C1QBP Promotes Homologous Recombination by Stabilizing MRE11 and Controlling the Assembly and Activation of MRE11/RAD50/NBS1 Complex
MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid...
Saved in:
Published in | Molecular cell Vol. 75; no. 6; pp. 1299 - 1314.e6 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
19.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response.
[Display omitted]
•C1QBP stabilizes the MRE11 protein by forming the MRC complex with MRE11/RAD50•C1QBP inhibits MRE11 exonuclease activity by preventing its binding to DNA•Appropriate C1QBP levels are essential for genomic stability and DNA repair
The MRE11/RAD50/NBS1 (MRN) complex plays a critical role in the initial processing of DNA double-strand breaks. Bai et al. show that C1QBP functions as a molecular sponge, which maintains MRE11 protein stability, while controlling the assembly and activation of the MRN complex for efficient DNA damage repair. |
---|---|
AbstractList | MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response.
[Display omitted]
•C1QBP stabilizes the MRE11 protein by forming the MRC complex with MRE11/RAD50•C1QBP inhibits MRE11 exonuclease activity by preventing its binding to DNA•Appropriate C1QBP levels are essential for genomic stability and DNA repair
The MRE11/RAD50/NBS1 (MRN) complex plays a critical role in the initial processing of DNA double-strand breaks. Bai et al. show that C1QBP functions as a molecular sponge, which maintains MRE11 protein stability, while controlling the assembly and activation of the MRN complex for efficient DNA damage repair. MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response. MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response.MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response. |
Author | Bai, Yongtai Zhan, Jun Li, Xiaoman Li, Siyu Sung, Patrick Xu, Xingzhi Huo, Yanfei Wang, Weibin Zhao, Meimei Shen, Qinjian Luo, Jianyuan Zhou, Mei Zhang, Hongquan Li, Hanxiao Zhou, Xiao Albert Zhu, Wei-Guo Li, Shiwei Wang, Jiadong |
Author_xml | – sequence: 1 givenname: Yongtai surname: Bai fullname: Bai, Yongtai organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 2 givenname: Weibin surname: Wang fullname: Wang, Weibin organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 3 givenname: Siyu surname: Li fullname: Li, Siyu organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 4 givenname: Jun surname: Zhan fullname: Zhan, Jun organization: Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 5 givenname: Hanxiao surname: Li fullname: Li, Hanxiao organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 6 givenname: Meimei surname: Zhao fullname: Zhao, Meimei organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 7 givenname: Xiao Albert surname: Zhou fullname: Zhou, Xiao Albert organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 8 givenname: Shiwei surname: Li fullname: Li, Shiwei organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 9 givenname: Xiaoman surname: Li fullname: Li, Xiaoman organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 10 givenname: Yanfei surname: Huo fullname: Huo, Yanfei organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 11 givenname: Qinjian surname: Shen fullname: Shen, Qinjian organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 12 givenname: Mei surname: Zhou fullname: Zhou, Mei organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 13 givenname: Hongquan surname: Zhang fullname: Zhang, Hongquan organization: Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 14 givenname: Jianyuan surname: Luo fullname: Luo, Jianyuan organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 15 givenname: Patrick surname: Sung fullname: Sung, Patrick organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 16 givenname: Wei-Guo surname: Zhu fullname: Zhu, Wei-Guo organization: Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China – sequence: 17 givenname: Xingzhi surname: Xu fullname: Xu, Xingzhi organization: Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China – sequence: 18 givenname: Jiadong surname: Wang fullname: Wang, Jiadong email: wangjd@bjmu.edu.cn organization: Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31353207$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhSNURB_wDxDKks1k_IjthAXSdCgUqUCZdm_5cVM8cuLB9lQMa344mWa6YUFX9-r6fEfyOafF0RAGKIrXGFUYYT5fV33wBnxFEG4rxCtE6LPiBKNWzGrM66PDTgRnx8VpSmuEcM2a9kVxTDFllCBxUvxZ4u_n1-V1DH3IkMrLcfpwF7apXIEJvXaDyi4Mpd6VN1lp591vN9yVX1YXGJdqsOUyDDkG7_fX_APKRUrQa797eFyY7O4ng9BN0Hy1-MDQ_Ov5DR7ZfuPh18viead8gleHeVbcfry4XV7Orr59-rxcXM0MQyLPQDEO2iJCOqaUoMxYrS2vgYDtSNsIgpRubK20UAx1lmjdMC2sEQg1UNOz4u1ku4nh5xZSlr1LY4JeDTB-WBJKRMsFqcXTUsI5pVzQdpS-OUi3ugcrN9H1Ku7kY8aj4N0kMDGkFKGTxuWHTHJUzkuM5L5QuZZToXJfqERcjoWOcP0P_Oj_BPZ-wmCM895BlMk4GAxYF8FkaYP7v8Ffija7fg |
CitedBy_id | crossref_primary_10_1038_s41418_020_0493_4 crossref_primary_10_3390_biom11101487 crossref_primary_10_1002_mgg3_1578 crossref_primary_10_1016_j_gde_2021_09_005 crossref_primary_10_1016_j_jbc_2021_100707 crossref_primary_10_3389_fcell_2021_607142 crossref_primary_10_1016_j_celrep_2021_109153 crossref_primary_10_1021_acs_jmedchem_2c01224 crossref_primary_10_1002_btm2_10654 crossref_primary_10_1172_JCI168277 crossref_primary_10_1002_advs_202203884 crossref_primary_10_1016_j_devcel_2021_01_011 crossref_primary_10_1111_jcmm_17017 crossref_primary_10_1038_s41589_024_01833_9 crossref_primary_10_1080_09553002_2021_1988178 crossref_primary_10_2174_1568009623666230829143148 crossref_primary_10_1016_j_isci_2020_101594 crossref_primary_10_1136_gutjnl_2020_323014 crossref_primary_10_1016_j_jprot_2023_104983 crossref_primary_10_1126_sciadv_abe9254 crossref_primary_10_1042_EBC20190093 crossref_primary_10_3389_fimmu_2022_898724 crossref_primary_10_1007_s42764_020_00026_7 crossref_primary_10_1038_s41467_022_32920_x crossref_primary_10_1038_s41467_022_30303_w crossref_primary_10_1007_s42764_022_00065_2 crossref_primary_10_3389_fcell_2022_765062 crossref_primary_10_1016_j_jbc_2023_105095 crossref_primary_10_3390_ijms22010169 crossref_primary_10_1016_j_tranon_2022_101422 crossref_primary_10_1016_j_cell_2023_11_022 crossref_primary_10_1038_s41418_022_01100_1 crossref_primary_10_1186_s13046_022_02344_y crossref_primary_10_1002_ctm2_70162 crossref_primary_10_1038_s41392_023_01428_1 crossref_primary_10_1016_j_canlet_2024_217253 crossref_primary_10_1124_molpharm_121_000379 crossref_primary_10_3390_genes12081158 crossref_primary_10_1016_j_aca_2020_08_013 crossref_primary_10_1161_CIRCRESAHA_120_316857 crossref_primary_10_2217_epi_2023_0041 crossref_primary_10_3390_cancers14215278 crossref_primary_10_1073_pnas_2004570117 crossref_primary_10_15252_msb_20209503 crossref_primary_10_1146_annurev_genet_071719_020312 crossref_primary_10_1038_s43018_022_00429_3 crossref_primary_10_1016_j_xpro_2021_100978 crossref_primary_10_1038_s41418_025_01472_0 |
Cites_doi | 10.1074/jbc.R115.675942 10.1007/s10689-016-9956-7 10.1016/j.molcel.2017.05.006 10.1073/pnas.1508543112 10.1016/j.cell.2011.03.041 10.1126/science.1140321 10.1016/j.yexcr.2014.07.007 10.1038/nsmb.1927 10.1128/MCB.18.11.6430 10.1093/nar/gks774 10.1128/MCB.16.9.4832 10.1016/S1097-2765(00)80097-0 10.1093/nar/gkv754 10.1016/j.canlet.2018.04.002 10.1093/jrr/rrx014 10.1016/j.molcel.2013.03.006 10.1016/j.molcel.2016.10.011 10.1016/j.molcel.2018.06.033 10.1016/j.ccr.2008.04.002 10.1038/nsmb.2323 10.1016/j.cell.2011.02.038 10.1016/j.cell.2018.11.024 10.1101/gad.1279805 10.1016/j.molcel.2012.02.018 10.1016/S0021-9258(19)68533-9 10.1038/ncb1599 10.1016/j.cell.2008.08.015 10.1038/nature13771 10.1074/jbc.M110.178871 10.1074/jbc.M701413200 10.1038/nature07312 10.1016/j.molcel.2016.10.017 10.1002/humu.22972 10.1016/S0378-4347(98)00313-2 10.1101/gad.13.10.1276 10.1016/S0092-8674(00)81547-0 10.1038/s41586-018-0670-5 10.1073/pnas.96.7.3572 10.1038/549 10.1038/cr.2011.128 10.1074/mcp.M113.029413 10.1126/science.1108297 10.1007/s00412-004-0306-4 10.1093/nar/gkx173 10.1186/s12885-016-2190-8 10.1074/jbc.273.34.21447 10.1016/j.dnarep.2004.04.009 10.1016/S0092-8674(00)81175-7 10.1016/S0092-8674(00)81626-8 10.1038/s41422-018-0009-7 10.1002/embj.201386100 10.1073/pnas.0811029106 10.1016/j.molimm.2004.03.014 10.1101/gad.307900.117 10.1101/gad.295196.116 10.1101/gad.248583.114 10.1038/nature18325 10.1016/j.celrep.2014.08.076 10.1007/s10495-006-5396-4 10.1016/j.molcel.2016.10.010 10.1101/gad.308254.117 10.1016/j.molimm.2014.06.011 10.1016/j.dnarep.2010.10.001 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.molcel.2019.06.023 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 1314.e6 |
ExternalDocumentID | 31353207 10_1016_j_molcel_2019_06_023 S1097276519304794 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c507t-ea56ebd022f5aa735cdbbd64e2edf298720ab8d4ab7a50fd2bb85b7dc7008e43 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Tue Aug 05 11:00:57 EDT 2025 Fri Jul 11 10:34:33 EDT 2025 Thu Apr 03 07:08:13 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Tue Jul 01 03:21:14 EDT 2025 Fri Feb 23 02:49:13 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | DNA damage repair MRE11 homologous recombination DNA double-strand breaks C1QBP MRN complex |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-ea56ebd022f5aa735cdbbd64e2edf298720ab8d4ab7a50fd2bb85b7dc7008e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S1097276519304794/pdf |
PMID | 31353207 |
PQID | 2266336739 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2327967247 proquest_miscellaneous_2266336739 pubmed_primary_31353207 crossref_citationtrail_10_1016_j_molcel_2019_06_023 crossref_primary_10_1016_j_molcel_2019_06_023 elsevier_sciencedirect_doi_10_1016_j_molcel_2019_06_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-19 |
PublicationDateYYYYMMDD | 2019-09-19 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Williams, Lees-Miller, Tainer (bib54) 2010; 9 Jiang, Zhang, Krainer, Xu (bib27) 1999; 96 Stewart, Maser, Stankovic, Bressan, Kaplan, Jaspers, Raams, Byrd, Petrini, Taylor (bib48) 1999; 99 Dolganov, Maser, Novikov, Tosto, Chong, Bressan, Petrini (bib16) 1996; 16 Matsuura, Tauchi, Nakamura, Kondo, Sakamoto, Endo, Smeets, Solder, Belohradsky, Der Kaloustian (bib34) 1998; 19 Mimitou, Symington (bib35) 2008; 455 He, Meghani, Caron, Yang, Ronato, Bian, Sharma, Moore, Niraj, Detappe (bib22) 2018; 563 Yagi, Uchiumi, Takazaki, Okuno, Nomura, Yoshida, Kanki, Kang (bib59) 2012; 40 Haber (bib20) 1998; 95 Matsuoka, Ballif, Smogorzewska, McDonald, Hurov, Luo, Bakalarski, Zhao, Solimini, Lerenthal (bib33) 2007; 316 Zhou, Kawamura, Yanagihara, Kobayashi, Zhang-Akiyama (bib64) 2017; 58 Peerschke, Ghebrehiwet (bib40) 2014; 61 Carney, Maser, Olivares, Davis, Le Beau, Yates, Hays, Morgan, Petrini (bib8) 1998; 93 Deshpande, Williams, Limbo, Williams, Kuhnlein, Lee, Classen, Guenther, Russell, Tainer, Paull (bib12) 2014; 33 Schlacher, Christ, Siaud, Egashira, Wu, Jasin (bib45) 2011; 145 Wang, Daley, Kwon, Krasner, Sung (bib53) 2017; 31 Hoa, Shimizu, Zhou, Wang, Deshpande, Paull, Akter, Tsuda, Furuta, Tsutsui (bib24) 2016; 64 Lee, Paull (bib31) 2005; 308 Paull, Gellert (bib38) 1998; 1 Assenmacher, Hopfner (bib2) 2004; 113 Zhong, Jiang, Cesare, Neumann, Wadhwa, Reddel (bib63) 2007; 282 Duursma, Driscoll, Elias, Cimprich (bib17) 2013; 50 Reginato, Cannavo, Cejka (bib42) 2017; 31 Cejka (bib9) 2015; 290 Schiller, Lammens, Guerini, Coordes, Feldmann, Schlauderer, Möckel, Schele, Strässer, Jackson, Hopfner (bib44) 2012; 19 Shen, Han, Shen, Yang, Ren, Sha, Xiang (bib46) 2014; 49 Deshpande, Lee, Arora, Paull (bib13) 2016; 64 Ghebrehiwet, Peerschke (bib19) 2004; 41 Paull, Gellert (bib39) 1999; 13 Yu, Vogel, Coulombe, Dubeau, Spehalski, Hébert, Ferguson, Masson, Richard (bib61) 2012; 22 Song, Wang, Xu, Wang, Wan, Wang, Zhan, Zhang (bib47) 2018; 426 Berkovich, Monnat, Kastan (bib3) 2007; 9 Emelyanov, Rabbani, Mehta, Vershilova, Keogh, Fyodorov (bib18) 2014; 28 Ray Chaudhuri, Callen, Ding, Gogola, Duarte, Lee, Wong, Lafarga, Calvo, Panzarino (bib41) 2016; 535 Wu, Zhang, Zhang, Wu, Rezaeian, Chan, Li, Wang, Gao, Han (bib55) 2012; 46 Paull (bib36) 2018; 71 Kamal, Datta (bib28) 2006; 11 Vallerga, Mansilla, Federico, Bertolin, Gottifredi (bib52) 2015; 112 Yamaguchi-Iwai, Sonoda, Buerstedde, Bezzubova, Morrison, Takata, Shinohara, Takeda (bib60) 1998; 18 Zhang, Zhang, Guo, Wang, Zhang, Wang, Zhang, Chen (bib62) 2013; 12 Kijas, Lim, Bolderson, Cerosaletti, Gatei, Jakob, Tobias, Taucher-Scholz, Gueven, Oakley (bib29) 2015; 43 Itahana, Zhang (bib25) 2008; 13 Xu, Xiao, Liu, Ren, Gu (bib57) 2009; 106 Jachimowicz, Beleggia, Isensee, Velpula, Goergens, Bustos, Doll, Shenoy, Checa-Rodriguez, Wiederstein (bib26) 2019; 176 Rojas, Lopez, Valverde (bib43) 1999; 722 Paull, Deshpande (bib37) 2014; 329 Anand, Ranjha, Cannavo, Cejka (bib1) 2016; 64 Cannavo, Cejka (bib7) 2014; 514 Hashimoto, Ray Chaudhuri, Lopes, Costanzo (bib21) 2010; 17 Boisvert, Déry, Masson, Richard (bib4) 2005; 19 Storrs, Kolb, Pinckard, Olson (bib49) 1981; 256 Chang, Huang, Wang, Li, Yan, Zhu, Ye, Wu, Zhuang, Li, Zhang (bib10) 2016; 16 Yadav, Reeves, Campian, Paine, Zakalik (bib58) 2017; 16 Herdendorf, Albrecht, Benkovic, Nelson (bib23) 2011; 286 Buis, Wu, Deng, Leddon, Westfield, Eckersdorff, Sekiguchi, Chang, Ferguson (bib5) 2008; 135 Xie, Zhang, Zhao, Bai, Fan, Zhu, Yu, Li, Liang, Sun (bib56) 2018; 28 Trujillo, Yuan, Lee, Sung (bib51) 1998; 273 Levikova, Pinto, Cejka (bib32) 2017; 31 Di Marco, Hasanova, Kanagaraj, Chappidi, Altmannova, Menon, Sedlackova, Langhoff, Surendranath, Huhn (bib15) 2017; 66 Cruz-García, López-Saavedra, Huertas (bib11) 2014; 9 Lammens, Bemeleit, Möckel, Clausing, Schele, Hartung, Schiller, Lucas, Angermüller, Söding (bib30) 2011; 145 Taylor, Groom, Byrd (bib50) 2004; 3 Deshpande, Lee, Paull (bib14) 2017; 45 Caminsky, Mucaki, Perri, Lu, Knoll, Rogan (bib6) 2016; 37 Anand (10.1016/j.molcel.2019.06.023_bib1) 2016; 64 Mimitou (10.1016/j.molcel.2019.06.023_bib35) 2008; 455 Paull (10.1016/j.molcel.2019.06.023_bib37) 2014; 329 Storrs (10.1016/j.molcel.2019.06.023_bib49) 1981; 256 Deshpande (10.1016/j.molcel.2019.06.023_bib14) 2017; 45 Paull (10.1016/j.molcel.2019.06.023_bib36) 2018; 71 Haber (10.1016/j.molcel.2019.06.023_bib20) 1998; 95 Yu (10.1016/j.molcel.2019.06.023_bib61) 2012; 22 Matsuoka (10.1016/j.molcel.2019.06.023_bib33) 2007; 316 Wu (10.1016/j.molcel.2019.06.023_bib55) 2012; 46 Caminsky (10.1016/j.molcel.2019.06.023_bib6) 2016; 37 Schlacher (10.1016/j.molcel.2019.06.023_bib45) 2011; 145 Yamaguchi-Iwai (10.1016/j.molcel.2019.06.023_bib60) 1998; 18 Deshpande (10.1016/j.molcel.2019.06.023_bib13) 2016; 64 Di Marco (10.1016/j.molcel.2019.06.023_bib15) 2017; 66 Matsuura (10.1016/j.molcel.2019.06.023_bib34) 1998; 19 Yadav (10.1016/j.molcel.2019.06.023_bib58) 2017; 16 Cejka (10.1016/j.molcel.2019.06.023_bib9) 2015; 290 Paull (10.1016/j.molcel.2019.06.023_bib38) 1998; 1 Emelyanov (10.1016/j.molcel.2019.06.023_bib18) 2014; 28 Hoa (10.1016/j.molcel.2019.06.023_bib24) 2016; 64 Cannavo (10.1016/j.molcel.2019.06.023_bib7) 2014; 514 Assenmacher (10.1016/j.molcel.2019.06.023_bib2) 2004; 113 Shen (10.1016/j.molcel.2019.06.023_bib46) 2014; 49 Song (10.1016/j.molcel.2019.06.023_bib47) 2018; 426 Hashimoto (10.1016/j.molcel.2019.06.023_bib21) 2010; 17 Peerschke (10.1016/j.molcel.2019.06.023_bib40) 2014; 61 Cruz-García (10.1016/j.molcel.2019.06.023_bib11) 2014; 9 Buis (10.1016/j.molcel.2019.06.023_bib5) 2008; 135 Carney (10.1016/j.molcel.2019.06.023_bib8) 1998; 93 Lee (10.1016/j.molcel.2019.06.023_bib31) 2005; 308 Schiller (10.1016/j.molcel.2019.06.023_bib44) 2012; 19 Rojas (10.1016/j.molcel.2019.06.023_bib43) 1999; 722 Deshpande (10.1016/j.molcel.2019.06.023_bib12) 2014; 33 Dolganov (10.1016/j.molcel.2019.06.023_bib16) 1996; 16 Ghebrehiwet (10.1016/j.molcel.2019.06.023_bib19) 2004; 41 Williams (10.1016/j.molcel.2019.06.023_bib54) 2010; 9 Kijas (10.1016/j.molcel.2019.06.023_bib29) 2015; 43 Jachimowicz (10.1016/j.molcel.2019.06.023_bib26) 2019; 176 Zhou (10.1016/j.molcel.2019.06.023_bib64) 2017; 58 Xu (10.1016/j.molcel.2019.06.023_bib57) 2009; 106 Chang (10.1016/j.molcel.2019.06.023_bib10) 2016; 16 Duursma (10.1016/j.molcel.2019.06.023_bib17) 2013; 50 Berkovich (10.1016/j.molcel.2019.06.023_bib3) 2007; 9 Boisvert (10.1016/j.molcel.2019.06.023_bib4) 2005; 19 Lammens (10.1016/j.molcel.2019.06.023_bib30) 2011; 145 Vallerga (10.1016/j.molcel.2019.06.023_bib52) 2015; 112 Ray Chaudhuri (10.1016/j.molcel.2019.06.023_bib41) 2016; 535 Trujillo (10.1016/j.molcel.2019.06.023_bib51) 1998; 273 He (10.1016/j.molcel.2019.06.023_bib22) 2018; 563 Itahana (10.1016/j.molcel.2019.06.023_bib25) 2008; 13 Reginato (10.1016/j.molcel.2019.06.023_bib42) 2017; 31 Zhong (10.1016/j.molcel.2019.06.023_bib63) 2007; 282 Wang (10.1016/j.molcel.2019.06.023_bib53) 2017; 31 Zhang (10.1016/j.molcel.2019.06.023_bib62) 2013; 12 Paull (10.1016/j.molcel.2019.06.023_bib39) 1999; 13 Levikova (10.1016/j.molcel.2019.06.023_bib32) 2017; 31 Taylor (10.1016/j.molcel.2019.06.023_bib50) 2004; 3 Jiang (10.1016/j.molcel.2019.06.023_bib27) 1999; 96 Stewart (10.1016/j.molcel.2019.06.023_bib48) 1999; 99 Yagi (10.1016/j.molcel.2019.06.023_bib59) 2012; 40 Xie (10.1016/j.molcel.2019.06.023_bib56) 2018; 28 Herdendorf (10.1016/j.molcel.2019.06.023_bib23) 2011; 286 Kamal (10.1016/j.molcel.2019.06.023_bib28) 2006; 11 |
References_xml | – volume: 66 start-page: 658 year: 2017 end-page: 671 ident: bib15 article-title: RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis publication-title: Mol. Cell – volume: 290 start-page: 22931 year: 2015 end-page: 22938 ident: bib9 article-title: DNA End Resection: Nucleases Team Up with the Right Partners to Initiate Homologous Recombination publication-title: J. Biol. Chem. – volume: 12 start-page: 3199 year: 2013 end-page: 3209 ident: bib62 article-title: Interactome analysis reveals that C1QBP (complement component 1, q subcomponent binding protein) is associated with cancer cell chemotaxis and metastasis publication-title: Mol. Cell. Proteomics – volume: 308 start-page: 551 year: 2005 end-page: 554 ident: bib31 article-title: ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex publication-title: Science – volume: 273 start-page: 21447 year: 1998 end-page: 21450 ident: bib51 article-title: Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95 publication-title: J. Biol. Chem. – volume: 37 start-page: 640 year: 2016 end-page: 652 ident: bib6 article-title: Prioritizing Variants in Complete Hereditary Breast and Ovarian Cancer Genes in Patients Lacking Known BRCA Mutations publication-title: Hum. Mutat. – volume: 93 start-page: 477 year: 1998 end-page: 486 ident: bib8 article-title: The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response publication-title: Cell – volume: 96 start-page: 3572 year: 1999 end-page: 3577 ident: bib27 article-title: Crystal structure of human p32, a doughnut-shaped acidic mitochondrial matrix protein publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 493 year: 2017 end-page: 502 ident: bib32 article-title: The motor activity of DNA2 functions as an ssDNA translocase to promote DNA end resection publication-title: Genes Dev. – volume: 13 start-page: 1276 year: 1999 end-page: 1288 ident: bib39 article-title: Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex publication-title: Genes Dev. – volume: 18 start-page: 6430 year: 1998 end-page: 6435 ident: bib60 article-title: Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in RAD52 publication-title: Mol. Cell. Biol. – volume: 49 start-page: 616 year: 2014 end-page: 620 ident: bib46 article-title: [Expression of C1QBP gene and its correlation with drug resistance in human resistance choriocarcinoma cell line] publication-title: Zhonghua Fu Chan Ke Za Zhi – volume: 1 start-page: 969 year: 1998 end-page: 979 ident: bib38 article-title: The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks publication-title: Mol. Cell – volume: 3 start-page: 1219 year: 2004 end-page: 1225 ident: bib50 article-title: Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis publication-title: DNA Repair (Amst.) – volume: 19 start-page: 179 year: 1998 end-page: 181 ident: bib34 article-title: Positional cloning of the gene for Nijmegen breakage syndrome publication-title: Nat. Genet. – volume: 64 start-page: 940 year: 2016 end-page: 950 ident: bib1 article-title: Phosphorylated CtIP Functions as a Co-factor of the MRE11-RAD50-NBS1 Endonuclease in DNA End Resection publication-title: Mol. Cell – volume: 45 start-page: 5255 year: 2017 end-page: 5268 ident: bib14 article-title: Rad50 ATPase activity is regulated by DNA ends and requires coordination of both active sites publication-title: Nucleic Acids Res. – volume: 106 start-page: 1530 year: 2009 end-page: 1535 ident: bib57 article-title: Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 451 year: 2014 end-page: 459 ident: bib11 article-title: BRCA1 accelerates CtIP-mediated DNA-end resection publication-title: Cell Rep. – volume: 13 start-page: 542 year: 2008 end-page: 553 ident: bib25 article-title: Mitochondrial p32 is a critical mediator of ARF-induced apoptosis publication-title: Cancer Cell – volume: 112 start-page: E6624 year: 2015 end-page: E6633 ident: bib52 article-title: Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 2331 year: 2017 end-page: 2336 ident: bib53 article-title: Plasticity of the Mre11-Rad50-Xrs2-Sae2 nuclease ensemble in the processing of DNA-bound obstacles publication-title: Genes Dev. – volume: 58 start-page: 487 year: 2017 end-page: 494 ident: bib64 article-title: NBS1 is regulated by two kind of mechanisms: ATM-dependent complex formation with MRE11 and RAD50, and cell cycle-dependent degradation of protein publication-title: J. Radiat. Res. (Tokyo) – volume: 40 start-page: 9717 year: 2012 end-page: 9737 ident: bib59 article-title: p32/gC1qR is indispensable for fetal development and mitochondrial translation: importance of its RNA-binding ability publication-title: Nucleic Acids Res. – volume: 33 start-page: 482 year: 2014 end-page: 500 ident: bib12 article-title: ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling publication-title: EMBO J. – volume: 563 start-page: 522 year: 2018 end-page: 526 ident: bib22 article-title: DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells publication-title: Nature – volume: 176 start-page: 505 year: 2019 end-page: 519.e22 ident: bib26 article-title: UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors publication-title: Cell – volume: 16 start-page: 190 year: 2016 ident: bib10 article-title: Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy publication-title: BMC Cancer – volume: 722 start-page: 225 year: 1999 end-page: 254 ident: bib43 article-title: Single cell gel electrophoresis assay: methodology and applications publication-title: J. Chromatogr. B Biomed. Sci. Appl. – volume: 135 start-page: 85 year: 2008 end-page: 96 ident: bib5 article-title: Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation publication-title: Cell – volume: 514 start-page: 122 year: 2014 end-page: 125 ident: bib7 article-title: Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks publication-title: Nature – volume: 145 start-page: 54 year: 2011 end-page: 66 ident: bib30 article-title: The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair publication-title: Cell – volume: 16 start-page: 319 year: 2017 end-page: 328 ident: bib58 article-title: Outcomes of retesting BRCA negative patients using multigene panels publication-title: Fam. Cancer – volume: 9 start-page: 1299 year: 2010 end-page: 1306 ident: bib54 article-title: Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks publication-title: DNA Repair (Amst.) – volume: 61 start-page: 100 year: 2014 end-page: 109 ident: bib40 article-title: cC1qR/CR and gC1qR/p33: observations in cancer publication-title: Mol. Immunol. – volume: 11 start-page: 861 year: 2006 end-page: 874 ident: bib28 article-title: Upregulation of hyaluronan binding protein 1 (HABP1/p32/gC1qR) is associated with Cisplatin induced apoptosis publication-title: Apoptosis – volume: 316 start-page: 1160 year: 2007 end-page: 1166 ident: bib33 article-title: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage publication-title: Science – volume: 46 start-page: 351 year: 2012 end-page: 361 ident: bib55 article-title: Skp2 E3 ligase integrates ATM activation and homologous recombination repair by ubiquitinating NBS1 publication-title: Mol. Cell – volume: 455 start-page: 770 year: 2008 end-page: 774 ident: bib35 article-title: Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing publication-title: Nature – volume: 19 start-page: 671 year: 2005 end-page: 676 ident: bib4 article-title: Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control publication-title: Genes Dev. – volume: 286 start-page: 2382 year: 2011 end-page: 2392 ident: bib23 article-title: Biochemical characterization of bacteriophage T4 Mre11-Rad50 complex publication-title: J. Biol. Chem. – volume: 71 start-page: 419 year: 2018 end-page: 427 ident: bib36 article-title: 20 Years of Mre11 Biology: No End in Sight publication-title: Mol. Cell – volume: 535 start-page: 382 year: 2016 end-page: 387 ident: bib41 article-title: Replication fork stability confers chemoresistance in BRCA-deficient cells publication-title: Nature – volume: 28 start-page: 462 year: 2018 end-page: 475 ident: bib56 article-title: Poly(ADP-ribose) mediates asymmetric division of mouse oocyte publication-title: Cell Res. – volume: 19 start-page: 693 year: 2012 end-page: 700 ident: bib44 article-title: Structure of Mre11-Nbs1 complex yields insights into ataxia-telangiectasia-like disease mutations and DNA damage signaling publication-title: Nat. Struct. Mol. Biol. – volume: 64 start-page: 593 year: 2016 end-page: 606 ident: bib13 article-title: Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts publication-title: Mol. Cell – volume: 282 start-page: 29314 year: 2007 end-page: 29322 ident: bib63 article-title: Disruption of telomere maintenance by depletion of the MRE11/RAD50/NBS1 complex in cells that use alternative lengthening of telomeres publication-title: J. Biol. Chem. – volume: 64 start-page: 580 year: 2016 end-page: 592 ident: bib24 article-title: Mre11 Is Essential for the Removal of Lethal Topoisomerase 2 Covalent Cleavage Complexes publication-title: Mol. Cell – volume: 113 start-page: 157 year: 2004 end-page: 166 ident: bib2 article-title: MRE11/RAD50/NBS1: complex activities publication-title: Chromosoma – volume: 50 start-page: 116 year: 2013 end-page: 122 ident: bib17 article-title: A role for the MRN complex in ATR activation via TOPBP1 recruitment publication-title: Mol. Cell – volume: 43 start-page: 8352 year: 2015 end-page: 8367 ident: bib29 article-title: ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1 publication-title: Nucleic Acids Res. – volume: 99 start-page: 577 year: 1999 end-page: 587 ident: bib48 article-title: The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder publication-title: Cell – volume: 256 start-page: 10924 year: 1981 end-page: 10929 ident: bib49 article-title: Characterization of the binding of purified human C1q to heart mitochondrial membranes publication-title: J. Biol. Chem. – volume: 28 start-page: 2027 year: 2014 end-page: 2040 ident: bib18 article-title: Drosophila TAP/p32 is a core histone chaperone that cooperates with NAP-1, NLP, and nucleophosmin in sperm chromatin remodeling during fertilization publication-title: Genes Dev. – volume: 17 start-page: 1305 year: 2010 end-page: 1311 ident: bib21 article-title: Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis publication-title: Nat. Struct. Mol. Biol. – volume: 31 start-page: 2325 year: 2017 end-page: 2330 ident: bib42 article-title: Physiological protein blocks direct the Mre11-Rad50-Xrs2 and Sae2 nuclease complex to initiate DNA end resection publication-title: Genes Dev. – volume: 145 start-page: 529 year: 2011 end-page: 542 ident: bib45 article-title: Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11 publication-title: Cell – volume: 426 start-page: 63 year: 2018 end-page: 72 ident: bib47 article-title: HOXB9 acetylation at K27 is responsible for its suppression of colon cancer progression publication-title: Cancer Lett. – volume: 16 start-page: 4832 year: 1996 end-page: 4841 ident: bib16 article-title: Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair publication-title: Mol. Cell. Biol. – volume: 95 start-page: 583 year: 1998 end-page: 586 ident: bib20 article-title: The many interfaces of Mre11 publication-title: Cell – volume: 22 start-page: 305 year: 2012 end-page: 320 ident: bib61 article-title: The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation publication-title: Cell Res. – volume: 41 start-page: 173 year: 2004 end-page: 183 ident: bib19 article-title: cC1q-R (calreticulin) and gC1q-R/p33: ubiquitously expressed multi-ligand binding cellular proteins involved in inflammation and infection publication-title: Mol. Immunol. – volume: 9 start-page: 683 year: 2007 end-page: 690 ident: bib3 article-title: Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair publication-title: Nat. Cell Biol. – volume: 329 start-page: 139 year: 2014 end-page: 147 ident: bib37 article-title: The Mre11/Rad50/Nbs1 complex: recent insights into catalytic activities and ATP-driven conformational changes publication-title: Exp. Cell Res. – volume: 290 start-page: 22931 year: 2015 ident: 10.1016/j.molcel.2019.06.023_bib9 article-title: DNA End Resection: Nucleases Team Up with the Right Partners to Initiate Homologous Recombination publication-title: J. Biol. Chem. doi: 10.1074/jbc.R115.675942 – volume: 16 start-page: 319 year: 2017 ident: 10.1016/j.molcel.2019.06.023_bib58 article-title: Outcomes of retesting BRCA negative patients using multigene panels publication-title: Fam. Cancer doi: 10.1007/s10689-016-9956-7 – volume: 66 start-page: 658 year: 2017 ident: 10.1016/j.molcel.2019.06.023_bib15 article-title: RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.05.006 – volume: 112 start-page: E6624 year: 2015 ident: 10.1016/j.molcel.2019.06.023_bib52 article-title: Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1508543112 – volume: 145 start-page: 529 year: 2011 ident: 10.1016/j.molcel.2019.06.023_bib45 article-title: Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11 publication-title: Cell doi: 10.1016/j.cell.2011.03.041 – volume: 316 start-page: 1160 year: 2007 ident: 10.1016/j.molcel.2019.06.023_bib33 article-title: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage publication-title: Science doi: 10.1126/science.1140321 – volume: 329 start-page: 139 year: 2014 ident: 10.1016/j.molcel.2019.06.023_bib37 article-title: The Mre11/Rad50/Nbs1 complex: recent insights into catalytic activities and ATP-driven conformational changes publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2014.07.007 – volume: 17 start-page: 1305 year: 2010 ident: 10.1016/j.molcel.2019.06.023_bib21 article-title: Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1927 – volume: 18 start-page: 6430 year: 1998 ident: 10.1016/j.molcel.2019.06.023_bib60 article-title: Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in RAD52 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.18.11.6430 – volume: 40 start-page: 9717 year: 2012 ident: 10.1016/j.molcel.2019.06.023_bib59 article-title: p32/gC1qR is indispensable for fetal development and mitochondrial translation: importance of its RNA-binding ability publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks774 – volume: 16 start-page: 4832 year: 1996 ident: 10.1016/j.molcel.2019.06.023_bib16 article-title: Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.9.4832 – volume: 1 start-page: 969 year: 1998 ident: 10.1016/j.molcel.2019.06.023_bib38 article-title: The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80097-0 – volume: 43 start-page: 8352 year: 2015 ident: 10.1016/j.molcel.2019.06.023_bib29 article-title: ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv754 – volume: 426 start-page: 63 year: 2018 ident: 10.1016/j.molcel.2019.06.023_bib47 article-title: HOXB9 acetylation at K27 is responsible for its suppression of colon cancer progression publication-title: Cancer Lett. doi: 10.1016/j.canlet.2018.04.002 – volume: 58 start-page: 487 year: 2017 ident: 10.1016/j.molcel.2019.06.023_bib64 article-title: NBS1 is regulated by two kind of mechanisms: ATM-dependent complex formation with MRE11 and RAD50, and cell cycle-dependent degradation of protein publication-title: J. Radiat. Res. (Tokyo) doi: 10.1093/jrr/rrx014 – volume: 50 start-page: 116 year: 2013 ident: 10.1016/j.molcel.2019.06.023_bib17 article-title: A role for the MRN complex in ATR activation via TOPBP1 recruitment publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.03.006 – volume: 64 start-page: 580 year: 2016 ident: 10.1016/j.molcel.2019.06.023_bib24 article-title: Mre11 Is Essential for the Removal of Lethal Topoisomerase 2 Covalent Cleavage Complexes publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.10.011 – volume: 71 start-page: 419 year: 2018 ident: 10.1016/j.molcel.2019.06.023_bib36 article-title: 20 Years of Mre11 Biology: No End in Sight publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.06.033 – volume: 13 start-page: 542 year: 2008 ident: 10.1016/j.molcel.2019.06.023_bib25 article-title: Mitochondrial p32 is a critical mediator of ARF-induced apoptosis publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.04.002 – volume: 19 start-page: 693 year: 2012 ident: 10.1016/j.molcel.2019.06.023_bib44 article-title: Structure of Mre11-Nbs1 complex yields insights into ataxia-telangiectasia-like disease mutations and DNA damage signaling publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2323 – volume: 145 start-page: 54 year: 2011 ident: 10.1016/j.molcel.2019.06.023_bib30 article-title: The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair publication-title: Cell doi: 10.1016/j.cell.2011.02.038 – volume: 176 start-page: 505 year: 2019 ident: 10.1016/j.molcel.2019.06.023_bib26 article-title: UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors publication-title: Cell doi: 10.1016/j.cell.2018.11.024 – volume: 19 start-page: 671 year: 2005 ident: 10.1016/j.molcel.2019.06.023_bib4 article-title: Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control publication-title: Genes Dev. doi: 10.1101/gad.1279805 – volume: 46 start-page: 351 year: 2012 ident: 10.1016/j.molcel.2019.06.023_bib55 article-title: Skp2 E3 ligase integrates ATM activation and homologous recombination repair by ubiquitinating NBS1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.02.018 – volume: 256 start-page: 10924 year: 1981 ident: 10.1016/j.molcel.2019.06.023_bib49 article-title: Characterization of the binding of purified human C1q to heart mitochondrial membranes publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)68533-9 – volume: 9 start-page: 683 year: 2007 ident: 10.1016/j.molcel.2019.06.023_bib3 article-title: Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair publication-title: Nat. Cell Biol. doi: 10.1038/ncb1599 – volume: 49 start-page: 616 year: 2014 ident: 10.1016/j.molcel.2019.06.023_bib46 article-title: [Expression of C1QBP gene and its correlation with drug resistance in human resistance choriocarcinoma cell line] publication-title: Zhonghua Fu Chan Ke Za Zhi – volume: 135 start-page: 85 year: 2008 ident: 10.1016/j.molcel.2019.06.023_bib5 article-title: Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation publication-title: Cell doi: 10.1016/j.cell.2008.08.015 – volume: 514 start-page: 122 year: 2014 ident: 10.1016/j.molcel.2019.06.023_bib7 article-title: Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks publication-title: Nature doi: 10.1038/nature13771 – volume: 286 start-page: 2382 year: 2011 ident: 10.1016/j.molcel.2019.06.023_bib23 article-title: Biochemical characterization of bacteriophage T4 Mre11-Rad50 complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.178871 – volume: 282 start-page: 29314 year: 2007 ident: 10.1016/j.molcel.2019.06.023_bib63 article-title: Disruption of telomere maintenance by depletion of the MRE11/RAD50/NBS1 complex in cells that use alternative lengthening of telomeres publication-title: J. Biol. Chem. doi: 10.1074/jbc.M701413200 – volume: 455 start-page: 770 year: 2008 ident: 10.1016/j.molcel.2019.06.023_bib35 article-title: Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing publication-title: Nature doi: 10.1038/nature07312 – volume: 64 start-page: 940 year: 2016 ident: 10.1016/j.molcel.2019.06.023_bib1 article-title: Phosphorylated CtIP Functions as a Co-factor of the MRE11-RAD50-NBS1 Endonuclease in DNA End Resection publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.10.017 – volume: 37 start-page: 640 year: 2016 ident: 10.1016/j.molcel.2019.06.023_bib6 article-title: Prioritizing Variants in Complete Hereditary Breast and Ovarian Cancer Genes in Patients Lacking Known BRCA Mutations publication-title: Hum. Mutat. doi: 10.1002/humu.22972 – volume: 722 start-page: 225 year: 1999 ident: 10.1016/j.molcel.2019.06.023_bib43 article-title: Single cell gel electrophoresis assay: methodology and applications publication-title: J. Chromatogr. B Biomed. Sci. Appl. doi: 10.1016/S0378-4347(98)00313-2 – volume: 13 start-page: 1276 year: 1999 ident: 10.1016/j.molcel.2019.06.023_bib39 article-title: Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex publication-title: Genes Dev. doi: 10.1101/gad.13.10.1276 – volume: 99 start-page: 577 year: 1999 ident: 10.1016/j.molcel.2019.06.023_bib48 article-title: The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder publication-title: Cell doi: 10.1016/S0092-8674(00)81547-0 – volume: 563 start-page: 522 year: 2018 ident: 10.1016/j.molcel.2019.06.023_bib22 article-title: DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells publication-title: Nature doi: 10.1038/s41586-018-0670-5 – volume: 96 start-page: 3572 year: 1999 ident: 10.1016/j.molcel.2019.06.023_bib27 article-title: Crystal structure of human p32, a doughnut-shaped acidic mitochondrial matrix protein publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.7.3572 – volume: 19 start-page: 179 year: 1998 ident: 10.1016/j.molcel.2019.06.023_bib34 article-title: Positional cloning of the gene for Nijmegen breakage syndrome publication-title: Nat. Genet. doi: 10.1038/549 – volume: 22 start-page: 305 year: 2012 ident: 10.1016/j.molcel.2019.06.023_bib61 article-title: The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation publication-title: Cell Res. doi: 10.1038/cr.2011.128 – volume: 12 start-page: 3199 year: 2013 ident: 10.1016/j.molcel.2019.06.023_bib62 article-title: Interactome analysis reveals that C1QBP (complement component 1, q subcomponent binding protein) is associated with cancer cell chemotaxis and metastasis publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M113.029413 – volume: 308 start-page: 551 year: 2005 ident: 10.1016/j.molcel.2019.06.023_bib31 article-title: ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex publication-title: Science doi: 10.1126/science.1108297 – volume: 113 start-page: 157 year: 2004 ident: 10.1016/j.molcel.2019.06.023_bib2 article-title: MRE11/RAD50/NBS1: complex activities publication-title: Chromosoma doi: 10.1007/s00412-004-0306-4 – volume: 45 start-page: 5255 year: 2017 ident: 10.1016/j.molcel.2019.06.023_bib14 article-title: Rad50 ATPase activity is regulated by DNA ends and requires coordination of both active sites publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx173 – volume: 16 start-page: 190 year: 2016 ident: 10.1016/j.molcel.2019.06.023_bib10 article-title: Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy publication-title: BMC Cancer doi: 10.1186/s12885-016-2190-8 – volume: 273 start-page: 21447 year: 1998 ident: 10.1016/j.molcel.2019.06.023_bib51 article-title: Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.34.21447 – volume: 3 start-page: 1219 year: 2004 ident: 10.1016/j.molcel.2019.06.023_bib50 article-title: Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2004.04.009 – volume: 93 start-page: 477 year: 1998 ident: 10.1016/j.molcel.2019.06.023_bib8 article-title: The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response publication-title: Cell doi: 10.1016/S0092-8674(00)81175-7 – volume: 95 start-page: 583 year: 1998 ident: 10.1016/j.molcel.2019.06.023_bib20 article-title: The many interfaces of Mre11 publication-title: Cell doi: 10.1016/S0092-8674(00)81626-8 – volume: 28 start-page: 462 year: 2018 ident: 10.1016/j.molcel.2019.06.023_bib56 article-title: Poly(ADP-ribose) mediates asymmetric division of mouse oocyte publication-title: Cell Res. doi: 10.1038/s41422-018-0009-7 – volume: 33 start-page: 482 year: 2014 ident: 10.1016/j.molcel.2019.06.023_bib12 article-title: ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling publication-title: EMBO J. doi: 10.1002/embj.201386100 – volume: 106 start-page: 1530 year: 2009 ident: 10.1016/j.molcel.2019.06.023_bib57 article-title: Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0811029106 – volume: 41 start-page: 173 year: 2004 ident: 10.1016/j.molcel.2019.06.023_bib19 article-title: cC1q-R (calreticulin) and gC1q-R/p33: ubiquitously expressed multi-ligand binding cellular proteins involved in inflammation and infection publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2004.03.014 – volume: 31 start-page: 2331 year: 2017 ident: 10.1016/j.molcel.2019.06.023_bib53 article-title: Plasticity of the Mre11-Rad50-Xrs2-Sae2 nuclease ensemble in the processing of DNA-bound obstacles publication-title: Genes Dev. doi: 10.1101/gad.307900.117 – volume: 31 start-page: 493 year: 2017 ident: 10.1016/j.molcel.2019.06.023_bib32 article-title: The motor activity of DNA2 functions as an ssDNA translocase to promote DNA end resection publication-title: Genes Dev. doi: 10.1101/gad.295196.116 – volume: 28 start-page: 2027 year: 2014 ident: 10.1016/j.molcel.2019.06.023_bib18 article-title: Drosophila TAP/p32 is a core histone chaperone that cooperates with NAP-1, NLP, and nucleophosmin in sperm chromatin remodeling during fertilization publication-title: Genes Dev. doi: 10.1101/gad.248583.114 – volume: 535 start-page: 382 year: 2016 ident: 10.1016/j.molcel.2019.06.023_bib41 article-title: Replication fork stability confers chemoresistance in BRCA-deficient cells publication-title: Nature doi: 10.1038/nature18325 – volume: 9 start-page: 451 year: 2014 ident: 10.1016/j.molcel.2019.06.023_bib11 article-title: BRCA1 accelerates CtIP-mediated DNA-end resection publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.08.076 – volume: 11 start-page: 861 year: 2006 ident: 10.1016/j.molcel.2019.06.023_bib28 article-title: Upregulation of hyaluronan binding protein 1 (HABP1/p32/gC1qR) is associated with Cisplatin induced apoptosis publication-title: Apoptosis doi: 10.1007/s10495-006-5396-4 – volume: 64 start-page: 593 year: 2016 ident: 10.1016/j.molcel.2019.06.023_bib13 article-title: Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.10.010 – volume: 31 start-page: 2325 year: 2017 ident: 10.1016/j.molcel.2019.06.023_bib42 article-title: Physiological protein blocks direct the Mre11-Rad50-Xrs2 and Sae2 nuclease complex to initiate DNA end resection publication-title: Genes Dev. doi: 10.1101/gad.308254.117 – volume: 61 start-page: 100 year: 2014 ident: 10.1016/j.molcel.2019.06.023_bib40 article-title: cC1qR/CR and gC1qR/p33: observations in cancer publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2014.06.011 – volume: 9 start-page: 1299 year: 2010 ident: 10.1016/j.molcel.2019.06.023_bib54 article-title: Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2010.10.001 |
SSID | ssj0014589 |
Score | 2.5137892 |
Snippet | MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1299 |
SubjectTerms | Acid Anhydride Hydrolases - genetics Acid Anhydride Hydrolases - metabolism Animals breast neoplasms C1QBP Carrier Proteins - genetics Carrier Proteins - metabolism Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism chromatin DNA DNA damage DNA damage repair DNA double-strand breaks DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism drug therapy enzyme activity enzymes genetic instability HEK293 Cells HeLa Cells Homologous Recombination Humans Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism MRE11 MRE11 Homologue Protein - genetics MRE11 Homologue Protein - metabolism MRN complex Multiprotein Complexes - genetics Multiprotein Complexes - metabolism Nuclear Proteins - genetics Nuclear Proteins - metabolism Protein Stability remission resection Sf9 Cells Spodoptera |
Title | C1QBP Promotes Homologous Recombination by Stabilizing MRE11 and Controlling the Assembly and Activation of MRE11/RAD50/NBS1 Complex |
URI | https://dx.doi.org/10.1016/j.molcel.2019.06.023 https://www.ncbi.nlm.nih.gov/pubmed/31353207 https://www.proquest.com/docview/2266336739 https://www.proquest.com/docview/2327967247 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelZbCXse4z21o02KuwrQ8rfkzSltDS0qUdy5vQl6EjccqWwdLn_uG7k-3AHrpCn4ytEwidfPcT97s7Qr4E5wFFh5IBVvYMETirbO1YlNzX4ABjnZLCzi_K6Td5OlfzHTLpc2GQVtnZ_tamJ2vdfcm63cxub26yK4ydcl0iBEl10sEOCzlMSXzz8TaSIFVqg4fCDKX79LnE8VquFj5iAKKoUhVPLh5yTw_Bz-SGTl6SFx1-pKN2iftkJzavyLO2o-TmNbmfFF_Hl_QykeziLzqFJ4zA9Z7iRXMJ9-CkCuo2FHAmMmPvwHnR89lxUVDbBDppueuYpU4BHFKMCi_dYpMGR77vhkZXdTspm42OVJ5djK8KisZlEf-8Idcnx9eTKesaLTAPcHDNolVldAHcea2s1UL54FwoZeQx1Lwaap5bNwzSOm1VXgfu3FA5HbwGBBGleEt2m1UT3xMqtK9yb6s6FxahoIPdV15apZzFHlkDIvrtNb4rQo69MBamZ5v9MK1SDCrFIOmOiwFh21m3bRGOR-R1rznzz2Ey4Ccemfm5V7SB_wyDJ7aJoCQDMLUUotSi-o-M4LoqNZd6QN61p2S7XoENRniuPzx5bR_Jc3xDskpRfSK765-_4wEgorU7JHujs9n3s8N09P8C5lAKVw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZpQmkvpWn6cNOHArmK3ZVWK-_RdhOcNjZ5uOCb0GshxV6H1oW65_7wzGh3DT2kgZ4M1giERjvziflGHyHH3jpA0b5ggJUdQwTOSlNZFnLuKkiAoYpNYZNpMf6af57L-Q4Zdb0wSKtsY38T02O0bv9J2t1Mbm9ukmusnXJVIASJ76Q_InuABhTqN5zNh9tSQi6jDh5aMzTv-uciyWu5WriAFYisjM94cnFffroPf8Y8dPqcPGsBJB00a9wnO6F-QR43kpKbA_JnlF0OL-hFZNmFH3QMvzAC93uKN80lXISjL6jdUACaSI39DdmLTq5Osoya2tNRQ17HNnUK6JBiWXhpF5s4OHCdHBpdVc2k5GrwSabJdHidUYwui_DrJZmdnsxGY9YqLTAHeHDNgpFFsB7yeSWNUUI6b60v8sCDr3jZVzw1tu9zY5WRaeW5tX1plXcKIETIxSuyW6_q8IZQoVyZOlNWqTCIBS3svnS5kdIaFMnqEdFtr3btK-QohrHQHd3sm26cotEpGll3XPQI2866bV7heMBedZ7Tf50mDYnigZlHnaM1fGhYPTF1ACdpwKmFEIUS5T9sBFdloXiueuR1c0q26xWoMMJT9fa_1_aRPBnPJuf6_Gz65ZA8xRFkrmTlO7K7_v4zvAd4tLYf4vG_A-Z4C9M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=C1QBP+Promotes+Homologous+Recombination+by+Stabilizing+MRE11+and+Controlling+the+Assembly+and+Activation+of+MRE11%2FRAD50%2FNBS1+Complex&rft.jtitle=Molecular+cell&rft.au=Bai%2C+Yongtai&rft.au=Wang%2C+Weibin&rft.au=Li%2C+Siyu&rft.au=Zhan%2C+Jun&rft.date=2019-09-19&rft.pub=Elsevier+Inc&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=75&rft.issue=6&rft.spage=1299&rft.epage=1314.e6&rft_id=info:doi/10.1016%2Fj.molcel.2019.06.023&rft.externalDocID=S1097276519304794 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |