:16:42 EDT 2025 Fri Feb 23 02:30:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Heat-shock protein 27 Hsp25 Hsp27 MALDI-MS FACS RIE Posttranslational modification Methylglyoxal YAMC ROS APF Proteomics RGM MG MG-Hsp27 AGE Apoptosis Cancer heat-shock protein 27 proteomics posttranslational modification apoptosis AGEs glycation methylglyoxal cancer phosphorylation |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2011 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-fad1eb35a60341118924e764cc1756a5c02154580351dbcacf396a5ea5321a393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S092544391100072X |
PMID | 21497196 |
PQID | 865694559 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_00694726v1 proquest_miscellaneous_865694559 pubmed_primary_21497196 crossref_citationtrail_10_1016_j_bbadis_2011_03_017 crossref_primary_10_1016_j_bbadis_2011_03_017 elsevier_sciencedirect_doi_10_1016_j_bbadis_2011_03_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-01 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Decroos, Li, Bertho, Frapart, Mansuy, Boucher (bb0030) 2009; 22 Puskas, Fredd, Gazdar, Peterkofsky (bb0145) 1983; 223 Huot, Houle, Rousseau, Deschesnes, Shah, Landry (bb0190) 1998; 143 Oya-Ito, Liu, Nagaraj (bb0045) 2006; 99 Dai, Jia, Wu, Isenberg, Ridnour, Bandle, Wink, Roberts, Karger (bb0170) 2008; 7 Biswas, Miller, Oya-Ito, Santhoshkumar, Bhat, Nagaraj (bb0200) 2006; 45 Hirayama, Kami, Sugimoto, Sugawara, Toki, Onozuka, Kinoshita, Saito, Ochiai, Tomita, Esumi, Soga (bb0010) 2009; 69 Calderwood, Khaleque, Sawyer, Ciocca (bb0095) 2006; 31 Mazzanti, Solazzo, Fantappie, Elfering, Pantaleo, Bechi, Cianchi, Ettl, Giulivi (bb0115) 2006; 290 Negre-Aminou, van Leeuwen, van Thiel, van den Ijssel, de Jong, Quinlan, Cohen (bb0185) 2002; 64 Lambert, Charette, Bernier, Guimond, Landry (bb0080) 1999; 274 Kondoh, Kawase, Kawakami, Ohmori (bb0135) 1992; 192 Ackerman, Cozzarelli, Epstein (bb0140) 1974; 119 Warburg (bb0005) 1956; 123 Padival, Crabb, Nagaraj (bb0180) 2003; 551 Bruey, Paul, Fromentin, Hilpert, Arrigo, Solary, Garrido (bb0160) 2000; 19 Rogalla, Ehrnsperger, Preville, Kotlyarov, Lutsch, Ducasse, Paul, Wieske, Arrigo, Buchner, Gaestel (bb0075) 1999; 274 Kadner, Murphy, Stephens (bb0150) 1992; 138 Garrido, Fromentin, Bonnotte, Favre, Moutet, Arrigo, Mehlen, Solary (bb0100) 1998; 58 Koukourakis, Giatromanolaki, Polychronidis, Simopoulos, Gatter, Harris, Sivridis (bb0110) 2006; 97 Shimokawa, Matsui, Nagano, Kaneko, Shibahara, Nakahara, Hyodo, Yanaka, Majima, Nakamura, Matsuzaki (bb0050) 2008; 44 Stokoe, Engel, Campbell, Cohen, Gaestel (bb0035) 1992; 313 Titov, Dmitriev, Krylin, Dmitriev (bb0105) 2010 Rouse, Cohen, Trigon, Morange, Alonso-Llamazares, Zamanillo, Hunt, Nebreda (bb0040) 1994; 78 Gonin, Fabre-Jonca, Diaz-Latoud, Rouault, Arrigo (bb0070) 1997; 2 Muller, Neuhofer, Ohno, Rucker, Thurau, Beck (bb0065) 1996; 431 Brandt, Siegel, Waters, Bloch (bb0055) 1980; 102 Cooper, Anderson (bb0130) 1970; 11 Schalkwijk, van Bezu, van der Schors, Uchida, Stehouwer, van Hinsbergh (bb0175) 2006; 580 Ren, Musch, Kojima, Boone, Ma, Chang (bb0025) 2001; 121 van Heijst, Niessen, Musters, van Hinsbergh, Hoekman, Schalkwijk (bb0015) 2006; 241 Argiles, Azcon-Bieto (bb0120) 1988; 81 Arrigo, Simon, Gibert, Kretz-Remy, Nivon, Czekalla, Guillet, Moulin, Diaz-Latoud, Vicart (bb0020) 2007; 581 Ciocca, Calderwood (bb0090) 2005; 10 Sakamoto, Mashima, Yamamoto, Tsuruo (bb0205) 2002; 277 Oya, Hattori, Mizuno, Miyata, Maeda, Osawa, Uchida (bb0060) 1999; 274 Setsukinai, Urano, Kakinuma, Majima, Nagano (bb0085) 2003; 278 Thornalley (bb0155) 1988; 254 Nagaraj, Oya-Ito, Padayatti, Kumar, Mehta, West, Levison, Sun, Crabb, Padival (bb0165) 2003; 42 Pan, Mak (bb0125) 2007; 2007 Lee, Sun, Cho, Kim, Hong, Kim, Lee (bb0195) 2007; 133 Rouse (10.1016/j.bbadis.2011.03.017_bb0040) 1994; 78 Kondoh (10.1016/j.bbadis.2011.03.017_bb0135) 1992; 192 Decroos (10.1016/j.bbadis.2011.03.017_bb0030) 2009; 22 Muller (10.1016/j.bbadis.2011.03.017_bb0065) 1996; 431 Cooper (10.1016/j.bbadis.2011.03.017_bb0130) 1970; 11 Puskas (10.1016/j.bbadis.2011.03.017_bb0145) 1983; 223 Brandt (10.1016/j.bbadis.2011.03.017_bb0055) 1980; 102 Bruey (10.1016/j.bbadis.2011.03.017_bb0160) 2000; 19 Sakamoto (10.1016/j.bbadis.2011.03.017_bb0205) 2002; 277 Garrido (10.1016/j.bbadis.2011.03.017_bb0100) 1998; 58 Pan (10.1016/j.bbadis.2011.03.017_bb0125) 2007; 2007 Ackerman (10.1016/j.bbadis.2011.03.017_bb0140) 1974; 119 Negre-Aminou (10.1016/j.bbadis.2011.03.017_bb0185) 2002; 64 Gonin (10.1016/j.bbadis.2011.03.017_bb0070) 1997; 2 Padival (10.1016/j.bbadis.2011.03.017_bb0180) 2003; 551 Argiles (10.1016/j.bbadis.2011.03.017_bb0120) 1988; 81 Ciocca (10.1016/j.bbadis.2011.03.017_bb0090) 2005; 10 Kadner (10.1016/j.bbadis.2011.03.017_bb0150) 1992; 138 Ren (10.1016/j.bbadis.2011.03.017_bb0025) 2001; 121 Schalkwijk (10.1016/j.bbadis.2011.03.017_bb0175) 2006; 580 Arrigo (10.1016/j.bbadis.2011.03.017_bb0020) 2007; 581 Oya (10.1016/j.bbadis.2011.03.017_bb0060) 1999; 274 Warburg (10.1016/j.bbadis.2011.03.017_bb0005) 1956; 123 Lee (10.1016/j.bbadis.2011.03.017_bb0195) 2007; 133 Shimokawa (10.1016/j.bbadis.2011.03.017_bb0050) 2008; 44 Titov (10.1016/j.bbadis.2011.03.017_bb0105) 2010 Lambert (10.1016/j.bbadis.2011.03.017_bb0080) 1999; 274 Mazzanti (10.1016/j.bbadis.2011.03.017_bb0115) 2006; 290 Thornalley (10.1016/j.bbadis.2011.03.017_bb0155) 1988; 254 Dai (10.1016/j.bbadis.2011.03.017_bb0170) 2008; 7 Huot (10.1016/j.bbadis.2011.03.017_bb0190) 1998; 143 Rogalla (10.1016/j.bbadis.2011.03.017_bb0075) 1999; 274 Setsukinai (10.1016/j.bbadis.2011.03.017_bb0085) 2003; 278 Calderwood (10.1016/j.bbadis.2011.03.017_bb0095) 2006; 31 Biswas (10.1016/j.bbadis.2011.03.017_bb0200) 2006; 45 van Heijst (10.1016/j.bbadis.2011.03.017_bb0015) 2006; 241 Oya-Ito (10.1016/j.bbadis.2011.03.017_bb0045) 2006; 99 Nagaraj (10.1016/j.bbadis.2011.03.017_bb0165) 2003; 42 Koukourakis (10.1016/j.bbadis.2011.03.017_bb0110) 2006; 97 Stokoe (10.1016/j.bbadis.2011.03.017_bb0035) 1992; 313 Hirayama (10.1016/j.bbadis.2011.03.017_bb0010) 2009; 69 |
References_xml | – volume: 278 start-page: 3170 year: 2003 end-page: 3175 ident: bb0085 article-title: Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species publication-title: J. Biol. Chem. – volume: 274 start-page: 9378 year: 1999 end-page: 9385 ident: bb0080 article-title: HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus publication-title: J. Biol. Chem. – volume: 44 start-page: 26 year: 2008 end-page: 30 ident: bb0050 article-title: Neoplastic transformation and induction of H+, K+ − publication-title: In Vitro Cell. Dev. Biol. Anim. – volume: 31 start-page: 164 year: 2006 end-page: 172 ident: bb0095 article-title: Heat shock proteins in cancer: chaperones of tumorigenesis publication-title: Trends Biochem. Sci. – volume: 241 start-page: 309 year: 2006 end-page: 319 ident: bb0015 article-title: Argpyrimidine-modified heat shock protein 27 in human non-small cell lung cancer: a possible mechanism for evasion of apoptosis publication-title: Cancer Lett. – volume: 143 start-page: 1361 year: 1998 end-page: 1373 ident: bb0190 article-title: SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis publication-title: J. Cell Biol. – volume: 313 start-page: 307 year: 1992 end-page: 313 ident: bb0035 article-title: Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins publication-title: FEBS Lett. – volume: 11 start-page: 273 year: 1970 end-page: 276 ident: bb0130 article-title: The formation and catabolism of methylglyoxal during glycolysis in publication-title: FEBS Lett. – volume: 64 start-page: 1483 year: 2002 end-page: 1491 ident: bb0185 article-title: Differential effect of simvastatin on activation of Rac(1) vs. activation of the heat shock protein 27-mediated pathway upon oxidative stress, in human smooth muscle cells publication-title: Biochem. Pharmacol. – volume: 192 start-page: 407 year: 1992 end-page: 414 ident: bb0135 article-title: Concentrations of publication-title: Res. Exp. Med. (Berl.) – volume: 58 start-page: 5495 year: 1998 end-page: 5499 ident: bb0100 article-title: Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones publication-title: Cancer Res. – volume: 123 start-page: 309 year: 1956 end-page: 314 ident: bb0005 article-title: On the origin of cancer cells publication-title: Science – volume: 2 start-page: 238 year: 1997 end-page: 251 ident: bb0070 article-title: Transformation by T-antigen and other oncogenes delays Hsp25 accumulation in heat shocked NIH 3T3 fibroblasts publication-title: Cell Stress Chaperones – volume: 97 start-page: 582 year: 2006 end-page: 588 ident: bb0110 article-title: Endogenous markers of hypoxia/anaerobic metabolism and anemia in primary colorectal cancer publication-title: Cancer Sci. – volume: 581 start-page: 3665 year: 2007 end-page: 3674 ident: bb0020 article-title: Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets publication-title: FEBS Lett. – volume: 119 start-page: 357 year: 1974 end-page: 362 ident: bb0140 article-title: Accumulation of toxic concentrations of methylglyoxal by wild-type publication-title: J. Bacteriol. – volume: 81 start-page: 3 year: 1988 end-page: 17 ident: bb0120 article-title: The metabolic environment of cancer publication-title: Mol. Cell. Biochem. – volume: 133 start-page: 37 year: 2007 end-page: 46 ident: bb0195 article-title: Overexpression of human 27 publication-title: J. Cancer Res. Clin. Oncol. – volume: 22 start-page: 1342 year: 2009 end-page: 1350 ident: bb0030 article-title: Oxidative and reductive metabolism of tris(p-carboxyltetrathiaaryl)methyl radicals by liver microsomes publication-title: Chem. Res. Toxicol. – start-page: 22 year: 2010 end-page: 36 ident: bb0105 article-title: Methylglyoxal—a test for impaired biological functions of exotrophy and endoecology, low glucose level in the cytosol and gluconeogenesis from fatty acids (a lecture) publication-title: Klin. Lab. Diagn. – volume: 580 start-page: 1565 year: 2006 end-page: 1570 ident: bb0175 article-title: Heat-shock protein 27 is a major methylglyoxal-modified protein in endothelial cells publication-title: FEBS Lett. – volume: 99 start-page: 279 year: 2006 end-page: 291 ident: bb0045 article-title: Effect of methylglyoxal modification and phosphorylation on the chaperone and anti-apoptotic properties of heat shock protein 27 publication-title: J. Cell. Biochem. – volume: 10 start-page: 86 year: 2005 end-page: 103 ident: bb0090 article-title: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications publication-title: Cell Stress Chaperones – volume: 223 start-page: 503 year: 1983 end-page: 513 ident: bb0145 article-title: Methylglyoxal-mediated growth inhibition in an publication-title: Arch. Biochem. Biophys. – volume: 274 start-page: 18492 year: 1999 end-page: 18502 ident: bb0060 article-title: Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal–arginine adducts publication-title: J. Biol. Chem. – volume: 2007 start-page: e14 year: 2007 ident: bb0125 article-title: Metabolic targeting as an anticancer strategy: dawn of a new era? publication-title: Sci. STKE – volume: 42 start-page: 10746 year: 2003 end-page: 10755 ident: bb0165 article-title: Enhancement of chaperone function of alpha-crystallin by methylglyoxal modification publication-title: Biochemistry – volume: 102 start-page: 39 year: 1980 end-page: 46 ident: bb0055 article-title: Spectrophotometric assay for publication-title: Anal. Biochem. – volume: 277 start-page: 45770 year: 2002 end-page: 45775 ident: bb0205 article-title: Modulation of heat-shock protein 27 (Hsp27) anti-apoptotic activity by methylglyoxal modification publication-title: J. Biol. Chem. – volume: 254 start-page: 751 year: 1988 end-page: 755 ident: bb0155 article-title: Modification of the glyoxalase system in human red blood cells by glucose in vitro publication-title: Biochem. J. – volume: 19 start-page: 4855 year: 2000 end-page: 4863 ident: bb0160 article-title: Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo publication-title: Oncogene – volume: 138 start-page: 2007 year: 1992 end-page: 2014 ident: bb0150 article-title: Two mechanisms for growth inhibition by elevated transport of sugar phosphates in publication-title: J. Gen. Microbiol. – volume: 69 start-page: 4918 year: 2009 end-page: 4925 ident: bb0010 article-title: Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry publication-title: Cancer Res. – volume: 274 start-page: 18947 year: 1999 end-page: 18956 ident: bb0075 article-title: Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation publication-title: J. Biol. Chem. – volume: 78 start-page: 1027 year: 1994 end-page: 1037 ident: bb0040 article-title: A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins publication-title: Cell – volume: 290 start-page: G1329 year: 2006 end-page: G1338 ident: bb0115 article-title: Differential expression proteomics of human colon cancer publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 121 start-page: 631 year: 2001 end-page: 639 ident: bb0025 article-title: Short-chain fatty acids induce intestinal epithelial heat shock protein 25 expression in rats and IEC 18 cells publication-title: Gastroenterology – volume: 7 start-page: 4384 year: 2008 end-page: 4395 ident: bb0170 article-title: Comprehensive characterization of heat shock protein 27 phosphorylation in human endothelial cells stimulated by the microbial dithiole thiolutin publication-title: J. Proteome Res. – volume: 431 start-page: 608 year: 1996 end-page: 617 ident: bb0065 article-title: Heat shock proteins HSP25, HSP60, HSP72, HSP73 in isoosmotic cortex and hyperosmotic medulla of rat kidney publication-title: Pflugers Arch. – volume: 45 start-page: 4569 year: 2006 end-page: 4577 ident: bb0200 article-title: Effect of site-directed mutagenesis of methylglyoxal-modifiable arginine residues on the structure and chaperone function of human alphaA-crystallin publication-title: Biochemistry – volume: 551 start-page: 113 year: 2003 end-page: 118 ident: bb0180 article-title: Methylglyoxal modifies heat shock protein 27 in glomerular mesangial cells publication-title: FEBS Lett. – volume: 223 start-page: 503 year: 1983 ident: 10.1016/j.bbadis.2011.03.017_bb0145 article-title: Methylglyoxal-mediated growth inhibition in an Escherichia coli cAMP receptor protein mutant publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(83)90615-X – volume: 11 start-page: 273 year: 1970 ident: 10.1016/j.bbadis.2011.03.017_bb0130 article-title: The formation and catabolism of methylglyoxal during glycolysis in Escherichia coli publication-title: FEBS Lett. doi: 10.1016/0014-5793(70)80546-4 – volume: 99 start-page: 279 year: 2006 ident: 10.1016/j.bbadis.2011.03.017_bb0045 article-title: Effect of methylglyoxal modification and phosphorylation on the chaperone and anti-apoptotic properties of heat shock protein 27 publication-title: J. Cell. Biochem. doi: 10.1002/jcb.20781 – volume: 44 start-page: 26 year: 2008 ident: 10.1016/j.bbadis.2011.03.017_bb0050 article-title: Neoplastic transformation and induction of H+, K+ −adenosine triphosphatase by N-methyl-N′-nitro-N-nitrosoguanidine in the gastric epithelial RGM-1 cell line publication-title: In Vitro Cell. Dev. Biol. Anim. doi: 10.1007/s11626-007-9067-8 – volume: 102 start-page: 39 year: 1980 ident: 10.1016/j.bbadis.2011.03.017_bb0055 article-title: Spectrophotometric assay for d-(−)-lactate in plasma publication-title: Anal. Biochem. doi: 10.1016/0003-2697(80)90314-0 – volume: 19 start-page: 4855 year: 2000 ident: 10.1016/j.bbadis.2011.03.017_bb0160 article-title: Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo publication-title: Oncogene doi: 10.1038/sj.onc.1203850 – volume: 277 start-page: 45770 year: 2002 ident: 10.1016/j.bbadis.2011.03.017_bb0205 article-title: Modulation of heat-shock protein 27 (Hsp27) anti-apoptotic activity by methylglyoxal modification publication-title: J. Biol. Chem. doi: 10.1074/jbc.M207485200 – volume: 192 start-page: 407 year: 1992 ident: 10.1016/j.bbadis.2011.03.017_bb0135 article-title: Concentrations of d-lactate and its related metabolic intermediates in liver, blood, and muscle of diabetic and starved rats publication-title: Res. Exp. Med. (Berl.) doi: 10.1007/BF02576298 – volume: 22 start-page: 1342 year: 2009 ident: 10.1016/j.bbadis.2011.03.017_bb0030 article-title: Oxidative and reductive metabolism of tris(p-carboxyltetrathiaaryl)methyl radicals by liver microsomes publication-title: Chem. Res. Toxicol. doi: 10.1021/tx9001379 – volume: 45 start-page: 4569 year: 2006 ident: 10.1016/j.bbadis.2011.03.017_bb0200 article-title: Effect of site-directed mutagenesis of methylglyoxal-modifiable arginine residues on the structure and chaperone function of human alphaA-crystallin publication-title: Biochemistry doi: 10.1021/bi052574s – volume: 58 start-page: 5495 year: 1998 ident: 10.1016/j.bbadis.2011.03.017_bb0100 article-title: Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones publication-title: Cancer Res. – volume: 241 start-page: 309 year: 2006 ident: 10.1016/j.bbadis.2011.03.017_bb0015 article-title: Argpyrimidine-modified heat shock protein 27 in human non-small cell lung cancer: a possible mechanism for evasion of apoptosis publication-title: Cancer Lett. doi: 10.1016/j.canlet.2005.10.042 – volume: 274 start-page: 18492 year: 1999 ident: 10.1016/j.bbadis.2011.03.017_bb0060 article-title: Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal–arginine adducts publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.26.18492 – volume: 274 start-page: 18947 year: 1999 ident: 10.1016/j.bbadis.2011.03.017_bb0075 article-title: Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.27.18947 – volume: 143 start-page: 1361 year: 1998 ident: 10.1016/j.bbadis.2011.03.017_bb0190 article-title: SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis publication-title: J. Cell Biol. doi: 10.1083/jcb.143.5.1361 – volume: 119 start-page: 357 year: 1974 ident: 10.1016/j.bbadis.2011.03.017_bb0140 article-title: Accumulation of toxic concentrations of methylglyoxal by wild-type Escherichia coli K-12 publication-title: J. Bacteriol. doi: 10.1128/JB.119.2.357-362.1974 – volume: 123 start-page: 309 year: 1956 ident: 10.1016/j.bbadis.2011.03.017_bb0005 article-title: On the origin of cancer cells publication-title: Science doi: 10.1126/science.123.3191.309 – volume: 69 start-page: 4918 year: 2009 ident: 10.1016/j.bbadis.2011.03.017_bb0010 article-title: Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-4806 – volume: 31 start-page: 164 year: 2006 ident: 10.1016/j.bbadis.2011.03.017_bb0095 article-title: Heat shock proteins in cancer: chaperones of tumorigenesis publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2006.01.006 – volume: 81 start-page: 3 year: 1988 ident: 10.1016/j.bbadis.2011.03.017_bb0120 article-title: The metabolic environment of cancer publication-title: Mol. Cell. Biochem. doi: 10.1007/BF00225648 – volume: 138 start-page: 2007 year: 1992 ident: 10.1016/j.bbadis.2011.03.017_bb0150 article-title: Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-138-10-2007 – volume: 290 start-page: G1329 year: 2006 ident: 10.1016/j.bbadis.2011.03.017_bb0115 article-title: Differential expression proteomics of human colon cancer publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00563.2005 – volume: 278 start-page: 3170 year: 2003 ident: 10.1016/j.bbadis.2011.03.017_bb0085 article-title: Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species publication-title: J. Biol. Chem. doi: 10.1074/jbc.M209264200 – volume: 121 start-page: 631 year: 2001 ident: 10.1016/j.bbadis.2011.03.017_bb0025 article-title: Short-chain fatty acids induce intestinal epithelial heat shock protein 25 expression in rats and IEC 18 cells publication-title: Gastroenterology doi: 10.1053/gast.2001.27028 – volume: 313 start-page: 307 year: 1992 ident: 10.1016/j.bbadis.2011.03.017_bb0035 article-title: Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins publication-title: FEBS Lett. doi: 10.1016/0014-5793(92)81216-9 – volume: 97 start-page: 582 year: 2006 ident: 10.1016/j.bbadis.2011.03.017_bb0110 article-title: Endogenous markers of hypoxia/anaerobic metabolism and anemia in primary colorectal cancer publication-title: Cancer Sci. doi: 10.1111/j.1349-7006.2006.00220.x – volume: 2007 start-page: e14 year: 2007 ident: 10.1016/j.bbadis.2011.03.017_bb0125 article-title: Metabolic targeting as an anticancer strategy: dawn of a new era? publication-title: Sci. STKE doi: 10.1126/stke.3812007pe14 – volume: 580 start-page: 1565 year: 2006 ident: 10.1016/j.bbadis.2011.03.017_bb0175 article-title: Heat-shock protein 27 is a major methylglyoxal-modified protein in endothelial cells publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.01.086 – volume: 581 start-page: 3665 year: 2007 ident: 10.1016/j.bbadis.2011.03.017_bb0020 article-title: Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.04.033 – volume: 64 start-page: 1483 year: 2002 ident: 10.1016/j.bbadis.2011.03.017_bb0185 article-title: Differential effect of simvastatin on activation of Rac(1) vs. activation of the heat shock protein 27-mediated pathway upon oxidative stress, in human smooth muscle cells publication-title: Biochem. Pharmacol. doi: 10.1016/S0006-2952(02)01388-6 – volume: 431 start-page: 608 year: 1996 ident: 10.1016/j.bbadis.2011.03.017_bb0065 article-title: Heat shock proteins HSP25, HSP60, HSP72, HSP73 in isoosmotic cortex and hyperosmotic medulla of rat kidney publication-title: Pflugers Arch. doi: 10.1007/BF02191910 – volume: 2 start-page: 238 year: 1997 ident: 10.1016/j.bbadis.2011.03.017_bb0070 article-title: Transformation by T-antigen and other oncogenes delays Hsp25 accumulation in heat shocked NIH 3T3 fibroblasts publication-title: Cell Stress Chaperones doi: 10.1379/1466-1268(1997)002<0238:TBTAAO>2.3.CO;2 – volume: 78 start-page: 1027 year: 1994 ident: 10.1016/j.bbadis.2011.03.017_bb0040 article-title: A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins publication-title: Cell doi: 10.1016/0092-8674(94)90277-1 – volume: 133 start-page: 37 year: 2007 ident: 10.1016/j.bbadis.2011.03.017_bb0195 article-title: Overexpression of human 27kDa heat shock protein in laryngeal cancer cells confers chemoresistance associated with cell growth delay publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-006-0143-3 – volume: 274 start-page: 9378 year: 1999 ident: 10.1016/j.bbadis.2011.03.017_bb0080 article-title: HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.14.9378 – volume: 254 start-page: 751 year: 1988 ident: 10.1016/j.bbadis.2011.03.017_bb0155 article-title: Modification of the glyoxalase system in human red blood cells by glucose in vitro publication-title: Biochem. J. doi: 10.1042/bj2540751 – volume: 551 start-page: 113 year: 2003 ident: 10.1016/j.bbadis.2011.03.017_bb0180 article-title: Methylglyoxal modifies heat shock protein 27 in glomerular mesangial cells publication-title: FEBS Lett. doi: 10.1016/S0014-5793(03)00874-3 – volume: 7 start-page: 4384 year: 2008 ident: 10.1016/j.bbadis.2011.03.017_bb0170 article-title: Comprehensive characterization of heat shock protein 27 phosphorylation in human endothelial cells stimulated by the microbial dithiole thiolutin publication-title: J. Proteome Res. doi: 10.1021/pr800376w – start-page: 22 year: 2010 ident: 10.1016/j.bbadis.2011.03.017_bb0105 article-title: Methylglyoxal—a test for impaired biological functions of exotrophy and endoecology, low glucose level in the cytosol and gluconeogenesis from fatty acids (a lecture) publication-title: Klin. Lab. Diagn. – volume: 42 start-page: 10746 year: 2003 ident: 10.1016/j.bbadis.2011.03.017_bb0165 article-title: Enhancement of chaperone function of alpha-crystallin by methylglyoxal modification publication-title: Biochemistry doi: 10.1021/bi034541n – volume: 10 start-page: 86 year: 2005 ident: 10.1016/j.bbadis.2011.03.017_bb0090 article-title: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications publication-title: Cell Stress Chaperones doi: 10.1379/CSC-99r.1 |
SSID | ssj0000670 ssj0025309 |
Score | 2.2482507 |
Snippet | The molecular mechanisms underlying the posttranslational modification of proteins in gastrointestinal cancer are still unknown. Here, we investigated the role... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 769 |
SubjectTerms | Animals Apoptosis Biochemistry, Molecular Biology Cancer Cell Line Cell Line, Tumor Gastrointestinal Neoplasms - metabolism Gastrointestinal Neoplasms - pathology Heat-shock protein 27 HSP27 Heat-Shock Proteins - metabolism Humans Immunoprecipitation Life Sciences Methylglyoxal Posttranslational modification Proteomics Pyruvaldehyde - metabolism Rats Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization |
Title | Heat-shock protein 27 (Hsp27) as a target of methylglyoxal in gastrointestinal cancer |
URI | https://dx.doi.org/10.1016/j.bbadis.2011.03.017 https://www.ncbi.nlm.nih.gov/pubmed/21497196 https://www.proquest.com/docview/865694559 https://hal.science/hal-00694726 |
Volume | 1812 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB41qRBcKihQwiNaIQ5w2Mb22t74GCIql5QKFSJyW43XdhsU2VGdVuTCb2fGjwgkUCVOltb70sxoHruz3wC8sTZV5KUqSdYUpR_mKCONniRL40eZm1OYy6-RP52H8dz_uAgWezDt3sJwWmWr-xudXmvrtmXUUnO0Xi5HX5yI4bVUxKBnjvYWPdj3VBQGfdifnM7i898Vcn3UQv0lD-he0NVpXkmC6bJqsTzVsVNXLvurhepdcarkv_zQ2h6dPISD1pEUk2avj2AvKw7hXlNacnsI96ddJbfHMI9J4crqilSfqHEZloXwtHgbV2tPvxNYCRRNRrgoc8E1pbery9W2_EHzU9dLpGlKxpUgdcBrWpaU6ycwP_nwdRrLtpyCtOT0bWSOqUuhc4ChQ6aLAgsKvTId-taSCxFiYNn8-8GY7xbTxKLNiZoYZBgoz0UVqafQL8oiewZCj4PEU36UOOj6KTHYj8hzwAAxDbVGPQDVkdDYFmucS16sTJdU9t00hDdMeOMoQ4QfgNyNWjdYG3f01x13zB8yY8gc3DHyNTFztwhDbMeTM8NtDN3say-8dQcgOl4bYhhfpGCRlTeVGZMTHPkUiw3gqJGB3VQeRZyatNrz_97bC3jQnFtzSvBL6G-ub7JX5PhskiH0jn-6QxLv6cXZ52Er5vydXXyb0d_Txftf72sB5A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61qVC5IChQwnOFOMBhie1de-NjFFG5NM2FRsptNV7bbVBkR3WKyL9nxo8IJFAlrqt9aWb1zczu7DcAH5zLFHmpSpI1RamjAmVsMJBkaXSc-wWFufwb-XIeJQv9dRkuD2Da_4XhtMoO-1tMb9C6axl10hxtVqvRNy9mei0VM-mZZ4LlIRzpkKK9ARxNzi-S-e-A3Fy1UH_JA_ofdE2aV5pitqo7Lk_12Wsql_3VQh3ecKrkv_zQxh6dPYZHnSMpJu1en8BBXp7Ag7a05O4Ejqd9JbensEgIcGV9Q9AnGl6GVSkCIz4m9SYwnwTWAkWbES6qQnBN6d36er2rftL81PUaaZqKeSUIDnhNxyfl9hkszr5cTRPZlVOQjpy-rSww8yl0DjHyyHRRYEGhV24i7Ry5EBGGjs2_Dsf8tpilDl2hYmrOMVSBjypWz2FQVmX-AoQZh2mgdJx66OuMFKxj8hwwRMwiY9AMQfUitK7jGueSF2vbJ5V9t63gLQveesqS4Icg96M2LdfGPf1Nrx37x5mxZA7uGfmelLlfhCm2k8nMchtTN2sTRD_8IYhe15YUxg8pWObVXW3H5ATHmmKxIZy2Z2A_VUARpyFUe_nfe3sHx8nV5czOzucXr-Bhe4fN6cGvYbC9vcvfkBO0Td92h_wXCWP_iA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat-shock+protein+27+%28Hsp27%29+as+a+target+of+methylglyoxal+in+gastrointestinal+cancer&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Oya-Ito%2C+Tomoko&rft.au=Naito%2C+Yuji&rft.au=Takagi%2C+Tomohisa&rft.au=Handa%2C+Osamu&rft.date=2011-07-01&rft.issn=0006-3002&rft.volume=1812&rft.issue=7&rft.spage=769&rft_id=info:doi/10.1016%2Fj.bbadis.2011.03.017&rft_id=info%3Apmid%2F21497196&rft.externalDocID=21497196 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4439&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4439&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4439&client=summon |