BMP6 binding to heparin and heparan sulfate is mediated by N-terminal and C-terminal clustered basic residues

The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 sub...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1865; no. 2; p. 129799
Main Authors Denardo, Andrea, Elli, Stefano, Federici, Stefania, Asperti, Michela, Gryzik, Magdalena, Ruzzenenti, Paola, Carmona, Fernando, Bergese, Paolo, Naggi, Annamaria, Arosio, Paolo, Poli, Maura
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 subfamily has been deeply characterized to have a N-terminal heparin/HS binding domain (HBD), whose basic residues contact the sulfate groups on heparin and HS. Such detailed characterization is still required for other, structurally different BMPs, including BMP6. BMP6 peptides encompassing potential HBDs were analysed on heparin-functionalized plates and microcantilevers, and on membrane HS expressing CHO-K1 cells. Monomeric wild-type BMP6 and mutants were produced, substituting the basic residues with non-charged ones, and their affinity to the heparin-column was measured. The BMP6-heparin interaction was also predicted at atomic level by in silico molecular dynamics. N-terminal and C-terminal BMP6 peptides showed high heparin affinity in solid-phase assays. The mutation of the two sites (R5L, R6S, R7L and K126N, K127N, R129S) abolished the heparin-binding activity of the recombinant monomeric BMP6. Monomeric BMP6 and peptides specifically bound to membrane HS of CHO-K1 cells through the same domains. Molecular dynamic studies supported the role of the two HBDs, suggesting a cooperative behaviour. In BMP6, N-terminal (R5, R6, R7) and C-terminal (K126, K127, R129) domains mediate the interaction with heparin and HS. This study provides the molecular mechanism supporting the use of heparin to sequester BMP6 and inhibit hepcidin expression, a novel clinical approach for high-hepcidin iron disorders. •Arginine- and Lysine-rich regions were identified on BMP6 as potential heparin/HS-binding domains (HBDs).•BMP6 peptides and recombinant protein bound immobilized heparin and HS.•We dissected two heparin binding sites on BMP6: the N-terminal R5 R6 R7 and the C-terminal K126 K127 R129.•In in silico study the N-terminus flexibly adapted to heparin and the C-terminus strongly contributed to binding energy.
AbstractList The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 subfamily has been deeply characterized to have a N-terminal heparin/HS binding domain (HBD), whose basic residues contact the sulfate groups on heparin and HS. Such detailed characterization is still required for other, structurally different BMPs, including BMP6. BMP6 peptides encompassing potential HBDs were analysed on heparin-functionalized plates and microcantilevers, and on membrane HS expressing CHO-K1 cells. Monomeric wild-type BMP6 and mutants were produced, substituting the basic residues with non-charged ones, and their affinity to the heparin-column was measured. The BMP6-heparin interaction was also predicted at atomic level by in silico molecular dynamics. N-terminal and C-terminal BMP6 peptides showed high heparin affinity in solid-phase assays. The mutation of the two sites (R5L, R6S, R7L and K126N, K127N, R129S) abolished the heparin-binding activity of the recombinant monomeric BMP6. Monomeric BMP6 and peptides specifically bound to membrane HS of CHO-K1 cells through the same domains. Molecular dynamic studies supported the role of the two HBDs, suggesting a cooperative behaviour. In BMP6, N-terminal (R5, R6, R7) and C-terminal (K126, K127, R129) domains mediate the interaction with heparin and HS. This study provides the molecular mechanism supporting the use of heparin to sequester BMP6 and inhibit hepcidin expression, a novel clinical approach for high-hepcidin iron disorders. •Arginine- and Lysine-rich regions were identified on BMP6 as potential heparin/HS-binding domains (HBDs).•BMP6 peptides and recombinant protein bound immobilized heparin and HS.•We dissected two heparin binding sites on BMP6: the N-terminal R5 R6 R7 and the C-terminal K126 K127 R129.•In in silico study the N-terminus flexibly adapted to heparin and the C-terminus strongly contributed to binding energy.
The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 subfamily has been deeply characterized to have a N-terminal heparin/HS binding domain (HBD), whose basic residues contact the sulfate groups on heparin and HS. Such detailed characterization is still required for other, structurally different BMPs, including BMP6. BMP6 peptides encompassing potential HBDs were analysed on heparin-functionalized plates and microcantilevers, and on membrane HS expressing CHO-K1 cells. Monomeric wild-type BMP6 and mutants were produced, substituting the basic residues with non-charged ones, and their affinity to the heparin-column was measured. The BMP6-heparin interaction was also predicted at atomic level by in silico molecular dynamics. N-terminal and C-terminal BMP6 peptides showed high heparin affinity in solid-phase assays. The mutation of the two sites (R5L, R6S, R7L and K126N, K127N, R129S) abolished the heparin-binding activity of the recombinant monomeric BMP6. Monomeric BMP6 and peptides specifically bound to membrane HS of CHO-K1 cells through the same domains. Molecular dynamic studies supported the role of the two HBDs, suggesting a cooperative behaviour. In BMP6, N-terminal (R5, R6, R7) and C-terminal (K126, K127, R129) domains mediate the interaction with heparin and HS. This study provides the molecular mechanism supporting the use of heparin to sequester BMP6 and inhibit hepcidin expression, a novel clinical approach for high-hepcidin iron disorders.
The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 subfamily has been deeply characterized to have a N-terminal heparin/HS binding domain (HBD), whose basic residues contact the sulfate groups on heparin and HS. Such detailed characterization is still required for other, structurally different BMPs, including BMP6.BMP6 peptides encompassing potential HBDs were analysed on heparin-functionalized plates and microcantilevers, and on membrane HS expressing CHO-K1 cells. Monomeric wild-type BMP6 and mutants were produced, substituting the basic residues with non-charged ones, and their affinity to the heparin-column was measured. The BMP6-heparin interaction was also predicted at atomic level by in silico molecular dynamics.N-terminal and C-terminal BMP6 peptides showed high heparin affinity in solid-phase assays. The mutation of the two sites (R5L, R6S, R7L and K126N, K127N, R129S) abolished the heparin-binding activity of the recombinant monomeric BMP6. Monomeric BMP6 and peptides specifically bound to membrane HS of CHO-K1 cells through the same domains. Molecular dynamic studies supported the role of the two HBDs, suggesting a cooperative behaviour.In BMP6, N-terminal (R5, R6, R7) and C-terminal (K126, K127, R129) domains mediate the interaction with heparin and HS.This study provides the molecular mechanism supporting the use of heparin to sequester BMP6 and inhibit hepcidin expression, a novel clinical approach for high-hepcidin iron disorders.
The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 subfamily has been deeply characterized to have a N-terminal heparin/HS binding domain (HBD), whose basic residues contact the sulfate groups on heparin and HS. Such detailed characterization is still required for other, structurally different BMPs, including BMP6.BACKGROUNDThe bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 subfamily has been deeply characterized to have a N-terminal heparin/HS binding domain (HBD), whose basic residues contact the sulfate groups on heparin and HS. Such detailed characterization is still required for other, structurally different BMPs, including BMP6.BMP6 peptides encompassing potential HBDs were analysed on heparin-functionalized plates and microcantilevers, and on membrane HS expressing CHO-K1 cells. Monomeric wild-type BMP6 and mutants were produced, substituting the basic residues with non-charged ones, and their affinity to the heparin-column was measured. The BMP6-heparin interaction was also predicted at atomic level by in silico molecular dynamics.METHODSBMP6 peptides encompassing potential HBDs were analysed on heparin-functionalized plates and microcantilevers, and on membrane HS expressing CHO-K1 cells. Monomeric wild-type BMP6 and mutants were produced, substituting the basic residues with non-charged ones, and their affinity to the heparin-column was measured. The BMP6-heparin interaction was also predicted at atomic level by in silico molecular dynamics.N-terminal and C-terminal BMP6 peptides showed high heparin affinity in solid-phase assays. The mutation of the two sites (R5L, R6S, R7L and K126N, K127N, R129S) abolished the heparin-binding activity of the recombinant monomeric BMP6. Monomeric BMP6 and peptides specifically bound to membrane HS of CHO-K1 cells through the same domains. Molecular dynamic studies supported the role of the two HBDs, suggesting a cooperative behaviour.RESULTSN-terminal and C-terminal BMP6 peptides showed high heparin affinity in solid-phase assays. The mutation of the two sites (R5L, R6S, R7L and K126N, K127N, R129S) abolished the heparin-binding activity of the recombinant monomeric BMP6. Monomeric BMP6 and peptides specifically bound to membrane HS of CHO-K1 cells through the same domains. Molecular dynamic studies supported the role of the two HBDs, suggesting a cooperative behaviour.In BMP6, N-terminal (R5, R6, R7) and C-terminal (K126, K127, R129) domains mediate the interaction with heparin and HS.CONCLUSIONSIn BMP6, N-terminal (R5, R6, R7) and C-terminal (K126, K127, R129) domains mediate the interaction with heparin and HS.This study provides the molecular mechanism supporting the use of heparin to sequester BMP6 and inhibit hepcidin expression, a novel clinical approach for high-hepcidin iron disorders.GENERAL SIGNIFICANCEThis study provides the molecular mechanism supporting the use of heparin to sequester BMP6 and inhibit hepcidin expression, a novel clinical approach for high-hepcidin iron disorders.
ArticleNumber 129799
Author Gryzik, Magdalena
Bergese, Paolo
Poli, Maura
Ruzzenenti, Paola
Elli, Stefano
Federici, Stefania
Carmona, Fernando
Denardo, Andrea
Naggi, Annamaria
Asperti, Michela
Arosio, Paolo
Author_xml – sequence: 1
  givenname: Andrea
  surname: Denardo
  fullname: Denardo, Andrea
  organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
– sequence: 2
  givenname: Stefano
  surname: Elli
  fullname: Elli, Stefano
  organization: G. Ronzoni Institute for Chemical and Biochemical Research, Via Giuseppe Colombo 81, 20133 Milan, Italy
– sequence: 3
  givenname: Stefania
  surname: Federici
  fullname: Federici, Stefania
  organization: Department of Mechanical and Industrial Engineering and INSTM, University of Brescia, Via Branze 38, 25123 Brescia, Italy
– sequence: 4
  givenname: Michela
  surname: Asperti
  fullname: Asperti, Michela
  organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
– sequence: 5
  givenname: Magdalena
  surname: Gryzik
  fullname: Gryzik, Magdalena
  organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
– sequence: 6
  givenname: Paola
  surname: Ruzzenenti
  fullname: Ruzzenenti, Paola
  organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
– sequence: 7
  givenname: Fernando
  surname: Carmona
  fullname: Carmona, Fernando
  organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
– sequence: 8
  givenname: Paolo
  surname: Bergese
  fullname: Bergese, Paolo
  organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
– sequence: 9
  givenname: Annamaria
  surname: Naggi
  fullname: Naggi, Annamaria
  organization: G. Ronzoni Institute for Chemical and Biochemical Research, Via Giuseppe Colombo 81, 20133 Milan, Italy
– sequence: 10
  givenname: Paolo
  surname: Arosio
  fullname: Arosio, Paolo
  organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
– sequence: 11
  givenname: Maura
  surname: Poli
  fullname: Poli, Maura
  email: maura.poli@unibs.it
  organization: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33232799$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQha2qqL0t_QcV8pJNLn4kTswCCa54VOprAWtr4kyKrxLnYjtI_ff4krZIXVBvPGN9Z0Y-54Qc-skjIeecrTnj6t123bZwh34tmMhPQtdaH5AVb2pRNIypQ7JikpVFyVV1TE5i3LJ8Kl0dkWMphRSZX5Hx09Wtoq3znfN3NE30J-4gOE_Bd0sNnsZ56CEhdZGO2LlcdrS9p9dFwjA6D8NfevOvtcMcc7PHIDpLA0bXzRhfk1c9DBHPHu5T8uPL5--bb8XlzdeLzcfLwlasTkUvmbJlwxUTCLxXQtbIkSvssJRtU2Kn0faVhgqAiZ7xWgqULeavQyuFlqfk7TJ3F6ZfeW8yo4sWhwE8TnM0oqq4Fk1dNy-jpSq55qJRGX3zgM5t9sHsghsh3JtHNzNQLoANU4wB-yeEM7MPzWzNEprZh2aW0LLs_TOZdQmSm3wK4IaXxB8WMWY_fzsMJlqH3uacAtpkusn9f8Afx4qznw
CitedBy_id crossref_primary_10_3389_fcimb_2021_705087
crossref_primary_10_1016_j_carbpol_2024_121979
crossref_primary_10_3390_md20100646
crossref_primary_10_1016_j_carbpol_2021_118490
crossref_primary_10_1016_j_carres_2024_109201
crossref_primary_10_1053_j_seminhematol_2021_05_001
crossref_primary_10_1124_pharmrev_122_000684
crossref_primary_10_1002_2211_5463_13652
crossref_primary_10_1016_j_apmt_2024_102181
crossref_primary_10_1182_blood_2023022736
Cites_doi 10.1074/jbc.RA118.007213
10.1093/protein/4.4.427
10.1038/ng.335
10.1146/annurev-biochem-060713-035314
10.1111/j.1432-1033.1996.0295n.x
10.1161/01.ATV.9.1.21
10.3389/fphar.2015.00316
10.1038/nature05817
10.1016/bs.ircmb.2016.02.009
10.1074/jbc.RA118.003191
10.1002/jcc.20289
10.1146/annurev.biochem.71.110601.135458
10.1038/srep29602
10.1182/blood-2016-06-721571
10.1016/S0076-6879(96)66034-0
10.1007/s00264-012-1714-3
10.1182/blood-2013-07-515221
10.1042/bj3590265
10.1529/biophysj.107.111377
10.1073/pnas.88.7.2768
10.3390/molecules23113042
10.2174/092986708784872366
10.1182/blood-2010-06-289082
10.1093/glycob/cwp105
10.1371/journal.pone.0164183
10.3390/ph11010027
10.1073/pnas.82.10.3197
10.3390/molecules22050713
10.1016/j.jpba.2016.12.031
10.1016/j.cellsig.2010.10.003
10.1042/bj2930849
10.3390/molecules22040598
10.1021/ja00281a052
10.1016/j.pep.2010.03.009
10.1007/s00441-011-1190-x
10.1111/j.1749-6632.1989.tb22485.x
10.3109/08977194.2011.608666
10.1091/mbc.e10-04-0348
10.1063/1.445869
10.1016/j.cytogfr.2015.11.005
10.1002/jcp.21468
10.1021/ci4006047
10.1038/nnano.2011.44
10.1016/j.bcp.2014.09.007
10.1073/pnas.94.26.14683
10.1016/0008-6215(90)84164-P
10.1016/j.jcis.2012.02.013
10.1006/dbio.2000.9798
10.1016/S0960-9822(01)00684-4
10.1016/j.jcis.2013.03.069
10.1016/S0021-9258(18)66778-X
10.1002/jcc.20820
10.1074/jbc.M801102200
10.1111/j.1742-4658.2007.06187.x
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2020.129799
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 33232799
10_1016_j_bbagen_2020_129799
S030441652030310X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c507t-f306c481602ea1f6237e1e16ede43b84ed9ecf59a5aa02f01732e3be872ab3293
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri Jul 11 08:39:23 EDT 2025
Fri Jul 11 05:31:20 EDT 2025
Wed Feb 19 02:28:48 EST 2025
Tue Jul 01 00:22:14 EDT 2025
Thu Apr 24 23:07:34 EDT 2025
Fri Feb 23 02:46:35 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Heparan sulfate
HSPG
Interaction
Bone morphogenetic protein 6 (BMP6)
HS
HBD
GAG
BMP6
DS
CS
MD
Heparin
SEC-TDA
Hepcidin
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-f306c481602ea1f6237e1e16ede43b84ed9ecf59a5aa02f01732e3be872ab3293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S030441652030310X
PMID 33232799
PQID 2464191286
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2551928778
proquest_miscellaneous_2464191286
pubmed_primary_33232799
crossref_primary_10_1016_j_bbagen_2020_129799
crossref_citationtrail_10_1016_j_bbagen_2020_129799
elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129799
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Maiolo, Federici, Ravelli, Depero, Hamad-Schifferli, Bergese (bb0195) 2013; 402
Asperti, Naggi, Esposito, Ruzzenenti, Di Somma, Gryzik (bb0015) 2016; 6
Case, Darden, Simmerling, Cheatham, Merz (bb0065) 2011
Ferro, Provasoli, Ragazzi, Torri, Casu, Gatti (bb0095) 1986; 108
Kirschner, Yongye, Tschampel, González-Outeiriño, Daniels, Foley (bb0170) 2008; 29
Samsonov, Gehrcke, Pisabarro (bb0265) 2014; 54
Kanzaki, Takahashi, Kanno, Ariyoshi, Shinmyouzu, Tujisawa (bb0165) 2008; 216
Oomen, Young, Bundle (bb0215) 1991; 4
Hricovíni, Hricovíni (bb0135) 2018; 23
Hricovíni, Guerrini, Bisio, Torri, Petitou, Casu (bb0140) 2001; 359
Andriopoulos, Corradini, Xia, Faasse, Chen, Grgurevic (bb0005) 2009; 41
Poli, Asperti, Ruzzenenti, Naggi, Arosio (bb0240) 2017; 22
Ferro, Provasoli, Ragazzi, Casu, Torri, Bossennec (bb0100) 1990; 195
Case, Darden, Cheatham, Simmerling, Wang, Duke (bb0060) 2010
Kuo, Digman, Lander (bb0175) 2010; 21
Casu (bb0070) 1989; 556
Saremba, Nickel, Seher, Kotzsch, Sebald, Mueller (bb0270) 2008; 275
Esko, Selleck (bb0075) 2002; 71
Lin, Wei, Shi, Dryer, Esko, Wells (bb0190) 2000; 224
Billings, Yang, Mundy, Pacifici (bb0030) 2018; 293
Ohkawara, Ichiro, Ten Dijke, Ueno (bb0210) 2002; 12
Arlett, Myers, Roukes (bb0010) 2011; 6
Federici, Oliviero, Maiolo, Depero, Colombo, Bergese (bb0090) 2012; 375
Poli, Anower-E-Khuda, Asperti, Ruzzenenti, Gryzik, Denardo (bb0245) 2019; 294
Asperti, Stuemler, Poli, Gryzik, Lifshitz, Meyron-Holtz (bb0020) 2016; 11
Harrison, Al-Musawi, Walton (bb0125) 2011; 29
Jin, Hricovíni, Deakin, Lyon, Uhrín (bb0155) 2009; 19
Ruppert, Hoffmann, Sebald (bb0260) 1996; 237
Canali, Zumbrennen-Bullough, Core, Wang, Nairz, Bouley (bb0050) 2017; 129
Brkljacic, Pauk, Erjavec, Cipcic, Grgurevic, Zadro (bb0045) 2013; 37
Wagner, Sieber, Bhushan, Börgermann, Graf, Knaus (bb0280) 2010; 3
Yadin, Knaus, Mueller (bb0290) 2016; 27
Xu, Esko (bb0285) 2014; 83
Phillips, Braun, Wang, Gumbart, Tajkhorshid, Villa (bb0220) 2005; 26
Von Einem, Schwarz, Rudolph (bb0275) 2010 Sep; 73
Garnier, Gibrat, Robson (bb0115) 1996
Bergese, Cretich, Oldani, Oliviero, Di Carlo, Depero (bb0025) 2008; 15
Guerrini, Guglieri, Casu, Torri, Mourier, Boudier (bb0120) 2008; 283
Cardin, Weintraub (bb0055) 1989; 9
Garg, Linhardt, Hales (bb0110) 2005
Jin, Abrahams, Skinner, Petitou, Pike, Carrell (bb0150) 1997; 94
Heldin, Moustakas (bb0130) 2012; 347
Fujiwara, Amisaki (bb0105) 2008; 94
Mauri, Boccardi, Torri, Karfunkle, Macchi, Muzi (bb0200) 2017; 136
Mulloy, Forster, Jones, Davies (bb0205) 1993; 293
Poli, Asperti, Naggi, Campostrini, Girelli, Corbella (bb0230) 2014; 123
Li, Kusche-Gullberg (bb0185) 2016; 325
Pomin, Mulloy (bb0250) 2018; 11
Lee, Lander (bb0180) 1991; 88
Poli, Asperti, Ruzzenenti, Mandelli, Campostrini, Martini (bb0235) 2014; 92
Bragdon, Moseychuk, Saldanha, King, Julian, Nohe (bb0040) 2011; 23
Poli, Girelli, Campostrini, Maccarinelli, Finazzi, Luscieti (bb0225) 2011; 117
Bishop, Schuksz, Esko (bb0035) 2007; 446
Jorgensen, Chandrasekhar, Madura, Impey, Klein (bb0160) 1983; 79
Esko, Elgavish, Prasthofer, Taylor, Weinke (bb0085) 1986; 261
Esko, Stewart, Taylor (bb0080) 1985; 82
Rider, Mulloy (bb0255) 2017 Apr 29; 22
Hsieh, Thieker, Guerrini, Woods, Liu (bb0145) 2016; 6
Andriopoulos (10.1016/j.bbagen.2020.129799_bb0005) 2009; 41
Ferro (10.1016/j.bbagen.2020.129799_bb0095) 1986; 108
Kuo (10.1016/j.bbagen.2020.129799_bb0175) 2010; 21
Lin (10.1016/j.bbagen.2020.129799_bb0190) 2000; 224
Brkljacic (10.1016/j.bbagen.2020.129799_bb0045) 2013; 37
Poli (10.1016/j.bbagen.2020.129799_bb0225) 2011; 117
Asperti (10.1016/j.bbagen.2020.129799_bb0015) 2016; 6
Poli (10.1016/j.bbagen.2020.129799_bb0245) 2019; 294
Bragdon (10.1016/j.bbagen.2020.129799_bb0040) 2011; 23
Fujiwara (10.1016/j.bbagen.2020.129799_bb0105) 2008; 94
Samsonov (10.1016/j.bbagen.2020.129799_bb0265) 2014; 54
Bishop (10.1016/j.bbagen.2020.129799_bb0035) 2007; 446
Mauri (10.1016/j.bbagen.2020.129799_bb0200) 2017; 136
Poli (10.1016/j.bbagen.2020.129799_bb0240) 2017; 22
Kanzaki (10.1016/j.bbagen.2020.129799_bb0165) 2008; 216
Phillips (10.1016/j.bbagen.2020.129799_bb0220) 2005; 26
Hricovíni (10.1016/j.bbagen.2020.129799_bb0140) 2001; 359
Case (10.1016/j.bbagen.2020.129799_bb0060) 2010
Hricovíni (10.1016/j.bbagen.2020.129799_bb0135) 2018; 23
Poli (10.1016/j.bbagen.2020.129799_bb0230) 2014; 123
Li (10.1016/j.bbagen.2020.129799_bb0185) 2016; 325
Ohkawara (10.1016/j.bbagen.2020.129799_bb0210) 2002; 12
Casu (10.1016/j.bbagen.2020.129799_bb0070) 1989; 556
Poli (10.1016/j.bbagen.2020.129799_bb0235) 2014; 92
Wagner (10.1016/j.bbagen.2020.129799_bb0280) 2010; 3
Jorgensen (10.1016/j.bbagen.2020.129799_bb0160) 1983; 79
Esko (10.1016/j.bbagen.2020.129799_bb0085) 1986; 261
Jin (10.1016/j.bbagen.2020.129799_bb0155) 2009; 19
Guerrini (10.1016/j.bbagen.2020.129799_bb0120) 2008; 283
Arlett (10.1016/j.bbagen.2020.129799_bb0010) 2011; 6
Ruppert (10.1016/j.bbagen.2020.129799_bb0260) 1996; 237
Federici (10.1016/j.bbagen.2020.129799_bb0090) 2012; 375
Kirschner (10.1016/j.bbagen.2020.129799_bb0170) 2008; 29
Xu (10.1016/j.bbagen.2020.129799_bb0285) 2014; 83
Billings (10.1016/j.bbagen.2020.129799_bb0030) 2018; 293
Saremba (10.1016/j.bbagen.2020.129799_bb0270) 2008; 275
Heldin (10.1016/j.bbagen.2020.129799_bb0130) 2012; 347
Garg (10.1016/j.bbagen.2020.129799_bb0110) 2005
Lee (10.1016/j.bbagen.2020.129799_bb0180) 1991; 88
Yadin (10.1016/j.bbagen.2020.129799_bb0290) 2016; 27
Rider (10.1016/j.bbagen.2020.129799_bb0255) 2017; 22
Case (10.1016/j.bbagen.2020.129799_bb0065) 2011
Esko (10.1016/j.bbagen.2020.129799_bb0080) 1985; 82
Harrison (10.1016/j.bbagen.2020.129799_bb0125) 2011; 29
Maiolo (10.1016/j.bbagen.2020.129799_bb0195) 2013; 402
Jin (10.1016/j.bbagen.2020.129799_bb0150) 1997; 94
Asperti (10.1016/j.bbagen.2020.129799_bb0020) 2016; 11
Garnier (10.1016/j.bbagen.2020.129799_bb0115) 1996
Cardin (10.1016/j.bbagen.2020.129799_bb0055) 1989; 9
Pomin (10.1016/j.bbagen.2020.129799_bb0250) 2018; 11
Ferro (10.1016/j.bbagen.2020.129799_bb0100) 1990; 195
Bergese (10.1016/j.bbagen.2020.129799_bb0025) 2008; 15
Mulloy (10.1016/j.bbagen.2020.129799_bb0205) 1993; 293
Von Einem (10.1016/j.bbagen.2020.129799_bb0275) 2010; 73
Canali (10.1016/j.bbagen.2020.129799_bb0050) 2017; 129
Esko (10.1016/j.bbagen.2020.129799_bb0075) 2002; 71
Hsieh (10.1016/j.bbagen.2020.129799_bb0145) 2016; 6
Oomen (10.1016/j.bbagen.2020.129799_bb0215) 1991; 4
References_xml – volume: 23
  start-page: 609
  year: 2011
  end-page: 620
  ident: bb0040
  article-title: Bone morphogenetic proteins: a critical review
  publication-title: Cell. Signal.
– volume: 6
  start-page: 316
  year: 2016
  ident: bb0015
  article-title: High sulfation and a high molecular weight are important for anti-hepcidin activity of heparin
  publication-title: Front. Pharmacol.
– volume: 556
  start-page: 1
  year: 1989
  end-page: 17
  ident: bb0070
  article-title: Structure of heparin and heparin fragments
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 73
  start-page: 65
  year: 2010 Sep
  end-page: 69
  ident: bb0275
  article-title: A novel TWO-STEP renaturation procedure for efficient production of recombinant BMP-2
  publication-title: Protein Expr. Purif.
– volume: 261
  start-page: 15725
  year: 1986
  end-page: 15733
  ident: bb0085
  article-title: Sulfate transport-deficient mutants of Chinese hamster ovary cells. Sulfation of glycosaminoglycans dependent on cysteine
  publication-title: J. Biol. Chem.
– volume: 294
  start-page: 13292
  year: 2019
  end-page: 13303
  ident: bb0245
  article-title: Hepatic heparan sulfate is a master regulator of hepcidin expression and iron homeostasis in human hepatocytes and mice
  publication-title: J. Biol. Chem.
– volume: 224
  start-page: 299
  year: 2000
  end-page: 311
  ident: bb0190
  article-title: Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice
  publication-title: Dev. Biol.
– volume: 83
  start-page: 129
  year: 2014
  end-page: 157
  ident: bb0285
  article-title: Demystifying Heparan sulfate–protein interactions
  publication-title: Annu. Rev. Biochem.
– volume: 237
  start-page: 295
  year: 1996
  end-page: 302
  ident: bb0260
  article-title: Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity
  publication-title: Eur. J. Biochem.
– volume: 375
  start-page: 1
  year: 2012
  end-page: 11
  ident: bb0090
  article-title: On the thermodynamics of biomolecule surface transformations
  publication-title: J. Colloid Interface Sci.
– volume: 37
  start-page: 529
  year: 2013
  end-page: 541
  ident: bb0045
  article-title: Exogenous heparin binds and inhibits bone morphogenetic protein 6 biological activity
  publication-title: Int. Orthop.
– volume: 94
  start-page: 14683
  year: 1997
  end-page: 14688
  ident: bb0150
  article-title: The anticoagulant activation of antithrombin by heparin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2011
  ident: bb0065
  article-title: Amber11 User's Manual. Amber
– volume: 54
  start-page: 582
  year: 2014
  end-page: 592
  ident: bb0265
  article-title: Flexibility and explicit solvent in molecular-dynamics-based docking of protein-glycosaminoglycan systems
  publication-title: J. Chem. Inf. Model.
– volume: 79
  start-page: 926
  year: 1983
  end-page: 935
  ident: bb0160
  article-title: Comparison of simple potential functions for simulating liquid water
  publication-title: J. Chem. Phys.
– volume: 195
  start-page: 157
  year: 1990
  end-page: 167
  ident: bb0100
  article-title: Conformer populations of l-iduronic acid residues in glycosaminoglycan sequences
  publication-title: Carbohydr. Res.
– volume: 283
  start-page: 26662
  year: 2008
  end-page: 26675
  ident: bb0120
  article-title: Antithrombin-binding octasaccharides and role of extensions of the active pentasaccharide sequence in the specificity and strength of interaction: evidence for very high affinity induced by an unusual glucuronic acid residue
  publication-title: J. Biol. Chem.
– volume: 88
  start-page: 2768
  year: 1991
  end-page: 2772
  ident: bb0180
  article-title: Analysis of affinity and structural selectivity in the binding of proteins to glycosaminoglycans: development of a sensitive electrophoretic approach
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 29
  start-page: 174
  year: 2011
  end-page: 186
  ident: bb0125
  article-title: Prodomains regulate the synthesis, extracellular localisation and activity of TGF-β superfamily ligands
  publication-title: Growth Factors
– volume: 11
  year: 2016
  ident: bb0020
  article-title: Heparanase overexpression reduces hepcidin expression, affects iron homeostasis and alters the response to inflammation
  publication-title: PLoS One
– volume: 22
  start-page: 713
  year: 2017 Apr 29
  ident: bb0255
  article-title: Heparin, heparan sulphate and the TGF-β cytokine superfamily
  publication-title: Molecules.
– start-page: 540
  year: 1996
  end-page: 553
  ident: bb0115
  article-title: [32] GOR method for predicting protein secondary structure from amino acid sequence
  publication-title: Methods in Enzymology
– start-page: 1
  year: 2005
  end-page: 28
  ident: bb0110
  article-title: Chemistry and Biology of Heparin and Heparan Sulfate. Chemistry and Biology of Heparin and Heparan Sulfate
– volume: 6
  start-page: 29602
  year: 2016
  ident: bb0145
  article-title: Uncovering the relationship between sulphation patterns and conformation of iduronic acid in heparan sulphate
  publication-title: Sci. Rep.
– volume: 12
  start-page: 205
  year: 2002
  end-page: 209
  ident: bb0210
  article-title: Action range of BMP is defined by its N-terminal basic amino acid core
  publication-title: Curr. Biol.
– volume: 3
  year: 2010
  ident: bb0280
  article-title: BMPs: from bone to body morphogenetic proteins
  publication-title: Sci. Signal.
– volume: 275
  start-page: 172
  year: 2008
  end-page: 183
  ident: bb0270
  article-title: Type I receptor binding of bone morphogenetic protein 6 is dependent on N-glycosylation of the ligand
  publication-title: FEBS J.
– year: 2010
  ident: bb0060
  article-title: AMBER 11
– volume: 446
  start-page: 1030
  year: 2007
  end-page: 1037
  ident: bb0035
  article-title: Heparan sulphate proteoglycans fine-tune mammalian physiology
  publication-title: Nature.
– volume: 9
  start-page: 21
  year: 1989
  end-page: 32
  ident: bb0055
  article-title: Molecular modeling of protein-glycosaminoglycan interactions
  publication-title: Arteriosclerosis
– volume: 293
  start-page: 849
  year: 1993
  ident: bb0205
  article-title: And molecular-modelling studies of the solution conformation of heparin
  publication-title: Biochem. J.
– volume: 19
  start-page: 1185
  year: 2009
  end-page: 1196
  ident: bb0155
  article-title: Residual dipolar coupling investigation of a heparin tetrasaccharide confirms the limited effect of flexibility of the iduronic acid on the molecular shape of heparin
  publication-title: Glycobiology
– volume: 71
  start-page: 435
  year: 2002
  end-page: 471
  ident: bb0075
  article-title: Order out of Chaos: assembly of ligand binding sites in Heparan sulfate
  publication-title: Annu. Rev. Biochem.
– volume: 325
  start-page: 215
  year: 2016
  end-page: 273
  ident: bb0185
  article-title: Heparan sulfate: biosynthesis, structure, and function
  publication-title: Int. Rev. Cell Mol. Biol.
– volume: 123
  start-page: 1564
  year: 2014
  end-page: 1573
  ident: bb0230
  article-title: Glycol-split nonanticoagulant heparins are inhibitors of hepcidin expression in vitro and in vivo
  publication-title: Blood
– volume: 94
  start-page: 95
  year: 2008
  end-page: 103
  ident: bb0105
  article-title: Identification of high affinity fatty acid binding sites on human serum albumin by MM-PBSA method
  publication-title: Biophys. J.
– volume: 23
  start-page: 3042
  year: 2018
  ident: bb0135
  article-title: Solution conformation of heparin tetrasaccharide. DFT analysis of structure and spin–spin coupling constants
  publication-title: Molecules
– volume: 129
  start-page: 405
  year: 2017
  end-page: 414
  ident: bb0050
  article-title: Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice
  publication-title: Blood.
– volume: 4
  start-page: 427
  year: 1991
  end-page: 433
  ident: bb0215
  article-title: Molecular modeling of antibody—antigen complexes between the brucella abortus o-chain polysaccharide and a specific monoclonal antibody
  publication-title: Protein Eng. Des. Sel.
– volume: 27
  start-page: 13
  year: 2016
  end-page: 34
  ident: bb0290
  article-title: Structural insights into BMP receptors: specificity, activation and inhibition
  publication-title: Cytokine Growth Factor Rev.
– volume: 26
  start-page: 1781
  year: 2005
  end-page: 1802
  ident: bb0220
  article-title: Scalable molecular dynamics with NAMD
  publication-title: J. Comput. Chem.
– volume: 117
  start-page: 997
  year: 2011
  end-page: 1004
  ident: bb0225
  article-title: Heparin: a potent inhibitor of hepcidin expression in vitro and in vivo
  publication-title: Blood
– volume: 11
  start-page: 27
  year: 2018
  ident: bb0250
  article-title: Glycosaminoglycans and proteoglycans
  publication-title: Pharmaceuticals
– volume: 92
  start-page: 467
  year: 2014
  end-page: 475
  ident: bb0235
  article-title: Oversulfated heparins with low anticoagulant activity are strong and fast inhibitors of hepcidin expression in vitro and in vivo
  publication-title: Biochem. Pharmacol.
– volume: 41
  start-page: 482
  year: 2009
  end-page: 487
  ident: bb0005
  article-title: BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism
  publication-title: Nat. Genet.
– volume: 6
  start-page: 203
  year: 2011
  ident: bb0010
  article-title: Comparative advantages of mechanical biosensors
  publication-title: Nat. Nanotechnol.
– volume: 82
  start-page: 3197
  year: 1985
  end-page: 3201
  ident: bb0080
  article-title: Animal cell mutants defective in glycosaminoglycan biosynthesis
  publication-title: Proc. Natl. Acad. Sci.
– volume: 359
  start-page: 265
  year: 2001
  end-page: 272
  ident: bb0140
  article-title: Conformation of heparin pentasaccharide bound to antithrombin III
  publication-title: Biochem. J.
– volume: 21
  start-page: 4028
  year: 2010
  end-page: 4041
  ident: bb0175
  article-title: Heparan sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization
  publication-title: Mol. Biol. Cell
– volume: 402
  start-page: 334
  year: 2013
  end-page: 339
  ident: bb0195
  article-title: Nanomechanics of surface DNA switches probed by captive contact angle
  publication-title: J. Colloid Interface Sci.
– volume: 29
  start-page: 622
  year: 2008
  end-page: 655
  ident: bb0170
  article-title: GLYCAM06: a generalizable biomolecular force field. Carbohydrates
  publication-title: J. Comput. Chem.
– volume: 22
  year: 2017
  ident: bb0240
  article-title: Non-anticoagulant heparins are hepcidin antagonists for the treatment of anemia
  publication-title: Molecules
– volume: 15
  start-page: 1706
  year: 2008
  end-page: 1719
  ident: bb0025
  article-title: Advances in parallel screening of drug candidates
  publication-title: Curr. Med. Chem.
– volume: 136
  start-page: 92
  year: 2017
  end-page: 105
  ident: bb0200
  article-title: Qualification of HSQC methods for quantitative composition of heparin and low molecular weight heparins
  publication-title: J. Pharm. Biomed. Anal.
– volume: 293
  start-page: 14371
  year: 2018
  end-page: 14383
  ident: bb0030
  article-title: Domains with highest heparan sulfate-binding affinity reside at opposite ends in BMP2/4 versus BMP5/6/7: implications for function
  publication-title: J. Biol. Chem.
– volume: 108
  start-page: 6773
  year: 1986
  end-page: 6778
  ident: bb0095
  article-title: Evidence for conformational equilibrium of the sulfated L-Iduronate residue in heparin and in synthetic heparin mono- and oligosaccharides: NMR and force-field studies
  publication-title: J. Am. Chem. Soc.
– volume: 216
  start-page: 844
  year: 2008
  end-page: 850
  ident: bb0165
  article-title: Heparin inhibits BMP-2 osteogenic bioactivity by binding to both BMP-2 and BMP receptor
  publication-title: J. Cell. Physiol.
– volume: 347
  start-page: 21
  year: 2012
  end-page: 36
  ident: bb0130
  article-title: Role of Smads in TGFβ signaling
  publication-title: Cell Tissue Res.
– volume: 294
  start-page: 13292
  issue: 36
  year: 2019
  ident: 10.1016/j.bbagen.2020.129799_bb0245
  article-title: Hepatic heparan sulfate is a master regulator of hepcidin expression and iron homeostasis in human hepatocytes and mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.007213
– volume: 4
  start-page: 427
  issue: 4
  year: 1991
  ident: 10.1016/j.bbagen.2020.129799_bb0215
  article-title: Molecular modeling of antibody—antigen complexes between the brucella abortus o-chain polysaccharide and a specific monoclonal antibody
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/4.4.427
– volume: 41
  start-page: 482
  issue: 4
  year: 2009
  ident: 10.1016/j.bbagen.2020.129799_bb0005
  article-title: BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism
  publication-title: Nat. Genet.
  doi: 10.1038/ng.335
– volume: 83
  start-page: 129
  year: 2014
  ident: 10.1016/j.bbagen.2020.129799_bb0285
  article-title: Demystifying Heparan sulfate–protein interactions
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060713-035314
– volume: 237
  start-page: 295
  issue: 1
  year: 1996
  ident: 10.1016/j.bbagen.2020.129799_bb0260
  article-title: Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1996.0295n.x
– volume: 9
  start-page: 21
  issue: 1
  year: 1989
  ident: 10.1016/j.bbagen.2020.129799_bb0055
  article-title: Molecular modeling of protein-glycosaminoglycan interactions
  publication-title: Arteriosclerosis
  doi: 10.1161/01.ATV.9.1.21
– volume: 6
  start-page: 316
  year: 2016
  ident: 10.1016/j.bbagen.2020.129799_bb0015
  article-title: High sulfation and a high molecular weight are important for anti-hepcidin activity of heparin
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2015.00316
– volume: 446
  start-page: 1030
  issue: 7139
  year: 2007
  ident: 10.1016/j.bbagen.2020.129799_bb0035
  article-title: Heparan sulphate proteoglycans fine-tune mammalian physiology
  publication-title: Nature.
  doi: 10.1038/nature05817
– year: 2010
  ident: 10.1016/j.bbagen.2020.129799_bb0060
– volume: 325
  start-page: 215
  year: 2016
  ident: 10.1016/j.bbagen.2020.129799_bb0185
  article-title: Heparan sulfate: biosynthesis, structure, and function
  publication-title: Int. Rev. Cell Mol. Biol.
  doi: 10.1016/bs.ircmb.2016.02.009
– volume: 293
  start-page: 14371
  issue: 37
  year: 2018
  ident: 10.1016/j.bbagen.2020.129799_bb0030
  article-title: Domains with highest heparan sulfate-binding affinity reside at opposite ends in BMP2/4 versus BMP5/6/7: implications for function
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.003191
– volume: 26
  start-page: 1781
  issue: 16
  year: 2005
  ident: 10.1016/j.bbagen.2020.129799_bb0220
  article-title: Scalable molecular dynamics with NAMD
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20289
– volume: 71
  start-page: 435
  year: 2002
  ident: 10.1016/j.bbagen.2020.129799_bb0075
  article-title: Order out of Chaos: assembly of ligand binding sites in Heparan sulfate
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.71.110601.135458
– volume: 6
  start-page: 29602
  year: 2016
  ident: 10.1016/j.bbagen.2020.129799_bb0145
  article-title: Uncovering the relationship between sulphation patterns and conformation of iduronic acid in heparan sulphate
  publication-title: Sci. Rep.
  doi: 10.1038/srep29602
– volume: 129
  start-page: 405
  issue: 4
  year: 2017
  ident: 10.1016/j.bbagen.2020.129799_bb0050
  article-title: Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice
  publication-title: Blood.
  doi: 10.1182/blood-2016-06-721571
– start-page: 540
  year: 1996
  ident: 10.1016/j.bbagen.2020.129799_bb0115
  article-title: [32] GOR method for predicting protein secondary structure from amino acid sequence
  doi: 10.1016/S0076-6879(96)66034-0
– volume: 37
  start-page: 529
  issue: 3
  year: 2013
  ident: 10.1016/j.bbagen.2020.129799_bb0045
  article-title: Exogenous heparin binds and inhibits bone morphogenetic protein 6 biological activity
  publication-title: Int. Orthop.
  doi: 10.1007/s00264-012-1714-3
– volume: 123
  start-page: 1564
  issue: 10
  year: 2014
  ident: 10.1016/j.bbagen.2020.129799_bb0230
  article-title: Glycol-split nonanticoagulant heparins are inhibitors of hepcidin expression in vitro and in vivo
  publication-title: Blood
  doi: 10.1182/blood-2013-07-515221
– volume: 359
  start-page: 265
  issue: Pt2
  year: 2001
  ident: 10.1016/j.bbagen.2020.129799_bb0140
  article-title: Conformation of heparin pentasaccharide bound to antithrombin III
  publication-title: Biochem. J.
  doi: 10.1042/bj3590265
– volume: 94
  start-page: 95
  issue: 1
  year: 2008
  ident: 10.1016/j.bbagen.2020.129799_bb0105
  article-title: Identification of high affinity fatty acid binding sites on human serum albumin by MM-PBSA method
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.111377
– volume: 88
  start-page: 2768
  issue: 7
  year: 1991
  ident: 10.1016/j.bbagen.2020.129799_bb0180
  article-title: Analysis of affinity and structural selectivity in the binding of proteins to glycosaminoglycans: development of a sensitive electrophoretic approach
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.88.7.2768
– volume: 23
  start-page: 3042
  issue: 11
  year: 2018
  ident: 10.1016/j.bbagen.2020.129799_bb0135
  article-title: Solution conformation of heparin tetrasaccharide. DFT analysis of structure and spin–spin coupling constants
  publication-title: Molecules
  doi: 10.3390/molecules23113042
– volume: 15
  start-page: 1706
  issue: 17
  year: 2008
  ident: 10.1016/j.bbagen.2020.129799_bb0025
  article-title: Advances in parallel screening of drug candidates
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986708784872366
– start-page: 1
  year: 2005
  ident: 10.1016/j.bbagen.2020.129799_bb0110
– volume: 117
  start-page: 997
  issue: 3
  year: 2011
  ident: 10.1016/j.bbagen.2020.129799_bb0225
  article-title: Heparin: a potent inhibitor of hepcidin expression in vitro and in vivo
  publication-title: Blood
  doi: 10.1182/blood-2010-06-289082
– volume: 19
  start-page: 1185
  year: 2009
  ident: 10.1016/j.bbagen.2020.129799_bb0155
  article-title: Residual dipolar coupling investigation of a heparin tetrasaccharide confirms the limited effect of flexibility of the iduronic acid on the molecular shape of heparin
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwp105
– volume: 11
  issue: 10
  year: 2016
  ident: 10.1016/j.bbagen.2020.129799_bb0020
  article-title: Heparanase overexpression reduces hepcidin expression, affects iron homeostasis and alters the response to inflammation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0164183
– volume: 11
  start-page: 27
  issue: 1
  year: 2018
  ident: 10.1016/j.bbagen.2020.129799_bb0250
  article-title: Glycosaminoglycans and proteoglycans
  publication-title: Pharmaceuticals
  doi: 10.3390/ph11010027
– volume: 82
  start-page: 3197
  issue: 10
  year: 1985
  ident: 10.1016/j.bbagen.2020.129799_bb0080
  article-title: Animal cell mutants defective in glycosaminoglycan biosynthesis
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.82.10.3197
– volume: 22
  start-page: 713
  issue: 5
  year: 2017
  ident: 10.1016/j.bbagen.2020.129799_bb0255
  article-title: Heparin, heparan sulphate and the TGF-β cytokine superfamily
  publication-title: Molecules.
  doi: 10.3390/molecules22050713
– volume: 136
  start-page: 92
  year: 2017
  ident: 10.1016/j.bbagen.2020.129799_bb0200
  article-title: Qualification of HSQC methods for quantitative composition of heparin and low molecular weight heparins
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2016.12.031
– volume: 23
  start-page: 609
  issue: 4
  year: 2011
  ident: 10.1016/j.bbagen.2020.129799_bb0040
  article-title: Bone morphogenetic proteins: a critical review
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2010.10.003
– volume: 293
  start-page: 849
  issue: Pt.3
  year: 1993
  ident: 10.1016/j.bbagen.2020.129799_bb0205
  article-title: And molecular-modelling studies of the solution conformation of heparin
  publication-title: Biochem. J.
  doi: 10.1042/bj2930849
– volume: 22
  issue: 4
  year: 2017
  ident: 10.1016/j.bbagen.2020.129799_bb0240
  article-title: Non-anticoagulant heparins are hepcidin antagonists for the treatment of anemia
  publication-title: Molecules
  doi: 10.3390/molecules22040598
– volume: 108
  start-page: 6773
  issue: 21
  year: 1986
  ident: 10.1016/j.bbagen.2020.129799_bb0095
  article-title: Evidence for conformational equilibrium of the sulfated L-Iduronate residue in heparin and in synthetic heparin mono- and oligosaccharides: NMR and force-field studies
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00281a052
– volume: 73
  start-page: 65
  issue: 1
  year: 2010
  ident: 10.1016/j.bbagen.2020.129799_bb0275
  article-title: A novel TWO-STEP renaturation procedure for efficient production of recombinant BMP-2
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2010.03.009
– volume: 347
  start-page: 21
  issue: 1
  year: 2012
  ident: 10.1016/j.bbagen.2020.129799_bb0130
  article-title: Role of Smads in TGFβ signaling
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-011-1190-x
– volume: 556
  start-page: 1
  year: 1989
  ident: 10.1016/j.bbagen.2020.129799_bb0070
  article-title: Structure of heparin and heparin fragments
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1989.tb22485.x
– volume: 3
  issue: 107
  year: 2010
  ident: 10.1016/j.bbagen.2020.129799_bb0280
  article-title: BMPs: from bone to body morphogenetic proteins
  publication-title: Sci. Signal.
– volume: 29
  start-page: 174
  issue: 5
  year: 2011
  ident: 10.1016/j.bbagen.2020.129799_bb0125
  article-title: Prodomains regulate the synthesis, extracellular localisation and activity of TGF-β superfamily ligands
  publication-title: Growth Factors
  doi: 10.3109/08977194.2011.608666
– volume: 21
  start-page: 4028
  issue: 22
  year: 2010
  ident: 10.1016/j.bbagen.2020.129799_bb0175
  article-title: Heparan sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e10-04-0348
– volume: 79
  start-page: 926
  issue: 2
  year: 1983
  ident: 10.1016/j.bbagen.2020.129799_bb0160
  article-title: Comparison of simple potential functions for simulating liquid water
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 27
  start-page: 13
  year: 2016
  ident: 10.1016/j.bbagen.2020.129799_bb0290
  article-title: Structural insights into BMP receptors: specificity, activation and inhibition
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2015.11.005
– volume: 216
  start-page: 844
  issue: 3
  year: 2008
  ident: 10.1016/j.bbagen.2020.129799_bb0165
  article-title: Heparin inhibits BMP-2 osteogenic bioactivity by binding to both BMP-2 and BMP receptor
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.21468
– volume: 54
  start-page: 582
  issue: 2
  year: 2014
  ident: 10.1016/j.bbagen.2020.129799_bb0265
  article-title: Flexibility and explicit solvent in molecular-dynamics-based docking of protein-glycosaminoglycan systems
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci4006047
– volume: 6
  start-page: 203
  issue: 4
  year: 2011
  ident: 10.1016/j.bbagen.2020.129799_bb0010
  article-title: Comparative advantages of mechanical biosensors
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.44
– volume: 92
  start-page: 467
  year: 2014
  ident: 10.1016/j.bbagen.2020.129799_bb0235
  article-title: Oversulfated heparins with low anticoagulant activity are strong and fast inhibitors of hepcidin expression in vitro and in vivo
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2014.09.007
– volume: 94
  start-page: 14683
  issue: 26
  year: 1997
  ident: 10.1016/j.bbagen.2020.129799_bb0150
  article-title: The anticoagulant activation of antithrombin by heparin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.94.26.14683
– year: 2011
  ident: 10.1016/j.bbagen.2020.129799_bb0065
– volume: 195
  start-page: 157
  issue: 2
  year: 1990
  ident: 10.1016/j.bbagen.2020.129799_bb0100
  article-title: Conformer populations of l-iduronic acid residues in glycosaminoglycan sequences
  publication-title: Carbohydr. Res.
  doi: 10.1016/0008-6215(90)84164-P
– volume: 375
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.bbagen.2020.129799_bb0090
  article-title: On the thermodynamics of biomolecule surface transformations
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.02.013
– volume: 224
  start-page: 299
  issue: 2
  year: 2000
  ident: 10.1016/j.bbagen.2020.129799_bb0190
  article-title: Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.2000.9798
– volume: 12
  start-page: 205
  issue: 3
  year: 2002
  ident: 10.1016/j.bbagen.2020.129799_bb0210
  article-title: Action range of BMP is defined by its N-terminal basic amino acid core
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00684-4
– volume: 402
  start-page: 334
  year: 2013
  ident: 10.1016/j.bbagen.2020.129799_bb0195
  article-title: Nanomechanics of surface DNA switches probed by captive contact angle
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2013.03.069
– volume: 261
  start-page: 15725
  issue: 33
  year: 1986
  ident: 10.1016/j.bbagen.2020.129799_bb0085
  article-title: Sulfate transport-deficient mutants of Chinese hamster ovary cells. Sulfation of glycosaminoglycans dependent on cysteine
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)66778-X
– volume: 29
  start-page: 622
  issue: 4
  year: 2008
  ident: 10.1016/j.bbagen.2020.129799_bb0170
  article-title: GLYCAM06: a generalizable biomolecular force field. Carbohydrates
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20820
– volume: 283
  start-page: 26662
  issue: 39
  year: 2008
  ident: 10.1016/j.bbagen.2020.129799_bb0120
  article-title: Antithrombin-binding octasaccharides and role of extensions of the active pentasaccharide sequence in the specificity and strength of interaction: evidence for very high affinity induced by an unusual glucuronic acid residue
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M801102200
– volume: 275
  start-page: 172
  issue: 1
  year: 2008
  ident: 10.1016/j.bbagen.2020.129799_bb0270
  article-title: Type I receptor binding of bone morphogenetic protein 6 is dependent on N-glycosylation of the ligand
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2007.06187.x
SSID ssj0000595
Score 2.3924208
Snippet The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129799
SubjectTerms Animals
Binding Sites
Bone morphogenetic protein 6 (BMP6)
Bone Morphogenetic Protein 6 - chemistry
Bone Morphogenetic Protein 6 - metabolism
bone morphogenetic proteins
CHO Cells
computer simulation
Cricetulus
Hep G2 Cells
Heparan sulfate
Heparin
Heparin - metabolism
Heparitin Sulfate - metabolism
Hepcidin
Hepcidins - metabolism
Humans
Interaction
Models, Molecular
mutation
Protein Binding
Protein Interaction Domains and Motifs
sulfates
Title BMP6 binding to heparin and heparan sulfate is mediated by N-terminal and C-terminal clustered basic residues
URI https://dx.doi.org/10.1016/j.bbagen.2020.129799
https://www.ncbi.nlm.nih.gov/pubmed/33232799
https://www.proquest.com/docview/2464191286
https://www.proquest.com/docview/2551928778
Volume 1865
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KylhfSpttbfoRNOirl1iWJfuxDQ3ZRsOgC-RNSLLMPDKnNMlDX_q39yTZLXtoA32zzQkL3enud9wXwIXRKCglZ1HOUnRQmEnxzpU6ymiRcZVzwfz0hpspn8zYj3k634FRWwvj0iob3R90utfWzZdBc5qDu6oa3LqgHsKJlOIDgpS5q2Bnwkn5t8eXNA-ED2mIJLDIUbflcz7HS2u8tK4LKnVtFlyE6zXz9Br89GZofAD7DX4kl2GLh7Bj6y58CBMlH7rwcdQOcPsE_65ufnGiK1-3QtZL8se6kYM1UXURnlVNVptFiXCTVCvii0gQgBL9QKZRkyWz8NSjl1ez2LjeCo5MIYcJuutVgVv-DLPx9e_RJGqmK0QGMeA6KtFZMCyL-ZBaFZcIg4SNbcxtYVmiM2aL3JoyzVWq1JCWeHMTahNtM0GVThAlfIFOvaztMRAzNAI1axkzg8aOMzU02sZK5G65zkQPkvZQpWlaj7sJGAvZ5pj9lYEV0rFCBlb0IHpedRdab2yhFy2_5H8iJNE6bFn5tWWvRB65kImq7XKzkpRxhh4tzfgbNAg6c3Q8RdaDoyAbz_tNEkSs-IeTd-_tFPaoS6PxieJn0Fnfb-w54qC17ntB78Pu5fefk-kTATAFOA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH8qnRBcpq18lX1gpF1DG8dxkuNWgbqNVkgrUm-W7TgiqKSItgcu_O082wkVB6i0WxI9K5bfh39P7wvgh1YoKAVnQcZidFCYjlHnChWkNE-5zHjC3PSG0ZgPr9mfaTxtwaCphbFplbXt9zbdWev6S68-zd59Wfb-2aAewomY4gOClOkWfGCovnaMwdnTOs8D8UPsQwkssORN_ZxL8lIKtda2QaW2z4INcb11P72FP909dPEJPtYAkvz0e_wMLVN1YNuPlHzswM6gmeC2B3e_RlecqNIVrpDlnNwYO3OwIrLK_bOsyGI1KxBvknJBXBUJIlCiHsk4qNNkZo56sH7Vs5VtrmDJJLKYoL9e5rjlfbi-OJ8MhkE9XiHQCAKXQYHegmZpyPvUyLBAHJSY0ITc5IZFKmUmz4wu4kzGUvZpgaobURMpkyZUqghhwgG0q3lljoDovk7QtBYh03jbcSb7WplQJpldrtKkC1FzqELXvcftCIyZaJLMboVnhbCsEJ4VXQheVt373hsb6JOGX-KVDAm8HjasPG3YK5BHNmYiKzNfLQRlnKFLS1P-Dg2izgw9zyTtwqGXjZf9RhFCVvzD8X_v7QR2hpPRpbj8Pf77BXapzalxWeNfob18WJlvCIqW6rsT-mfkZgbG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BMP6+binding+to+heparin+and+heparan+sulfate+is+mediated+by+N-terminal+and+C-terminal+clustered+basic+residues&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Denardo%2C+Andrea&rft.au=Elli%2C+Stefano&rft.au=Federici%2C+Stefania&rft.au=Asperti%2C+Michela&rft.date=2021-02-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1865&rft.issue=2&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129799&rft.externalDocID=S030441652030310X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon