Dry Electrodes for Human Bioelectrical Signal Monitoring
Bioelectrical or electrophysiological signals generated by living cells or tissues during daily physiological activities are closely related to the state of the body and organ functions, and therefore are widely used in clinical diagnosis, health monitoring, intelligent control and human-computer in...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 13; p. 3651 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
29.06.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bioelectrical or electrophysiological signals generated by living cells or tissues during daily physiological activities are closely related to the state of the body and organ functions, and therefore are widely used in clinical diagnosis, health monitoring, intelligent control and human-computer interaction. Ag/AgCl electrodes with wet conductive gels are widely used to pick up these bioelectrical signals using electrodes and record them in the form of electroencephalograms, electrocardiograms, electromyography, electrooculograms, etc. However, the inconvenience, instability and infection problems resulting from the use of gel with Ag/AgCl wet electrodes can’t meet the needs of long-term signal acquisition, especially in wearable applications. Hence, focus has shifted toward the study of dry electrodes that can work without gels or adhesives. In this paper, a retrospective overview of the development of dry electrodes used for monitoring bioelectrical signals is provided, including the sensing principles, material selection, device preparation, and measurement performance. In addition, the challenges regarding the limitations of materials, fabrication technologies and wearable performance of dry electrodes are discussed. Finally, the development obstacles and application advantages of different dry electrodes are analyzed to make a comparison and reveal research directions for future studies. |
---|---|
AbstractList | Bioelectrical or electrophysiological signals generated by living cells or tissues during daily physiological activities are closely related to the state of the body and organ functions, and therefore are widely used in clinical diagnosis, health monitoring, intelligent control and human-computer interaction. Ag/AgCl electrodes with wet conductive gels are widely used to pick up these bioelectrical signals using electrodes and record them in the form of electroencephalograms, electrocardiograms, electromyography, electrooculograms, etc. However, the inconvenience, instability and infection problems resulting from the use of gel with Ag/AgCl wet electrodes can’t meet the needs of long-term signal acquisition, especially in wearable applications. Hence, focus has shifted toward the study of dry electrodes that can work without gels or adhesives. In this paper, a retrospective overview of the development of dry electrodes used for monitoring bioelectrical signals is provided, including the sensing principles, material selection, device preparation, and measurement performance. In addition, the challenges regarding the limitations of materials, fabrication technologies and wearable performance of dry electrodes are discussed. Finally, the development obstacles and application advantages of different dry electrodes are analyzed to make a comparison and reveal research directions for future studies. Bioelectrical or electrophysiological signals generated by living cells or tissues during daily physiological activities are closely related to the state of the body and organ functions, and therefore are widely used in clinical diagnosis, health monitoring, intelligent control and human-computer interaction. Ag/AgCl electrodes with wet conductive gels are widely used to pick up these bioelectrical signals using electrodes and record them in the form of electroencephalograms, electrocardiograms, electromyography, electrooculograms, etc. However, the inconvenience, instability and infection problems resulting from the use of gel with Ag/AgCl wet electrodes can't meet the needs of long-term signal acquisition, especially in wearable applications. Hence, focus has shifted toward the study of dry electrodes that can work without gels or adhesives. In this paper, a retrospective overview of the development of dry electrodes used for monitoring bioelectrical signals is provided, including the sensing principles, material selection, device preparation, and measurement performance. In addition, the challenges regarding the limitations of materials, fabrication technologies and wearable performance of dry electrodes are discussed. Finally, the development obstacles and application advantages of different dry electrodes are analyzed to make a comparison and reveal research directions for future studies.Bioelectrical or electrophysiological signals generated by living cells or tissues during daily physiological activities are closely related to the state of the body and organ functions, and therefore are widely used in clinical diagnosis, health monitoring, intelligent control and human-computer interaction. Ag/AgCl electrodes with wet conductive gels are widely used to pick up these bioelectrical signals using electrodes and record them in the form of electroencephalograms, electrocardiograms, electromyography, electrooculograms, etc. However, the inconvenience, instability and infection problems resulting from the use of gel with Ag/AgCl wet electrodes can't meet the needs of long-term signal acquisition, especially in wearable applications. Hence, focus has shifted toward the study of dry electrodes that can work without gels or adhesives. In this paper, a retrospective overview of the development of dry electrodes used for monitoring bioelectrical signals is provided, including the sensing principles, material selection, device preparation, and measurement performance. In addition, the challenges regarding the limitations of materials, fabrication technologies and wearable performance of dry electrodes are discussed. Finally, the development obstacles and application advantages of different dry electrodes are analyzed to make a comparison and reveal research directions for future studies. |
Author | Fu, Yulin Zhao, Jingjing Dong, Ying Wang, Xiaohao |
AuthorAffiliation | 1 Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; fyl18@mails.tsinghua.edu.cn (Y.F.); wang.xiaohao@sz.tsinghua.edu.cn (X.W.) 2 Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; jjzhao2017@sz.tsinghua.edu.cn |
AuthorAffiliation_xml | – name: 2 Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; jjzhao2017@sz.tsinghua.edu.cn – name: 1 Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; fyl18@mails.tsinghua.edu.cn (Y.F.); wang.xiaohao@sz.tsinghua.edu.cn (X.W.) |
Author_xml | – sequence: 1 givenname: Yulin orcidid: 0000-0002-6591-0895 surname: Fu fullname: Fu, Yulin – sequence: 2 givenname: Jingjing surname: Zhao fullname: Zhao, Jingjing – sequence: 3 givenname: Ying surname: Dong fullname: Dong, Ying – sequence: 4 givenname: Xiaohao surname: Wang fullname: Wang, Xiaohao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32610658$$D View this record in MEDLINE/PubMed |
BookMark | eNplkTlPAzEQhS0E4i74A2hLKAK-7W2QuBMJRAHUlq8NjjZ2sDdI_HuWBBCB6o1m3nxPmtkB6zFFD8ABgieE1PC0YIgI4QytgW1EMR1IjOH6r3oL7JQygRATQuQm2CKYI8iZ3AbyKr9X1623XU7Ol6pJuRrOpzpWFyH5RT9Y3VaPYRx7uU8xdCmHON4DG41ui9__0l3wfHP9dDkc3D3cji7P7waWQdENXO0bQYWxyEAoGm2dtAJKyrQzhFjRQOYs7QvjkMYMC06FpMIhSKhxRpJdMFpyXdITNcthqvO7SjqoRSPlsdK5C7b1SteUypoTw6SgjrLaMU-lryH2iNfc9KyzJWs2N1PvrI9d1u0KdHUSw4sapzcliKAE4x5w9AXI6XXuS6emoVjftjr6NC8KU1QLhDjhvfXwd9ZPyPfpe8Pp0mBzKiX7RtnQ6S6kz-jQKgTV53PVz3P7jeM_G9_Q_94PlLyiWg |
CitedBy_id | crossref_primary_10_1109_TNSRE_2024_3422489 crossref_primary_10_3390_s23198315 crossref_primary_10_1016_j_rser_2022_113111 crossref_primary_10_1016_j_sna_2022_114062 crossref_primary_10_1021_acsanm_3c03457 crossref_primary_10_1007_s13534_021_00189_6 crossref_primary_10_1007_s10544_024_00732_z crossref_primary_10_1063_5_0152554 crossref_primary_10_1108_IJCST_01_2022_0011 crossref_primary_10_1016_j_sna_2025_116400 crossref_primary_10_3390_bios13070728 crossref_primary_10_1109_MSMC_2022_3233708 crossref_primary_10_1016_j_mtbio_2023_100787 crossref_primary_10_21931_RB_CSS_2023_08_04_99 crossref_primary_10_1109_ACCESS_2024_3378747 crossref_primary_10_1016_j_xcrp_2023_101335 crossref_primary_10_3390_mi15070907 crossref_primary_10_3389_fbioe_2022_851134 crossref_primary_10_1016_j_bspc_2024_107396 crossref_primary_10_1109_JSEN_2024_3485113 crossref_primary_10_20517_ss_2023_44 crossref_primary_10_1016_j_gltp_2021_08_009 crossref_primary_10_1021_acsami_3c03724 crossref_primary_10_1021_acsomega_2c00282 crossref_primary_10_1007_s44258_024_00040_4 crossref_primary_10_1109_ACCESS_2025_3547230 crossref_primary_10_3390_mi13040629 crossref_primary_10_1177_21582440241305365 crossref_primary_10_1016_j_measurement_2021_109774 crossref_primary_10_1109_JSEN_2023_3300992 crossref_primary_10_1007_s11431_022_2231_3 crossref_primary_10_1002_marc_202200047 crossref_primary_10_1039_D3RA05730E crossref_primary_10_3390_electronics10212631 crossref_primary_10_1080_23311916_2023_2246750 crossref_primary_10_3390_electronics11010099 crossref_primary_10_3389_fnbot_2022_873239 crossref_primary_10_1080_07388551_2021_1993126 crossref_primary_10_1007_s42765_023_00263_x crossref_primary_10_3390_s23063106 crossref_primary_10_3390_signals5030025 crossref_primary_10_1002_admi_202400757 crossref_primary_10_3390_s22114253 crossref_primary_10_1007_s00604_022_05228_2 crossref_primary_10_1016_j_vacuum_2024_113122 crossref_primary_10_1038_s41467_024_48682_7 crossref_primary_10_1007_s40820_022_00870_0 crossref_primary_10_1002_adhm_202200653 crossref_primary_10_1080_03772063_2023_2176368 crossref_primary_10_1088_1361_6579_acf2e7 crossref_primary_10_1002_hbm_25721 crossref_primary_10_3390_s21165548 crossref_primary_10_1038_s41528_022_00230_3 crossref_primary_10_3390_mi12121505 crossref_primary_10_1007_s10924_025_03501_y crossref_primary_10_1016_j_mattod_2024_03_005 crossref_primary_10_1016_j_mattod_2025_03_005 crossref_primary_10_1016_j_array_2023_100277 crossref_primary_10_3390_bios13070679 crossref_primary_10_3390_s21051600 crossref_primary_10_1155_2022_3179915 crossref_primary_10_3390_bios11100398 crossref_primary_10_1002_admt_202100612 crossref_primary_10_3390_bios13010101 crossref_primary_10_1126_sciadv_adk5260 crossref_primary_10_1002_adsr_202200060 crossref_primary_10_1007_s11042_023_15653_x crossref_primary_10_1016_j_cej_2021_130886 crossref_primary_10_1002_admt_202101572 crossref_primary_10_3390_s23177377 crossref_primary_10_1088_1741_2552_ac4085 crossref_primary_10_12688_f1000research_132840_1 crossref_primary_10_3389_fnbot_2022_880073 crossref_primary_10_1038_s41699_022_00324_6 crossref_primary_10_3390_s24061834 crossref_primary_10_1007_s11665_023_08932_z crossref_primary_10_1038_s41378_023_00524_0 crossref_primary_10_3390_s23042130 crossref_primary_10_1109_JFLEX_2024_3367648 crossref_primary_10_1109_JSEN_2022_3213868 crossref_primary_10_3389_fnins_2021_621885 crossref_primary_10_1007_s12274_023_5429_5 crossref_primary_10_3390_s22114035 crossref_primary_10_3390_s20174953 crossref_primary_10_3390_s23229208 crossref_primary_10_1002_adfm_202406341 crossref_primary_10_3390_s21051748 crossref_primary_10_20517_ss_2023_16 crossref_primary_10_1016_j_xinn_2023_100485 crossref_primary_10_3390_s22134736 crossref_primary_10_20517_ss_2023_12 crossref_primary_10_1109_JSEN_2025_3537016 crossref_primary_10_3390_s24103136 crossref_primary_10_3390_polym15132905 crossref_primary_10_1038_s41528_023_00279_8 crossref_primary_10_1016_j_mser_2025_100971 crossref_primary_10_1021_acsnano_4c06607 crossref_primary_10_3389_felec_2025_1503425 crossref_primary_10_3390_bios13080787 crossref_primary_10_1088_2752_5724_ad5c84 crossref_primary_10_3390_app14156521 crossref_primary_10_1002_aelm_202300767 crossref_primary_10_1016_j_inoche_2025_114139 crossref_primary_10_1038_s41528_022_00139_x crossref_primary_10_1002_adhm_202002105 crossref_primary_10_3390_mi13122047 crossref_primary_10_3390_s24061810 crossref_primary_10_1002_admt_202201677 crossref_primary_10_18705_2311_4495_2024_11_6_562_576 crossref_primary_10_1016_j_sna_2025_116425 crossref_primary_10_1002_anbr_202300169 crossref_primary_10_1007_s13534_023_00279_7 crossref_primary_10_1002_adfm_202418463 crossref_primary_10_3390_s23198321 crossref_primary_10_1002_admt_202302072 crossref_primary_10_3390_s23031113 crossref_primary_10_1002_adma_202313419 crossref_primary_10_3389_fnins_2021_748100 crossref_primary_10_1109_TNSRE_2021_3086860 |
Cites_doi | 10.3390/s150101750 10.3390/s140712370 10.1088/0967-3334/34/9/R47 10.1098/rsfs.2014.0050 10.1109/TBME.2012.2215032 10.1109/TIM.2011.2164279 10.1016/j.msec.2019.02.015 10.1088/1361-665X/ab06e0 10.1109/TBME.2015.2485269 10.3389/fbioe.2018.00179 10.1016/j.sna.2014.10.010 10.1016/j.sbsr.2018.05.001 10.1109/TBME.1969.4502613 10.1002/admt.201600251 10.3390/s16060908 10.1109/TBME.2015.2478406 10.1109/NEBEC.2013.50 10.1038/s41598-018-32304-6 10.1109/TBME.2012.2190288 10.1073/pnas.1424875112 10.1109/TBME.2015.2465936 10.1016/j.snb.2015.07.111 10.3390/s16111833 10.3390/s18041193 10.1002/adfm.201807614 10.1016/j.measurement.2017.09.024 10.1016/j.snb.2017.01.052 10.3390/ma12060971 10.1109/TBME.2010.2102353 10.1007/s11095-014-1301-y 10.3390/s17040875 10.1002/adhm.201801033 10.1016/j.sna.2017.10.042 10.3390/s16101635 10.1021/acsnano.6b01355 10.1016/j.sna.2013.11.020 10.1016/j.msec.2017.05.114 10.1002/adhm.201601167 10.1016/j.jconrel.2017.02.011 10.1039/C7TC03669H 10.1016/j.colsurfa.2019.123751 10.1016/j.sna.2011.12.017 10.1109/TIM.2015.2459531 10.3390/s110605819 10.1109/TBME.2006.872823 10.1016/j.sna.2012.04.037 10.1021/acsami.8b06484 10.1002/adhm.201601159 10.1109/84.911086 10.3390/s150716265 10.1002/adfm.201803279 10.1016/j.sna.2018.09.045 10.1016/j.sna.2006.06.013 10.1109/10.821734 10.1109/TBME.2018.2835778 10.1016/j.sna.2015.10.041 10.1088/1361-6463/ab3869 10.1186/s12938-018-0469-5 10.1109/RBME.2010.2084078 10.1109/TBME.2015.2462312 10.1109/EMBC.2018.8513107 10.1109/TNSRE.2019.2916397 10.1109/TBCAS.2008.915633 10.1007/s10439-018-2042-6 10.1016/j.sna.2012.04.019 10.1021/acsnano.7b02182 10.3390/electronics8050479 10.1016/j.synthmet.2008.11.005 10.1021/acsami.7b09954 10.1093/icb/42.6.1146 10.1109/TBME.2011.2163715 10.1016/j.jelectrocard.2019.08.015 10.1016/j.clinbiomech.2009.01.010 10.1109/JETCAS.2011.2179419 10.1126/science.1206157 10.1109/JSEN.2019.2944847 10.1007/s13206-012-6112-9 10.1039/C4RA15101A 10.1002/adhm.201700495 10.1109/TBME.2013.2264956 10.1126/sciadv.1601185 10.1021/acsnano.8b02162 10.1016/j.mee.2007.01.243 10.1109/ACCESS.2019.2897590 10.1007/s13206-017-1304-y 10.1016/j.corsci.2011.11.008 10.7567/JJAP.57.05GD02 10.1039/C7NR09570H 10.1016/j.sna.2015.09.024 10.1007/s11432-011-4354-0 10.1016/j.medengphy.2011.11.002 10.1002/0471681849 10.1002/adma.201301921 10.1002/adma.200904426 10.3389/fnins.2017.00033 10.1007/s13391-019-00125-y 10.1109/TBCAS.2014.2359053 10.1109/JSEN.2018.2865623 10.1016/j.knosys.2013.02.014 10.1109/JPROC.2008.922561 10.1155/2018/3016343 10.3390/s140712847 10.3390/ma11020256 10.1016/j.mee.2017.05.048 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3390/s20133651 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_a9448963b5874d459d5e48e902e1696b PMC7374322 32610658 10_3390_s20133651 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: the Chinese Postdoctoral Science Foundation grantid: Grant No. 2019M650661 – fundername: the National Natural Science Foundation of China grantid: Grant No. 61971262 – fundername: Natural Science Foundation of Guangdong Province grantid: 2020A1515010618 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM 7X8 PPXIY 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c507t-d9ef747bc1b007facd8c70845adb33c7f05dc43c7bd1a2527647847d1034bdb83 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 00:35:24 EDT 2025 Thu Aug 21 14:28:07 EDT 2025 Thu Jul 10 22:24:41 EDT 2025 Thu Apr 03 07:04:25 EDT 2025 Tue Jul 01 00:42:34 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | bioelectrical signal acquisition surface electrode invasive microneedle electrode capacitive electrode electrode-skin interface impedance |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-d9ef747bc1b007facd8c70845adb33c7f05dc43c7bd1a2527647847d1034bdb83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6591-0895 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20133651 |
PMID | 32610658 |
PQID | 2419711636 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a9448963b5874d459d5e48e902e1696b pubmedcentral_primary_oai_pubmedcentral_nih_gov_7374322 proquest_miscellaneous_2419711636 pubmed_primary_32610658 crossref_citationtrail_10_3390_s20133651 crossref_primary_10_3390_s20133651 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200629 |
PublicationDateYYYYMMDD | 2020-06-29 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200629 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Lopez (ref_89) 1969; 1 Weder (ref_40) 2015; 15 Yamamoto (ref_55) 2017; 6 Wang (ref_17) 2011; 54 Cui (ref_42) 2018; 10 Jung (ref_50) 2012; 59 Tramacere (ref_104) 2015; 5 Hsu (ref_21) 2014; 14 Lee (ref_99) 2016; 63 Lin (ref_72) 2011; 58 Ren (ref_27) 2017; 268 Pani (ref_76) 2016; 63 Karim (ref_64) 2017; 5 Ruffini (ref_6) 2006; 132 Kim (ref_54) 2017; 9 Kim (ref_74) 2011; 333 Dias (ref_18) 2012; 34 Qin (ref_43) 2019; 7 Norton (ref_73) 2015; 112 Soroudi (ref_108) 2019; 57 Chi (ref_90) 2011; 1 ref_28 Gao (ref_47) 2018; 283 Zhang (ref_48) 2010; 22 Sinha (ref_77) 2017; 9 Kaitainen (ref_70) 2014; 206 Acharya (ref_2) 2013; 45 ref_71 Pedrosa (ref_35) 2012; 56 Ma (ref_14) 2017; 251 Torfs (ref_91) 2014; 8 Griss (ref_16) 2001; 10 Song (ref_33) 2017; 79 La (ref_82) 2018; 7 Laferriere (ref_68) 2011; 60 Bihar (ref_79) 2017; 2 Kim (ref_53) 2016; 10 Yokus (ref_87) 2016; 63 Donnelly (ref_15) 2014; 31 Liao (ref_32) 2011; 11 Pani (ref_86) 2019; 27 Kim (ref_31) 2015; 15 ref_88 Steffen (ref_94) 2007; 1 Varadan (ref_96) 2012; 8344 Babusiak (ref_92) 2018; 114 Srivastava (ref_29) 2015; 236 Pini (ref_20) 2012; 186 Kalinka (ref_80) 2018; 8 (ref_25) 2008; 96 Polat (ref_57) 2019; 580 Castrillon (ref_78) 2018; 17 Jeong (ref_110) 2013; 25 Yao (ref_41) 2017; 6 ref_56 Lim (ref_93) 2006; 53 Kim (ref_102) 2019; 29 Lang (ref_105) 2009; 159 Lee (ref_38) 2018; 10 Lee (ref_49) 2012; 6 Kang (ref_59) 2018; 57 Myers (ref_39) 2015; 5 Xu (ref_44) 2019; 52 Wartzek (ref_107) 2011; 58 Liu (ref_75) 2016; 2 ref_61 Bihar (ref_81) 2017; 6 Salvo (ref_69) 2012; 174 Ren (ref_12) 2020; 20 Guo (ref_26) 2019; 99 ref_65 Lee (ref_58) 2019; 28 Acar (ref_13) 2019; 8 Burke (ref_8) 2000; 47 Chen (ref_97) 2015; 64 Chi (ref_10) 2010; 3 Zhang (ref_23) 2016; 63 Sencadas (ref_67) 2018; 6 Morillo (ref_11) 2014; 14 Lee (ref_85) 2018; 18 Jiang (ref_83) 2017; 11 Noh (ref_84) 2018; 46 Choi (ref_45) 2019; 15 Peng (ref_51) 2015; 235 ref_30 Kidmose (ref_37) 2013; 60 Kappel (ref_36) 2019; 66 Lee (ref_100) 2017; 11 Forvi (ref_24) 2012; 180 Ameri (ref_62) 2017; 11 ref_106 ref_109 Meziane (ref_9) 2013; 34 ref_101 ref_1 Fiedler (ref_34) 2015; 221 Wang (ref_19) 2017; 244 Kier (ref_103) 2002; 42 Das (ref_63) 2017; 180 Cifrek (ref_3) 2009; 24 Baek (ref_98) 2012; 59 Qiao (ref_66) 2018; 12 Varadan (ref_95) 2011; 2 ref_5 Matteucci (ref_22) 2007; 84 ref_4 Nawrocki (ref_46) 2018; 28 Chlaihawi (ref_52) 2018; 20 ref_7 Yapici (ref_60) 2015; 221 |
References_xml | – volume: 15 start-page: 1750 year: 2015 ident: ref_40 article-title: Embroidered electrode with silver/titanium coating for long-term ECG monitoring publication-title: Sensors doi: 10.3390/s150101750 – volume: 14 start-page: 12370 year: 2014 ident: ref_21 article-title: Developing Barbed Microtip-Based Electrode Arrays for Biopotential Measurement publication-title: Sensors doi: 10.3390/s140712370 – volume: 34 start-page: R47 year: 2013 ident: ref_9 article-title: Dry electrodes for electrocardiography publication-title: Physiol. Meas. doi: 10.1088/0967-3334/34/9/R47 – volume: 5 start-page: 20140050 year: 2015 ident: ref_104 article-title: Unveiling the morphology of the acetabulum in octopus suckers and its role in attachment publication-title: Interface Focus. doi: 10.1098/rsfs.2014.0050 – volume: 59 start-page: 3422 year: 2012 ident: ref_98 article-title: Conductive Polymer Foam Surface Improves the Performance of a Capacitive EEG Electrode publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2215032 – volume: 60 start-page: 3259 year: 2011 ident: ref_68 article-title: Surface Electromyographic Signals Using Dry Electrodes publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2011.2164279 – volume: 99 start-page: 735 year: 2019 ident: ref_26 article-title: Low melting point metal-based flexible 3D biomedical microelectrode array by phase transition method publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2019.02.015 – ident: ref_1 – volume: 28 start-page: 4 year: 2019 ident: ref_58 article-title: PU nanoweb-based textile electrode treated with single-walled carbon nanotube/silver nanowire and its application to ECG monitoring publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab06e0 – volume: 63 start-page: 1136 year: 2016 ident: ref_23 article-title: A Motion Interference-Insensitive Flexible Dry Electrode publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2485269 – volume: 6 start-page: 179 year: 2018 ident: ref_67 article-title: Reusable Flexible Concentric Electrodes Coated With a Conductive Graphene Ink for Electrotactile Stimulation publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2018.00179 – volume: 221 start-page: 139 year: 2015 ident: ref_34 article-title: Multichannel EEG with novel Ti/TiN dry electrodes publication-title: Sens. Actuators A doi: 10.1016/j.sna.2014.10.010 – volume: 20 start-page: 9 year: 2018 ident: ref_52 article-title: Development of printed and flexible dry ECG electrodes publication-title: Sens. Bio-Sens. Res. doi: 10.1016/j.sbsr.2018.05.001 – volume: 1 start-page: 99 year: 1969 ident: ref_89 article-title: Capacitive electrocardiographic and bioelectric electrodes publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1969.4502613 – volume: 2 start-page: 5 year: 2017 ident: ref_79 article-title: Fully Printed Electrodes on Stretchable Textiles for Long-Term Electrophysiology publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201600251 – ident: ref_4 – ident: ref_28 doi: 10.3390/s16060908 – volume: 63 start-page: 138 year: 2016 ident: ref_99 article-title: Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2478406 – ident: ref_106 doi: 10.1109/NEBEC.2013.50 – volume: 8 start-page: 14041 year: 2018 ident: ref_80 article-title: Light-cured polymer electrodes for non-invasive EEG recordings publication-title: Sci. Rep. doi: 10.1038/s41598-018-32304-6 – volume: 59 start-page: 1472 year: 2012 ident: ref_50 article-title: CNT/PDMS Composite Flexible Dry Electrodes for Long-Term ECG Monitoring publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2190288 – volume: 112 start-page: 3920 year: 2015 ident: ref_73 article-title: Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1424875112 – volume: 63 start-page: 540 year: 2016 ident: ref_76 article-title: Fully Textile, PEDOT: PSS Based Electrodes for Wearable ECG Monitoring Systems publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2465936 – volume: 221 start-page: 1469 year: 2015 ident: ref_60 article-title: Graphene-clad textile electrodes for electrocardiogram monitoring publication-title: Sens. Actuators B-Chem. doi: 10.1016/j.snb.2015.07.111 – ident: ref_61 doi: 10.3390/s16111833 – ident: ref_30 doi: 10.3390/s18041193 – volume: 29 start-page: 1807614 year: 2019 ident: ref_102 article-title: Highly Permeable Skin Patch with Conductive Hierarchical Architectures Inspired by Amphibians and Octopi for Omnidirectionally Enhanced Wet Adhesion publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807614 – volume: 114 start-page: 69 year: 2018 ident: ref_92 article-title: Textile electrodes in capacitive signal sensing applications publication-title: Measurement doi: 10.1016/j.measurement.2017.09.024 – volume: 244 start-page: 750 year: 2017 ident: ref_19 article-title: A microneedle electrode array on flexible substrate for long-term EEG monitoring publication-title: Sens. Actuators B-Chem. doi: 10.1016/j.snb.2017.01.052 – ident: ref_56 doi: 10.3390/ma12060971 – volume: 58 start-page: 1200 year: 2011 ident: ref_72 article-title: Novel Dry Polymer Foam Electrodes for Long-Term EEG Measurement publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2102353 – volume: 31 start-page: 1989 year: 2014 ident: ref_15 article-title: Hydrogel-forming microneedle arrays can be effectively inserted in skin by self-application: A pilot study centred on pharmacist intervention and a patient information leaflet publication-title: Pharm. Res. doi: 10.1007/s11095-014-1301-y – ident: ref_65 doi: 10.3390/s17040875 – volume: 7 start-page: e1801033 year: 2018 ident: ref_82 article-title: Two-Layered and Stretchable e-Textile Patches for Wearable Healthcare Electronics publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201801033 – volume: 268 start-page: 38 year: 2017 ident: ref_27 article-title: Flexible microneedle array electrode using magnetorheological drawing lithography for bio-signal monitoring publication-title: Sens. Actuators A doi: 10.1016/j.sna.2017.10.042 – ident: ref_71 doi: 10.3390/s16101635 – volume: 10 start-page: 4770 year: 2016 ident: ref_53 article-title: Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D-2D Hybrid Carbon Nanocomposites for All-in-One ECG Electrodes publication-title: ACS Nano doi: 10.1021/acsnano.6b01355 – volume: 206 start-page: 22 year: 2014 ident: ref_70 article-title: Liquid silicone rubber (LSR)-based dry bioelectrodes: The effect of surface micropillar structuring and silver coating on contact impedance publication-title: Sens. Actuators A doi: 10.1016/j.sna.2013.11.020 – volume: 79 start-page: 740 year: 2017 ident: ref_33 article-title: Fabrication of chitosan/Au-TiO2 nanotube-based dry electrodes for electroencephalography recording publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2017.05.114 – volume: 6 start-page: 4 year: 2017 ident: ref_81 article-title: Inkjet-Printed PEDOT: PSS Electrodes on Paper for Electrocardiography publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201601167 – volume: 251 start-page: 11 year: 2017 ident: ref_14 article-title: Microneedle, bio-microneedle and bio-inspired microneedle: A review publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.02.011 – volume: 5 start-page: 11640 year: 2017 ident: ref_64 article-title: All inkjet-printed graphene-based conductive patterns for wearable e-textile applications publication-title: J. Mater. Chem. C doi: 10.1039/C7TC03669H – volume: 580 start-page: 123751 year: 2019 ident: ref_57 article-title: Carbon nanotube, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and Ag nanoparticle doped gelatin based electro-active hydrogel systems publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2019.123751 – volume: 174 start-page: 96 year: 2012 ident: ref_69 article-title: A 3D printed dry electrode for ECG/EEG recording publication-title: Sens. Actuators A doi: 10.1016/j.sna.2011.12.017 – volume: 64 start-page: 3361 year: 2015 ident: ref_97 article-title: Novel Noncontact Dry Electrode With Adaptive Mechanical Design for Measuring EEG in a Hairy Site publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2015.2459531 – volume: 11 start-page: 5819 year: 2011 ident: ref_32 article-title: Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation publication-title: Sensors doi: 10.3390/s110605819 – volume: 53 start-page: 956 year: 2006 ident: ref_93 article-title: ECG measurement on a chair without conductive contact publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.872823 – volume: 186 start-page: 130 year: 2012 ident: ref_20 article-title: Microneedle-based electrodes with integrated through-silicon via for biopotential recording publication-title: Sens. Actuators A doi: 10.1016/j.sna.2012.04.037 – volume: 10 start-page: 21184 year: 2018 ident: ref_38 article-title: Flexible Conductive Composite Integrated with Personal Earphone for Wireless, Real-Time Monitoring of Electrophysiological Signs publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06484 – volume: 8344 start-page: 83440E year: 2012 ident: ref_96 article-title: Smart healthcare textile sensor system for unhindered-pervasive health monitoring publication-title: Nanosens. Biosens. Info-Tech Sens. Syst. – volume: 6 start-page: 8 year: 2017 ident: ref_41 article-title: A Wearable Hydration Sensor with Conformal Nanowire Electrodes publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201601159 – volume: 10 start-page: 10 year: 2001 ident: ref_16 article-title: Micromachined electrodes for biopotential measurements publication-title: J. Microelectromech. Syst. doi: 10.1109/84.911086 – volume: 15 start-page: 16265 year: 2015 ident: ref_31 article-title: Curved Microneedle Array-Based sEMG Electrode for Robust Long-Term Measurements and High Selectivity publication-title: Sensors doi: 10.3390/s150716265 – volume: 28 start-page: 11 year: 2018 ident: ref_46 article-title: Self-Adhesive and Ultra-Conformable, Sub-300 nm Dry Thin-Film Electrodes for Surface Monitoring of Biopotentials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803279 – volume: 283 start-page: 348 year: 2018 ident: ref_47 article-title: Soft pin-shaped dry electrode with bristles for EEG signal measurements publication-title: Sens. Actuators A doi: 10.1016/j.sna.2018.09.045 – volume: 132 start-page: 34 year: 2006 ident: ref_6 article-title: A dry electrophysiology electrode using CNT arrays publication-title: Sens. Actuators A doi: 10.1016/j.sna.2006.06.013 – volume: 47 start-page: 155 year: 2000 ident: ref_8 article-title: A micropower dry-electrode ECG preamplifier publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.821734 – volume: 66 start-page: 150 year: 2019 ident: ref_36 article-title: Dry-Contact Electrode Ear-EEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2835778 – volume: 236 start-page: 164 year: 2015 ident: ref_29 article-title: Long term biopotential recording by body conformable photolithography fabricated low cost polymeric microneedle arrays publication-title: Sens. Actuators A doi: 10.1016/j.sna.2015.10.041 – volume: 52 start-page: 45 year: 2019 ident: ref_44 article-title: Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/ab3869 – volume: 17 start-page: 23 year: 2018 ident: ref_78 article-title: Electrical performance of PEDOT: PSS-based textile electrodes for wearable ECG monitoring: A comparative study publication-title: Biomed. Eng. Online doi: 10.1186/s12938-018-0469-5 – volume: 3 start-page: 106 year: 2010 ident: ref_10 article-title: Dry-contact and noncontact biopotential electrodes: Methodological review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2010.2084078 – ident: ref_5 – volume: 63 start-page: 423 year: 2016 ident: ref_87 article-title: Fabric-Based Wearable Dry Electrodes for Body Surface Biopotential Recording publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2462312 – ident: ref_109 doi: 10.1109/EMBC.2018.8513107 – volume: 27 start-page: 1370 year: 2019 ident: ref_86 article-title: Validation of polymer-based screen-printed textile electrodes for surface EMG detection publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2916397 – volume: 1 start-page: 250 year: 2007 ident: ref_94 article-title: Mobile noncontact monitoring of heart and lung activity publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2008.915633 – volume: 46 start-page: 1397 year: 2018 ident: ref_84 article-title: Feasibility Testing of Hydrophobic Carbon Electrodes for Acquisition of Underwater Surface Electromyography Data publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-018-2042-6 – volume: 180 start-page: 177 year: 2012 ident: ref_24 article-title: Preliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinations publication-title: Sens. Actuators A doi: 10.1016/j.sna.2012.04.019 – volume: 11 start-page: 7634 year: 2017 ident: ref_62 article-title: Graphene Electronic Tattoo Sensors publication-title: ACS Nano doi: 10.1021/acsnano.7b02182 – volume: 8 start-page: 479 year: 2019 ident: ref_13 article-title: Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A review publication-title: Electronics doi: 10.3390/electronics8050479 – volume: 159 start-page: 473 year: 2009 ident: ref_105 article-title: Mechanical characterization of PEDOT:PSS thin films publication-title: Synth. Met. doi: 10.1016/j.synthmet.2008.11.005 – volume: 9 start-page: 37524 year: 2017 ident: ref_77 article-title: Screen-Printed PEDOT: PSS Electrodes on Commercial Finished Textiles for Electrocardiography publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09954 – volume: 42 start-page: 1146 year: 2002 ident: ref_103 article-title: The structure and adhesive mechanism of octopus suckers publication-title: Integr. Comp. Biol. doi: 10.1093/icb/42.6.1146 – volume: 58 start-page: 3112 year: 2011 ident: ref_107 article-title: ECG on the road: Robust and unobtrusive estimation of heart rate publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2163715 – volume: 57 start-page: 27 year: 2019 ident: ref_108 article-title: Electrode placement in electrocardiography smart garments: A review publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2019.08.015 – volume: 24 start-page: 327 year: 2009 ident: ref_3 article-title: Surface EMG based muscle fatigue evaluation in biomechanics publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2009.01.010 – volume: 1 start-page: 526 year: 2011 ident: ref_90 article-title: Ultra-High Input Impedance, Low Noise Integrated Amplifier for Noncontact Biopotential Sensing publication-title: IEEE J. Emerging Sel. Top. Circuits Syst. doi: 10.1109/JETCAS.2011.2179419 – volume: 333 start-page: 838 year: 2011 ident: ref_74 article-title: Epidermal Electronics publication-title: Science doi: 10.1126/science.1206157 – volume: 20 start-page: 577 year: 2020 ident: ref_12 article-title: A Mini Review of Microneedle Array Electrode for Bio-Signal Recording: A Review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2944847 – volume: 6 start-page: 91 year: 2012 ident: ref_49 article-title: Shear induced CNT/PDMS conducting thin film for electrode cardiogram (ECG) electrode publication-title: BioChip J. doi: 10.1007/s13206-012-6112-9 – volume: 5 start-page: 11627 year: 2015 ident: ref_39 article-title: Wearable silver nanowire dry electrodes for electrophysiological sensing publication-title: RSC Adv. doi: 10.1039/C4RA15101A – volume: 6 start-page: 7 year: 2017 ident: ref_55 article-title: Efficient Skin Temperature Sensor and Stable Gel-Less Sticky ECG Sensor for a Wearable Flexible Healthcare Patch publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201700495 – volume: 60 start-page: 2824 year: 2013 ident: ref_37 article-title: A study of evoked potentials from ear-EEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2264956 – volume: 2 start-page: 12 year: 2016 ident: ref_75 article-title: Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces publication-title: Sci. Adv. doi: 10.1126/sciadv.1601185 – volume: 12 start-page: 8839 year: 2018 ident: ref_66 article-title: Multilayer Graphene Epidermal Electronic Skin publication-title: ACS Nano doi: 10.1021/acsnano.8b02162 – volume: 9 start-page: 17500 year: 2017 ident: ref_54 article-title: Wearable Resistive Pressure Sensor Based on Highly Flexible Carbon Composite Conductors with Irregular Surface Morphology publication-title: ACS Appl. Mater. Interfaces – volume: 84 start-page: 1737 year: 2007 ident: ref_22 article-title: Micropatterned dry electrodes for brain–computer interface publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2007.01.243 – volume: 7 start-page: 20789 year: 2019 ident: ref_43 article-title: Electrocardiogram of a Silver Nanowire Based Dry Electrode: Quantitative Comparison With the Standard Ag/AgCl Gel Electrode publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897590 – volume: 11 start-page: 153 year: 2017 ident: ref_100 article-title: Flexible and Implantable Capacitive Microelectrode for Bio-potential Acquisition publication-title: BioChip J. doi: 10.1007/s13206-017-1304-y – volume: 2 start-page: 2 year: 2011 ident: ref_95 article-title: e-bra With Nanosensors for Real Time Cardiac Health Monitoring and Smartphone Communication publication-title: J. Nanotechnol. Eng. – volume: 56 start-page: 49 year: 2012 ident: ref_35 article-title: TiNx coated polycarbonate for bio-electrode applications publication-title: Corros. Sci. doi: 10.1016/j.corsci.2011.11.008 – volume: 57 start-page: 5S year: 2018 ident: ref_59 article-title: Wearable carbon nanotube based dry-electrodes for electrophysiological sensors publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.57.05GD02 – volume: 10 start-page: 6806 year: 2018 ident: ref_42 article-title: Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics publication-title: Nanoscale doi: 10.1039/C7NR09570H – volume: 235 start-page: 48 year: 2015 ident: ref_51 article-title: Flexible dry electrode based on carbon nanotube/polymer hybrid micropillars for biopotential recording publication-title: Sens.Actuators A doi: 10.1016/j.sna.2015.09.024 – volume: 54 start-page: 2435 year: 2011 ident: ref_17 article-title: Dry electrode for the measurement of biopotential signals publication-title: Sci. Chin. Inf. Sci. doi: 10.1007/s11432-011-4354-0 – volume: 34 start-page: 972 year: 2012 ident: ref_18 article-title: Wireless instrumentation system based on dry electrodes for acquiring EEG signals publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.11.002 – ident: ref_7 doi: 10.1002/0471681849 – volume: 25 start-page: 6839 year: 2013 ident: ref_110 article-title: Materials and Optimized Designs for Human-Machine Interfaces via Epidermal Electronics publication-title: Adv. Mater. doi: 10.1002/adma.201301921 – volume: 22 start-page: 3027 year: 2010 ident: ref_48 article-title: Polymer-Embedded Carbon Nanotube Ribbons for Stretchable Conductors publication-title: Adv. Mater. doi: 10.1002/adma.200904426 – volume: 11 start-page: 33 year: 2017 ident: ref_83 article-title: sEMG Sensor Using Polypyrrole-Coated Nonwoven Fabric Sheet for Practical Control of Prosthetic Hand publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00033 – volume: 15 start-page: 267 year: 2019 ident: ref_45 article-title: Conformable, Thin, and Dry Electrode for Electrocardiography Using Composite of Silver Nanowires and Polyvinyl Butyral publication-title: Electron. Mater. Lett. doi: 10.1007/s13391-019-00125-y – volume: 8 start-page: 617 year: 2014 ident: ref_91 article-title: Noncontact ECG Recording System With Real Time Capacitance Measurement for Motion Artifact Reduction publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2014.2359053 – volume: 18 start-page: 8578 year: 2018 ident: ref_85 article-title: Knit Band Sensor for Myoelectric Control of Surface EMG-Based Prosthetic Hand publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2865623 – volume: 45 start-page: 147 year: 2013 ident: ref_2 article-title: Automated EEG analysis of epilepsy: A review publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.02.014 – volume: 96 start-page: 1167 year: 2008 ident: ref_25 article-title: Noninvasive Neural Prostheses Using Mobile and Wireless EEG publication-title: Proc. IEEE doi: 10.1109/JPROC.2008.922561 – ident: ref_101 doi: 10.1155/2018/3016343 – volume: 14 start-page: 12847 year: 2014 ident: ref_11 article-title: Dry EEG Electrodes publication-title: Sensors doi: 10.3390/s140712847 – ident: ref_88 doi: 10.3390/ma11020256 – volume: 180 start-page: 45 year: 2017 ident: ref_63 article-title: Chemically reduced graphene oxide-based dry electrodes as touch sensor for electrocardiograph measurement publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2017.05.048 |
SSID | ssj0023338 |
Score | 2.6103191 |
SecondaryResourceType | review_article |
Snippet | Bioelectrical or electrophysiological signals generated by living cells or tissues during daily physiological activities are closely related to the state of... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3651 |
SubjectTerms | bioelectrical signal acquisition capacitive electrode Electric Conductivity Electrocardiography electrode-skin interface impedance Electrodes - classification Electroencephalography Electromyography Electrooculography Humans invasive microneedle electrode Review surface electrode |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxgQb8JLATGwRI1fsT1SaFUhwQKVukV27EAllKI-Bv6e6zitWlSJhS1KnMS6x849J4nPRegW0gaIf1ImzEqdMGlFoiENJMrA4OGmFML4hcLPL1l_wJ6GfLhS6sv_ExbsgUPg2lqBgIBRYrgUzDKuLHdMOpUShzOVGf_0hZy3EFON1KKgvIKPEAVR355CmqM043gt-9Qm_ZuY5e8fJFcyTm8P7TZUMb4PXdxHW646QDsrBoKHSD5OvuNuqGRj3TQGBhrXr-XjzmgcKtx4EOLX0bu_VJjA_tQjNOh13x76SVMLISmAsc0Sq1wJzN8UGOaJKLVf0i9Sybi2htJClCm3BYMNY7EmnAi_hpQJi1PKjDWSHqNWNa7cKYoNo9Rq__6TUaYBK5UWWEjujOSyIDhCd4sY5UVjFO7rVXzmIBh8OPNlOCN0s2z6FdwxNjXq-EAvG3hD63oHwJw3MOd_wRyh6wVMOUwA_1VDV248n-ZAQZTAQCuzCJ0E2Ja3Am6KPceKkFgDdK0v60eq0Udtsi0ocCtCzv6j8-dom3iZnmYJUReoNZvM3SVwmZm5qoftD06J76I priority: 102 providerName: Directory of Open Access Journals |
Title | Dry Electrodes for Human Bioelectrical Signal Monitoring |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32610658 https://www.proquest.com/docview/2419711636 https://pubmed.ncbi.nlm.nih.gov/PMC7374322 https://doaj.org/article/a9448963b5874d459d5e48e902e1696b |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6V9gKHijduITKIAxeDvQ_v7gEhAgkVUisERMrN2vWuS6TKaZNUav89M7Zj1ShHLpZlj-3VjMfzfbueGYC3GDaQ_LMqEV7bRGivEothIDEOXx7pKqUcJQqfnuUnM_F9Lud7sO2x2SlwvZPaUT-p2eri_c3V7Sd0-I_EOJGyf1hjEOM8p0TqAwxIihoZnIp-MYFxpGFtUaGh-CAUNRX7d8HMf_-WvBN-pg_hsMON8efW0I9gL9SP4cGdaoJPQH9d3caTtq2ND-sY4WjczNHH48WybXdDFol_Lc7pVq0306VPYTad_P5yknSNEZIS4dsm8SZUSANcmaHTqMpSfr9KtZDWO85LVaXSlwJ3nM8sk0xRQqlQPku5cN5p_gz262UdXkDsBOfe0mSo4MKi4UxaZkrL4LTUJcsieLfVUVF2VcOpecVFgeyB1Fn06ozgTS962ZbK2CU0JkX3AlTdujmwXJ0XnbMU1iBpxC-Dk1oJL6TxMggdTMpClpvcRfB6a6YCvYGWOGwdltfrAs1vVIYYM4_geWu2_lEIVDMCXBGogUEHYxmeqRd_morbiiPQYuzofwz-GO4z4uxpnjDzEvY3q-vwCoHNxo3gnpor3OrptxEcjCdnP36OmkmCUfNC_wXbx_p1 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dry+Electrodes+for+Human+Bioelectrical+Signal+Monitoring&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yulin+Fu&rft.au=Jingjing+Zhao&rft.au=Ying+Dong&rft.au=Xiaohao+Wang&rft.date=2020-06-29&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=13&rft.spage=3651&rft_id=info:doi/10.3390%2Fs20133651&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a9448963b5874d459d5e48e902e1696b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |