BMP6 binding to heparin and heparan sulfate is mediated by N-terminal and C-terminal clustered basic residues
The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 sub...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1865; no. 2; p. 129799 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 subfamily has been deeply characterized to have a N-terminal heparin/HS binding domain (HBD), whose basic residues contact the sulfate groups on heparin and HS. Such detailed characterization is still required for other, structurally different BMPs, including BMP6.
BMP6 peptides encompassing potential HBDs were analysed on heparin-functionalized plates and microcantilevers, and on membrane HS expressing CHO-K1 cells. Monomeric wild-type BMP6 and mutants were produced, substituting the basic residues with non-charged ones, and their affinity to the heparin-column was measured. The BMP6-heparin interaction was also predicted at atomic level by in silico molecular dynamics.
N-terminal and C-terminal BMP6 peptides showed high heparin affinity in solid-phase assays. The mutation of the two sites (R5L, R6S, R7L and K126N, K127N, R129S) abolished the heparin-binding activity of the recombinant monomeric BMP6. Monomeric BMP6 and peptides specifically bound to membrane HS of CHO-K1 cells through the same domains. Molecular dynamic studies supported the role of the two HBDs, suggesting a cooperative behaviour.
In BMP6, N-terminal (R5, R6, R7) and C-terminal (K126, K127, R129) domains mediate the interaction with heparin and HS.
This study provides the molecular mechanism supporting the use of heparin to sequester BMP6 and inhibit hepcidin expression, a novel clinical approach for high-hepcidin iron disorders.
•Arginine- and Lysine-rich regions were identified on BMP6 as potential heparin/HS-binding domains (HBDs).•BMP6 peptides and recombinant protein bound immobilized heparin and HS.•We dissected two heparin binding sites on BMP6: the N-terminal R5 R6 R7 and the C-terminal K126 K127 R129.•In in silico study the N-terminus flexibly adapted to heparin and the C-terminus strongly contributed to binding energy. |
---|---|
AbstractList | The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 subfamily has been deeply characterized to have a N-terminal heparin/HS binding domain (HBD), whose basic residues contact the sulfate groups on heparin and HS. Such detailed characterization is still required for other, structurally different BMPs, including BMP6.
BMP6 peptides encompassing potential HBDs were analysed on heparin-functionalized plates and microcantilevers, and on membrane HS expressing CHO-K1 cells. Monomeric wild-type BMP6 and mutants were produced, substituting the basic residues with non-charged ones, and their affinity to the heparin-column was measured. The BMP6-heparin interaction was also predicted at atomic level by in silico molecular dynamics.
N-terminal and C-terminal BMP6 peptides showed high heparin affinity in solid-phase assays. The mutation of the two sites (R5L, R6S, R7L and K126N, K127N, R129S) abolished the heparin-binding activity of the recombinant monomeric BMP6. Monomeric BMP6 and peptides specifically bound to membrane HS of CHO-K1 cells through the same domains. Molecular dynamic studies supported the role of the two HBDs, suggesting a cooperative behaviour.
In BMP6, N-terminal (R5, R6, R7) and C-terminal (K126, K127, R129) domains mediate the interaction with heparin and HS.
This study provides the molecular mechanism supporting the use of heparin to sequester BMP6 and inhibit hepcidin expression, a novel clinical approach for high-hepcidin iron disorders.
•Arginine- and Lysine-rich regions were identified on BMP6 as potential heparin/HS-binding domains (HBDs).•BMP6 peptides and recombinant protein bound immobilized heparin and HS.•We dissected two heparin binding sites on BMP6: the N-terminal R5 R6 R7 and the C-terminal K126 K127 R129.•In in silico study the N-terminus flexibly adapted to heparin and the C-terminus strongly contributed to binding energy. The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 subfamily has been deeply characterized to have a N-terminal heparin/HS binding domain (HBD), whose basic residues contact the sulfate groups on heparin and HS. Such detailed characterization is still required for other, structurally different BMPs, including BMP6. BMP6 peptides encompassing potential HBDs were analysed on heparin-functionalized plates and microcantilevers, and on membrane HS expressing CHO-K1 cells. Monomeric wild-type BMP6 and mutants were produced, substituting the basic residues with non-charged ones, and their affinity to the heparin-column was measured. The BMP6-heparin interaction was also predicted at atomic level by in silico molecular dynamics. N-terminal and C-terminal BMP6 peptides showed high heparin affinity in solid-phase assays. The mutation of the two sites (R5L, R6S, R7L and K126N, K127N, R129S) abolished the heparin-binding activity of the recombinant monomeric BMP6. Monomeric BMP6 and peptides specifically bound to membrane HS of CHO-K1 cells through the same domains. Molecular dynamic studies supported the role of the two HBDs, suggesting a cooperative behaviour. In BMP6, N-terminal (R5, R6, R7) and C-terminal (K126, K127, R129) domains mediate the interaction with heparin and HS. This study provides the molecular mechanism supporting the use of heparin to sequester BMP6 and inhibit hepcidin expression, a novel clinical approach for high-hepcidin iron disorders. The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 subfamily has been deeply characterized to have a N-terminal heparin/HS binding domain (HBD), whose basic residues contact the sulfate groups on heparin and HS. Such detailed characterization is still required for other, structurally different BMPs, including BMP6.BMP6 peptides encompassing potential HBDs were analysed on heparin-functionalized plates and microcantilevers, and on membrane HS expressing CHO-K1 cells. Monomeric wild-type BMP6 and mutants were produced, substituting the basic residues with non-charged ones, and their affinity to the heparin-column was measured. The BMP6-heparin interaction was also predicted at atomic level by in silico molecular dynamics.N-terminal and C-terminal BMP6 peptides showed high heparin affinity in solid-phase assays. The mutation of the two sites (R5L, R6S, R7L and K126N, K127N, R129S) abolished the heparin-binding activity of the recombinant monomeric BMP6. Monomeric BMP6 and peptides specifically bound to membrane HS of CHO-K1 cells through the same domains. Molecular dynamic studies supported the role of the two HBDs, suggesting a cooperative behaviour.In BMP6, N-terminal (R5, R6, R7) and C-terminal (K126, K127, R129) domains mediate the interaction with heparin and HS.This study provides the molecular mechanism supporting the use of heparin to sequester BMP6 and inhibit hepcidin expression, a novel clinical approach for high-hepcidin iron disorders. The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 subfamily has been deeply characterized to have a N-terminal heparin/HS binding domain (HBD), whose basic residues contact the sulfate groups on heparin and HS. Such detailed characterization is still required for other, structurally different BMPs, including BMP6.BACKGROUNDThe bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 subfamily has been deeply characterized to have a N-terminal heparin/HS binding domain (HBD), whose basic residues contact the sulfate groups on heparin and HS. Such detailed characterization is still required for other, structurally different BMPs, including BMP6.BMP6 peptides encompassing potential HBDs were analysed on heparin-functionalized plates and microcantilevers, and on membrane HS expressing CHO-K1 cells. Monomeric wild-type BMP6 and mutants were produced, substituting the basic residues with non-charged ones, and their affinity to the heparin-column was measured. The BMP6-heparin interaction was also predicted at atomic level by in silico molecular dynamics.METHODSBMP6 peptides encompassing potential HBDs were analysed on heparin-functionalized plates and microcantilevers, and on membrane HS expressing CHO-K1 cells. Monomeric wild-type BMP6 and mutants were produced, substituting the basic residues with non-charged ones, and their affinity to the heparin-column was measured. The BMP6-heparin interaction was also predicted at atomic level by in silico molecular dynamics.N-terminal and C-terminal BMP6 peptides showed high heparin affinity in solid-phase assays. The mutation of the two sites (R5L, R6S, R7L and K126N, K127N, R129S) abolished the heparin-binding activity of the recombinant monomeric BMP6. Monomeric BMP6 and peptides specifically bound to membrane HS of CHO-K1 cells through the same domains. Molecular dynamic studies supported the role of the two HBDs, suggesting a cooperative behaviour.RESULTSN-terminal and C-terminal BMP6 peptides showed high heparin affinity in solid-phase assays. The mutation of the two sites (R5L, R6S, R7L and K126N, K127N, R129S) abolished the heparin-binding activity of the recombinant monomeric BMP6. Monomeric BMP6 and peptides specifically bound to membrane HS of CHO-K1 cells through the same domains. Molecular dynamic studies supported the role of the two HBDs, suggesting a cooperative behaviour.In BMP6, N-terminal (R5, R6, R7) and C-terminal (K126, K127, R129) domains mediate the interaction with heparin and HS.CONCLUSIONSIn BMP6, N-terminal (R5, R6, R7) and C-terminal (K126, K127, R129) domains mediate the interaction with heparin and HS.This study provides the molecular mechanism supporting the use of heparin to sequester BMP6 and inhibit hepcidin expression, a novel clinical approach for high-hepcidin iron disorders.GENERAL SIGNIFICANCEThis study provides the molecular mechanism supporting the use of heparin to sequester BMP6 and inhibit hepcidin expression, a novel clinical approach for high-hepcidin iron disorders. |
ArticleNumber | 129799 |
Author | Gryzik, Magdalena Bergese, Paolo Poli, Maura Ruzzenenti, Paola Elli, Stefano Federici, Stefania Carmona, Fernando Denardo, Andrea Naggi, Annamaria Asperti, Michela Arosio, Paolo |
Author_xml | – sequence: 1 givenname: Andrea surname: Denardo fullname: Denardo, Andrea organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy – sequence: 2 givenname: Stefano surname: Elli fullname: Elli, Stefano organization: G. Ronzoni Institute for Chemical and Biochemical Research, Via Giuseppe Colombo 81, 20133 Milan, Italy – sequence: 3 givenname: Stefania surname: Federici fullname: Federici, Stefania organization: Department of Mechanical and Industrial Engineering and INSTM, University of Brescia, Via Branze 38, 25123 Brescia, Italy – sequence: 4 givenname: Michela surname: Asperti fullname: Asperti, Michela organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy – sequence: 5 givenname: Magdalena surname: Gryzik fullname: Gryzik, Magdalena organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy – sequence: 6 givenname: Paola surname: Ruzzenenti fullname: Ruzzenenti, Paola organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy – sequence: 7 givenname: Fernando surname: Carmona fullname: Carmona, Fernando organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy – sequence: 8 givenname: Paolo surname: Bergese fullname: Bergese, Paolo organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy – sequence: 9 givenname: Annamaria surname: Naggi fullname: Naggi, Annamaria organization: G. Ronzoni Institute for Chemical and Biochemical Research, Via Giuseppe Colombo 81, 20133 Milan, Italy – sequence: 10 givenname: Paolo surname: Arosio fullname: Arosio, Paolo organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy – sequence: 11 givenname: Maura surname: Poli fullname: Poli, Maura email: maura.poli@unibs.it organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33232799$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1TAQha2qqL0t_QcV8pJNLn4kTswCCa54VOprAWtr4kyKrxLnYjtI_ff4krZIXVBvPGN9Z0Y-54Qc-skjIeecrTnj6t123bZwh34tmMhPQtdaH5AVb2pRNIypQ7JikpVFyVV1TE5i3LJ8Kl0dkWMphRSZX5Hx09Wtoq3znfN3NE30J-4gOE_Bd0sNnsZ56CEhdZGO2LlcdrS9p9dFwjA6D8NfevOvtcMcc7PHIDpLA0bXzRhfk1c9DBHPHu5T8uPL5--bb8XlzdeLzcfLwlasTkUvmbJlwxUTCLxXQtbIkSvssJRtU2Kn0faVhgqAiZ7xWgqULeavQyuFlqfk7TJ3F6ZfeW8yo4sWhwE8TnM0oqq4Fk1dNy-jpSq55qJRGX3zgM5t9sHsghsh3JtHNzNQLoANU4wB-yeEM7MPzWzNEprZh2aW0LLs_TOZdQmSm3wK4IaXxB8WMWY_fzsMJlqH3uacAtpkusn9f8Afx4qznw |
CitedBy_id | crossref_primary_10_3389_fcimb_2021_705087 crossref_primary_10_1016_j_carbpol_2024_121979 crossref_primary_10_3390_md20100646 crossref_primary_10_1016_j_carbpol_2021_118490 crossref_primary_10_1016_j_carres_2024_109201 crossref_primary_10_1053_j_seminhematol_2021_05_001 crossref_primary_10_1124_pharmrev_122_000684 crossref_primary_10_1002_2211_5463_13652 crossref_primary_10_1016_j_apmt_2024_102181 crossref_primary_10_1182_blood_2023022736 |
Cites_doi | 10.1074/jbc.RA118.007213 10.1093/protein/4.4.427 10.1038/ng.335 10.1146/annurev-biochem-060713-035314 10.1111/j.1432-1033.1996.0295n.x 10.1161/01.ATV.9.1.21 10.3389/fphar.2015.00316 10.1038/nature05817 10.1016/bs.ircmb.2016.02.009 10.1074/jbc.RA118.003191 10.1002/jcc.20289 10.1146/annurev.biochem.71.110601.135458 10.1038/srep29602 10.1182/blood-2016-06-721571 10.1016/S0076-6879(96)66034-0 10.1007/s00264-012-1714-3 10.1182/blood-2013-07-515221 10.1042/bj3590265 10.1529/biophysj.107.111377 10.1073/pnas.88.7.2768 10.3390/molecules23113042 10.2174/092986708784872366 10.1182/blood-2010-06-289082 10.1093/glycob/cwp105 10.1371/journal.pone.0164183 10.3390/ph11010027 10.1073/pnas.82.10.3197 10.3390/molecules22050713 10.1016/j.jpba.2016.12.031 10.1016/j.cellsig.2010.10.003 10.1042/bj2930849 10.3390/molecules22040598 10.1021/ja00281a052 10.1016/j.pep.2010.03.009 10.1007/s00441-011-1190-x 10.1111/j.1749-6632.1989.tb22485.x 10.3109/08977194.2011.608666 10.1091/mbc.e10-04-0348 10.1063/1.445869 10.1016/j.cytogfr.2015.11.005 10.1002/jcp.21468 10.1021/ci4006047 10.1038/nnano.2011.44 10.1016/j.bcp.2014.09.007 10.1073/pnas.94.26.14683 10.1016/0008-6215(90)84164-P 10.1016/j.jcis.2012.02.013 10.1006/dbio.2000.9798 10.1016/S0960-9822(01)00684-4 10.1016/j.jcis.2013.03.069 10.1016/S0021-9258(18)66778-X 10.1002/jcc.20820 10.1074/jbc.M801102200 10.1111/j.1742-4658.2007.06187.x |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2020.129799 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 33232799 10_1016_j_bbagen_2020_129799 S030441652030310X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c507t-f306c481602ea1f6237e1e16ede43b84ed9ecf59a5aa02f01732e3be872ab3293 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 08:39:23 EDT 2025 Fri Jul 11 05:31:20 EDT 2025 Wed Feb 19 02:28:48 EST 2025 Tue Jul 01 00:22:14 EDT 2025 Thu Apr 24 23:07:34 EDT 2025 Fri Feb 23 02:46:35 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Heparan sulfate HSPG Interaction Bone morphogenetic protein 6 (BMP6) HS HBD GAG BMP6 DS CS MD Heparin SEC-TDA Hepcidin |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-f306c481602ea1f6237e1e16ede43b84ed9ecf59a5aa02f01732e3be872ab3293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S030441652030310X |
PMID | 33232799 |
PQID | 2464191286 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551928778 proquest_miscellaneous_2464191286 pubmed_primary_33232799 crossref_primary_10_1016_j_bbagen_2020_129799 crossref_citationtrail_10_1016_j_bbagen_2020_129799 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129799 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Maiolo, Federici, Ravelli, Depero, Hamad-Schifferli, Bergese (bb0195) 2013; 402 Asperti, Naggi, Esposito, Ruzzenenti, Di Somma, Gryzik (bb0015) 2016; 6 Case, Darden, Simmerling, Cheatham, Merz (bb0065) 2011 Ferro, Provasoli, Ragazzi, Torri, Casu, Gatti (bb0095) 1986; 108 Kirschner, Yongye, Tschampel, González-Outeiriño, Daniels, Foley (bb0170) 2008; 29 Samsonov, Gehrcke, Pisabarro (bb0265) 2014; 54 Kanzaki, Takahashi, Kanno, Ariyoshi, Shinmyouzu, Tujisawa (bb0165) 2008; 216 Oomen, Young, Bundle (bb0215) 1991; 4 Hricovíni, Hricovíni (bb0135) 2018; 23 Hricovíni, Guerrini, Bisio, Torri, Petitou, Casu (bb0140) 2001; 359 Andriopoulos, Corradini, Xia, Faasse, Chen, Grgurevic (bb0005) 2009; 41 Poli, Asperti, Ruzzenenti, Naggi, Arosio (bb0240) 2017; 22 Ferro, Provasoli, Ragazzi, Casu, Torri, Bossennec (bb0100) 1990; 195 Case, Darden, Cheatham, Simmerling, Wang, Duke (bb0060) 2010 Kuo, Digman, Lander (bb0175) 2010; 21 Casu (bb0070) 1989; 556 Saremba, Nickel, Seher, Kotzsch, Sebald, Mueller (bb0270) 2008; 275 Esko, Selleck (bb0075) 2002; 71 Lin, Wei, Shi, Dryer, Esko, Wells (bb0190) 2000; 224 Billings, Yang, Mundy, Pacifici (bb0030) 2018; 293 Ohkawara, Ichiro, Ten Dijke, Ueno (bb0210) 2002; 12 Arlett, Myers, Roukes (bb0010) 2011; 6 Federici, Oliviero, Maiolo, Depero, Colombo, Bergese (bb0090) 2012; 375 Poli, Anower-E-Khuda, Asperti, Ruzzenenti, Gryzik, Denardo (bb0245) 2019; 294 Asperti, Stuemler, Poli, Gryzik, Lifshitz, Meyron-Holtz (bb0020) 2016; 11 Harrison, Al-Musawi, Walton (bb0125) 2011; 29 Jin, Hricovíni, Deakin, Lyon, Uhrín (bb0155) 2009; 19 Ruppert, Hoffmann, Sebald (bb0260) 1996; 237 Canali, Zumbrennen-Bullough, Core, Wang, Nairz, Bouley (bb0050) 2017; 129 Brkljacic, Pauk, Erjavec, Cipcic, Grgurevic, Zadro (bb0045) 2013; 37 Wagner, Sieber, Bhushan, Börgermann, Graf, Knaus (bb0280) 2010; 3 Yadin, Knaus, Mueller (bb0290) 2016; 27 Xu, Esko (bb0285) 2014; 83 Phillips, Braun, Wang, Gumbart, Tajkhorshid, Villa (bb0220) 2005; 26 Von Einem, Schwarz, Rudolph (bb0275) 2010 Sep; 73 Garnier, Gibrat, Robson (bb0115) 1996 Bergese, Cretich, Oldani, Oliviero, Di Carlo, Depero (bb0025) 2008; 15 Guerrini, Guglieri, Casu, Torri, Mourier, Boudier (bb0120) 2008; 283 Cardin, Weintraub (bb0055) 1989; 9 Garg, Linhardt, Hales (bb0110) 2005 Jin, Abrahams, Skinner, Petitou, Pike, Carrell (bb0150) 1997; 94 Heldin, Moustakas (bb0130) 2012; 347 Fujiwara, Amisaki (bb0105) 2008; 94 Mauri, Boccardi, Torri, Karfunkle, Macchi, Muzi (bb0200) 2017; 136 Mulloy, Forster, Jones, Davies (bb0205) 1993; 293 Poli, Asperti, Naggi, Campostrini, Girelli, Corbella (bb0230) 2014; 123 Li, Kusche-Gullberg (bb0185) 2016; 325 Pomin, Mulloy (bb0250) 2018; 11 Lee, Lander (bb0180) 1991; 88 Poli, Asperti, Ruzzenenti, Mandelli, Campostrini, Martini (bb0235) 2014; 92 Bragdon, Moseychuk, Saldanha, King, Julian, Nohe (bb0040) 2011; 23 Poli, Girelli, Campostrini, Maccarinelli, Finazzi, Luscieti (bb0225) 2011; 117 Bishop, Schuksz, Esko (bb0035) 2007; 446 Jorgensen, Chandrasekhar, Madura, Impey, Klein (bb0160) 1983; 79 Esko, Elgavish, Prasthofer, Taylor, Weinke (bb0085) 1986; 261 Esko, Stewart, Taylor (bb0080) 1985; 82 Rider, Mulloy (bb0255) 2017 Apr 29; 22 Hsieh, Thieker, Guerrini, Woods, Liu (bb0145) 2016; 6 Andriopoulos (10.1016/j.bbagen.2020.129799_bb0005) 2009; 41 Ferro (10.1016/j.bbagen.2020.129799_bb0095) 1986; 108 Kuo (10.1016/j.bbagen.2020.129799_bb0175) 2010; 21 Lin (10.1016/j.bbagen.2020.129799_bb0190) 2000; 224 Brkljacic (10.1016/j.bbagen.2020.129799_bb0045) 2013; 37 Poli (10.1016/j.bbagen.2020.129799_bb0225) 2011; 117 Asperti (10.1016/j.bbagen.2020.129799_bb0015) 2016; 6 Poli (10.1016/j.bbagen.2020.129799_bb0245) 2019; 294 Bragdon (10.1016/j.bbagen.2020.129799_bb0040) 2011; 23 Fujiwara (10.1016/j.bbagen.2020.129799_bb0105) 2008; 94 Samsonov (10.1016/j.bbagen.2020.129799_bb0265) 2014; 54 Bishop (10.1016/j.bbagen.2020.129799_bb0035) 2007; 446 Mauri (10.1016/j.bbagen.2020.129799_bb0200) 2017; 136 Poli (10.1016/j.bbagen.2020.129799_bb0240) 2017; 22 Kanzaki (10.1016/j.bbagen.2020.129799_bb0165) 2008; 216 Phillips (10.1016/j.bbagen.2020.129799_bb0220) 2005; 26 Hricovíni (10.1016/j.bbagen.2020.129799_bb0140) 2001; 359 Case (10.1016/j.bbagen.2020.129799_bb0060) 2010 Hricovíni (10.1016/j.bbagen.2020.129799_bb0135) 2018; 23 Poli (10.1016/j.bbagen.2020.129799_bb0230) 2014; 123 Li (10.1016/j.bbagen.2020.129799_bb0185) 2016; 325 Ohkawara (10.1016/j.bbagen.2020.129799_bb0210) 2002; 12 Casu (10.1016/j.bbagen.2020.129799_bb0070) 1989; 556 Poli (10.1016/j.bbagen.2020.129799_bb0235) 2014; 92 Wagner (10.1016/j.bbagen.2020.129799_bb0280) 2010; 3 Jorgensen (10.1016/j.bbagen.2020.129799_bb0160) 1983; 79 Esko (10.1016/j.bbagen.2020.129799_bb0085) 1986; 261 Jin (10.1016/j.bbagen.2020.129799_bb0155) 2009; 19 Guerrini (10.1016/j.bbagen.2020.129799_bb0120) 2008; 283 Arlett (10.1016/j.bbagen.2020.129799_bb0010) 2011; 6 Ruppert (10.1016/j.bbagen.2020.129799_bb0260) 1996; 237 Federici (10.1016/j.bbagen.2020.129799_bb0090) 2012; 375 Kirschner (10.1016/j.bbagen.2020.129799_bb0170) 2008; 29 Xu (10.1016/j.bbagen.2020.129799_bb0285) 2014; 83 Billings (10.1016/j.bbagen.2020.129799_bb0030) 2018; 293 Saremba (10.1016/j.bbagen.2020.129799_bb0270) 2008; 275 Heldin (10.1016/j.bbagen.2020.129799_bb0130) 2012; 347 Garg (10.1016/j.bbagen.2020.129799_bb0110) 2005 Lee (10.1016/j.bbagen.2020.129799_bb0180) 1991; 88 Yadin (10.1016/j.bbagen.2020.129799_bb0290) 2016; 27 Rider (10.1016/j.bbagen.2020.129799_bb0255) 2017; 22 Case (10.1016/j.bbagen.2020.129799_bb0065) 2011 Esko (10.1016/j.bbagen.2020.129799_bb0080) 1985; 82 Harrison (10.1016/j.bbagen.2020.129799_bb0125) 2011; 29 Maiolo (10.1016/j.bbagen.2020.129799_bb0195) 2013; 402 Jin (10.1016/j.bbagen.2020.129799_bb0150) 1997; 94 Asperti (10.1016/j.bbagen.2020.129799_bb0020) 2016; 11 Garnier (10.1016/j.bbagen.2020.129799_bb0115) 1996 Cardin (10.1016/j.bbagen.2020.129799_bb0055) 1989; 9 Pomin (10.1016/j.bbagen.2020.129799_bb0250) 2018; 11 Ferro (10.1016/j.bbagen.2020.129799_bb0100) 1990; 195 Bergese (10.1016/j.bbagen.2020.129799_bb0025) 2008; 15 Mulloy (10.1016/j.bbagen.2020.129799_bb0205) 1993; 293 Von Einem (10.1016/j.bbagen.2020.129799_bb0275) 2010; 73 Canali (10.1016/j.bbagen.2020.129799_bb0050) 2017; 129 Esko (10.1016/j.bbagen.2020.129799_bb0075) 2002; 71 Hsieh (10.1016/j.bbagen.2020.129799_bb0145) 2016; 6 Oomen (10.1016/j.bbagen.2020.129799_bb0215) 1991; 4 |
References_xml | – volume: 23 start-page: 609 year: 2011 end-page: 620 ident: bb0040 article-title: Bone morphogenetic proteins: a critical review publication-title: Cell. Signal. – volume: 6 start-page: 316 year: 2016 ident: bb0015 article-title: High sulfation and a high molecular weight are important for anti-hepcidin activity of heparin publication-title: Front. Pharmacol. – volume: 556 start-page: 1 year: 1989 end-page: 17 ident: bb0070 article-title: Structure of heparin and heparin fragments publication-title: Ann. N. Y. Acad. Sci. – volume: 73 start-page: 65 year: 2010 Sep end-page: 69 ident: bb0275 article-title: A novel TWO-STEP renaturation procedure for efficient production of recombinant BMP-2 publication-title: Protein Expr. Purif. – volume: 261 start-page: 15725 year: 1986 end-page: 15733 ident: bb0085 article-title: Sulfate transport-deficient mutants of Chinese hamster ovary cells. Sulfation of glycosaminoglycans dependent on cysteine publication-title: J. Biol. Chem. – volume: 294 start-page: 13292 year: 2019 end-page: 13303 ident: bb0245 article-title: Hepatic heparan sulfate is a master regulator of hepcidin expression and iron homeostasis in human hepatocytes and mice publication-title: J. Biol. Chem. – volume: 224 start-page: 299 year: 2000 end-page: 311 ident: bb0190 article-title: Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice publication-title: Dev. Biol. – volume: 83 start-page: 129 year: 2014 end-page: 157 ident: bb0285 article-title: Demystifying Heparan sulfate–protein interactions publication-title: Annu. Rev. Biochem. – volume: 237 start-page: 295 year: 1996 end-page: 302 ident: bb0260 article-title: Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity publication-title: Eur. J. Biochem. – volume: 375 start-page: 1 year: 2012 end-page: 11 ident: bb0090 article-title: On the thermodynamics of biomolecule surface transformations publication-title: J. Colloid Interface Sci. – volume: 37 start-page: 529 year: 2013 end-page: 541 ident: bb0045 article-title: Exogenous heparin binds and inhibits bone morphogenetic protein 6 biological activity publication-title: Int. Orthop. – volume: 94 start-page: 14683 year: 1997 end-page: 14688 ident: bb0150 article-title: The anticoagulant activation of antithrombin by heparin publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2011 ident: bb0065 article-title: Amber11 User's Manual. Amber – volume: 54 start-page: 582 year: 2014 end-page: 592 ident: bb0265 article-title: Flexibility and explicit solvent in molecular-dynamics-based docking of protein-glycosaminoglycan systems publication-title: J. Chem. Inf. Model. – volume: 79 start-page: 926 year: 1983 end-page: 935 ident: bb0160 article-title: Comparison of simple potential functions for simulating liquid water publication-title: J. Chem. Phys. – volume: 195 start-page: 157 year: 1990 end-page: 167 ident: bb0100 article-title: Conformer populations of l-iduronic acid residues in glycosaminoglycan sequences publication-title: Carbohydr. Res. – volume: 283 start-page: 26662 year: 2008 end-page: 26675 ident: bb0120 article-title: Antithrombin-binding octasaccharides and role of extensions of the active pentasaccharide sequence in the specificity and strength of interaction: evidence for very high affinity induced by an unusual glucuronic acid residue publication-title: J. Biol. Chem. – volume: 88 start-page: 2768 year: 1991 end-page: 2772 ident: bb0180 article-title: Analysis of affinity and structural selectivity in the binding of proteins to glycosaminoglycans: development of a sensitive electrophoretic approach publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 29 start-page: 174 year: 2011 end-page: 186 ident: bb0125 article-title: Prodomains regulate the synthesis, extracellular localisation and activity of TGF-β superfamily ligands publication-title: Growth Factors – volume: 11 year: 2016 ident: bb0020 article-title: Heparanase overexpression reduces hepcidin expression, affects iron homeostasis and alters the response to inflammation publication-title: PLoS One – volume: 22 start-page: 713 year: 2017 Apr 29 ident: bb0255 article-title: Heparin, heparan sulphate and the TGF-β cytokine superfamily publication-title: Molecules. – start-page: 540 year: 1996 end-page: 553 ident: bb0115 article-title: [32] GOR method for predicting protein secondary structure from amino acid sequence publication-title: Methods in Enzymology – start-page: 1 year: 2005 end-page: 28 ident: bb0110 article-title: Chemistry and Biology of Heparin and Heparan Sulfate. Chemistry and Biology of Heparin and Heparan Sulfate – volume: 6 start-page: 29602 year: 2016 ident: bb0145 article-title: Uncovering the relationship between sulphation patterns and conformation of iduronic acid in heparan sulphate publication-title: Sci. Rep. – volume: 12 start-page: 205 year: 2002 end-page: 209 ident: bb0210 article-title: Action range of BMP is defined by its N-terminal basic amino acid core publication-title: Curr. Biol. – volume: 3 year: 2010 ident: bb0280 article-title: BMPs: from bone to body morphogenetic proteins publication-title: Sci. Signal. – volume: 275 start-page: 172 year: 2008 end-page: 183 ident: bb0270 article-title: Type I receptor binding of bone morphogenetic protein 6 is dependent on N-glycosylation of the ligand publication-title: FEBS J. – year: 2010 ident: bb0060 article-title: AMBER 11 – volume: 446 start-page: 1030 year: 2007 end-page: 1037 ident: bb0035 article-title: Heparan sulphate proteoglycans fine-tune mammalian physiology publication-title: Nature. – volume: 9 start-page: 21 year: 1989 end-page: 32 ident: bb0055 article-title: Molecular modeling of protein-glycosaminoglycan interactions publication-title: Arteriosclerosis – volume: 293 start-page: 849 year: 1993 ident: bb0205 article-title: And molecular-modelling studies of the solution conformation of heparin publication-title: Biochem. J. – volume: 19 start-page: 1185 year: 2009 end-page: 1196 ident: bb0155 article-title: Residual dipolar coupling investigation of a heparin tetrasaccharide confirms the limited effect of flexibility of the iduronic acid on the molecular shape of heparin publication-title: Glycobiology – volume: 71 start-page: 435 year: 2002 end-page: 471 ident: bb0075 article-title: Order out of Chaos: assembly of ligand binding sites in Heparan sulfate publication-title: Annu. Rev. Biochem. – volume: 325 start-page: 215 year: 2016 end-page: 273 ident: bb0185 article-title: Heparan sulfate: biosynthesis, structure, and function publication-title: Int. Rev. Cell Mol. Biol. – volume: 123 start-page: 1564 year: 2014 end-page: 1573 ident: bb0230 article-title: Glycol-split nonanticoagulant heparins are inhibitors of hepcidin expression in vitro and in vivo publication-title: Blood – volume: 94 start-page: 95 year: 2008 end-page: 103 ident: bb0105 article-title: Identification of high affinity fatty acid binding sites on human serum albumin by MM-PBSA method publication-title: Biophys. J. – volume: 23 start-page: 3042 year: 2018 ident: bb0135 article-title: Solution conformation of heparin tetrasaccharide. DFT analysis of structure and spin–spin coupling constants publication-title: Molecules – volume: 129 start-page: 405 year: 2017 end-page: 414 ident: bb0050 article-title: Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice publication-title: Blood. – volume: 4 start-page: 427 year: 1991 end-page: 433 ident: bb0215 article-title: Molecular modeling of antibody—antigen complexes between the brucella abortus o-chain polysaccharide and a specific monoclonal antibody publication-title: Protein Eng. Des. Sel. – volume: 27 start-page: 13 year: 2016 end-page: 34 ident: bb0290 article-title: Structural insights into BMP receptors: specificity, activation and inhibition publication-title: Cytokine Growth Factor Rev. – volume: 26 start-page: 1781 year: 2005 end-page: 1802 ident: bb0220 article-title: Scalable molecular dynamics with NAMD publication-title: J. Comput. Chem. – volume: 117 start-page: 997 year: 2011 end-page: 1004 ident: bb0225 article-title: Heparin: a potent inhibitor of hepcidin expression in vitro and in vivo publication-title: Blood – volume: 11 start-page: 27 year: 2018 ident: bb0250 article-title: Glycosaminoglycans and proteoglycans publication-title: Pharmaceuticals – volume: 92 start-page: 467 year: 2014 end-page: 475 ident: bb0235 article-title: Oversulfated heparins with low anticoagulant activity are strong and fast inhibitors of hepcidin expression in vitro and in vivo publication-title: Biochem. Pharmacol. – volume: 41 start-page: 482 year: 2009 end-page: 487 ident: bb0005 article-title: BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism publication-title: Nat. Genet. – volume: 6 start-page: 203 year: 2011 ident: bb0010 article-title: Comparative advantages of mechanical biosensors publication-title: Nat. Nanotechnol. – volume: 82 start-page: 3197 year: 1985 end-page: 3201 ident: bb0080 article-title: Animal cell mutants defective in glycosaminoglycan biosynthesis publication-title: Proc. Natl. Acad. Sci. – volume: 359 start-page: 265 year: 2001 end-page: 272 ident: bb0140 article-title: Conformation of heparin pentasaccharide bound to antithrombin III publication-title: Biochem. J. – volume: 21 start-page: 4028 year: 2010 end-page: 4041 ident: bb0175 article-title: Heparan sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization publication-title: Mol. Biol. Cell – volume: 402 start-page: 334 year: 2013 end-page: 339 ident: bb0195 article-title: Nanomechanics of surface DNA switches probed by captive contact angle publication-title: J. Colloid Interface Sci. – volume: 29 start-page: 622 year: 2008 end-page: 655 ident: bb0170 article-title: GLYCAM06: a generalizable biomolecular force field. Carbohydrates publication-title: J. Comput. Chem. – volume: 22 year: 2017 ident: bb0240 article-title: Non-anticoagulant heparins are hepcidin antagonists for the treatment of anemia publication-title: Molecules – volume: 15 start-page: 1706 year: 2008 end-page: 1719 ident: bb0025 article-title: Advances in parallel screening of drug candidates publication-title: Curr. Med. Chem. – volume: 136 start-page: 92 year: 2017 end-page: 105 ident: bb0200 article-title: Qualification of HSQC methods for quantitative composition of heparin and low molecular weight heparins publication-title: J. Pharm. Biomed. Anal. – volume: 293 start-page: 14371 year: 2018 end-page: 14383 ident: bb0030 article-title: Domains with highest heparan sulfate-binding affinity reside at opposite ends in BMP2/4 versus BMP5/6/7: implications for function publication-title: J. Biol. Chem. – volume: 108 start-page: 6773 year: 1986 end-page: 6778 ident: bb0095 article-title: Evidence for conformational equilibrium of the sulfated L-Iduronate residue in heparin and in synthetic heparin mono- and oligosaccharides: NMR and force-field studies publication-title: J. Am. Chem. Soc. – volume: 216 start-page: 844 year: 2008 end-page: 850 ident: bb0165 article-title: Heparin inhibits BMP-2 osteogenic bioactivity by binding to both BMP-2 and BMP receptor publication-title: J. Cell. Physiol. – volume: 347 start-page: 21 year: 2012 end-page: 36 ident: bb0130 article-title: Role of Smads in TGFβ signaling publication-title: Cell Tissue Res. – volume: 294 start-page: 13292 issue: 36 year: 2019 ident: 10.1016/j.bbagen.2020.129799_bb0245 article-title: Hepatic heparan sulfate is a master regulator of hepcidin expression and iron homeostasis in human hepatocytes and mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.007213 – volume: 4 start-page: 427 issue: 4 year: 1991 ident: 10.1016/j.bbagen.2020.129799_bb0215 article-title: Molecular modeling of antibody—antigen complexes between the brucella abortus o-chain polysaccharide and a specific monoclonal antibody publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/4.4.427 – volume: 41 start-page: 482 issue: 4 year: 2009 ident: 10.1016/j.bbagen.2020.129799_bb0005 article-title: BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism publication-title: Nat. Genet. doi: 10.1038/ng.335 – volume: 83 start-page: 129 year: 2014 ident: 10.1016/j.bbagen.2020.129799_bb0285 article-title: Demystifying Heparan sulfate–protein interactions publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060713-035314 – volume: 237 start-page: 295 issue: 1 year: 1996 ident: 10.1016/j.bbagen.2020.129799_bb0260 article-title: Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1996.0295n.x – volume: 9 start-page: 21 issue: 1 year: 1989 ident: 10.1016/j.bbagen.2020.129799_bb0055 article-title: Molecular modeling of protein-glycosaminoglycan interactions publication-title: Arteriosclerosis doi: 10.1161/01.ATV.9.1.21 – volume: 6 start-page: 316 year: 2016 ident: 10.1016/j.bbagen.2020.129799_bb0015 article-title: High sulfation and a high molecular weight are important for anti-hepcidin activity of heparin publication-title: Front. Pharmacol. doi: 10.3389/fphar.2015.00316 – volume: 446 start-page: 1030 issue: 7139 year: 2007 ident: 10.1016/j.bbagen.2020.129799_bb0035 article-title: Heparan sulphate proteoglycans fine-tune mammalian physiology publication-title: Nature. doi: 10.1038/nature05817 – year: 2010 ident: 10.1016/j.bbagen.2020.129799_bb0060 – volume: 325 start-page: 215 year: 2016 ident: 10.1016/j.bbagen.2020.129799_bb0185 article-title: Heparan sulfate: biosynthesis, structure, and function publication-title: Int. Rev. Cell Mol. Biol. doi: 10.1016/bs.ircmb.2016.02.009 – volume: 293 start-page: 14371 issue: 37 year: 2018 ident: 10.1016/j.bbagen.2020.129799_bb0030 article-title: Domains with highest heparan sulfate-binding affinity reside at opposite ends in BMP2/4 versus BMP5/6/7: implications for function publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.003191 – volume: 26 start-page: 1781 issue: 16 year: 2005 ident: 10.1016/j.bbagen.2020.129799_bb0220 article-title: Scalable molecular dynamics with NAMD publication-title: J. Comput. Chem. doi: 10.1002/jcc.20289 – volume: 71 start-page: 435 year: 2002 ident: 10.1016/j.bbagen.2020.129799_bb0075 article-title: Order out of Chaos: assembly of ligand binding sites in Heparan sulfate publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.71.110601.135458 – volume: 6 start-page: 29602 year: 2016 ident: 10.1016/j.bbagen.2020.129799_bb0145 article-title: Uncovering the relationship between sulphation patterns and conformation of iduronic acid in heparan sulphate publication-title: Sci. Rep. doi: 10.1038/srep29602 – volume: 129 start-page: 405 issue: 4 year: 2017 ident: 10.1016/j.bbagen.2020.129799_bb0050 article-title: Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice publication-title: Blood. doi: 10.1182/blood-2016-06-721571 – start-page: 540 year: 1996 ident: 10.1016/j.bbagen.2020.129799_bb0115 article-title: [32] GOR method for predicting protein secondary structure from amino acid sequence doi: 10.1016/S0076-6879(96)66034-0 – volume: 37 start-page: 529 issue: 3 year: 2013 ident: 10.1016/j.bbagen.2020.129799_bb0045 article-title: Exogenous heparin binds and inhibits bone morphogenetic protein 6 biological activity publication-title: Int. Orthop. doi: 10.1007/s00264-012-1714-3 – volume: 123 start-page: 1564 issue: 10 year: 2014 ident: 10.1016/j.bbagen.2020.129799_bb0230 article-title: Glycol-split nonanticoagulant heparins are inhibitors of hepcidin expression in vitro and in vivo publication-title: Blood doi: 10.1182/blood-2013-07-515221 – volume: 359 start-page: 265 issue: Pt2 year: 2001 ident: 10.1016/j.bbagen.2020.129799_bb0140 article-title: Conformation of heparin pentasaccharide bound to antithrombin III publication-title: Biochem. J. doi: 10.1042/bj3590265 – volume: 94 start-page: 95 issue: 1 year: 2008 ident: 10.1016/j.bbagen.2020.129799_bb0105 article-title: Identification of high affinity fatty acid binding sites on human serum albumin by MM-PBSA method publication-title: Biophys. J. doi: 10.1529/biophysj.107.111377 – volume: 88 start-page: 2768 issue: 7 year: 1991 ident: 10.1016/j.bbagen.2020.129799_bb0180 article-title: Analysis of affinity and structural selectivity in the binding of proteins to glycosaminoglycans: development of a sensitive electrophoretic approach publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.88.7.2768 – volume: 23 start-page: 3042 issue: 11 year: 2018 ident: 10.1016/j.bbagen.2020.129799_bb0135 article-title: Solution conformation of heparin tetrasaccharide. DFT analysis of structure and spin–spin coupling constants publication-title: Molecules doi: 10.3390/molecules23113042 – volume: 15 start-page: 1706 issue: 17 year: 2008 ident: 10.1016/j.bbagen.2020.129799_bb0025 article-title: Advances in parallel screening of drug candidates publication-title: Curr. Med. Chem. doi: 10.2174/092986708784872366 – start-page: 1 year: 2005 ident: 10.1016/j.bbagen.2020.129799_bb0110 – volume: 117 start-page: 997 issue: 3 year: 2011 ident: 10.1016/j.bbagen.2020.129799_bb0225 article-title: Heparin: a potent inhibitor of hepcidin expression in vitro and in vivo publication-title: Blood doi: 10.1182/blood-2010-06-289082 – volume: 19 start-page: 1185 year: 2009 ident: 10.1016/j.bbagen.2020.129799_bb0155 article-title: Residual dipolar coupling investigation of a heparin tetrasaccharide confirms the limited effect of flexibility of the iduronic acid on the molecular shape of heparin publication-title: Glycobiology doi: 10.1093/glycob/cwp105 – volume: 11 issue: 10 year: 2016 ident: 10.1016/j.bbagen.2020.129799_bb0020 article-title: Heparanase overexpression reduces hepcidin expression, affects iron homeostasis and alters the response to inflammation publication-title: PLoS One doi: 10.1371/journal.pone.0164183 – volume: 11 start-page: 27 issue: 1 year: 2018 ident: 10.1016/j.bbagen.2020.129799_bb0250 article-title: Glycosaminoglycans and proteoglycans publication-title: Pharmaceuticals doi: 10.3390/ph11010027 – volume: 82 start-page: 3197 issue: 10 year: 1985 ident: 10.1016/j.bbagen.2020.129799_bb0080 article-title: Animal cell mutants defective in glycosaminoglycan biosynthesis publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.82.10.3197 – volume: 22 start-page: 713 issue: 5 year: 2017 ident: 10.1016/j.bbagen.2020.129799_bb0255 article-title: Heparin, heparan sulphate and the TGF-β cytokine superfamily publication-title: Molecules. doi: 10.3390/molecules22050713 – volume: 136 start-page: 92 year: 2017 ident: 10.1016/j.bbagen.2020.129799_bb0200 article-title: Qualification of HSQC methods for quantitative composition of heparin and low molecular weight heparins publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2016.12.031 – volume: 23 start-page: 609 issue: 4 year: 2011 ident: 10.1016/j.bbagen.2020.129799_bb0040 article-title: Bone morphogenetic proteins: a critical review publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2010.10.003 – volume: 293 start-page: 849 issue: Pt.3 year: 1993 ident: 10.1016/j.bbagen.2020.129799_bb0205 article-title: And molecular-modelling studies of the solution conformation of heparin publication-title: Biochem. J. doi: 10.1042/bj2930849 – volume: 22 issue: 4 year: 2017 ident: 10.1016/j.bbagen.2020.129799_bb0240 article-title: Non-anticoagulant heparins are hepcidin antagonists for the treatment of anemia publication-title: Molecules doi: 10.3390/molecules22040598 – volume: 108 start-page: 6773 issue: 21 year: 1986 ident: 10.1016/j.bbagen.2020.129799_bb0095 article-title: Evidence for conformational equilibrium of the sulfated L-Iduronate residue in heparin and in synthetic heparin mono- and oligosaccharides: NMR and force-field studies publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00281a052 – volume: 73 start-page: 65 issue: 1 year: 2010 ident: 10.1016/j.bbagen.2020.129799_bb0275 article-title: A novel TWO-STEP renaturation procedure for efficient production of recombinant BMP-2 publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2010.03.009 – volume: 347 start-page: 21 issue: 1 year: 2012 ident: 10.1016/j.bbagen.2020.129799_bb0130 article-title: Role of Smads in TGFβ signaling publication-title: Cell Tissue Res. doi: 10.1007/s00441-011-1190-x – volume: 556 start-page: 1 year: 1989 ident: 10.1016/j.bbagen.2020.129799_bb0070 article-title: Structure of heparin and heparin fragments publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1989.tb22485.x – volume: 3 issue: 107 year: 2010 ident: 10.1016/j.bbagen.2020.129799_bb0280 article-title: BMPs: from bone to body morphogenetic proteins publication-title: Sci. Signal. – volume: 29 start-page: 174 issue: 5 year: 2011 ident: 10.1016/j.bbagen.2020.129799_bb0125 article-title: Prodomains regulate the synthesis, extracellular localisation and activity of TGF-β superfamily ligands publication-title: Growth Factors doi: 10.3109/08977194.2011.608666 – volume: 21 start-page: 4028 issue: 22 year: 2010 ident: 10.1016/j.bbagen.2020.129799_bb0175 article-title: Heparan sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e10-04-0348 – volume: 79 start-page: 926 issue: 2 year: 1983 ident: 10.1016/j.bbagen.2020.129799_bb0160 article-title: Comparison of simple potential functions for simulating liquid water publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 27 start-page: 13 year: 2016 ident: 10.1016/j.bbagen.2020.129799_bb0290 article-title: Structural insights into BMP receptors: specificity, activation and inhibition publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2015.11.005 – volume: 216 start-page: 844 issue: 3 year: 2008 ident: 10.1016/j.bbagen.2020.129799_bb0165 article-title: Heparin inhibits BMP-2 osteogenic bioactivity by binding to both BMP-2 and BMP receptor publication-title: J. Cell. Physiol. doi: 10.1002/jcp.21468 – volume: 54 start-page: 582 issue: 2 year: 2014 ident: 10.1016/j.bbagen.2020.129799_bb0265 article-title: Flexibility and explicit solvent in molecular-dynamics-based docking of protein-glycosaminoglycan systems publication-title: J. Chem. Inf. Model. doi: 10.1021/ci4006047 – volume: 6 start-page: 203 issue: 4 year: 2011 ident: 10.1016/j.bbagen.2020.129799_bb0010 article-title: Comparative advantages of mechanical biosensors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.44 – volume: 92 start-page: 467 year: 2014 ident: 10.1016/j.bbagen.2020.129799_bb0235 article-title: Oversulfated heparins with low anticoagulant activity are strong and fast inhibitors of hepcidin expression in vitro and in vivo publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2014.09.007 – volume: 94 start-page: 14683 issue: 26 year: 1997 ident: 10.1016/j.bbagen.2020.129799_bb0150 article-title: The anticoagulant activation of antithrombin by heparin publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.94.26.14683 – year: 2011 ident: 10.1016/j.bbagen.2020.129799_bb0065 – volume: 195 start-page: 157 issue: 2 year: 1990 ident: 10.1016/j.bbagen.2020.129799_bb0100 article-title: Conformer populations of l-iduronic acid residues in glycosaminoglycan sequences publication-title: Carbohydr. Res. doi: 10.1016/0008-6215(90)84164-P – volume: 375 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.bbagen.2020.129799_bb0090 article-title: On the thermodynamics of biomolecule surface transformations publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.02.013 – volume: 224 start-page: 299 issue: 2 year: 2000 ident: 10.1016/j.bbagen.2020.129799_bb0190 article-title: Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice publication-title: Dev. Biol. doi: 10.1006/dbio.2000.9798 – volume: 12 start-page: 205 issue: 3 year: 2002 ident: 10.1016/j.bbagen.2020.129799_bb0210 article-title: Action range of BMP is defined by its N-terminal basic amino acid core publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00684-4 – volume: 402 start-page: 334 year: 2013 ident: 10.1016/j.bbagen.2020.129799_bb0195 article-title: Nanomechanics of surface DNA switches probed by captive contact angle publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2013.03.069 – volume: 261 start-page: 15725 issue: 33 year: 1986 ident: 10.1016/j.bbagen.2020.129799_bb0085 article-title: Sulfate transport-deficient mutants of Chinese hamster ovary cells. Sulfation of glycosaminoglycans dependent on cysteine publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)66778-X – volume: 29 start-page: 622 issue: 4 year: 2008 ident: 10.1016/j.bbagen.2020.129799_bb0170 article-title: GLYCAM06: a generalizable biomolecular force field. Carbohydrates publication-title: J. Comput. Chem. doi: 10.1002/jcc.20820 – volume: 283 start-page: 26662 issue: 39 year: 2008 ident: 10.1016/j.bbagen.2020.129799_bb0120 article-title: Antithrombin-binding octasaccharides and role of extensions of the active pentasaccharide sequence in the specificity and strength of interaction: evidence for very high affinity induced by an unusual glucuronic acid residue publication-title: J. Biol. Chem. doi: 10.1074/jbc.M801102200 – volume: 275 start-page: 172 issue: 1 year: 2008 ident: 10.1016/j.bbagen.2020.129799_bb0270 article-title: Type I receptor binding of bone morphogenetic protein 6 is dependent on N-glycosylation of the ligand publication-title: FEBS J. doi: 10.1111/j.1742-4658.2007.06187.x |
SSID | ssj0000595 |
Score | 2.3924208 |
Snippet | The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129799 |
SubjectTerms | Animals Binding Sites Bone morphogenetic protein 6 (BMP6) Bone Morphogenetic Protein 6 - chemistry Bone Morphogenetic Protein 6 - metabolism bone morphogenetic proteins CHO Cells computer simulation Cricetulus Hep G2 Cells Heparan sulfate Heparin Heparin - metabolism Heparitin Sulfate - metabolism Hepcidin Hepcidins - metabolism Humans Interaction Models, Molecular mutation Protein Binding Protein Interaction Domains and Motifs sulfates |
Title | BMP6 binding to heparin and heparan sulfate is mediated by N-terminal and C-terminal clustered basic residues |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129799 https://www.ncbi.nlm.nih.gov/pubmed/33232799 https://www.proquest.com/docview/2464191286 https://www.proquest.com/docview/2551928778 |
Volume | 1865 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KylhfSpttbfoRNOirl1iWJfuxDQ3ZRsOgC-RNSLLMPDKnNMlDX_q39yTZLXtoA32zzQkL3enud9wXwIXRKCglZ1HOUnRQmEnxzpU6ymiRcZVzwfz0hpspn8zYj3k634FRWwvj0iob3R90utfWzZdBc5qDu6oa3LqgHsKJlOIDgpS5q2Bnwkn5t8eXNA-ED2mIJLDIUbflcz7HS2u8tK4LKnVtFlyE6zXz9Br89GZofAD7DX4kl2GLh7Bj6y58CBMlH7rwcdQOcPsE_65ufnGiK1-3QtZL8se6kYM1UXURnlVNVptFiXCTVCvii0gQgBL9QKZRkyWz8NSjl1ez2LjeCo5MIYcJuutVgVv-DLPx9e_RJGqmK0QGMeA6KtFZMCyL-ZBaFZcIg4SNbcxtYVmiM2aL3JoyzVWq1JCWeHMTahNtM0GVThAlfIFOvaztMRAzNAI1axkzg8aOMzU02sZK5G65zkQPkvZQpWlaj7sJGAvZ5pj9lYEV0rFCBlb0IHpedRdab2yhFy2_5H8iJNE6bFn5tWWvRB65kImq7XKzkpRxhh4tzfgbNAg6c3Q8RdaDoyAbz_tNEkSs-IeTd-_tFPaoS6PxieJn0Fnfb-w54qC17ntB78Pu5fefk-kTATAFOA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH8qnRBcpq18lX1gpF1DG8dxkuNWgbqNVkgrUm-W7TgiqKSItgcu_O082wkVB6i0WxI9K5bfh39P7wvgh1YoKAVnQcZidFCYjlHnChWkNE-5zHjC3PSG0ZgPr9mfaTxtwaCphbFplbXt9zbdWev6S68-zd59Wfb-2aAewomY4gOClOkWfGCovnaMwdnTOs8D8UPsQwkssORN_ZxL8lIKtda2QaW2z4INcb11P72FP909dPEJPtYAkvz0e_wMLVN1YNuPlHzswM6gmeC2B3e_RlecqNIVrpDlnNwYO3OwIrLK_bOsyGI1KxBvknJBXBUJIlCiHsk4qNNkZo56sH7Vs5VtrmDJJLKYoL9e5rjlfbi-OJ8MhkE9XiHQCAKXQYHegmZpyPvUyLBAHJSY0ITc5IZFKmUmz4wu4kzGUvZpgaobURMpkyZUqghhwgG0q3lljoDovk7QtBYh03jbcSb7WplQJpldrtKkC1FzqELXvcftCIyZaJLMboVnhbCsEJ4VXQheVt373hsb6JOGX-KVDAm8HjasPG3YK5BHNmYiKzNfLQRlnKFLS1P-Dg2izgw9zyTtwqGXjZf9RhFCVvzD8X_v7QR2hpPRpbj8Pf77BXapzalxWeNfob18WJlvCIqW6rsT-mfkZgbG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BMP6+binding+to+heparin+and+heparan+sulfate+is+mediated+by+N-terminal+and+C-terminal+clustered+basic+residues&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Denardo%2C+Andrea&rft.au=Elli%2C+Stefano&rft.au=Federici%2C+Stefania&rft.au=Asperti%2C+Michela&rft.date=2021-02-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1865&rft.issue=2&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129799&rft.externalDocID=S030441652030310X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |