C1QBP Promotes Homologous Recombination by Stabilizing MRE11 and Controlling the Assembly and Activation of MRE11/RAD50/NBS1 Complex

MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 75; no. 6; pp. 1299 - 1314.e6
Main Authors Bai, Yongtai, Wang, Weibin, Li, Siyu, Zhan, Jun, Li, Hanxiao, Zhao, Meimei, Zhou, Xiao Albert, Li, Shiwei, Li, Xiaoman, Huo, Yanfei, Shen, Qinjian, Zhou, Mei, Zhang, Hongquan, Luo, Jianyuan, Sung, Patrick, Zhu, Wei-Guo, Xu, Xingzhi, Wang, Jiadong
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 19.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response. [Display omitted] •C1QBP stabilizes the MRE11 protein by forming the MRC complex with MRE11/RAD50•C1QBP inhibits MRE11 exonuclease activity by preventing its binding to DNA•Appropriate C1QBP levels are essential for genomic stability and DNA repair The MRE11/RAD50/NBS1 (MRN) complex plays a critical role in the initial processing of DNA double-strand breaks. Bai et al. show that C1QBP functions as a molecular sponge, which maintains MRE11 protein stability, while controlling the assembly and activation of the MRN complex for efficient DNA damage repair.
AbstractList MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response. [Display omitted] •C1QBP stabilizes the MRE11 protein by forming the MRC complex with MRE11/RAD50•C1QBP inhibits MRE11 exonuclease activity by preventing its binding to DNA•Appropriate C1QBP levels are essential for genomic stability and DNA repair The MRE11/RAD50/NBS1 (MRN) complex plays a critical role in the initial processing of DNA double-strand breaks. Bai et al. show that C1QBP functions as a molecular sponge, which maintains MRE11 protein stability, while controlling the assembly and activation of the MRN complex for efficient DNA damage repair.
MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response.
MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response.MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response.
Author Bai, Yongtai
Zhan, Jun
Li, Xiaoman
Li, Siyu
Sung, Patrick
Xu, Xingzhi
Huo, Yanfei
Wang, Weibin
Zhao, Meimei
Shen, Qinjian
Luo, Jianyuan
Zhou, Mei
Zhang, Hongquan
Li, Hanxiao
Zhou, Xiao Albert
Zhu, Wei-Guo
Li, Shiwei
Wang, Jiadong
Author_xml – sequence: 1
  givenname: Yongtai
  surname: Bai
  fullname: Bai, Yongtai
  organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 2
  givenname: Weibin
  surname: Wang
  fullname: Wang, Weibin
  organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 3
  givenname: Siyu
  surname: Li
  fullname: Li, Siyu
  organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 4
  givenname: Jun
  surname: Zhan
  fullname: Zhan, Jun
  organization: Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 5
  givenname: Hanxiao
  surname: Li
  fullname: Li, Hanxiao
  organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 6
  givenname: Meimei
  surname: Zhao
  fullname: Zhao, Meimei
  organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 7
  givenname: Xiao Albert
  surname: Zhou
  fullname: Zhou, Xiao Albert
  organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 8
  givenname: Shiwei
  surname: Li
  fullname: Li, Shiwei
  organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 9
  givenname: Xiaoman
  surname: Li
  fullname: Li, Xiaoman
  organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 10
  givenname: Yanfei
  surname: Huo
  fullname: Huo, Yanfei
  organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 11
  givenname: Qinjian
  surname: Shen
  fullname: Shen, Qinjian
  organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 12
  givenname: Mei
  surname: Zhou
  fullname: Zhou, Mei
  organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 13
  givenname: Hongquan
  surname: Zhang
  fullname: Zhang, Hongquan
  organization: Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 14
  givenname: Jianyuan
  surname: Luo
  fullname: Luo, Jianyuan
  organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 15
  givenname: Patrick
  surname: Sung
  fullname: Sung, Patrick
  organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 16
  givenname: Wei-Guo
  surname: Zhu
  fullname: Zhu, Wei-Guo
  organization: Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
– sequence: 17
  givenname: Xingzhi
  surname: Xu
  fullname: Xu, Xingzhi
  organization: Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
– sequence: 18
  givenname: Jiadong
  surname: Wang
  fullname: Wang, Jiadong
  email: wangjd@bjmu.edu.cn
  organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31353207$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhSNURB_wDxDKks1k_IjthAXSdCgUqUCZdm_5cVM8cuLB9lQMa344mWa6YUFX9-r6fEfyOafF0RAGKIrXGFUYYT5fV33wBnxFEG4rxCtE6LPiBKNWzGrM66PDTgRnx8VpSmuEcM2a9kVxTDFllCBxUvxZ4u_n1-V1DH3IkMrLcfpwF7apXIEJvXaDyi4Mpd6VN1lp591vN9yVX1YXGJdqsOUyDDkG7_fX_APKRUrQa797eFyY7O4ng9BN0Hy1-MDQ_Ov5DR7ZfuPh18viead8gleHeVbcfry4XV7Orr59-rxcXM0MQyLPQDEO2iJCOqaUoMxYrS2vgYDtSNsIgpRubK20UAx1lmjdMC2sEQg1UNOz4u1ku4nh5xZSlr1LY4JeDTB-WBJKRMsFqcXTUsI5pVzQdpS-OUi3ugcrN9H1Ku7kY8aj4N0kMDGkFKGTxuWHTHJUzkuM5L5QuZZToXJfqERcjoWOcP0P_Oj_BPZ-wmCM895BlMk4GAxYF8FkaYP7v8Ffija7fg
CitedBy_id crossref_primary_10_1038_s41418_020_0493_4
crossref_primary_10_3390_biom11101487
crossref_primary_10_1002_mgg3_1578
crossref_primary_10_1016_j_gde_2021_09_005
crossref_primary_10_1016_j_jbc_2021_100707
crossref_primary_10_3389_fcell_2021_607142
crossref_primary_10_1016_j_celrep_2021_109153
crossref_primary_10_1021_acs_jmedchem_2c01224
crossref_primary_10_1002_btm2_10654
crossref_primary_10_1172_JCI168277
crossref_primary_10_1002_advs_202203884
crossref_primary_10_1016_j_devcel_2021_01_011
crossref_primary_10_1111_jcmm_17017
crossref_primary_10_1038_s41589_024_01833_9
crossref_primary_10_1080_09553002_2021_1988178
crossref_primary_10_2174_1568009623666230829143148
crossref_primary_10_1016_j_isci_2020_101594
crossref_primary_10_1136_gutjnl_2020_323014
crossref_primary_10_1016_j_jprot_2023_104983
crossref_primary_10_1126_sciadv_abe9254
crossref_primary_10_1042_EBC20190093
crossref_primary_10_3389_fimmu_2022_898724
crossref_primary_10_1007_s42764_020_00026_7
crossref_primary_10_1038_s41467_022_32920_x
crossref_primary_10_1038_s41467_022_30303_w
crossref_primary_10_1007_s42764_022_00065_2
crossref_primary_10_3389_fcell_2022_765062
crossref_primary_10_1016_j_jbc_2023_105095
crossref_primary_10_3390_ijms22010169
crossref_primary_10_1016_j_tranon_2022_101422
crossref_primary_10_1016_j_cell_2023_11_022
crossref_primary_10_1038_s41418_022_01100_1
crossref_primary_10_1186_s13046_022_02344_y
crossref_primary_10_1002_ctm2_70162
crossref_primary_10_1038_s41392_023_01428_1
crossref_primary_10_1016_j_canlet_2024_217253
crossref_primary_10_1124_molpharm_121_000379
crossref_primary_10_3390_genes12081158
crossref_primary_10_1016_j_aca_2020_08_013
crossref_primary_10_1161_CIRCRESAHA_120_316857
crossref_primary_10_2217_epi_2023_0041
crossref_primary_10_3390_cancers14215278
crossref_primary_10_1073_pnas_2004570117
crossref_primary_10_15252_msb_20209503
crossref_primary_10_1146_annurev_genet_071719_020312
crossref_primary_10_1038_s43018_022_00429_3
crossref_primary_10_1016_j_xpro_2021_100978
crossref_primary_10_1038_s41418_025_01472_0
Cites_doi 10.1074/jbc.R115.675942
10.1007/s10689-016-9956-7
10.1016/j.molcel.2017.05.006
10.1073/pnas.1508543112
10.1016/j.cell.2011.03.041
10.1126/science.1140321
10.1016/j.yexcr.2014.07.007
10.1038/nsmb.1927
10.1128/MCB.18.11.6430
10.1093/nar/gks774
10.1128/MCB.16.9.4832
10.1016/S1097-2765(00)80097-0
10.1093/nar/gkv754
10.1016/j.canlet.2018.04.002
10.1093/jrr/rrx014
10.1016/j.molcel.2013.03.006
10.1016/j.molcel.2016.10.011
10.1016/j.molcel.2018.06.033
10.1016/j.ccr.2008.04.002
10.1038/nsmb.2323
10.1016/j.cell.2011.02.038
10.1016/j.cell.2018.11.024
10.1101/gad.1279805
10.1016/j.molcel.2012.02.018
10.1016/S0021-9258(19)68533-9
10.1038/ncb1599
10.1016/j.cell.2008.08.015
10.1038/nature13771
10.1074/jbc.M110.178871
10.1074/jbc.M701413200
10.1038/nature07312
10.1016/j.molcel.2016.10.017
10.1002/humu.22972
10.1016/S0378-4347(98)00313-2
10.1101/gad.13.10.1276
10.1016/S0092-8674(00)81547-0
10.1038/s41586-018-0670-5
10.1073/pnas.96.7.3572
10.1038/549
10.1038/cr.2011.128
10.1074/mcp.M113.029413
10.1126/science.1108297
10.1007/s00412-004-0306-4
10.1093/nar/gkx173
10.1186/s12885-016-2190-8
10.1074/jbc.273.34.21447
10.1016/j.dnarep.2004.04.009
10.1016/S0092-8674(00)81175-7
10.1016/S0092-8674(00)81626-8
10.1038/s41422-018-0009-7
10.1002/embj.201386100
10.1073/pnas.0811029106
10.1016/j.molimm.2004.03.014
10.1101/gad.307900.117
10.1101/gad.295196.116
10.1101/gad.248583.114
10.1038/nature18325
10.1016/j.celrep.2014.08.076
10.1007/s10495-006-5396-4
10.1016/j.molcel.2016.10.010
10.1101/gad.308254.117
10.1016/j.molimm.2014.06.011
10.1016/j.dnarep.2010.10.001
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.molcel.2019.06.023
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 1314.e6
ExternalDocumentID 31353207
10_1016_j_molcel_2019_06_023
S1097276519304794
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
5VS
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c507t-ea56ebd022f5aa735cdbbd64e2edf298720ab8d4ab7a50fd2bb85b7dc7008e43
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Tue Aug 05 11:00:57 EDT 2025
Fri Jul 11 10:34:33 EDT 2025
Thu Apr 03 07:08:13 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Tue Jul 01 03:21:14 EDT 2025
Fri Feb 23 02:49:13 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords DNA damage repair
MRE11
homologous recombination
DNA double-strand breaks
C1QBP
MRN complex
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-ea56ebd022f5aa735cdbbd64e2edf298720ab8d4ab7a50fd2bb85b7dc7008e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S1097276519304794/pdf
PMID 31353207
PQID 2266336739
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2327967247
proquest_miscellaneous_2266336739
pubmed_primary_31353207
crossref_citationtrail_10_1016_j_molcel_2019_06_023
crossref_primary_10_1016_j_molcel_2019_06_023
elsevier_sciencedirect_doi_10_1016_j_molcel_2019_06_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-19
PublicationDateYYYYMMDD 2019-09-19
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Williams, Lees-Miller, Tainer (bib54) 2010; 9
Jiang, Zhang, Krainer, Xu (bib27) 1999; 96
Stewart, Maser, Stankovic, Bressan, Kaplan, Jaspers, Raams, Byrd, Petrini, Taylor (bib48) 1999; 99
Dolganov, Maser, Novikov, Tosto, Chong, Bressan, Petrini (bib16) 1996; 16
Matsuura, Tauchi, Nakamura, Kondo, Sakamoto, Endo, Smeets, Solder, Belohradsky, Der Kaloustian (bib34) 1998; 19
Mimitou, Symington (bib35) 2008; 455
He, Meghani, Caron, Yang, Ronato, Bian, Sharma, Moore, Niraj, Detappe (bib22) 2018; 563
Yagi, Uchiumi, Takazaki, Okuno, Nomura, Yoshida, Kanki, Kang (bib59) 2012; 40
Haber (bib20) 1998; 95
Matsuoka, Ballif, Smogorzewska, McDonald, Hurov, Luo, Bakalarski, Zhao, Solimini, Lerenthal (bib33) 2007; 316
Zhou, Kawamura, Yanagihara, Kobayashi, Zhang-Akiyama (bib64) 2017; 58
Peerschke, Ghebrehiwet (bib40) 2014; 61
Carney, Maser, Olivares, Davis, Le Beau, Yates, Hays, Morgan, Petrini (bib8) 1998; 93
Deshpande, Williams, Limbo, Williams, Kuhnlein, Lee, Classen, Guenther, Russell, Tainer, Paull (bib12) 2014; 33
Schlacher, Christ, Siaud, Egashira, Wu, Jasin (bib45) 2011; 145
Wang, Daley, Kwon, Krasner, Sung (bib53) 2017; 31
Hoa, Shimizu, Zhou, Wang, Deshpande, Paull, Akter, Tsuda, Furuta, Tsutsui (bib24) 2016; 64
Lee, Paull (bib31) 2005; 308
Paull, Gellert (bib38) 1998; 1
Assenmacher, Hopfner (bib2) 2004; 113
Zhong, Jiang, Cesare, Neumann, Wadhwa, Reddel (bib63) 2007; 282
Duursma, Driscoll, Elias, Cimprich (bib17) 2013; 50
Reginato, Cannavo, Cejka (bib42) 2017; 31
Cejka (bib9) 2015; 290
Schiller, Lammens, Guerini, Coordes, Feldmann, Schlauderer, Möckel, Schele, Strässer, Jackson, Hopfner (bib44) 2012; 19
Shen, Han, Shen, Yang, Ren, Sha, Xiang (bib46) 2014; 49
Deshpande, Lee, Arora, Paull (bib13) 2016; 64
Ghebrehiwet, Peerschke (bib19) 2004; 41
Paull, Gellert (bib39) 1999; 13
Yu, Vogel, Coulombe, Dubeau, Spehalski, Hébert, Ferguson, Masson, Richard (bib61) 2012; 22
Song, Wang, Xu, Wang, Wan, Wang, Zhan, Zhang (bib47) 2018; 426
Berkovich, Monnat, Kastan (bib3) 2007; 9
Emelyanov, Rabbani, Mehta, Vershilova, Keogh, Fyodorov (bib18) 2014; 28
Ray Chaudhuri, Callen, Ding, Gogola, Duarte, Lee, Wong, Lafarga, Calvo, Panzarino (bib41) 2016; 535
Wu, Zhang, Zhang, Wu, Rezaeian, Chan, Li, Wang, Gao, Han (bib55) 2012; 46
Paull (bib36) 2018; 71
Kamal, Datta (bib28) 2006; 11
Vallerga, Mansilla, Federico, Bertolin, Gottifredi (bib52) 2015; 112
Yamaguchi-Iwai, Sonoda, Buerstedde, Bezzubova, Morrison, Takata, Shinohara, Takeda (bib60) 1998; 18
Zhang, Zhang, Guo, Wang, Zhang, Wang, Zhang, Chen (bib62) 2013; 12
Kijas, Lim, Bolderson, Cerosaletti, Gatei, Jakob, Tobias, Taucher-Scholz, Gueven, Oakley (bib29) 2015; 43
Itahana, Zhang (bib25) 2008; 13
Xu, Xiao, Liu, Ren, Gu (bib57) 2009; 106
Jachimowicz, Beleggia, Isensee, Velpula, Goergens, Bustos, Doll, Shenoy, Checa-Rodriguez, Wiederstein (bib26) 2019; 176
Rojas, Lopez, Valverde (bib43) 1999; 722
Paull, Deshpande (bib37) 2014; 329
Anand, Ranjha, Cannavo, Cejka (bib1) 2016; 64
Cannavo, Cejka (bib7) 2014; 514
Hashimoto, Ray Chaudhuri, Lopes, Costanzo (bib21) 2010; 17
Boisvert, Déry, Masson, Richard (bib4) 2005; 19
Storrs, Kolb, Pinckard, Olson (bib49) 1981; 256
Chang, Huang, Wang, Li, Yan, Zhu, Ye, Wu, Zhuang, Li, Zhang (bib10) 2016; 16
Yadav, Reeves, Campian, Paine, Zakalik (bib58) 2017; 16
Herdendorf, Albrecht, Benkovic, Nelson (bib23) 2011; 286
Buis, Wu, Deng, Leddon, Westfield, Eckersdorff, Sekiguchi, Chang, Ferguson (bib5) 2008; 135
Xie, Zhang, Zhao, Bai, Fan, Zhu, Yu, Li, Liang, Sun (bib56) 2018; 28
Trujillo, Yuan, Lee, Sung (bib51) 1998; 273
Levikova, Pinto, Cejka (bib32) 2017; 31
Di Marco, Hasanova, Kanagaraj, Chappidi, Altmannova, Menon, Sedlackova, Langhoff, Surendranath, Huhn (bib15) 2017; 66
Cruz-García, López-Saavedra, Huertas (bib11) 2014; 9
Lammens, Bemeleit, Möckel, Clausing, Schele, Hartung, Schiller, Lucas, Angermüller, Söding (bib30) 2011; 145
Taylor, Groom, Byrd (bib50) 2004; 3
Deshpande, Lee, Paull (bib14) 2017; 45
Caminsky, Mucaki, Perri, Lu, Knoll, Rogan (bib6) 2016; 37
Anand (10.1016/j.molcel.2019.06.023_bib1) 2016; 64
Mimitou (10.1016/j.molcel.2019.06.023_bib35) 2008; 455
Paull (10.1016/j.molcel.2019.06.023_bib37) 2014; 329
Storrs (10.1016/j.molcel.2019.06.023_bib49) 1981; 256
Deshpande (10.1016/j.molcel.2019.06.023_bib14) 2017; 45
Paull (10.1016/j.molcel.2019.06.023_bib36) 2018; 71
Haber (10.1016/j.molcel.2019.06.023_bib20) 1998; 95
Yu (10.1016/j.molcel.2019.06.023_bib61) 2012; 22
Matsuoka (10.1016/j.molcel.2019.06.023_bib33) 2007; 316
Wu (10.1016/j.molcel.2019.06.023_bib55) 2012; 46
Caminsky (10.1016/j.molcel.2019.06.023_bib6) 2016; 37
Schlacher (10.1016/j.molcel.2019.06.023_bib45) 2011; 145
Yamaguchi-Iwai (10.1016/j.molcel.2019.06.023_bib60) 1998; 18
Deshpande (10.1016/j.molcel.2019.06.023_bib13) 2016; 64
Di Marco (10.1016/j.molcel.2019.06.023_bib15) 2017; 66
Matsuura (10.1016/j.molcel.2019.06.023_bib34) 1998; 19
Yadav (10.1016/j.molcel.2019.06.023_bib58) 2017; 16
Cejka (10.1016/j.molcel.2019.06.023_bib9) 2015; 290
Paull (10.1016/j.molcel.2019.06.023_bib38) 1998; 1
Emelyanov (10.1016/j.molcel.2019.06.023_bib18) 2014; 28
Hoa (10.1016/j.molcel.2019.06.023_bib24) 2016; 64
Cannavo (10.1016/j.molcel.2019.06.023_bib7) 2014; 514
Assenmacher (10.1016/j.molcel.2019.06.023_bib2) 2004; 113
Shen (10.1016/j.molcel.2019.06.023_bib46) 2014; 49
Song (10.1016/j.molcel.2019.06.023_bib47) 2018; 426
Hashimoto (10.1016/j.molcel.2019.06.023_bib21) 2010; 17
Peerschke (10.1016/j.molcel.2019.06.023_bib40) 2014; 61
Cruz-García (10.1016/j.molcel.2019.06.023_bib11) 2014; 9
Buis (10.1016/j.molcel.2019.06.023_bib5) 2008; 135
Carney (10.1016/j.molcel.2019.06.023_bib8) 1998; 93
Lee (10.1016/j.molcel.2019.06.023_bib31) 2005; 308
Schiller (10.1016/j.molcel.2019.06.023_bib44) 2012; 19
Rojas (10.1016/j.molcel.2019.06.023_bib43) 1999; 722
Deshpande (10.1016/j.molcel.2019.06.023_bib12) 2014; 33
Dolganov (10.1016/j.molcel.2019.06.023_bib16) 1996; 16
Ghebrehiwet (10.1016/j.molcel.2019.06.023_bib19) 2004; 41
Williams (10.1016/j.molcel.2019.06.023_bib54) 2010; 9
Kijas (10.1016/j.molcel.2019.06.023_bib29) 2015; 43
Jachimowicz (10.1016/j.molcel.2019.06.023_bib26) 2019; 176
Zhou (10.1016/j.molcel.2019.06.023_bib64) 2017; 58
Xu (10.1016/j.molcel.2019.06.023_bib57) 2009; 106
Chang (10.1016/j.molcel.2019.06.023_bib10) 2016; 16
Duursma (10.1016/j.molcel.2019.06.023_bib17) 2013; 50
Berkovich (10.1016/j.molcel.2019.06.023_bib3) 2007; 9
Boisvert (10.1016/j.molcel.2019.06.023_bib4) 2005; 19
Lammens (10.1016/j.molcel.2019.06.023_bib30) 2011; 145
Vallerga (10.1016/j.molcel.2019.06.023_bib52) 2015; 112
Ray Chaudhuri (10.1016/j.molcel.2019.06.023_bib41) 2016; 535
Trujillo (10.1016/j.molcel.2019.06.023_bib51) 1998; 273
He (10.1016/j.molcel.2019.06.023_bib22) 2018; 563
Itahana (10.1016/j.molcel.2019.06.023_bib25) 2008; 13
Reginato (10.1016/j.molcel.2019.06.023_bib42) 2017; 31
Zhong (10.1016/j.molcel.2019.06.023_bib63) 2007; 282
Wang (10.1016/j.molcel.2019.06.023_bib53) 2017; 31
Zhang (10.1016/j.molcel.2019.06.023_bib62) 2013; 12
Paull (10.1016/j.molcel.2019.06.023_bib39) 1999; 13
Levikova (10.1016/j.molcel.2019.06.023_bib32) 2017; 31
Taylor (10.1016/j.molcel.2019.06.023_bib50) 2004; 3
Jiang (10.1016/j.molcel.2019.06.023_bib27) 1999; 96
Stewart (10.1016/j.molcel.2019.06.023_bib48) 1999; 99
Yagi (10.1016/j.molcel.2019.06.023_bib59) 2012; 40
Xie (10.1016/j.molcel.2019.06.023_bib56) 2018; 28
Herdendorf (10.1016/j.molcel.2019.06.023_bib23) 2011; 286
Kamal (10.1016/j.molcel.2019.06.023_bib28) 2006; 11
References_xml – volume: 66
  start-page: 658
  year: 2017
  end-page: 671
  ident: bib15
  article-title: RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis
  publication-title: Mol. Cell
– volume: 290
  start-page: 22931
  year: 2015
  end-page: 22938
  ident: bib9
  article-title: DNA End Resection: Nucleases Team Up with the Right Partners to Initiate Homologous Recombination
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 3199
  year: 2013
  end-page: 3209
  ident: bib62
  article-title: Interactome analysis reveals that C1QBP (complement component 1, q subcomponent binding protein) is associated with cancer cell chemotaxis and metastasis
  publication-title: Mol. Cell. Proteomics
– volume: 308
  start-page: 551
  year: 2005
  end-page: 554
  ident: bib31
  article-title: ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex
  publication-title: Science
– volume: 273
  start-page: 21447
  year: 1998
  end-page: 21450
  ident: bib51
  article-title: Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95
  publication-title: J. Biol. Chem.
– volume: 37
  start-page: 640
  year: 2016
  end-page: 652
  ident: bib6
  article-title: Prioritizing Variants in Complete Hereditary Breast and Ovarian Cancer Genes in Patients Lacking Known BRCA Mutations
  publication-title: Hum. Mutat.
– volume: 93
  start-page: 477
  year: 1998
  end-page: 486
  ident: bib8
  article-title: The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response
  publication-title: Cell
– volume: 96
  start-page: 3572
  year: 1999
  end-page: 3577
  ident: bib27
  article-title: Crystal structure of human p32, a doughnut-shaped acidic mitochondrial matrix protein
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 493
  year: 2017
  end-page: 502
  ident: bib32
  article-title: The motor activity of DNA2 functions as an ssDNA translocase to promote DNA end resection
  publication-title: Genes Dev.
– volume: 13
  start-page: 1276
  year: 1999
  end-page: 1288
  ident: bib39
  article-title: Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex
  publication-title: Genes Dev.
– volume: 18
  start-page: 6430
  year: 1998
  end-page: 6435
  ident: bib60
  article-title: Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in RAD52
  publication-title: Mol. Cell. Biol.
– volume: 49
  start-page: 616
  year: 2014
  end-page: 620
  ident: bib46
  article-title: [Expression of C1QBP gene and its correlation with drug resistance in human resistance choriocarcinoma cell line]
  publication-title: Zhonghua Fu Chan Ke Za Zhi
– volume: 1
  start-page: 969
  year: 1998
  end-page: 979
  ident: bib38
  article-title: The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks
  publication-title: Mol. Cell
– volume: 3
  start-page: 1219
  year: 2004
  end-page: 1225
  ident: bib50
  article-title: Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis
  publication-title: DNA Repair (Amst.)
– volume: 19
  start-page: 179
  year: 1998
  end-page: 181
  ident: bib34
  article-title: Positional cloning of the gene for Nijmegen breakage syndrome
  publication-title: Nat. Genet.
– volume: 64
  start-page: 940
  year: 2016
  end-page: 950
  ident: bib1
  article-title: Phosphorylated CtIP Functions as a Co-factor of the MRE11-RAD50-NBS1 Endonuclease in DNA End Resection
  publication-title: Mol. Cell
– volume: 45
  start-page: 5255
  year: 2017
  end-page: 5268
  ident: bib14
  article-title: Rad50 ATPase activity is regulated by DNA ends and requires coordination of both active sites
  publication-title: Nucleic Acids Res.
– volume: 106
  start-page: 1530
  year: 2009
  end-page: 1535
  ident: bib57
  article-title: Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 451
  year: 2014
  end-page: 459
  ident: bib11
  article-title: BRCA1 accelerates CtIP-mediated DNA-end resection
  publication-title: Cell Rep.
– volume: 13
  start-page: 542
  year: 2008
  end-page: 553
  ident: bib25
  article-title: Mitochondrial p32 is a critical mediator of ARF-induced apoptosis
  publication-title: Cancer Cell
– volume: 112
  start-page: E6624
  year: 2015
  end-page: E6633
  ident: bib52
  article-title: Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 2331
  year: 2017
  end-page: 2336
  ident: bib53
  article-title: Plasticity of the Mre11-Rad50-Xrs2-Sae2 nuclease ensemble in the processing of DNA-bound obstacles
  publication-title: Genes Dev.
– volume: 58
  start-page: 487
  year: 2017
  end-page: 494
  ident: bib64
  article-title: NBS1 is regulated by two kind of mechanisms: ATM-dependent complex formation with MRE11 and RAD50, and cell cycle-dependent degradation of protein
  publication-title: J. Radiat. Res. (Tokyo)
– volume: 40
  start-page: 9717
  year: 2012
  end-page: 9737
  ident: bib59
  article-title: p32/gC1qR is indispensable for fetal development and mitochondrial translation: importance of its RNA-binding ability
  publication-title: Nucleic Acids Res.
– volume: 33
  start-page: 482
  year: 2014
  end-page: 500
  ident: bib12
  article-title: ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling
  publication-title: EMBO J.
– volume: 563
  start-page: 522
  year: 2018
  end-page: 526
  ident: bib22
  article-title: DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells
  publication-title: Nature
– volume: 176
  start-page: 505
  year: 2019
  end-page: 519.e22
  ident: bib26
  article-title: UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors
  publication-title: Cell
– volume: 16
  start-page: 190
  year: 2016
  ident: bib10
  article-title: Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy
  publication-title: BMC Cancer
– volume: 722
  start-page: 225
  year: 1999
  end-page: 254
  ident: bib43
  article-title: Single cell gel electrophoresis assay: methodology and applications
  publication-title: J. Chromatogr. B Biomed. Sci. Appl.
– volume: 135
  start-page: 85
  year: 2008
  end-page: 96
  ident: bib5
  article-title: Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation
  publication-title: Cell
– volume: 514
  start-page: 122
  year: 2014
  end-page: 125
  ident: bib7
  article-title: Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks
  publication-title: Nature
– volume: 145
  start-page: 54
  year: 2011
  end-page: 66
  ident: bib30
  article-title: The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair
  publication-title: Cell
– volume: 16
  start-page: 319
  year: 2017
  end-page: 328
  ident: bib58
  article-title: Outcomes of retesting BRCA negative patients using multigene panels
  publication-title: Fam. Cancer
– volume: 9
  start-page: 1299
  year: 2010
  end-page: 1306
  ident: bib54
  article-title: Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks
  publication-title: DNA Repair (Amst.)
– volume: 61
  start-page: 100
  year: 2014
  end-page: 109
  ident: bib40
  article-title: cC1qR/CR and gC1qR/p33: observations in cancer
  publication-title: Mol. Immunol.
– volume: 11
  start-page: 861
  year: 2006
  end-page: 874
  ident: bib28
  article-title: Upregulation of hyaluronan binding protein 1 (HABP1/p32/gC1qR) is associated with Cisplatin induced apoptosis
  publication-title: Apoptosis
– volume: 316
  start-page: 1160
  year: 2007
  end-page: 1166
  ident: bib33
  article-title: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage
  publication-title: Science
– volume: 46
  start-page: 351
  year: 2012
  end-page: 361
  ident: bib55
  article-title: Skp2 E3 ligase integrates ATM activation and homologous recombination repair by ubiquitinating NBS1
  publication-title: Mol. Cell
– volume: 455
  start-page: 770
  year: 2008
  end-page: 774
  ident: bib35
  article-title: Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
  publication-title: Nature
– volume: 19
  start-page: 671
  year: 2005
  end-page: 676
  ident: bib4
  article-title: Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control
  publication-title: Genes Dev.
– volume: 286
  start-page: 2382
  year: 2011
  end-page: 2392
  ident: bib23
  article-title: Biochemical characterization of bacteriophage T4 Mre11-Rad50 complex
  publication-title: J. Biol. Chem.
– volume: 71
  start-page: 419
  year: 2018
  end-page: 427
  ident: bib36
  article-title: 20 Years of Mre11 Biology: No End in Sight
  publication-title: Mol. Cell
– volume: 535
  start-page: 382
  year: 2016
  end-page: 387
  ident: bib41
  article-title: Replication fork stability confers chemoresistance in BRCA-deficient cells
  publication-title: Nature
– volume: 28
  start-page: 462
  year: 2018
  end-page: 475
  ident: bib56
  article-title: Poly(ADP-ribose) mediates asymmetric division of mouse oocyte
  publication-title: Cell Res.
– volume: 19
  start-page: 693
  year: 2012
  end-page: 700
  ident: bib44
  article-title: Structure of Mre11-Nbs1 complex yields insights into ataxia-telangiectasia-like disease mutations and DNA damage signaling
  publication-title: Nat. Struct. Mol. Biol.
– volume: 64
  start-page: 593
  year: 2016
  end-page: 606
  ident: bib13
  article-title: Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts
  publication-title: Mol. Cell
– volume: 282
  start-page: 29314
  year: 2007
  end-page: 29322
  ident: bib63
  article-title: Disruption of telomere maintenance by depletion of the MRE11/RAD50/NBS1 complex in cells that use alternative lengthening of telomeres
  publication-title: J. Biol. Chem.
– volume: 64
  start-page: 580
  year: 2016
  end-page: 592
  ident: bib24
  article-title: Mre11 Is Essential for the Removal of Lethal Topoisomerase 2 Covalent Cleavage Complexes
  publication-title: Mol. Cell
– volume: 113
  start-page: 157
  year: 2004
  end-page: 166
  ident: bib2
  article-title: MRE11/RAD50/NBS1: complex activities
  publication-title: Chromosoma
– volume: 50
  start-page: 116
  year: 2013
  end-page: 122
  ident: bib17
  article-title: A role for the MRN complex in ATR activation via TOPBP1 recruitment
  publication-title: Mol. Cell
– volume: 43
  start-page: 8352
  year: 2015
  end-page: 8367
  ident: bib29
  article-title: ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1
  publication-title: Nucleic Acids Res.
– volume: 99
  start-page: 577
  year: 1999
  end-page: 587
  ident: bib48
  article-title: The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder
  publication-title: Cell
– volume: 256
  start-page: 10924
  year: 1981
  end-page: 10929
  ident: bib49
  article-title: Characterization of the binding of purified human C1q to heart mitochondrial membranes
  publication-title: J. Biol. Chem.
– volume: 28
  start-page: 2027
  year: 2014
  end-page: 2040
  ident: bib18
  article-title: Drosophila TAP/p32 is a core histone chaperone that cooperates with NAP-1, NLP, and nucleophosmin in sperm chromatin remodeling during fertilization
  publication-title: Genes Dev.
– volume: 17
  start-page: 1305
  year: 2010
  end-page: 1311
  ident: bib21
  article-title: Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis
  publication-title: Nat. Struct. Mol. Biol.
– volume: 31
  start-page: 2325
  year: 2017
  end-page: 2330
  ident: bib42
  article-title: Physiological protein blocks direct the Mre11-Rad50-Xrs2 and Sae2 nuclease complex to initiate DNA end resection
  publication-title: Genes Dev.
– volume: 145
  start-page: 529
  year: 2011
  end-page: 542
  ident: bib45
  article-title: Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11
  publication-title: Cell
– volume: 426
  start-page: 63
  year: 2018
  end-page: 72
  ident: bib47
  article-title: HOXB9 acetylation at K27 is responsible for its suppression of colon cancer progression
  publication-title: Cancer Lett.
– volume: 16
  start-page: 4832
  year: 1996
  end-page: 4841
  ident: bib16
  article-title: Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair
  publication-title: Mol. Cell. Biol.
– volume: 95
  start-page: 583
  year: 1998
  end-page: 586
  ident: bib20
  article-title: The many interfaces of Mre11
  publication-title: Cell
– volume: 22
  start-page: 305
  year: 2012
  end-page: 320
  ident: bib61
  article-title: The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation
  publication-title: Cell Res.
– volume: 41
  start-page: 173
  year: 2004
  end-page: 183
  ident: bib19
  article-title: cC1q-R (calreticulin) and gC1q-R/p33: ubiquitously expressed multi-ligand binding cellular proteins involved in inflammation and infection
  publication-title: Mol. Immunol.
– volume: 9
  start-page: 683
  year: 2007
  end-page: 690
  ident: bib3
  article-title: Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair
  publication-title: Nat. Cell Biol.
– volume: 329
  start-page: 139
  year: 2014
  end-page: 147
  ident: bib37
  article-title: The Mre11/Rad50/Nbs1 complex: recent insights into catalytic activities and ATP-driven conformational changes
  publication-title: Exp. Cell Res.
– volume: 290
  start-page: 22931
  year: 2015
  ident: 10.1016/j.molcel.2019.06.023_bib9
  article-title: DNA End Resection: Nucleases Team Up with the Right Partners to Initiate Homologous Recombination
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R115.675942
– volume: 16
  start-page: 319
  year: 2017
  ident: 10.1016/j.molcel.2019.06.023_bib58
  article-title: Outcomes of retesting BRCA negative patients using multigene panels
  publication-title: Fam. Cancer
  doi: 10.1007/s10689-016-9956-7
– volume: 66
  start-page: 658
  year: 2017
  ident: 10.1016/j.molcel.2019.06.023_bib15
  article-title: RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.05.006
– volume: 112
  start-page: E6624
  year: 2015
  ident: 10.1016/j.molcel.2019.06.023_bib52
  article-title: Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1508543112
– volume: 145
  start-page: 529
  year: 2011
  ident: 10.1016/j.molcel.2019.06.023_bib45
  article-title: Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.041
– volume: 316
  start-page: 1160
  year: 2007
  ident: 10.1016/j.molcel.2019.06.023_bib33
  article-title: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage
  publication-title: Science
  doi: 10.1126/science.1140321
– volume: 329
  start-page: 139
  year: 2014
  ident: 10.1016/j.molcel.2019.06.023_bib37
  article-title: The Mre11/Rad50/Nbs1 complex: recent insights into catalytic activities and ATP-driven conformational changes
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2014.07.007
– volume: 17
  start-page: 1305
  year: 2010
  ident: 10.1016/j.molcel.2019.06.023_bib21
  article-title: Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1927
– volume: 18
  start-page: 6430
  year: 1998
  ident: 10.1016/j.molcel.2019.06.023_bib60
  article-title: Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in RAD52
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.11.6430
– volume: 40
  start-page: 9717
  year: 2012
  ident: 10.1016/j.molcel.2019.06.023_bib59
  article-title: p32/gC1qR is indispensable for fetal development and mitochondrial translation: importance of its RNA-binding ability
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks774
– volume: 16
  start-page: 4832
  year: 1996
  ident: 10.1016/j.molcel.2019.06.023_bib16
  article-title: Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.16.9.4832
– volume: 1
  start-page: 969
  year: 1998
  ident: 10.1016/j.molcel.2019.06.023_bib38
  article-title: The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80097-0
– volume: 43
  start-page: 8352
  year: 2015
  ident: 10.1016/j.molcel.2019.06.023_bib29
  article-title: ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv754
– volume: 426
  start-page: 63
  year: 2018
  ident: 10.1016/j.molcel.2019.06.023_bib47
  article-title: HOXB9 acetylation at K27 is responsible for its suppression of colon cancer progression
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2018.04.002
– volume: 58
  start-page: 487
  year: 2017
  ident: 10.1016/j.molcel.2019.06.023_bib64
  article-title: NBS1 is regulated by two kind of mechanisms: ATM-dependent complex formation with MRE11 and RAD50, and cell cycle-dependent degradation of protein
  publication-title: J. Radiat. Res. (Tokyo)
  doi: 10.1093/jrr/rrx014
– volume: 50
  start-page: 116
  year: 2013
  ident: 10.1016/j.molcel.2019.06.023_bib17
  article-title: A role for the MRN complex in ATR activation via TOPBP1 recruitment
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.03.006
– volume: 64
  start-page: 580
  year: 2016
  ident: 10.1016/j.molcel.2019.06.023_bib24
  article-title: Mre11 Is Essential for the Removal of Lethal Topoisomerase 2 Covalent Cleavage Complexes
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.10.011
– volume: 71
  start-page: 419
  year: 2018
  ident: 10.1016/j.molcel.2019.06.023_bib36
  article-title: 20 Years of Mre11 Biology: No End in Sight
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.06.033
– volume: 13
  start-page: 542
  year: 2008
  ident: 10.1016/j.molcel.2019.06.023_bib25
  article-title: Mitochondrial p32 is a critical mediator of ARF-induced apoptosis
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.04.002
– volume: 19
  start-page: 693
  year: 2012
  ident: 10.1016/j.molcel.2019.06.023_bib44
  article-title: Structure of Mre11-Nbs1 complex yields insights into ataxia-telangiectasia-like disease mutations and DNA damage signaling
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2323
– volume: 145
  start-page: 54
  year: 2011
  ident: 10.1016/j.molcel.2019.06.023_bib30
  article-title: The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.038
– volume: 176
  start-page: 505
  year: 2019
  ident: 10.1016/j.molcel.2019.06.023_bib26
  article-title: UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors
  publication-title: Cell
  doi: 10.1016/j.cell.2018.11.024
– volume: 19
  start-page: 671
  year: 2005
  ident: 10.1016/j.molcel.2019.06.023_bib4
  article-title: Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control
  publication-title: Genes Dev.
  doi: 10.1101/gad.1279805
– volume: 46
  start-page: 351
  year: 2012
  ident: 10.1016/j.molcel.2019.06.023_bib55
  article-title: Skp2 E3 ligase integrates ATM activation and homologous recombination repair by ubiquitinating NBS1
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.02.018
– volume: 256
  start-page: 10924
  year: 1981
  ident: 10.1016/j.molcel.2019.06.023_bib49
  article-title: Characterization of the binding of purified human C1q to heart mitochondrial membranes
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)68533-9
– volume: 9
  start-page: 683
  year: 2007
  ident: 10.1016/j.molcel.2019.06.023_bib3
  article-title: Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1599
– volume: 49
  start-page: 616
  year: 2014
  ident: 10.1016/j.molcel.2019.06.023_bib46
  article-title: [Expression of C1QBP gene and its correlation with drug resistance in human resistance choriocarcinoma cell line]
  publication-title: Zhonghua Fu Chan Ke Za Zhi
– volume: 135
  start-page: 85
  year: 2008
  ident: 10.1016/j.molcel.2019.06.023_bib5
  article-title: Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation
  publication-title: Cell
  doi: 10.1016/j.cell.2008.08.015
– volume: 514
  start-page: 122
  year: 2014
  ident: 10.1016/j.molcel.2019.06.023_bib7
  article-title: Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks
  publication-title: Nature
  doi: 10.1038/nature13771
– volume: 286
  start-page: 2382
  year: 2011
  ident: 10.1016/j.molcel.2019.06.023_bib23
  article-title: Biochemical characterization of bacteriophage T4 Mre11-Rad50 complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.178871
– volume: 282
  start-page: 29314
  year: 2007
  ident: 10.1016/j.molcel.2019.06.023_bib63
  article-title: Disruption of telomere maintenance by depletion of the MRE11/RAD50/NBS1 complex in cells that use alternative lengthening of telomeres
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M701413200
– volume: 455
  start-page: 770
  year: 2008
  ident: 10.1016/j.molcel.2019.06.023_bib35
  article-title: Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
  publication-title: Nature
  doi: 10.1038/nature07312
– volume: 64
  start-page: 940
  year: 2016
  ident: 10.1016/j.molcel.2019.06.023_bib1
  article-title: Phosphorylated CtIP Functions as a Co-factor of the MRE11-RAD50-NBS1 Endonuclease in DNA End Resection
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.10.017
– volume: 37
  start-page: 640
  year: 2016
  ident: 10.1016/j.molcel.2019.06.023_bib6
  article-title: Prioritizing Variants in Complete Hereditary Breast and Ovarian Cancer Genes in Patients Lacking Known BRCA Mutations
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.22972
– volume: 722
  start-page: 225
  year: 1999
  ident: 10.1016/j.molcel.2019.06.023_bib43
  article-title: Single cell gel electrophoresis assay: methodology and applications
  publication-title: J. Chromatogr. B Biomed. Sci. Appl.
  doi: 10.1016/S0378-4347(98)00313-2
– volume: 13
  start-page: 1276
  year: 1999
  ident: 10.1016/j.molcel.2019.06.023_bib39
  article-title: Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.10.1276
– volume: 99
  start-page: 577
  year: 1999
  ident: 10.1016/j.molcel.2019.06.023_bib48
  article-title: The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81547-0
– volume: 563
  start-page: 522
  year: 2018
  ident: 10.1016/j.molcel.2019.06.023_bib22
  article-title: DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells
  publication-title: Nature
  doi: 10.1038/s41586-018-0670-5
– volume: 96
  start-page: 3572
  year: 1999
  ident: 10.1016/j.molcel.2019.06.023_bib27
  article-title: Crystal structure of human p32, a doughnut-shaped acidic mitochondrial matrix protein
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.7.3572
– volume: 19
  start-page: 179
  year: 1998
  ident: 10.1016/j.molcel.2019.06.023_bib34
  article-title: Positional cloning of the gene for Nijmegen breakage syndrome
  publication-title: Nat. Genet.
  doi: 10.1038/549
– volume: 22
  start-page: 305
  year: 2012
  ident: 10.1016/j.molcel.2019.06.023_bib61
  article-title: The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.128
– volume: 12
  start-page: 3199
  year: 2013
  ident: 10.1016/j.molcel.2019.06.023_bib62
  article-title: Interactome analysis reveals that C1QBP (complement component 1, q subcomponent binding protein) is associated with cancer cell chemotaxis and metastasis
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M113.029413
– volume: 308
  start-page: 551
  year: 2005
  ident: 10.1016/j.molcel.2019.06.023_bib31
  article-title: ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex
  publication-title: Science
  doi: 10.1126/science.1108297
– volume: 113
  start-page: 157
  year: 2004
  ident: 10.1016/j.molcel.2019.06.023_bib2
  article-title: MRE11/RAD50/NBS1: complex activities
  publication-title: Chromosoma
  doi: 10.1007/s00412-004-0306-4
– volume: 45
  start-page: 5255
  year: 2017
  ident: 10.1016/j.molcel.2019.06.023_bib14
  article-title: Rad50 ATPase activity is regulated by DNA ends and requires coordination of both active sites
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx173
– volume: 16
  start-page: 190
  year: 2016
  ident: 10.1016/j.molcel.2019.06.023_bib10
  article-title: Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy
  publication-title: BMC Cancer
  doi: 10.1186/s12885-016-2190-8
– volume: 273
  start-page: 21447
  year: 1998
  ident: 10.1016/j.molcel.2019.06.023_bib51
  article-title: Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.34.21447
– volume: 3
  start-page: 1219
  year: 2004
  ident: 10.1016/j.molcel.2019.06.023_bib50
  article-title: Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2004.04.009
– volume: 93
  start-page: 477
  year: 1998
  ident: 10.1016/j.molcel.2019.06.023_bib8
  article-title: The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81175-7
– volume: 95
  start-page: 583
  year: 1998
  ident: 10.1016/j.molcel.2019.06.023_bib20
  article-title: The many interfaces of Mre11
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81626-8
– volume: 28
  start-page: 462
  year: 2018
  ident: 10.1016/j.molcel.2019.06.023_bib56
  article-title: Poly(ADP-ribose) mediates asymmetric division of mouse oocyte
  publication-title: Cell Res.
  doi: 10.1038/s41422-018-0009-7
– volume: 33
  start-page: 482
  year: 2014
  ident: 10.1016/j.molcel.2019.06.023_bib12
  article-title: ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling
  publication-title: EMBO J.
  doi: 10.1002/embj.201386100
– volume: 106
  start-page: 1530
  year: 2009
  ident: 10.1016/j.molcel.2019.06.023_bib57
  article-title: Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0811029106
– volume: 41
  start-page: 173
  year: 2004
  ident: 10.1016/j.molcel.2019.06.023_bib19
  article-title: cC1q-R (calreticulin) and gC1q-R/p33: ubiquitously expressed multi-ligand binding cellular proteins involved in inflammation and infection
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2004.03.014
– volume: 31
  start-page: 2331
  year: 2017
  ident: 10.1016/j.molcel.2019.06.023_bib53
  article-title: Plasticity of the Mre11-Rad50-Xrs2-Sae2 nuclease ensemble in the processing of DNA-bound obstacles
  publication-title: Genes Dev.
  doi: 10.1101/gad.307900.117
– volume: 31
  start-page: 493
  year: 2017
  ident: 10.1016/j.molcel.2019.06.023_bib32
  article-title: The motor activity of DNA2 functions as an ssDNA translocase to promote DNA end resection
  publication-title: Genes Dev.
  doi: 10.1101/gad.295196.116
– volume: 28
  start-page: 2027
  year: 2014
  ident: 10.1016/j.molcel.2019.06.023_bib18
  article-title: Drosophila TAP/p32 is a core histone chaperone that cooperates with NAP-1, NLP, and nucleophosmin in sperm chromatin remodeling during fertilization
  publication-title: Genes Dev.
  doi: 10.1101/gad.248583.114
– volume: 535
  start-page: 382
  year: 2016
  ident: 10.1016/j.molcel.2019.06.023_bib41
  article-title: Replication fork stability confers chemoresistance in BRCA-deficient cells
  publication-title: Nature
  doi: 10.1038/nature18325
– volume: 9
  start-page: 451
  year: 2014
  ident: 10.1016/j.molcel.2019.06.023_bib11
  article-title: BRCA1 accelerates CtIP-mediated DNA-end resection
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.08.076
– volume: 11
  start-page: 861
  year: 2006
  ident: 10.1016/j.molcel.2019.06.023_bib28
  article-title: Upregulation of hyaluronan binding protein 1 (HABP1/p32/gC1qR) is associated with Cisplatin induced apoptosis
  publication-title: Apoptosis
  doi: 10.1007/s10495-006-5396-4
– volume: 64
  start-page: 593
  year: 2016
  ident: 10.1016/j.molcel.2019.06.023_bib13
  article-title: Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.10.010
– volume: 31
  start-page: 2325
  year: 2017
  ident: 10.1016/j.molcel.2019.06.023_bib42
  article-title: Physiological protein blocks direct the Mre11-Rad50-Xrs2 and Sae2 nuclease complex to initiate DNA end resection
  publication-title: Genes Dev.
  doi: 10.1101/gad.308254.117
– volume: 61
  start-page: 100
  year: 2014
  ident: 10.1016/j.molcel.2019.06.023_bib40
  article-title: cC1qR/CR and gC1qR/p33: observations in cancer
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2014.06.011
– volume: 9
  start-page: 1299
  year: 2010
  ident: 10.1016/j.molcel.2019.06.023_bib54
  article-title: Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2010.10.001
SSID ssj0014589
Score 2.5137892
Snippet MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1299
SubjectTerms Acid Anhydride Hydrolases - genetics
Acid Anhydride Hydrolases - metabolism
Animals
breast neoplasms
C1QBP
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
chromatin
DNA
DNA damage
DNA damage repair
DNA double-strand breaks
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
drug therapy
enzyme activity
enzymes
genetic instability
HEK293 Cells
HeLa Cells
Homologous Recombination
Humans
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
MRE11
MRE11 Homologue Protein - genetics
MRE11 Homologue Protein - metabolism
MRN complex
Multiprotein Complexes - genetics
Multiprotein Complexes - metabolism
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Protein Stability
remission
resection
Sf9 Cells
Spodoptera
Title C1QBP Promotes Homologous Recombination by Stabilizing MRE11 and Controlling the Assembly and Activation of MRE11/RAD50/NBS1 Complex
URI https://dx.doi.org/10.1016/j.molcel.2019.06.023
https://www.ncbi.nlm.nih.gov/pubmed/31353207
https://www.proquest.com/docview/2266336739
https://www.proquest.com/docview/2327967247
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelZbCXse4z21o02KuwrQ8rfkzSltDS0qUdy5vQl6EjccqWwdLn_uG7k-3AHrpCn4ytEwidfPcT97s7Qr4E5wFFh5IBVvYMETirbO1YlNzX4ABjnZLCzi_K6Td5OlfzHTLpc2GQVtnZ_tamJ2vdfcm63cxub26yK4ydcl0iBEl10sEOCzlMSXzz8TaSIFVqg4fCDKX79LnE8VquFj5iAKKoUhVPLh5yTw_Bz-SGTl6SFx1-pKN2iftkJzavyLO2o-TmNbmfFF_Hl_QykeziLzqFJ4zA9Z7iRXMJ9-CkCuo2FHAmMmPvwHnR89lxUVDbBDppueuYpU4BHFKMCi_dYpMGR77vhkZXdTspm42OVJ5djK8KisZlEf-8Idcnx9eTKesaLTAPcHDNolVldAHcea2s1UL54FwoZeQx1Lwaap5bNwzSOm1VXgfu3FA5HbwGBBGleEt2m1UT3xMqtK9yb6s6FxahoIPdV15apZzFHlkDIvrtNb4rQo69MBamZ5v9MK1SDCrFIOmOiwFh21m3bRGOR-R1rznzz2Ey4Ccemfm5V7SB_wyDJ7aJoCQDMLUUotSi-o-M4LoqNZd6QN61p2S7XoENRniuPzx5bR_Jc3xDskpRfSK765-_4wEgorU7JHujs9n3s8N09P8C5lAKVw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZpQmkvpWn6cNOHArmK3ZVWK-_RdhOcNjZ5uOCb0GshxV6H1oW65_7wzGh3DT2kgZ4M1giERjvziflGHyHH3jpA0b5ggJUdQwTOSlNZFnLuKkiAoYpNYZNpMf6af57L-Q4Zdb0wSKtsY38T02O0bv9J2t1Mbm9ukmusnXJVIASJ76Q_InuABhTqN5zNh9tSQi6jDh5aMzTv-uciyWu5WriAFYisjM94cnFffroPf8Y8dPqcPGsBJB00a9wnO6F-QR43kpKbA_JnlF0OL-hFZNmFH3QMvzAC93uKN80lXISjL6jdUACaSI39DdmLTq5Osoya2tNRQ17HNnUK6JBiWXhpF5s4OHCdHBpdVc2k5GrwSabJdHidUYwui_DrJZmdnsxGY9YqLTAHeHDNgpFFsB7yeSWNUUI6b60v8sCDr3jZVzw1tu9zY5WRaeW5tX1plXcKIETIxSuyW6_q8IZQoVyZOlNWqTCIBS3svnS5kdIaFMnqEdFtr3btK-QohrHQHd3sm26cotEpGll3XPQI2866bV7heMBedZ7Tf50mDYnigZlHnaM1fGhYPTF1ACdpwKmFEIUS5T9sBFdloXiueuR1c0q26xWoMMJT9fa_1_aRPBnPJuf6_Gz65ZA8xRFkrmTlO7K7_v4zvAd4tLYf4vG_A-Z4C9M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=C1QBP+Promotes+Homologous+Recombination+by+Stabilizing+MRE11+and+Controlling+the+Assembly+and+Activation+of+MRE11%2FRAD50%2FNBS1+Complex&rft.jtitle=Molecular+cell&rft.au=Bai%2C+Yongtai&rft.au=Wang%2C+Weibin&rft.au=Li%2C+Siyu&rft.au=Zhan%2C+Jun&rft.date=2019-09-19&rft.pub=Elsevier+Inc&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=75&rft.issue=6&rft.spage=1299&rft.epage=1314.e6&rft_id=info:doi/10.1016%2Fj.molcel.2019.06.023&rft.externalDocID=S1097276519304794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon