Dry Electrodes for Human Bioelectrical Signal Monitoring

Bioelectrical or electrophysiological signals generated by living cells or tissues during daily physiological activities are closely related to the state of the body and organ functions, and therefore are widely used in clinical diagnosis, health monitoring, intelligent control and human-computer in...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 13; p. 3651
Main Authors Fu, Yulin, Zhao, Jingjing, Dong, Ying, Wang, Xiaohao
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 29.06.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bioelectrical or electrophysiological signals generated by living cells or tissues during daily physiological activities are closely related to the state of the body and organ functions, and therefore are widely used in clinical diagnosis, health monitoring, intelligent control and human-computer interaction. Ag/AgCl electrodes with wet conductive gels are widely used to pick up these bioelectrical signals using electrodes and record them in the form of electroencephalograms, electrocardiograms, electromyography, electrooculograms, etc. However, the inconvenience, instability and infection problems resulting from the use of gel with Ag/AgCl wet electrodes can’t meet the needs of long-term signal acquisition, especially in wearable applications. Hence, focus has shifted toward the study of dry electrodes that can work without gels or adhesives. In this paper, a retrospective overview of the development of dry electrodes used for monitoring bioelectrical signals is provided, including the sensing principles, material selection, device preparation, and measurement performance. In addition, the challenges regarding the limitations of materials, fabrication technologies and wearable performance of dry electrodes are discussed. Finally, the development obstacles and application advantages of different dry electrodes are analyzed to make a comparison and reveal research directions for future studies.
AbstractList Bioelectrical or electrophysiological signals generated by living cells or tissues during daily physiological activities are closely related to the state of the body and organ functions, and therefore are widely used in clinical diagnosis, health monitoring, intelligent control and human-computer interaction. Ag/AgCl electrodes with wet conductive gels are widely used to pick up these bioelectrical signals using electrodes and record them in the form of electroencephalograms, electrocardiograms, electromyography, electrooculograms, etc. However, the inconvenience, instability and infection problems resulting from the use of gel with Ag/AgCl wet electrodes can’t meet the needs of long-term signal acquisition, especially in wearable applications. Hence, focus has shifted toward the study of dry electrodes that can work without gels or adhesives. In this paper, a retrospective overview of the development of dry electrodes used for monitoring bioelectrical signals is provided, including the sensing principles, material selection, device preparation, and measurement performance. In addition, the challenges regarding the limitations of materials, fabrication technologies and wearable performance of dry electrodes are discussed. Finally, the development obstacles and application advantages of different dry electrodes are analyzed to make a comparison and reveal research directions for future studies.
Bioelectrical or electrophysiological signals generated by living cells or tissues during daily physiological activities are closely related to the state of the body and organ functions, and therefore are widely used in clinical diagnosis, health monitoring, intelligent control and human-computer interaction. Ag/AgCl electrodes with wet conductive gels are widely used to pick up these bioelectrical signals using electrodes and record them in the form of electroencephalograms, electrocardiograms, electromyography, electrooculograms, etc. However, the inconvenience, instability and infection problems resulting from the use of gel with Ag/AgCl wet electrodes can't meet the needs of long-term signal acquisition, especially in wearable applications. Hence, focus has shifted toward the study of dry electrodes that can work without gels or adhesives. In this paper, a retrospective overview of the development of dry electrodes used for monitoring bioelectrical signals is provided, including the sensing principles, material selection, device preparation, and measurement performance. In addition, the challenges regarding the limitations of materials, fabrication technologies and wearable performance of dry electrodes are discussed. Finally, the development obstacles and application advantages of different dry electrodes are analyzed to make a comparison and reveal research directions for future studies.Bioelectrical or electrophysiological signals generated by living cells or tissues during daily physiological activities are closely related to the state of the body and organ functions, and therefore are widely used in clinical diagnosis, health monitoring, intelligent control and human-computer interaction. Ag/AgCl electrodes with wet conductive gels are widely used to pick up these bioelectrical signals using electrodes and record them in the form of electroencephalograms, electrocardiograms, electromyography, electrooculograms, etc. However, the inconvenience, instability and infection problems resulting from the use of gel with Ag/AgCl wet electrodes can't meet the needs of long-term signal acquisition, especially in wearable applications. Hence, focus has shifted toward the study of dry electrodes that can work without gels or adhesives. In this paper, a retrospective overview of the development of dry electrodes used for monitoring bioelectrical signals is provided, including the sensing principles, material selection, device preparation, and measurement performance. In addition, the challenges regarding the limitations of materials, fabrication technologies and wearable performance of dry electrodes are discussed. Finally, the development obstacles and application advantages of different dry electrodes are analyzed to make a comparison and reveal research directions for future studies.
Author Fu, Yulin
Zhao, Jingjing
Dong, Ying
Wang, Xiaohao
AuthorAffiliation 1 Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; fyl18@mails.tsinghua.edu.cn (Y.F.); wang.xiaohao@sz.tsinghua.edu.cn (X.W.)
2 Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; jjzhao2017@sz.tsinghua.edu.cn
AuthorAffiliation_xml – name: 2 Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; jjzhao2017@sz.tsinghua.edu.cn
– name: 1 Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; fyl18@mails.tsinghua.edu.cn (Y.F.); wang.xiaohao@sz.tsinghua.edu.cn (X.W.)
Author_xml – sequence: 1
  givenname: Yulin
  orcidid: 0000-0002-6591-0895
  surname: Fu
  fullname: Fu, Yulin
– sequence: 2
  givenname: Jingjing
  surname: Zhao
  fullname: Zhao, Jingjing
– sequence: 3
  givenname: Ying
  surname: Dong
  fullname: Dong, Ying
– sequence: 4
  givenname: Xiaohao
  surname: Wang
  fullname: Wang, Xiaohao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32610658$$D View this record in MEDLINE/PubMed
BookMark eNplkTlPAzEQhS0E4i74A2hLKAK-7W2QuBMJRAHUlq8NjjZ2sDdI_HuWBBCB6o1m3nxPmtkB6zFFD8ABgieE1PC0YIgI4QytgW1EMR1IjOH6r3oL7JQygRATQuQm2CKYI8iZ3AbyKr9X1623XU7Ol6pJuRrOpzpWFyH5RT9Y3VaPYRx7uU8xdCmHON4DG41ui9__0l3wfHP9dDkc3D3cji7P7waWQdENXO0bQYWxyEAoGm2dtAJKyrQzhFjRQOYs7QvjkMYMC06FpMIhSKhxRpJdMFpyXdITNcthqvO7SjqoRSPlsdK5C7b1SteUypoTw6SgjrLaMU-lryH2iNfc9KyzJWs2N1PvrI9d1u0KdHUSw4sapzcliKAE4x5w9AXI6XXuS6emoVjftjr6NC8KU1QLhDjhvfXwd9ZPyPfpe8Pp0mBzKiX7RtnQ6S6kz-jQKgTV53PVz3P7jeM_G9_Q_94PlLyiWg
CitedBy_id crossref_primary_10_1109_TNSRE_2024_3422489
crossref_primary_10_3390_s23198315
crossref_primary_10_1016_j_rser_2022_113111
crossref_primary_10_1016_j_sna_2022_114062
crossref_primary_10_1021_acsanm_3c03457
crossref_primary_10_1007_s13534_021_00189_6
crossref_primary_10_1007_s10544_024_00732_z
crossref_primary_10_1063_5_0152554
crossref_primary_10_1108_IJCST_01_2022_0011
crossref_primary_10_1016_j_sna_2025_116400
crossref_primary_10_3390_bios13070728
crossref_primary_10_1109_MSMC_2022_3233708
crossref_primary_10_1016_j_mtbio_2023_100787
crossref_primary_10_21931_RB_CSS_2023_08_04_99
crossref_primary_10_1109_ACCESS_2024_3378747
crossref_primary_10_1016_j_xcrp_2023_101335
crossref_primary_10_3390_mi15070907
crossref_primary_10_3389_fbioe_2022_851134
crossref_primary_10_1016_j_bspc_2024_107396
crossref_primary_10_1109_JSEN_2024_3485113
crossref_primary_10_20517_ss_2023_44
crossref_primary_10_1016_j_gltp_2021_08_009
crossref_primary_10_1021_acsami_3c03724
crossref_primary_10_1021_acsomega_2c00282
crossref_primary_10_1007_s44258_024_00040_4
crossref_primary_10_1109_ACCESS_2025_3547230
crossref_primary_10_3390_mi13040629
crossref_primary_10_1177_21582440241305365
crossref_primary_10_1016_j_measurement_2021_109774
crossref_primary_10_1109_JSEN_2023_3300992
crossref_primary_10_1007_s11431_022_2231_3
crossref_primary_10_1002_marc_202200047
crossref_primary_10_1039_D3RA05730E
crossref_primary_10_3390_electronics10212631
crossref_primary_10_1080_23311916_2023_2246750
crossref_primary_10_3390_electronics11010099
crossref_primary_10_3389_fnbot_2022_873239
crossref_primary_10_1080_07388551_2021_1993126
crossref_primary_10_1007_s42765_023_00263_x
crossref_primary_10_3390_s23063106
crossref_primary_10_3390_signals5030025
crossref_primary_10_1002_admi_202400757
crossref_primary_10_3390_s22114253
crossref_primary_10_1007_s00604_022_05228_2
crossref_primary_10_1016_j_vacuum_2024_113122
crossref_primary_10_1038_s41467_024_48682_7
crossref_primary_10_1007_s40820_022_00870_0
crossref_primary_10_1002_adhm_202200653
crossref_primary_10_1080_03772063_2023_2176368
crossref_primary_10_1088_1361_6579_acf2e7
crossref_primary_10_1002_hbm_25721
crossref_primary_10_3390_s21165548
crossref_primary_10_1038_s41528_022_00230_3
crossref_primary_10_3390_mi12121505
crossref_primary_10_1007_s10924_025_03501_y
crossref_primary_10_1016_j_mattod_2024_03_005
crossref_primary_10_1016_j_mattod_2025_03_005
crossref_primary_10_1016_j_array_2023_100277
crossref_primary_10_3390_bios13070679
crossref_primary_10_3390_s21051600
crossref_primary_10_1155_2022_3179915
crossref_primary_10_3390_bios11100398
crossref_primary_10_1002_admt_202100612
crossref_primary_10_3390_bios13010101
crossref_primary_10_1126_sciadv_adk5260
crossref_primary_10_1002_adsr_202200060
crossref_primary_10_1007_s11042_023_15653_x
crossref_primary_10_1016_j_cej_2021_130886
crossref_primary_10_1002_admt_202101572
crossref_primary_10_3390_s23177377
crossref_primary_10_1088_1741_2552_ac4085
crossref_primary_10_12688_f1000research_132840_1
crossref_primary_10_3389_fnbot_2022_880073
crossref_primary_10_1038_s41699_022_00324_6
crossref_primary_10_3390_s24061834
crossref_primary_10_1007_s11665_023_08932_z
crossref_primary_10_1038_s41378_023_00524_0
crossref_primary_10_3390_s23042130
crossref_primary_10_1109_JFLEX_2024_3367648
crossref_primary_10_1109_JSEN_2022_3213868
crossref_primary_10_3389_fnins_2021_621885
crossref_primary_10_1007_s12274_023_5429_5
crossref_primary_10_3390_s22114035
crossref_primary_10_3390_s20174953
crossref_primary_10_3390_s23229208
crossref_primary_10_1002_adfm_202406341
crossref_primary_10_3390_s21051748
crossref_primary_10_20517_ss_2023_16
crossref_primary_10_1016_j_xinn_2023_100485
crossref_primary_10_3390_s22134736
crossref_primary_10_20517_ss_2023_12
crossref_primary_10_1109_JSEN_2025_3537016
crossref_primary_10_3390_s24103136
crossref_primary_10_3390_polym15132905
crossref_primary_10_1038_s41528_023_00279_8
crossref_primary_10_1016_j_mser_2025_100971
crossref_primary_10_1021_acsnano_4c06607
crossref_primary_10_3389_felec_2025_1503425
crossref_primary_10_3390_bios13080787
crossref_primary_10_1088_2752_5724_ad5c84
crossref_primary_10_3390_app14156521
crossref_primary_10_1002_aelm_202300767
crossref_primary_10_1016_j_inoche_2025_114139
crossref_primary_10_1038_s41528_022_00139_x
crossref_primary_10_1002_adhm_202002105
crossref_primary_10_3390_mi13122047
crossref_primary_10_3390_s24061810
crossref_primary_10_1002_admt_202201677
crossref_primary_10_18705_2311_4495_2024_11_6_562_576
crossref_primary_10_1016_j_sna_2025_116425
crossref_primary_10_1002_anbr_202300169
crossref_primary_10_1007_s13534_023_00279_7
crossref_primary_10_1002_adfm_202418463
crossref_primary_10_3390_s23198321
crossref_primary_10_1002_admt_202302072
crossref_primary_10_3390_s23031113
crossref_primary_10_1002_adma_202313419
crossref_primary_10_3389_fnins_2021_748100
crossref_primary_10_1109_TNSRE_2021_3086860
Cites_doi 10.3390/s150101750
10.3390/s140712370
10.1088/0967-3334/34/9/R47
10.1098/rsfs.2014.0050
10.1109/TBME.2012.2215032
10.1109/TIM.2011.2164279
10.1016/j.msec.2019.02.015
10.1088/1361-665X/ab06e0
10.1109/TBME.2015.2485269
10.3389/fbioe.2018.00179
10.1016/j.sna.2014.10.010
10.1016/j.sbsr.2018.05.001
10.1109/TBME.1969.4502613
10.1002/admt.201600251
10.3390/s16060908
10.1109/TBME.2015.2478406
10.1109/NEBEC.2013.50
10.1038/s41598-018-32304-6
10.1109/TBME.2012.2190288
10.1073/pnas.1424875112
10.1109/TBME.2015.2465936
10.1016/j.snb.2015.07.111
10.3390/s16111833
10.3390/s18041193
10.1002/adfm.201807614
10.1016/j.measurement.2017.09.024
10.1016/j.snb.2017.01.052
10.3390/ma12060971
10.1109/TBME.2010.2102353
10.1007/s11095-014-1301-y
10.3390/s17040875
10.1002/adhm.201801033
10.1016/j.sna.2017.10.042
10.3390/s16101635
10.1021/acsnano.6b01355
10.1016/j.sna.2013.11.020
10.1016/j.msec.2017.05.114
10.1002/adhm.201601167
10.1016/j.jconrel.2017.02.011
10.1039/C7TC03669H
10.1016/j.colsurfa.2019.123751
10.1016/j.sna.2011.12.017
10.1109/TIM.2015.2459531
10.3390/s110605819
10.1109/TBME.2006.872823
10.1016/j.sna.2012.04.037
10.1021/acsami.8b06484
10.1002/adhm.201601159
10.1109/84.911086
10.3390/s150716265
10.1002/adfm.201803279
10.1016/j.sna.2018.09.045
10.1016/j.sna.2006.06.013
10.1109/10.821734
10.1109/TBME.2018.2835778
10.1016/j.sna.2015.10.041
10.1088/1361-6463/ab3869
10.1186/s12938-018-0469-5
10.1109/RBME.2010.2084078
10.1109/TBME.2015.2462312
10.1109/EMBC.2018.8513107
10.1109/TNSRE.2019.2916397
10.1109/TBCAS.2008.915633
10.1007/s10439-018-2042-6
10.1016/j.sna.2012.04.019
10.1021/acsnano.7b02182
10.3390/electronics8050479
10.1016/j.synthmet.2008.11.005
10.1021/acsami.7b09954
10.1093/icb/42.6.1146
10.1109/TBME.2011.2163715
10.1016/j.jelectrocard.2019.08.015
10.1016/j.clinbiomech.2009.01.010
10.1109/JETCAS.2011.2179419
10.1126/science.1206157
10.1109/JSEN.2019.2944847
10.1007/s13206-012-6112-9
10.1039/C4RA15101A
10.1002/adhm.201700495
10.1109/TBME.2013.2264956
10.1126/sciadv.1601185
10.1021/acsnano.8b02162
10.1016/j.mee.2007.01.243
10.1109/ACCESS.2019.2897590
10.1007/s13206-017-1304-y
10.1016/j.corsci.2011.11.008
10.7567/JJAP.57.05GD02
10.1039/C7NR09570H
10.1016/j.sna.2015.09.024
10.1007/s11432-011-4354-0
10.1016/j.medengphy.2011.11.002
10.1002/0471681849
10.1002/adma.201301921
10.1002/adma.200904426
10.3389/fnins.2017.00033
10.1007/s13391-019-00125-y
10.1109/TBCAS.2014.2359053
10.1109/JSEN.2018.2865623
10.1016/j.knosys.2013.02.014
10.1109/JPROC.2008.922561
10.1155/2018/3016343
10.3390/s140712847
10.3390/ma11020256
10.1016/j.mee.2017.05.048
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/s20133651
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_a9448963b5874d459d5e48e902e1696b
PMC7374322
32610658
10_3390_s20133651
Genre Journal Article
Review
GrantInformation_xml – fundername: the Chinese Postdoctoral Science Foundation
  grantid: Grant No. 2019M650661
– fundername: the National Natural Science Foundation of China
  grantid: Grant No. 61971262
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2020A1515010618
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PPXIY
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c507t-d9ef747bc1b007facd8c70845adb33c7f05dc43c7bd1a2527647847d1034bdb83
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 00:35:24 EDT 2025
Thu Aug 21 14:28:07 EDT 2025
Thu Jul 10 22:24:41 EDT 2025
Thu Apr 03 07:04:25 EDT 2025
Tue Jul 01 00:42:34 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords bioelectrical signal acquisition
surface electrode
invasive microneedle electrode
capacitive electrode
electrode-skin interface impedance
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-d9ef747bc1b007facd8c70845adb33c7f05dc43c7bd1a2527647847d1034bdb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6591-0895
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20133651
PMID 32610658
PQID 2419711636
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_a9448963b5874d459d5e48e902e1696b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7374322
proquest_miscellaneous_2419711636
pubmed_primary_32610658
crossref_citationtrail_10_3390_s20133651
crossref_primary_10_3390_s20133651
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200629
PublicationDateYYYYMMDD 2020-06-29
PublicationDate_xml – month: 6
  year: 2020
  text: 20200629
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Lopez (ref_89) 1969; 1
Weder (ref_40) 2015; 15
Yamamoto (ref_55) 2017; 6
Wang (ref_17) 2011; 54
Cui (ref_42) 2018; 10
Jung (ref_50) 2012; 59
Tramacere (ref_104) 2015; 5
Hsu (ref_21) 2014; 14
Lee (ref_99) 2016; 63
Lin (ref_72) 2011; 58
Ren (ref_27) 2017; 268
Pani (ref_76) 2016; 63
Karim (ref_64) 2017; 5
Ruffini (ref_6) 2006; 132
Kim (ref_54) 2017; 9
Kim (ref_74) 2011; 333
Dias (ref_18) 2012; 34
Qin (ref_43) 2019; 7
Norton (ref_73) 2015; 112
Soroudi (ref_108) 2019; 57
Chi (ref_90) 2011; 1
ref_28
Gao (ref_47) 2018; 283
Zhang (ref_48) 2010; 22
Sinha (ref_77) 2017; 9
Kaitainen (ref_70) 2014; 206
Acharya (ref_2) 2013; 45
ref_71
Pedrosa (ref_35) 2012; 56
Ma (ref_14) 2017; 251
Torfs (ref_91) 2014; 8
Griss (ref_16) 2001; 10
Song (ref_33) 2017; 79
La (ref_82) 2018; 7
Laferriere (ref_68) 2011; 60
Bihar (ref_79) 2017; 2
Kim (ref_53) 2016; 10
Yokus (ref_87) 2016; 63
Donnelly (ref_15) 2014; 31
Liao (ref_32) 2011; 11
Pani (ref_86) 2019; 27
Kim (ref_31) 2015; 15
ref_88
Steffen (ref_94) 2007; 1
Varadan (ref_96) 2012; 8344
Babusiak (ref_92) 2018; 114
Srivastava (ref_29) 2015; 236
Pini (ref_20) 2012; 186
Kalinka (ref_80) 2018; 8
(ref_25) 2008; 96
Polat (ref_57) 2019; 580
Castrillon (ref_78) 2018; 17
Jeong (ref_110) 2013; 25
Yao (ref_41) 2017; 6
ref_56
Lim (ref_93) 2006; 53
Kim (ref_102) 2019; 29
Lang (ref_105) 2009; 159
Lee (ref_38) 2018; 10
Lee (ref_49) 2012; 6
Kang (ref_59) 2018; 57
Myers (ref_39) 2015; 5
Xu (ref_44) 2019; 52
Wartzek (ref_107) 2011; 58
Liu (ref_75) 2016; 2
ref_61
Bihar (ref_81) 2017; 6
Salvo (ref_69) 2012; 174
Ren (ref_12) 2020; 20
Guo (ref_26) 2019; 99
ref_65
Lee (ref_58) 2019; 28
Acar (ref_13) 2019; 8
Burke (ref_8) 2000; 47
Chen (ref_97) 2015; 64
Chi (ref_10) 2010; 3
Zhang (ref_23) 2016; 63
Sencadas (ref_67) 2018; 6
Morillo (ref_11) 2014; 14
Lee (ref_85) 2018; 18
Jiang (ref_83) 2017; 11
Noh (ref_84) 2018; 46
Choi (ref_45) 2019; 15
Peng (ref_51) 2015; 235
ref_30
Kidmose (ref_37) 2013; 60
Kappel (ref_36) 2019; 66
Lee (ref_100) 2017; 11
Forvi (ref_24) 2012; 180
Ameri (ref_62) 2017; 11
ref_106
ref_109
Meziane (ref_9) 2013; 34
ref_101
ref_1
Fiedler (ref_34) 2015; 221
Wang (ref_19) 2017; 244
Kier (ref_103) 2002; 42
Das (ref_63) 2017; 180
Cifrek (ref_3) 2009; 24
Baek (ref_98) 2012; 59
Qiao (ref_66) 2018; 12
Varadan (ref_95) 2011; 2
ref_5
Matteucci (ref_22) 2007; 84
ref_4
Nawrocki (ref_46) 2018; 28
Chlaihawi (ref_52) 2018; 20
ref_7
Yapici (ref_60) 2015; 221
References_xml – volume: 15
  start-page: 1750
  year: 2015
  ident: ref_40
  article-title: Embroidered electrode with silver/titanium coating for long-term ECG monitoring
  publication-title: Sensors
  doi: 10.3390/s150101750
– volume: 14
  start-page: 12370
  year: 2014
  ident: ref_21
  article-title: Developing Barbed Microtip-Based Electrode Arrays for Biopotential Measurement
  publication-title: Sensors
  doi: 10.3390/s140712370
– volume: 34
  start-page: R47
  year: 2013
  ident: ref_9
  article-title: Dry electrodes for electrocardiography
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/34/9/R47
– volume: 5
  start-page: 20140050
  year: 2015
  ident: ref_104
  article-title: Unveiling the morphology of the acetabulum in octopus suckers and its role in attachment
  publication-title: Interface Focus.
  doi: 10.1098/rsfs.2014.0050
– volume: 59
  start-page: 3422
  year: 2012
  ident: ref_98
  article-title: Conductive Polymer Foam Surface Improves the Performance of a Capacitive EEG Electrode
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2215032
– volume: 60
  start-page: 3259
  year: 2011
  ident: ref_68
  article-title: Surface Electromyographic Signals Using Dry Electrodes
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2011.2164279
– volume: 99
  start-page: 735
  year: 2019
  ident: ref_26
  article-title: Low melting point metal-based flexible 3D biomedical microelectrode array by phase transition method
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2019.02.015
– ident: ref_1
– volume: 28
  start-page: 4
  year: 2019
  ident: ref_58
  article-title: PU nanoweb-based textile electrode treated with single-walled carbon nanotube/silver nanowire and its application to ECG monitoring
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab06e0
– volume: 63
  start-page: 1136
  year: 2016
  ident: ref_23
  article-title: A Motion Interference-Insensitive Flexible Dry Electrode
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2485269
– volume: 6
  start-page: 179
  year: 2018
  ident: ref_67
  article-title: Reusable Flexible Concentric Electrodes Coated With a Conductive Graphene Ink for Electrotactile Stimulation
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2018.00179
– volume: 221
  start-page: 139
  year: 2015
  ident: ref_34
  article-title: Multichannel EEG with novel Ti/TiN dry electrodes
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2014.10.010
– volume: 20
  start-page: 9
  year: 2018
  ident: ref_52
  article-title: Development of printed and flexible dry ECG electrodes
  publication-title: Sens. Bio-Sens. Res.
  doi: 10.1016/j.sbsr.2018.05.001
– volume: 1
  start-page: 99
  year: 1969
  ident: ref_89
  article-title: Capacitive electrocardiographic and bioelectric electrodes
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1969.4502613
– volume: 2
  start-page: 5
  year: 2017
  ident: ref_79
  article-title: Fully Printed Electrodes on Stretchable Textiles for Long-Term Electrophysiology
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201600251
– ident: ref_4
– ident: ref_28
  doi: 10.3390/s16060908
– volume: 63
  start-page: 138
  year: 2016
  ident: ref_99
  article-title: Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2478406
– ident: ref_106
  doi: 10.1109/NEBEC.2013.50
– volume: 8
  start-page: 14041
  year: 2018
  ident: ref_80
  article-title: Light-cured polymer electrodes for non-invasive EEG recordings
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32304-6
– volume: 59
  start-page: 1472
  year: 2012
  ident: ref_50
  article-title: CNT/PDMS Composite Flexible Dry Electrodes for Long-Term ECG Monitoring
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2190288
– volume: 112
  start-page: 3920
  year: 2015
  ident: ref_73
  article-title: Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1424875112
– volume: 63
  start-page: 540
  year: 2016
  ident: ref_76
  article-title: Fully Textile, PEDOT: PSS Based Electrodes for Wearable ECG Monitoring Systems
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2465936
– volume: 221
  start-page: 1469
  year: 2015
  ident: ref_60
  article-title: Graphene-clad textile electrodes for electrocardiogram monitoring
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2015.07.111
– ident: ref_61
  doi: 10.3390/s16111833
– ident: ref_30
  doi: 10.3390/s18041193
– volume: 29
  start-page: 1807614
  year: 2019
  ident: ref_102
  article-title: Highly Permeable Skin Patch with Conductive Hierarchical Architectures Inspired by Amphibians and Octopi for Omnidirectionally Enhanced Wet Adhesion
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807614
– volume: 114
  start-page: 69
  year: 2018
  ident: ref_92
  article-title: Textile electrodes in capacitive signal sensing applications
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.09.024
– volume: 244
  start-page: 750
  year: 2017
  ident: ref_19
  article-title: A microneedle electrode array on flexible substrate for long-term EEG monitoring
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2017.01.052
– ident: ref_56
  doi: 10.3390/ma12060971
– volume: 58
  start-page: 1200
  year: 2011
  ident: ref_72
  article-title: Novel Dry Polymer Foam Electrodes for Long-Term EEG Measurement
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2102353
– volume: 31
  start-page: 1989
  year: 2014
  ident: ref_15
  article-title: Hydrogel-forming microneedle arrays can be effectively inserted in skin by self-application: A pilot study centred on pharmacist intervention and a patient information leaflet
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-014-1301-y
– ident: ref_65
  doi: 10.3390/s17040875
– volume: 7
  start-page: e1801033
  year: 2018
  ident: ref_82
  article-title: Two-Layered and Stretchable e-Textile Patches for Wearable Healthcare Electronics
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201801033
– volume: 268
  start-page: 38
  year: 2017
  ident: ref_27
  article-title: Flexible microneedle array electrode using magnetorheological drawing lithography for bio-signal monitoring
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2017.10.042
– ident: ref_71
  doi: 10.3390/s16101635
– volume: 10
  start-page: 4770
  year: 2016
  ident: ref_53
  article-title: Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D-2D Hybrid Carbon Nanocomposites for All-in-One ECG Electrodes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01355
– volume: 206
  start-page: 22
  year: 2014
  ident: ref_70
  article-title: Liquid silicone rubber (LSR)-based dry bioelectrodes: The effect of surface micropillar structuring and silver coating on contact impedance
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2013.11.020
– volume: 79
  start-page: 740
  year: 2017
  ident: ref_33
  article-title: Fabrication of chitosan/Au-TiO2 nanotube-based dry electrodes for electroencephalography recording
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2017.05.114
– volume: 6
  start-page: 4
  year: 2017
  ident: ref_81
  article-title: Inkjet-Printed PEDOT: PSS Electrodes on Paper for Electrocardiography
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201601167
– volume: 251
  start-page: 11
  year: 2017
  ident: ref_14
  article-title: Microneedle, bio-microneedle and bio-inspired microneedle: A review
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.02.011
– volume: 5
  start-page: 11640
  year: 2017
  ident: ref_64
  article-title: All inkjet-printed graphene-based conductive patterns for wearable e-textile applications
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC03669H
– volume: 580
  start-page: 123751
  year: 2019
  ident: ref_57
  article-title: Carbon nanotube, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and Ag nanoparticle doped gelatin based electro-active hydrogel systems
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2019.123751
– volume: 174
  start-page: 96
  year: 2012
  ident: ref_69
  article-title: A 3D printed dry electrode for ECG/EEG recording
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2011.12.017
– volume: 64
  start-page: 3361
  year: 2015
  ident: ref_97
  article-title: Novel Noncontact Dry Electrode With Adaptive Mechanical Design for Measuring EEG in a Hairy Site
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2015.2459531
– volume: 11
  start-page: 5819
  year: 2011
  ident: ref_32
  article-title: Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation
  publication-title: Sensors
  doi: 10.3390/s110605819
– volume: 53
  start-page: 956
  year: 2006
  ident: ref_93
  article-title: ECG measurement on a chair without conductive contact
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.872823
– volume: 186
  start-page: 130
  year: 2012
  ident: ref_20
  article-title: Microneedle-based electrodes with integrated through-silicon via for biopotential recording
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2012.04.037
– volume: 10
  start-page: 21184
  year: 2018
  ident: ref_38
  article-title: Flexible Conductive Composite Integrated with Personal Earphone for Wireless, Real-Time Monitoring of Electrophysiological Signs
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b06484
– volume: 8344
  start-page: 83440E
  year: 2012
  ident: ref_96
  article-title: Smart healthcare textile sensor system for unhindered-pervasive health monitoring
  publication-title: Nanosens. Biosens. Info-Tech Sens. Syst.
– volume: 6
  start-page: 8
  year: 2017
  ident: ref_41
  article-title: A Wearable Hydration Sensor with Conformal Nanowire Electrodes
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201601159
– volume: 10
  start-page: 10
  year: 2001
  ident: ref_16
  article-title: Micromachined electrodes for biopotential measurements
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/84.911086
– volume: 15
  start-page: 16265
  year: 2015
  ident: ref_31
  article-title: Curved Microneedle Array-Based sEMG Electrode for Robust Long-Term Measurements and High Selectivity
  publication-title: Sensors
  doi: 10.3390/s150716265
– volume: 28
  start-page: 11
  year: 2018
  ident: ref_46
  article-title: Self-Adhesive and Ultra-Conformable, Sub-300 nm Dry Thin-Film Electrodes for Surface Monitoring of Biopotentials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803279
– volume: 283
  start-page: 348
  year: 2018
  ident: ref_47
  article-title: Soft pin-shaped dry electrode with bristles for EEG signal measurements
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2018.09.045
– volume: 132
  start-page: 34
  year: 2006
  ident: ref_6
  article-title: A dry electrophysiology electrode using CNT arrays
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2006.06.013
– volume: 47
  start-page: 155
  year: 2000
  ident: ref_8
  article-title: A micropower dry-electrode ECG preamplifier
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.821734
– volume: 66
  start-page: 150
  year: 2019
  ident: ref_36
  article-title: Dry-Contact Electrode Ear-EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2835778
– volume: 236
  start-page: 164
  year: 2015
  ident: ref_29
  article-title: Long term biopotential recording by body conformable photolithography fabricated low cost polymeric microneedle arrays
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2015.10.041
– volume: 52
  start-page: 45
  year: 2019
  ident: ref_44
  article-title: Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/1361-6463/ab3869
– volume: 17
  start-page: 23
  year: 2018
  ident: ref_78
  article-title: Electrical performance of PEDOT: PSS-based textile electrodes for wearable ECG monitoring: A comparative study
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-018-0469-5
– volume: 3
  start-page: 106
  year: 2010
  ident: ref_10
  article-title: Dry-contact and noncontact biopotential electrodes: Methodological review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2010.2084078
– ident: ref_5
– volume: 63
  start-page: 423
  year: 2016
  ident: ref_87
  article-title: Fabric-Based Wearable Dry Electrodes for Body Surface Biopotential Recording
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2462312
– ident: ref_109
  doi: 10.1109/EMBC.2018.8513107
– volume: 27
  start-page: 1370
  year: 2019
  ident: ref_86
  article-title: Validation of polymer-based screen-printed textile electrodes for surface EMG detection
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2916397
– volume: 1
  start-page: 250
  year: 2007
  ident: ref_94
  article-title: Mobile noncontact monitoring of heart and lung activity
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2008.915633
– volume: 46
  start-page: 1397
  year: 2018
  ident: ref_84
  article-title: Feasibility Testing of Hydrophobic Carbon Electrodes for Acquisition of Underwater Surface Electromyography Data
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-2042-6
– volume: 180
  start-page: 177
  year: 2012
  ident: ref_24
  article-title: Preliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinations
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2012.04.019
– volume: 11
  start-page: 7634
  year: 2017
  ident: ref_62
  article-title: Graphene Electronic Tattoo Sensors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02182
– volume: 8
  start-page: 479
  year: 2019
  ident: ref_13
  article-title: Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A review
  publication-title: Electronics
  doi: 10.3390/electronics8050479
– volume: 159
  start-page: 473
  year: 2009
  ident: ref_105
  article-title: Mechanical characterization of PEDOT:PSS thin films
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2008.11.005
– volume: 9
  start-page: 37524
  year: 2017
  ident: ref_77
  article-title: Screen-Printed PEDOT: PSS Electrodes on Commercial Finished Textiles for Electrocardiography
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b09954
– volume: 42
  start-page: 1146
  year: 2002
  ident: ref_103
  article-title: The structure and adhesive mechanism of octopus suckers
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/42.6.1146
– volume: 58
  start-page: 3112
  year: 2011
  ident: ref_107
  article-title: ECG on the road: Robust and unobtrusive estimation of heart rate
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2163715
– volume: 57
  start-page: 27
  year: 2019
  ident: ref_108
  article-title: Electrode placement in electrocardiography smart garments: A review
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2019.08.015
– volume: 24
  start-page: 327
  year: 2009
  ident: ref_3
  article-title: Surface EMG based muscle fatigue evaluation in biomechanics
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2009.01.010
– volume: 1
  start-page: 526
  year: 2011
  ident: ref_90
  article-title: Ultra-High Input Impedance, Low Noise Integrated Amplifier for Noncontact Biopotential Sensing
  publication-title: IEEE J. Emerging Sel. Top. Circuits Syst.
  doi: 10.1109/JETCAS.2011.2179419
– volume: 333
  start-page: 838
  year: 2011
  ident: ref_74
  article-title: Epidermal Electronics
  publication-title: Science
  doi: 10.1126/science.1206157
– volume: 20
  start-page: 577
  year: 2020
  ident: ref_12
  article-title: A Mini Review of Microneedle Array Electrode for Bio-Signal Recording: A Review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2944847
– volume: 6
  start-page: 91
  year: 2012
  ident: ref_49
  article-title: Shear induced CNT/PDMS conducting thin film for electrode cardiogram (ECG) electrode
  publication-title: BioChip J.
  doi: 10.1007/s13206-012-6112-9
– volume: 5
  start-page: 11627
  year: 2015
  ident: ref_39
  article-title: Wearable silver nanowire dry electrodes for electrophysiological sensing
  publication-title: RSC Adv.
  doi: 10.1039/C4RA15101A
– volume: 6
  start-page: 7
  year: 2017
  ident: ref_55
  article-title: Efficient Skin Temperature Sensor and Stable Gel-Less Sticky ECG Sensor for a Wearable Flexible Healthcare Patch
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201700495
– volume: 60
  start-page: 2824
  year: 2013
  ident: ref_37
  article-title: A study of evoked potentials from ear-EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2264956
– volume: 2
  start-page: 12
  year: 2016
  ident: ref_75
  article-title: Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601185
– volume: 12
  start-page: 8839
  year: 2018
  ident: ref_66
  article-title: Multilayer Graphene Epidermal Electronic Skin
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02162
– volume: 9
  start-page: 17500
  year: 2017
  ident: ref_54
  article-title: Wearable Resistive Pressure Sensor Based on Highly Flexible Carbon Composite Conductors with Irregular Surface Morphology
  publication-title: ACS Appl. Mater. Interfaces
– volume: 84
  start-page: 1737
  year: 2007
  ident: ref_22
  article-title: Micropatterned dry electrodes for brain–computer interface
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2007.01.243
– volume: 7
  start-page: 20789
  year: 2019
  ident: ref_43
  article-title: Electrocardiogram of a Silver Nanowire Based Dry Electrode: Quantitative Comparison With the Standard Ag/AgCl Gel Electrode
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897590
– volume: 11
  start-page: 153
  year: 2017
  ident: ref_100
  article-title: Flexible and Implantable Capacitive Microelectrode for Bio-potential Acquisition
  publication-title: BioChip J.
  doi: 10.1007/s13206-017-1304-y
– volume: 2
  start-page: 2
  year: 2011
  ident: ref_95
  article-title: e-bra With Nanosensors for Real Time Cardiac Health Monitoring and Smartphone Communication
  publication-title: J. Nanotechnol. Eng.
– volume: 56
  start-page: 49
  year: 2012
  ident: ref_35
  article-title: TiNx coated polycarbonate for bio-electrode applications
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2011.11.008
– volume: 57
  start-page: 5S
  year: 2018
  ident: ref_59
  article-title: Wearable carbon nanotube based dry-electrodes for electrophysiological sensors
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.57.05GD02
– volume: 10
  start-page: 6806
  year: 2018
  ident: ref_42
  article-title: Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics
  publication-title: Nanoscale
  doi: 10.1039/C7NR09570H
– volume: 235
  start-page: 48
  year: 2015
  ident: ref_51
  article-title: Flexible dry electrode based on carbon nanotube/polymer hybrid micropillars for biopotential recording
  publication-title: Sens.Actuators A
  doi: 10.1016/j.sna.2015.09.024
– volume: 54
  start-page: 2435
  year: 2011
  ident: ref_17
  article-title: Dry electrode for the measurement of biopotential signals
  publication-title: Sci. Chin. Inf. Sci.
  doi: 10.1007/s11432-011-4354-0
– volume: 34
  start-page: 972
  year: 2012
  ident: ref_18
  article-title: Wireless instrumentation system based on dry electrodes for acquiring EEG signals
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.11.002
– ident: ref_7
  doi: 10.1002/0471681849
– volume: 25
  start-page: 6839
  year: 2013
  ident: ref_110
  article-title: Materials and Optimized Designs for Human-Machine Interfaces via Epidermal Electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301921
– volume: 22
  start-page: 3027
  year: 2010
  ident: ref_48
  article-title: Polymer-Embedded Carbon Nanotube Ribbons for Stretchable Conductors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200904426
– volume: 11
  start-page: 33
  year: 2017
  ident: ref_83
  article-title: sEMG Sensor Using Polypyrrole-Coated Nonwoven Fabric Sheet for Practical Control of Prosthetic Hand
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00033
– volume: 15
  start-page: 267
  year: 2019
  ident: ref_45
  article-title: Conformable, Thin, and Dry Electrode for Electrocardiography Using Composite of Silver Nanowires and Polyvinyl Butyral
  publication-title: Electron. Mater. Lett.
  doi: 10.1007/s13391-019-00125-y
– volume: 8
  start-page: 617
  year: 2014
  ident: ref_91
  article-title: Noncontact ECG Recording System With Real Time Capacitance Measurement for Motion Artifact Reduction
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2014.2359053
– volume: 18
  start-page: 8578
  year: 2018
  ident: ref_85
  article-title: Knit Band Sensor for Myoelectric Control of Surface EMG-Based Prosthetic Hand
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2865623
– volume: 45
  start-page: 147
  year: 2013
  ident: ref_2
  article-title: Automated EEG analysis of epilepsy: A review
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.02.014
– volume: 96
  start-page: 1167
  year: 2008
  ident: ref_25
  article-title: Noninvasive Neural Prostheses Using Mobile and Wireless EEG
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2008.922561
– ident: ref_101
  doi: 10.1155/2018/3016343
– volume: 14
  start-page: 12847
  year: 2014
  ident: ref_11
  article-title: Dry EEG Electrodes
  publication-title: Sensors
  doi: 10.3390/s140712847
– ident: ref_88
  doi: 10.3390/ma11020256
– volume: 180
  start-page: 45
  year: 2017
  ident: ref_63
  article-title: Chemically reduced graphene oxide-based dry electrodes as touch sensor for electrocardiograph measurement
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2017.05.048
SSID ssj0023338
Score 2.6103191
SecondaryResourceType review_article
Snippet Bioelectrical or electrophysiological signals generated by living cells or tissues during daily physiological activities are closely related to the state of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3651
SubjectTerms bioelectrical signal acquisition
capacitive electrode
Electric Conductivity
Electrocardiography
electrode-skin interface impedance
Electrodes - classification
Electroencephalography
Electromyography
Electrooculography
Humans
invasive microneedle electrode
Review
surface electrode
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQJxgQb8JLATGwRI1fsT1SaFUhwQKVukV27EAllKI-Bv6e6zitWlSJhS1KnMS6x849J4nPRegW0gaIf1ImzEqdMGlFoiENJMrA4OGmFML4hcLPL1l_wJ6GfLhS6sv_ExbsgUPg2lqBgIBRYrgUzDKuLHdMOpUShzOVGf_0hZy3EFON1KKgvIKPEAVR355CmqM043gt-9Qm_ZuY5e8fJFcyTm8P7TZUMb4PXdxHW646QDsrBoKHSD5OvuNuqGRj3TQGBhrXr-XjzmgcKtx4EOLX0bu_VJjA_tQjNOh13x76SVMLISmAsc0Sq1wJzN8UGOaJKLVf0i9Sybi2htJClCm3BYMNY7EmnAi_hpQJi1PKjDWSHqNWNa7cKYoNo9Rq__6TUaYBK5UWWEjujOSyIDhCd4sY5UVjFO7rVXzmIBh8OPNlOCN0s2z6FdwxNjXq-EAvG3hD63oHwJw3MOd_wRyh6wVMOUwA_1VDV248n-ZAQZTAQCuzCJ0E2Ja3Am6KPceKkFgDdK0v60eq0Udtsi0ocCtCzv6j8-dom3iZnmYJUReoNZvM3SVwmZm5qoftD06J76I
  priority: 102
  providerName: Directory of Open Access Journals
Title Dry Electrodes for Human Bioelectrical Signal Monitoring
URI https://www.ncbi.nlm.nih.gov/pubmed/32610658
https://www.proquest.com/docview/2419711636
https://pubmed.ncbi.nlm.nih.gov/PMC7374322
https://doaj.org/article/a9448963b5874d459d5e48e902e1696b
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6V9gKHijduITKIAxeDvQ_v7gEhAgkVUisERMrN2vWuS6TKaZNUav89M7Zj1ShHLpZlj-3VjMfzfbueGYC3GDaQ_LMqEV7bRGivEothIDEOXx7pKqUcJQqfnuUnM_F9Lud7sO2x2SlwvZPaUT-p2eri_c3V7Sd0-I_EOJGyf1hjEOM8p0TqAwxIihoZnIp-MYFxpGFtUaGh-CAUNRX7d8HMf_-WvBN-pg_hsMON8efW0I9gL9SP4cGdaoJPQH9d3caTtq2ND-sY4WjczNHH48WybXdDFol_Lc7pVq0306VPYTad_P5yknSNEZIS4dsm8SZUSANcmaHTqMpSfr9KtZDWO85LVaXSlwJ3nM8sk0xRQqlQPku5cN5p_gz262UdXkDsBOfe0mSo4MKi4UxaZkrL4LTUJcsieLfVUVF2VcOpecVFgeyB1Fn06ozgTS962ZbK2CU0JkX3AlTdujmwXJ0XnbMU1iBpxC-Dk1oJL6TxMggdTMpClpvcRfB6a6YCvYGWOGwdltfrAs1vVIYYM4_geWu2_lEIVDMCXBGogUEHYxmeqRd_morbiiPQYuzofwz-GO4z4uxpnjDzEvY3q-vwCoHNxo3gnpor3OrptxEcjCdnP36OmkmCUfNC_wXbx_p1
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dry+Electrodes+for+Human+Bioelectrical+Signal+Monitoring&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yulin+Fu&rft.au=Jingjing+Zhao&rft.au=Ying+Dong&rft.au=Xiaohao+Wang&rft.date=2020-06-29&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=13&rft.spage=3651&rft_id=info:doi/10.3390%2Fs20133651&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a9448963b5874d459d5e48e902e1696b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon