Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data
The strain rate effect on the behaviour of brittle materials like concrete has been a classical topic of interest in the shock and impact engineering community. For concrete under high strain rate compression, a dynamic increase factor (DIF) is commonly used to account for the nominal dynamic streng...
Saved in:
Published in | International journal of impact engineering Vol. 46; pp. 41 - 55 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The strain rate effect on the behaviour of brittle materials like concrete has been a classical topic of interest in the shock and impact engineering community. For concrete under high strain rate compression, a dynamic increase factor (DIF) is commonly used to account for the nominal dynamic strength enhancement for engineering applications. The cause of the experimentally observed DIF on standard concrete specimens has been a subject of securitization in recent years. This paper presents an investigation on the dynamic behaviour of concrete specimens under high strain rate compression with the aid of mesoscale numerical simulation. Beyond a further observation on the so-called lateral inertia confinement effect, special attention is paid to the transient shock wave effect and the propagation of material failure when a specimen is loaded with a strain rate exceeding a theoretical limit for a given specimen size, i.e., in the “excessive” strain rate regime as referred to in this paper. Based on the simulation, it is argued that the validity of many existing test data on the nominal compression DIF for concrete, especially those in the very high strain regime, is rather questionable. The correlation between the externally measured (inferred) strength-strain data and the actual material dynamic response within the specimen is examined. The influence of the material heterogeneity on the DIF is also discussed with quantification.
► Conflicting size requirements for high strain rate and bulk behaviour elaborated. ► Stress non-uniformity and propagating failure under high strain rates scrutinised. ► Correlation between external measurements and internal material behaviour discussed. ► Heterogeneity effect on dynamic strength enhancement examined with quantification. |
---|---|
AbstractList | The strain rate effect on the behaviour of brittle materials like concrete has been a classical topic of interest in the shock and impact engineering community. For concrete under high strain rate compression, a dynamic increase factor (DIF) is commonly used to account for the nominal dynamic strength enhancement for engineering applications. The cause of the experimentally observed DIF on standard concrete specimens has been a subject of securitization in recent years. This paper presents an investigation on the dynamic behaviour of concrete specimens under high strain rate compression with the aid of mesoscale numerical simulation. Beyond a further observation on the so-called lateral inertia confinement effect, special attention is paid to the transient shock wave effect and the propagation of material failure when a specimen is loaded with a strain rate exceeding a theoretical limit for a given specimen size, i.e., in the "excessive" strain rate regime as referred to in this paper. Based on the simulation, it is argued that the validity of many existing test data on the nominal compression DIF for concrete, especially those in the very high strain regime, is rather questionable. The correlation between the externally measured (inferred) strength-strain data and the actual material dynamic response within the specimen is examined. The influence of the material heterogeneity on the DIF is also discussed with quantification. An investigation on the dynamic behaviour of concrete specimens under high strain rate compression using mesoscale numerical simulation is presented. Beyond a further observation on the so-called lateral inertia confinement effect, special attention was paid to the transient shock wave effect and the propagation of material failure when a specimen is loaded with a strain rate greater than a theoretical limit for a given specimen size, i.e., in the excessive strain rate regime. Based on the simulation, it is argued that the validity of many existing test data on the nominal compression dynamic increase factor (DIF) for concrete, especially those in the very high strain regime, is questionable. The correlation between the externally measured (inferred) strength-strain data and the actual material dynamic response within the specimen was examined. The influence of the material heterogeneity on the DIF is also discussed. The strain rate effect on the behaviour of brittle materials like concrete has been a classical topic of interest in the shock and impact engineering community. For concrete under high strain rate compression, a dynamic increase factor (DIF) is commonly used to account for the nominal dynamic strength enhancement for engineering applications. The cause of the experimentally observed DIF on standard concrete specimens has been a subject of securitization in recent years. This paper presents an investigation on the dynamic behaviour of concrete specimens under high strain rate compression with the aid of mesoscale numerical simulation. Beyond a further observation on the so-called lateral inertia confinement effect, special attention is paid to the transient shock wave effect and the propagation of material failure when a specimen is loaded with a strain rate exceeding a theoretical limit for a given specimen size, i.e., in the “excessive” strain rate regime as referred to in this paper. Based on the simulation, it is argued that the validity of many existing test data on the nominal compression DIF for concrete, especially those in the very high strain regime, is rather questionable. The correlation between the externally measured (inferred) strength-strain data and the actual material dynamic response within the specimen is examined. The influence of the material heterogeneity on the DIF is also discussed with quantification. ► Conflicting size requirements for high strain rate and bulk behaviour elaborated. ► Stress non-uniformity and propagating failure under high strain rates scrutinised. ► Correlation between external measurements and internal material behaviour discussed. ► Heterogeneity effect on dynamic strength enhancement examined with quantification. |
Author | Lu, Yong Song, Zhenhuan |
Author_xml | – sequence: 1 givenname: Zhenhuan surname: Song fullname: Song, Zhenhuan – sequence: 2 givenname: Yong surname: Lu fullname: Lu, Yong email: yong.lu@ed.ac.uk |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25777116$$DView record in Pascal Francis |
BookMark | eNqNkUFrFDEUx4NUcFv9CpKL4GXXZDJJJuBBKWqFihcFbyHz5k2bZTYZk2zpXvzsZrrtxcsKD0KS3__3Qt45OQsxICGvOdtwxtW77cZv_W7GcLNpGG82jNdiz8iKd9qshWTmjKyYFu1at-LXC3Ke85YxrplkK_LnG-aYIc4eqAtuOmSfaRwpxAAJC9J9GDBRvAfM2d_hdKC3_uaW5pKcDzS5ikDczWm5jqE6BlofM3lwpe6rK1AfCqZKlIejxV4wFzq44l6S56ObMr56XC_Iz8-fflxera-_f_l6-fF6DZLpsh6klgqV60XjjFK9UUJDq7u-V9z1fDTStRw5Dp3qXDcKZkBq3vZCKdVyCeKCvD165xR_72t3u_MZcJpcwLjPlivTiFqdOI0y0TVVrP8H5Ua1RkhT0TePqMvgpjG5AD7bOfmdSwfbSK0156py748cpJhzwtGCP_7b8uFTVS5WZbf2aeh2GbplvBarcfVP_KnDyeCHYxDrFO48JpvBYwAcfEIodoj-lOIv3RHOpw |
CODEN | IJIED4 |
CitedBy_id | crossref_primary_10_1016_j_msea_2021_142263 crossref_primary_10_1007_s40571_024_00736_9 crossref_primary_10_1016_j_cemconcomp_2020_103545 crossref_primary_10_1016_j_conbuildmat_2022_128416 crossref_primary_10_1016_j_ijimpeng_2022_104440 crossref_primary_10_3151_jact_22_561 crossref_primary_10_1016_j_conbuildmat_2022_128890 crossref_primary_10_1016_j_conbuildmat_2020_118449 crossref_primary_10_1016_j_engstruct_2019_109573 crossref_primary_10_1016_j_conbuildmat_2023_133570 crossref_primary_10_1016_j_compstruct_2023_117576 crossref_primary_10_1061__ASCE_MT_1943_5533_0003382 crossref_primary_10_1177_13694332241260867 crossref_primary_10_1016_j_engstruct_2023_116042 crossref_primary_10_1002_nme_6276 crossref_primary_10_1016_j_engfracmech_2024_109979 crossref_primary_10_1142_S1758825115500386 crossref_primary_10_1002_suco_202000125 crossref_primary_10_1016_j_istruc_2021_02_038 crossref_primary_10_1016_j_ijimpeng_2022_104279 crossref_primary_10_1016_j_jobe_2024_108587 crossref_primary_10_3390_ma15165710 crossref_primary_10_1016_j_cma_2024_116886 crossref_primary_10_1016_j_ijmecsci_2022_107161 crossref_primary_10_1061__ASCE_MT_1943_5533_0003439 crossref_primary_10_1186_s40069_020_00423_y crossref_primary_10_1007_s00161_020_00881_5 crossref_primary_10_3390_buildings14123899 crossref_primary_10_1016_j_compstruct_2020_112843 crossref_primary_10_1061__ASCE_CC_1943_5614_0001138 crossref_primary_10_1016_j_engfracmech_2020_106979 crossref_primary_10_3390_polym15092048 crossref_primary_10_1080_09276440_2016_1158529 crossref_primary_10_1016_j_conbuildmat_2023_133166 crossref_primary_10_1080_15376494_2023_2258365 crossref_primary_10_1016_j_cemconres_2022_106799 crossref_primary_10_1016_j_engfracmech_2020_106974 crossref_primary_10_1680_jmacr_22_00091 crossref_primary_10_1016_j_cemconres_2020_106317 crossref_primary_10_1016_j_ijmecsci_2024_109012 crossref_primary_10_1016_j_conbuildmat_2021_124473 crossref_primary_10_1016_j_engfracmech_2024_109876 crossref_primary_10_1016_j_engstruct_2024_118485 crossref_primary_10_1155_2021_6621530 crossref_primary_10_1142_S0219876221430088 crossref_primary_10_3390_buildings12070908 crossref_primary_10_1007_s13369_024_09656_5 crossref_primary_10_1016_j_engfracmech_2022_109030 crossref_primary_10_1177_1369433217734654 crossref_primary_10_1016_j_jobe_2022_105517 crossref_primary_10_1061__ASCE_ST_1943_541X_0002827 crossref_primary_10_1177_13694332211066404 crossref_primary_10_1016_j_istruc_2024_106863 crossref_primary_10_1016_j_compstruc_2017_07_009 crossref_primary_10_1177_13694332221087342 crossref_primary_10_1002_suco_202200678 crossref_primary_10_1142_S1793431113500280 crossref_primary_10_1061__ASCE_MT_1943_5533_0004011 crossref_primary_10_1016_j_cscm_2022_e01056 crossref_primary_10_3390_buildings13030587 crossref_primary_10_1016_j_ijnonlinmec_2025_105039 crossref_primary_10_1016_j_conbuildmat_2017_11_094 crossref_primary_10_1016_j_tafmec_2023_103797 crossref_primary_10_1007_s43452_024_01024_2 crossref_primary_10_1177_13694332231181064 crossref_primary_10_1016_j_ijimpeng_2024_105188 crossref_primary_10_3390_ma14051099 crossref_primary_10_1016_j_ijmecsci_2021_106905 crossref_primary_10_1016_j_engfracmech_2024_110576 crossref_primary_10_3390_buildings13102604 crossref_primary_10_1016_j_engstruct_2022_114379 crossref_primary_10_1016_j_ijimpeng_2021_103907 crossref_primary_10_1016_j_ijmecsci_2021_106622 crossref_primary_10_1016_j_ijsolstr_2015_05_002 crossref_primary_10_1080_13632469_2025_2477157 crossref_primary_10_3390_ma18010015 crossref_primary_10_1016_j_cemconcomp_2023_105069 crossref_primary_10_2139_ssrn_4136988 crossref_primary_10_1007_s00466_016_1309_8 crossref_primary_10_1016_j_conbuildmat_2025_139961 crossref_primary_10_1016_j_ijimpeng_2017_08_003 crossref_primary_10_1680_jmacr_21_00123 crossref_primary_10_1016_j_engfracmech_2021_107870 crossref_primary_10_1061__ASCE_CC_1943_5614_0001041 crossref_primary_10_1016_j_engstruct_2021_112832 crossref_primary_10_1016_j_istruc_2022_09_104 crossref_primary_10_14359_51734483 crossref_primary_10_1016_j_engstruct_2021_112951 crossref_primary_10_1002_suco_201900338 crossref_primary_10_1016_j_actamat_2019_09_038 crossref_primary_10_1142_S1793431113500176 crossref_primary_10_1016_j_ijmecsci_2020_105468 crossref_primary_10_1016_j_compstruct_2022_116440 crossref_primary_10_1177_10567895241245860 crossref_primary_10_1007_s00466_023_02344_5 crossref_primary_10_1016_S1003_6326_13_62803_4 crossref_primary_10_1108_EC_10_2020_0564 crossref_primary_10_1016_j_conbuildmat_2020_119063 crossref_primary_10_1016_j_engfailanal_2024_108785 crossref_primary_10_1016_j_conbuildmat_2021_125199 crossref_primary_10_1016_j_cma_2022_115598 crossref_primary_10_1016_j_conbuildmat_2022_130145 crossref_primary_10_1016_j_conbuildmat_2021_123332 crossref_primary_10_1016_j_conbuildmat_2018_01_040 crossref_primary_10_1016_j_ijimpeng_2016_06_009 crossref_primary_10_1016_j_jcsr_2025_109472 crossref_primary_10_1016_j_engfracmech_2016_06_018 crossref_primary_10_1016_j_istruc_2024_106077 crossref_primary_10_3390_fractalfract8060304 crossref_primary_10_1016_j_istruc_2024_107561 crossref_primary_10_1016_j_conbuildmat_2021_124379 crossref_primary_10_1016_j_cemconres_2021_106577 crossref_primary_10_1007_s43452_024_01038_w crossref_primary_10_1016_j_jobe_2023_108198 crossref_primary_10_1016_j_ijimpeng_2021_104103 crossref_primary_10_1007_s12205_021_1383_0 crossref_primary_10_1016_j_engfracmech_2022_108661 crossref_primary_10_1016_j_jobe_2023_106210 crossref_primary_10_1051_epjconf_20159404038 crossref_primary_10_1016_j_conbuildmat_2022_127580 crossref_primary_10_1051_epjconf_20159404031 crossref_primary_10_1016_j_compstruct_2022_115600 crossref_primary_10_1016_j_cemconcomp_2020_103889 crossref_primary_10_1016_j_conbuildmat_2020_119639 crossref_primary_10_1016_j_compstruct_2022_116267 crossref_primary_10_1016_j_ijmecsci_2023_108519 crossref_primary_10_1002_suco_202200631 crossref_primary_10_1016_j_conbuildmat_2021_124302 crossref_primary_10_1016_j_ijmecsci_2020_106130 crossref_primary_10_1016_j_compstruct_2022_115690 crossref_primary_10_1016_j_conbuildmat_2022_126485 crossref_primary_10_1016_j_jobe_2022_105693 crossref_primary_10_1016_j_engstruct_2024_119543 crossref_primary_10_1007_s43452_023_00833_1 crossref_primary_10_1016_j_conbuildmat_2023_130346 crossref_primary_10_1016_j_tws_2020_107158 crossref_primary_10_1016_j_engfailanal_2024_108569 crossref_primary_10_1016_j_engfracmech_2020_107080 crossref_primary_10_1061__ASCE_CC_1943_5614_0001236 crossref_primary_10_1016_j_prostr_2018_12_092 crossref_primary_10_1016_j_compstruc_2016_09_005 crossref_primary_10_1177_1056789517735679 crossref_primary_10_1260_2041_4196_4_3_451 crossref_primary_10_1061__ASCE_EM_1943_7889_0002180 crossref_primary_10_1016_j_coldregions_2023_104110 crossref_primary_10_1016_j_ijimpeng_2021_103942 crossref_primary_10_1016_j_istruc_2024_107186 crossref_primary_10_1016_j_istruc_2023_105261 crossref_primary_10_1016_j_mechmat_2023_104866 crossref_primary_10_1177_10567895231160811 crossref_primary_10_1080_09276440_2019_1642018 crossref_primary_10_1061__ASCE_MT_1943_5533_0002602 |
Cites_doi | 10.1260/2041-4196.2.2.177 10.1016/j.ijimpeng.2009.04.009 10.1016/0020-7683(95)00186-7 10.1016/S0734-743X(98)00048-7 10.1016/0022-5096(63)90050-4 10.1016/j.ijimpeng.2007.02.001 10.1260/2041-4196.1.2.197 10.1016/S0020-7683(02)00526-7 10.1016/S0734-743X(02)00073-8 10.1115/1.2903329 10.1243/03093247JSA538 10.1016/j.ijimpeng.2007.12.012 10.1029/JB076i020p04913 10.1016/j.ijsolstr.2003.09.019 10.1016/j.ijsolstr.2008.04.002 10.1016/S0734-743X(97)00023-7 10.1016/S0045-7949(98)00177-1 10.1016/0022-5096(95)00030-M 10.1016/j.finel.2005.11.008 10.1016/S0734-743X(02)00124-0 10.12989/sem.2011.37.2.197 10.1016/S0022-5096(96)00117-2 10.1098/rspa.1995.0039 10.1051/dymat/2009229 10.1016/S0734-743X(01)00020-3 10.1007/BF02472016 10.1016/j.ijimpeng.2007.12.010 10.1061/(ASCE)0733-9399(1999)125:10(1154) 10.1002/nag.771 10.1002/(SICI)1099-1484(199601)1:1<115::AID-CFM6>3.0.CO;2-U |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7QQ 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijimpeng.2012.01.010 |
DatabaseName | CrossRef Pascal-Francis Ceramic Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Ceramic Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-3509 |
EndPage | 55 |
ExternalDocumentID | 25777116 10_1016_j_ijimpeng_2012_01_010 S0734743X12000255 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7QQ 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c507t-d5756e6ab32a966b9637c478bb61ab1f95a41e1ed868a8f309c5714b3666415c3 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Mon Jul 21 11:35:28 EDT 2025 Fri Jul 11 11:55:26 EDT 2025 Fri Jul 11 02:30:11 EDT 2025 Mon Jul 21 09:14:22 EDT 2025 Tue Jul 01 03:11:36 EDT 2025 Thu Apr 24 22:52:05 EDT 2025 Fri Feb 23 02:28:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mesoscale model Dynamic strength Concrete Stress wave High strain rate Confinement High strain Data compression Elastic wave Test bar Modeling Shock wave Deformation measurement Size effect High speed Strain rate Transient response Vibration Wave effect Rupture Brittle material Mesoscale Concrete construction Inertia Strength Dynamic load Mechanical shock |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-d5756e6ab32a966b9637c478bb61ab1f95a41e1ed868a8f309c5714b3666415c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1019649359 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1692392383 proquest_miscellaneous_1038236673 proquest_miscellaneous_1019649359 pascalfrancis_primary_25777116 crossref_citationtrail_10_1016_j_ijimpeng_2012_01_010 crossref_primary_10_1016_j_ijimpeng_2012_01_010 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2012_01_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-01 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Follansbee (bib19) 1985; vol. 8 Zhang, Wu, Li, Huang (bib4) 2009; 36 Lu, Song, Tu (bib7) 2010; 1 Dioh, Ivankovic, Leevers, Williams (bib17) 1995; 449 Riedel, Wicklein, Thoma (bib26) 2008; 35 Zhao, Gary (bib11) 1996; 33 Gary (bib1) 1990 Malvar, Crawford, Wesevich (bib29) 1997; 19 Meng, Li (bib34) 2003; 28 Wang, Kwan, Chan (bib24) 1999; 70 Lu, Xu (bib36) 2004; 41 Comite Euro-International du Beton (bib35) 1993 Davies, Hunter (bib8) 1963; 11 Hao, Hao (bib37) 2011; 2 Eckardt, S, Hafner, S, Konke, C. Simulation of the fracture behaviour of concrete using continuum damage models at the mesoscale, The ECCOMAS 2004 Congress, Jyväskylä, Finland. Meng, Li (bib18) 2003; 28 Gong, Malvern, Jenkins (bib13) 1990; 112 Dupray, Malecot, Daudeville, Buzaud (bib27) 2009; 33 Mogi (bib31) 2006 Zhao, Gary (bib12) 1997; 45 Grote, Park, Zhou (bib3) 2001; 25 Lu, Y, Song, ZH, Tu, ZG. Numerical simulation study of the strain rate effect on concrete in compression considering material heterogeneity, The 9th International Conference of DYMAT Association, Sept. 2009, Brussels, Belgium. Van, Vliet, van Mier (bib32) 1996; 1 Pankow, Attard, Waas (bib20) 2009; 44 Riedel, Kawai, Kondo (bib21) 2009; 36 Bischoff, Perry (bib15) 1991; 24 Donze, Magnier, Daudeville, Mariotti, Davenne (bib25) 1999; 125 Tu, Lu (bib30) 2009; 36 Zhou, Hao (bib16) 2008; 45 Bacon (bib14) 1990; 22 Zhao, Gary (bib10) 1995; 43 Tu, Lu (bib28) 2011; 37 (bib9) 2000; vol. 8 Li, Meng (bib6) 2003; 40 Ross, Tedesco, Kuennen (bib2) 1990; 92 Brace, Jones (bib5) 1971; 13 Wriggers, Moftah (bib23) 2006; 42 Zhang (10.1016/j.ijimpeng.2012.01.010_bib4) 2009; 36 Zhou (10.1016/j.ijimpeng.2012.01.010_bib16) 2008; 45 10.1016/j.ijimpeng.2012.01.010_bib33 Comite Euro-International du Beton (10.1016/j.ijimpeng.2012.01.010_bib35) 1993 Tu (10.1016/j.ijimpeng.2012.01.010_bib30) 2009; 36 Dioh (10.1016/j.ijimpeng.2012.01.010_bib17) 1995; 449 Dupray (10.1016/j.ijimpeng.2012.01.010_bib27) 2009; 33 Tu (10.1016/j.ijimpeng.2012.01.010_bib28) 2011; 37 Meng (10.1016/j.ijimpeng.2012.01.010_bib18) 2003; 28 Ross (10.1016/j.ijimpeng.2012.01.010_bib2) 1990; 92 Riedel (10.1016/j.ijimpeng.2012.01.010_bib21) 2009; 36 Lu (10.1016/j.ijimpeng.2012.01.010_bib7) 2010; 1 Meng (10.1016/j.ijimpeng.2012.01.010_bib34) 2003; 28 Follansbee (10.1016/j.ijimpeng.2012.01.010_bib19) 1985; vol. 8 Bacon (10.1016/j.ijimpeng.2012.01.010_bib14) 1990; 22 Gary (10.1016/j.ijimpeng.2012.01.010_bib1) 1990 Zhao (10.1016/j.ijimpeng.2012.01.010_bib12) 1997; 45 Wriggers (10.1016/j.ijimpeng.2012.01.010_bib23) 2006; 42 Li (10.1016/j.ijimpeng.2012.01.010_bib6) 2003; 40 Davies (10.1016/j.ijimpeng.2012.01.010_bib8) 1963; 11 Pankow (10.1016/j.ijimpeng.2012.01.010_bib20) 2009; 44 10.1016/j.ijimpeng.2012.01.010_bib22 Donze (10.1016/j.ijimpeng.2012.01.010_bib25) 1999; 125 Grote (10.1016/j.ijimpeng.2012.01.010_bib3) 2001; 25 Zhao (10.1016/j.ijimpeng.2012.01.010_bib11) 1996; 33 Lu (10.1016/j.ijimpeng.2012.01.010_bib36) 2004; 41 Wang (10.1016/j.ijimpeng.2012.01.010_bib24) 1999; 70 Gong (10.1016/j.ijimpeng.2012.01.010_bib13) 1990; 112 Riedel (10.1016/j.ijimpeng.2012.01.010_bib26) 2008; 35 Van, Vliet (10.1016/j.ijimpeng.2012.01.010_bib32) 1996; 1 Zhao (10.1016/j.ijimpeng.2012.01.010_bib10) 1995; 43 Malvar (10.1016/j.ijimpeng.2012.01.010_bib29) 1997; 19 Mogi (10.1016/j.ijimpeng.2012.01.010_bib31) 2006 Brace (10.1016/j.ijimpeng.2012.01.010_bib5) 1971; 13 (10.1016/j.ijimpeng.2012.01.010_bib9) 2000; vol. 8 Bischoff (10.1016/j.ijimpeng.2012.01.010_bib15) 1991; 24 Hao (10.1016/j.ijimpeng.2012.01.010_bib37) 2011; 2 |
References_xml | – volume: 1 start-page: 197 year: 2010 end-page: 217 ident: bib7 article-title: Analysis of dynamic response of concrete using a mesoscale model incorporating 3D effects publication-title: Int J Prot Struct – volume: 36 start-page: 283 year: 2009 end-page: 293 ident: bib21 article-title: Numerical assessment for impact strength measurements in concrete materials publication-title: Int J Impact Eng – volume: 70 start-page: 533 year: 1999 end-page: 544 ident: bib24 article-title: Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh publication-title: Comput Struct – volume: vol. 8 year: 2000 ident: bib9 publication-title: ASM handbook: mechanical testing and evaluation – reference: Eckardt, S, Hafner, S, Konke, C. Simulation of the fracture behaviour of concrete using continuum damage models at the mesoscale, The ECCOMAS 2004 Congress, Jyväskylä, Finland. – volume: 36 year: 2009 ident: bib30 article-title: Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations publication-title: Int J Impact Eng – year: 1990 ident: bib1 article-title: Essais à grande vitesse sur béton. Problèmes spéci-fiques, Rapport spécifique du GRECO – volume: 25 start-page: 869 year: 2001 end-page: 886 ident: bib3 article-title: Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization publication-title: Int J Impact Eng – volume: 45 start-page: 1185 year: 1997 end-page: 1202 ident: bib12 article-title: A new method for the separation of waves: application to the SHPB technique for an unlimited duration of measurement publication-title: J Mech Phys Solids – year: 1993 ident: bib35 article-title: Redwood books – volume: 40 start-page: 343 year: 2003 end-page: 360 ident: bib6 article-title: About the dynamic strength enhancement of concrete like materials in a split Hopkinson pressure bar test publication-title: Int J Solids Struct – volume: 13 start-page: 4913 year: 1971 end-page: 4921 ident: bib5 article-title: Comparison of uniaxial deformation in shock and static loading of three rocks publication-title: J Geophys Res – volume: 45 start-page: 4648 year: 2008 end-page: 4661 ident: bib16 article-title: Modelling of compressive behaviour of concrete-like materials at high strain rate publication-title: Int J Solids Struct – volume: 125 start-page: 1154 year: 1999 end-page: 1163 ident: bib25 article-title: Numerical study of compressive behavior of concrete at high strain rates publication-title: J Eng Mech-ASCE – volume: 28 start-page: 677 year: 2003 end-page: 696 ident: bib34 article-title: An SHPB set-up with reduced time-shift and pressure bar length publication-title: Int J Impact Eng – volume: 24 start-page: 425 year: 1991 end-page: 450 ident: bib15 article-title: Compression behaviour of concrete at high strain-rates publication-title: Mater Struct – volume: 36 start-page: 1327 year: 2009 end-page: 1334 ident: bib4 article-title: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests, part I: experiments publication-title: Int J Impact Eng – volume: 22 start-page: 55 year: 1990 end-page: 69 ident: bib14 article-title: Separation of waves propagating in an elastic or viscoelastic Hopkinson pressure bar with three dimensional effects publication-title: Int J Impact Eng – reference: Lu, Y, Song, ZH, Tu, ZG. Numerical simulation study of the strain rate effect on concrete in compression considering material heterogeneity, The 9th International Conference of DYMAT Association, Sept. 2009, Brussels, Belgium. – volume: 11 start-page: 155 year: 1963 end-page: 179 ident: bib8 article-title: The dynamic compression testing of solids by the method of the split Hopkinson pressure bar publication-title: J Mech Phys Solids – volume: vol. 8 start-page: 198 year: 1985 end-page: 203 ident: bib19 article-title: The Hopkinson pressure bar publication-title: ASM handbook – volume: 19 start-page: 847 year: 1997 end-page: 873 ident: bib29 article-title: A plasticity concrete material model for Dyna3D publication-title: Int J Impact Eng – volume: 41 start-page: 131 year: 2004 end-page: 143 ident: bib36 article-title: Modelling of concrete materials under blast loading publication-title: Int J Solids Struct – volume: 33 start-page: 3363 year: 1996 end-page: 3375 ident: bib11 article-title: On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains publication-title: Int J Solids Struct – volume: 35 start-page: 155 year: 2008 end-page: 171 ident: bib26 article-title: Shock properties of conventional and high strength concrete: experimental and mesomechanical analysis publication-title: Int J Impact Eng – volume: 112 start-page: 309 year: 1990 end-page: 314 ident: bib13 article-title: Dispersion investigation in the split Hopkinson pressure bar publication-title: J Eng Mater Technol – volume: 2 start-page: 177 year: 2011 end-page: 206 ident: bib37 article-title: Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate publication-title: Int J Prot Struct – volume: 33 start-page: 1407 year: 2009 end-page: 1423 ident: bib27 article-title: A mesoscopic model for the behaviour of concrete under high confinement publication-title: Int J Numer Anal Meth Geomech – volume: 28 start-page: 537 year: 2003 end-page: 555 ident: bib18 article-title: Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments publication-title: Int J Impact Eng – year: 2006 ident: bib31 article-title: Experimental rock mechanics – volume: 449 start-page: 187 year: 1995 end-page: 204 ident: bib17 article-title: Stress wave propagation effects in split Hopkinson pressure bar tests publication-title: P Roy Soc Lond A Mat – volume: 37 start-page: 197 year: 2011 end-page: 213 ident: bib28 article-title: Mesoscale modeling of concrete for static and dynamic response analysis part 1: model development and implement publication-title: Struct Eng Mech – volume: 1 start-page: 115 year: 1996 end-page: 127 ident: bib32 article-title: Experimental investigation of concrete fracture under uniaxial compression publication-title: Mech Cohes-Frict Mat – volume: 92 start-page: 75 year: 1990 end-page: 81 ident: bib2 article-title: Effects of strain rate on concrete strength publication-title: ACI Mate J – volume: 43 start-page: 1335 year: 1995 end-page: 1348 ident: bib10 article-title: A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar: application to experimental techniques publication-title: J Mech Phys Solids – volume: 42 start-page: 623 year: 2006 end-page: 636 ident: bib23 article-title: Mesoscale models for concrete: homogenisation and damage behaviour publication-title: Finite Elem Anal Des – volume: 44 start-page: 689 year: 2009 end-page: 698 ident: bib20 article-title: Specimen size and shape effect in split Hopkinson pressure bar testing publication-title: J Strain Anal Eng – volume: 2 start-page: 177 issue: 2 year: 2011 ident: 10.1016/j.ijimpeng.2012.01.010_bib37 article-title: Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate publication-title: Int J Prot Struct doi: 10.1260/2041-4196.2.2.177 – volume: 36 start-page: 1327 year: 2009 ident: 10.1016/j.ijimpeng.2012.01.010_bib4 article-title: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests, part I: experiments publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2009.04.009 – volume: 33 start-page: 3363 year: 1996 ident: 10.1016/j.ijimpeng.2012.01.010_bib11 article-title: On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains publication-title: Int J Solids Struct doi: 10.1016/0020-7683(95)00186-7 – volume: 22 start-page: 55 year: 1990 ident: 10.1016/j.ijimpeng.2012.01.010_bib14 article-title: Separation of waves propagating in an elastic or viscoelastic Hopkinson pressure bar with three dimensional effects publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(98)00048-7 – ident: 10.1016/j.ijimpeng.2012.01.010_bib22 – volume: 11 start-page: 155 year: 1963 ident: 10.1016/j.ijimpeng.2012.01.010_bib8 article-title: The dynamic compression testing of solids by the method of the split Hopkinson pressure bar publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(63)90050-4 – volume: vol. 8 year: 2000 ident: 10.1016/j.ijimpeng.2012.01.010_bib9 – volume: 35 start-page: 155 year: 2008 ident: 10.1016/j.ijimpeng.2012.01.010_bib26 article-title: Shock properties of conventional and high strength concrete: experimental and mesomechanical analysis publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2007.02.001 – volume: 1 start-page: 197 year: 2010 ident: 10.1016/j.ijimpeng.2012.01.010_bib7 article-title: Analysis of dynamic response of concrete using a mesoscale model incorporating 3D effects publication-title: Int J Prot Struct doi: 10.1260/2041-4196.1.2.197 – volume: 40 start-page: 343 year: 2003 ident: 10.1016/j.ijimpeng.2012.01.010_bib6 article-title: About the dynamic strength enhancement of concrete like materials in a split Hopkinson pressure bar test publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(02)00526-7 – volume: 28 start-page: 537 year: 2003 ident: 10.1016/j.ijimpeng.2012.01.010_bib18 article-title: Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(02)00073-8 – volume: 112 start-page: 309 year: 1990 ident: 10.1016/j.ijimpeng.2012.01.010_bib13 article-title: Dispersion investigation in the split Hopkinson pressure bar publication-title: J Eng Mater Technol doi: 10.1115/1.2903329 – volume: 44 start-page: 689 year: 2009 ident: 10.1016/j.ijimpeng.2012.01.010_bib20 article-title: Specimen size and shape effect in split Hopkinson pressure bar testing publication-title: J Strain Anal Eng doi: 10.1243/03093247JSA538 – volume: 36 start-page: 283 year: 2009 ident: 10.1016/j.ijimpeng.2012.01.010_bib21 article-title: Numerical assessment for impact strength measurements in concrete materials publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2007.12.012 – volume: 13 start-page: 4913 year: 1971 ident: 10.1016/j.ijimpeng.2012.01.010_bib5 article-title: Comparison of uniaxial deformation in shock and static loading of three rocks publication-title: J Geophys Res doi: 10.1029/JB076i020p04913 – volume: 41 start-page: 131 year: 2004 ident: 10.1016/j.ijimpeng.2012.01.010_bib36 article-title: Modelling of concrete materials under blast loading publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2003.09.019 – volume: 45 start-page: 4648 year: 2008 ident: 10.1016/j.ijimpeng.2012.01.010_bib16 article-title: Modelling of compressive behaviour of concrete-like materials at high strain rate publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2008.04.002 – volume: 19 start-page: 847 year: 1997 ident: 10.1016/j.ijimpeng.2012.01.010_bib29 article-title: A plasticity concrete material model for Dyna3D publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(97)00023-7 – year: 1993 ident: 10.1016/j.ijimpeng.2012.01.010_bib35 – volume: 70 start-page: 533 year: 1999 ident: 10.1016/j.ijimpeng.2012.01.010_bib24 article-title: Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh publication-title: Comput Struct doi: 10.1016/S0045-7949(98)00177-1 – volume: vol. 8 start-page: 198 year: 1985 ident: 10.1016/j.ijimpeng.2012.01.010_bib19 article-title: The Hopkinson pressure bar – volume: 43 start-page: 1335 year: 1995 ident: 10.1016/j.ijimpeng.2012.01.010_bib10 article-title: A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar: application to experimental techniques publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(95)00030-M – volume: 42 start-page: 623 year: 2006 ident: 10.1016/j.ijimpeng.2012.01.010_bib23 article-title: Mesoscale models for concrete: homogenisation and damage behaviour publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2005.11.008 – volume: 28 start-page: 677 year: 2003 ident: 10.1016/j.ijimpeng.2012.01.010_bib34 article-title: An SHPB set-up with reduced time-shift and pressure bar length publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(02)00124-0 – volume: 37 start-page: 197 year: 2011 ident: 10.1016/j.ijimpeng.2012.01.010_bib28 article-title: Mesoscale modeling of concrete for static and dynamic response analysis part 1: model development and implement publication-title: Struct Eng Mech doi: 10.12989/sem.2011.37.2.197 – volume: 45 start-page: 1185 year: 1997 ident: 10.1016/j.ijimpeng.2012.01.010_bib12 article-title: A new method for the separation of waves: application to the SHPB technique for an unlimited duration of measurement publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(96)00117-2 – volume: 449 start-page: 187 year: 1995 ident: 10.1016/j.ijimpeng.2012.01.010_bib17 article-title: Stress wave propagation effects in split Hopkinson pressure bar tests publication-title: P Roy Soc Lond A Mat doi: 10.1098/rspa.1995.0039 – ident: 10.1016/j.ijimpeng.2012.01.010_bib33 doi: 10.1051/dymat/2009229 – volume: 25 start-page: 869 year: 2001 ident: 10.1016/j.ijimpeng.2012.01.010_bib3 article-title: Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(01)00020-3 – volume: 92 start-page: 75 year: 1990 ident: 10.1016/j.ijimpeng.2012.01.010_bib2 article-title: Effects of strain rate on concrete strength publication-title: ACI Mate J – year: 1990 ident: 10.1016/j.ijimpeng.2012.01.010_bib1 – volume: 24 start-page: 425 year: 1991 ident: 10.1016/j.ijimpeng.2012.01.010_bib15 article-title: Compression behaviour of concrete at high strain-rates publication-title: Mater Struct doi: 10.1007/BF02472016 – volume: 36 year: 2009 ident: 10.1016/j.ijimpeng.2012.01.010_bib30 article-title: Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2007.12.010 – volume: 125 start-page: 1154 year: 1999 ident: 10.1016/j.ijimpeng.2012.01.010_bib25 article-title: Numerical study of compressive behavior of concrete at high strain rates publication-title: J Eng Mech-ASCE doi: 10.1061/(ASCE)0733-9399(1999)125:10(1154) – volume: 33 start-page: 1407 year: 2009 ident: 10.1016/j.ijimpeng.2012.01.010_bib27 article-title: A mesoscopic model for the behaviour of concrete under high confinement publication-title: Int J Numer Anal Meth Geomech doi: 10.1002/nag.771 – year: 2006 ident: 10.1016/j.ijimpeng.2012.01.010_bib31 – volume: 1 start-page: 115 year: 1996 ident: 10.1016/j.ijimpeng.2012.01.010_bib32 article-title: Experimental investigation of concrete fracture under uniaxial compression publication-title: Mech Cohes-Frict Mat doi: 10.1002/(SICI)1099-1484(199601)1:1<115::AID-CFM6>3.0.CO;2-U |
SSID | ssj0017050 |
Score | 2.4256344 |
Snippet | The strain rate effect on the behaviour of brittle materials like concrete has been a classical topic of interest in the shock and impact engineering... An investigation on the dynamic behaviour of concrete specimens under high strain rate compression using mesoscale numerical simulation is presented. Beyond a... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 41 |
SubjectTerms | Compression tests Compressive strength Concrete Concretes Dynamic strength Dynamics Exact sciences and technology Failure Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Heterogeneity High strain rate Mathematical models Mesoscale model Physics Solid mechanics Strain rate Stress wave Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
Title | Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2012.01.010 https://www.proquest.com/docview/1019649359 https://www.proquest.com/docview/1038236673 https://www.proquest.com/docview/1692392383 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iL4qIV5yXEcHXumZN0vZxiDIVfdHB3kpulQ7phqugL_vtntPL2FDmg9CXtkm65iQnX9bvO4eQSwC9gXA88IRvhcdDH_ygibmX-kb7QZRKXabzeXyS_QG_H4rhGrlutDBIq6x9f-XTS29dX-nUvdmZZFnnGQYnh_VvyFBtAsgYFew8xFF-NZvTPDBaTPk_CxT2sPSCSnh0lY0yAKf5K1K8umX4TlTS_r5AbU_UFLotrfJd_HDd5Xp0u0t2aiBJe9Vv3SNrLt8nWwvhBQ_I7NFNxyg7yQxVdfAROk4pbIEBKxaOooDsnbpPlAqA13v7ohi9mE7LvBEUg0hQpJxXVNkc2rA0W2CgU7iWLZEWsXXArgVF4ukhGdzevFz3vTrfgmcAFRaeBegmnVRgHgW7IA1zMzQ8jLSWTGmWxkJx5pizkYxUlAZ-bETIuA5gCwQ4wARHZD0f5-6YUEwFaYxwwloLt1TEUucLLXTXdlMreIuIppMTUwcjx3d7SxrW2ShpjJOgcRKfweG3SGdeb1KF4_izRtzYMFkaWAmsGX_WbS8Zff5I8HNhyJhskYtmFCQwLfFbi8rd-GOKrcaSo-x5VRn8CIt5V1eUkYDA4YiCk3-8yCnZxLOKuHhG1ov3D3cOYKrQ7XK2tMlG7-6h__QN81QiJw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB5S59CWEpo-qPtIVOh1a8kraXePITQ4TexLE_BNrB5b1oS1iTfQXvrbO7MPY9OQHAo66bUrjTT6hL6ZAfiCoDdWQcaR4l5FMuGoB10mo4I7y-O00LYJ5zOd6cm1_D5X8z047W1hiFbZ6f5WpzfaussZdbM5WpXl6AcuTonn31yQtQki4yewT96p1AD2T84vJrPNY0LCm0CtVD-iBluGwouv5aJEfFr9JJbXuPHgSca0959RL1b5GmeuaENe_KO9myPp7CUcdFiSnbS_ewh7oXoFz7c8DL6GP9OwXpLlSelY3vkfYcuC4S0Y4WIdGNmQ3bLwi6wFUPHd_GbkwJitm9ARjPxIMGKdt2zZCvvwrNwioTPMK3d4i9Q7wteaEff0DVyffbs6nURdyIXIITCsI4_oTQedo4RyvAhZ3J6Jk0lqrRa5FUWmcimCCD7VaZ4WMc-cSoS0Md6CEAq4-C0MqmUV3gGjaJDOqaC891iUp6IIXFllx35ceCWHoPpJNq7zR05juzE98WxheuEYEo7hAhMfwmjTbtV65Hi0RdbL0OysLYPHxqNtj3aEvvkkqrokEUIP4XO_CgzuTHpuyauwvFtTr5mWZPn8UB16h6XQqw_U0QjCMaXx-_8YyDE8nVxNL83l-eziAzyjkpbH-BEG9e1d-ITYqrZH3d75C8UBJNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesoscopic+analysis+of+concrete+under+excessively+high+strain+rate+compression+and+implications+on+interpretation+of+test+data&rft.jtitle=International+journal+of+impact+engineering&rft.au=Song%2C+Zhenhuan&rft.au=Lu%2C+Yong&rft.date=2012-08-01&rft.issn=0734-743X&rft.volume=46&rft.spage=41&rft.epage=55&rft_id=info:doi/10.1016%2Fj.ijimpeng.2012.01.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |