Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data

The strain rate effect on the behaviour of brittle materials like concrete has been a classical topic of interest in the shock and impact engineering community. For concrete under high strain rate compression, a dynamic increase factor (DIF) is commonly used to account for the nominal dynamic streng...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 46; pp. 41 - 55
Main Authors Song, Zhenhuan, Lu, Yong
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The strain rate effect on the behaviour of brittle materials like concrete has been a classical topic of interest in the shock and impact engineering community. For concrete under high strain rate compression, a dynamic increase factor (DIF) is commonly used to account for the nominal dynamic strength enhancement for engineering applications. The cause of the experimentally observed DIF on standard concrete specimens has been a subject of securitization in recent years. This paper presents an investigation on the dynamic behaviour of concrete specimens under high strain rate compression with the aid of mesoscale numerical simulation. Beyond a further observation on the so-called lateral inertia confinement effect, special attention is paid to the transient shock wave effect and the propagation of material failure when a specimen is loaded with a strain rate exceeding a theoretical limit for a given specimen size, i.e., in the “excessive” strain rate regime as referred to in this paper. Based on the simulation, it is argued that the validity of many existing test data on the nominal compression DIF for concrete, especially those in the very high strain regime, is rather questionable. The correlation between the externally measured (inferred) strength-strain data and the actual material dynamic response within the specimen is examined. The influence of the material heterogeneity on the DIF is also discussed with quantification. ► Conflicting size requirements for high strain rate and bulk behaviour elaborated. ► Stress non-uniformity and propagating failure under high strain rates scrutinised. ► Correlation between external measurements and internal material behaviour discussed. ► Heterogeneity effect on dynamic strength enhancement examined with quantification.
AbstractList The strain rate effect on the behaviour of brittle materials like concrete has been a classical topic of interest in the shock and impact engineering community. For concrete under high strain rate compression, a dynamic increase factor (DIF) is commonly used to account for the nominal dynamic strength enhancement for engineering applications. The cause of the experimentally observed DIF on standard concrete specimens has been a subject of securitization in recent years. This paper presents an investigation on the dynamic behaviour of concrete specimens under high strain rate compression with the aid of mesoscale numerical simulation. Beyond a further observation on the so-called lateral inertia confinement effect, special attention is paid to the transient shock wave effect and the propagation of material failure when a specimen is loaded with a strain rate exceeding a theoretical limit for a given specimen size, i.e., in the "excessive" strain rate regime as referred to in this paper. Based on the simulation, it is argued that the validity of many existing test data on the nominal compression DIF for concrete, especially those in the very high strain regime, is rather questionable. The correlation between the externally measured (inferred) strength-strain data and the actual material dynamic response within the specimen is examined. The influence of the material heterogeneity on the DIF is also discussed with quantification.
An investigation on the dynamic behaviour of concrete specimens under high strain rate compression using mesoscale numerical simulation is presented. Beyond a further observation on the so-called lateral inertia confinement effect, special attention was paid to the transient shock wave effect and the propagation of material failure when a specimen is loaded with a strain rate greater than a theoretical limit for a given specimen size, i.e., in the excessive strain rate regime. Based on the simulation, it is argued that the validity of many existing test data on the nominal compression dynamic increase factor (DIF) for concrete, especially those in the very high strain regime, is questionable. The correlation between the externally measured (inferred) strength-strain data and the actual material dynamic response within the specimen was examined. The influence of the material heterogeneity on the DIF is also discussed.
The strain rate effect on the behaviour of brittle materials like concrete has been a classical topic of interest in the shock and impact engineering community. For concrete under high strain rate compression, a dynamic increase factor (DIF) is commonly used to account for the nominal dynamic strength enhancement for engineering applications. The cause of the experimentally observed DIF on standard concrete specimens has been a subject of securitization in recent years. This paper presents an investigation on the dynamic behaviour of concrete specimens under high strain rate compression with the aid of mesoscale numerical simulation. Beyond a further observation on the so-called lateral inertia confinement effect, special attention is paid to the transient shock wave effect and the propagation of material failure when a specimen is loaded with a strain rate exceeding a theoretical limit for a given specimen size, i.e., in the “excessive” strain rate regime as referred to in this paper. Based on the simulation, it is argued that the validity of many existing test data on the nominal compression DIF for concrete, especially those in the very high strain regime, is rather questionable. The correlation between the externally measured (inferred) strength-strain data and the actual material dynamic response within the specimen is examined. The influence of the material heterogeneity on the DIF is also discussed with quantification. ► Conflicting size requirements for high strain rate and bulk behaviour elaborated. ► Stress non-uniformity and propagating failure under high strain rates scrutinised. ► Correlation between external measurements and internal material behaviour discussed. ► Heterogeneity effect on dynamic strength enhancement examined with quantification.
Author Lu, Yong
Song, Zhenhuan
Author_xml – sequence: 1
  givenname: Zhenhuan
  surname: Song
  fullname: Song, Zhenhuan
– sequence: 2
  givenname: Yong
  surname: Lu
  fullname: Lu, Yong
  email: yong.lu@ed.ac.uk
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25777116$$DView record in Pascal Francis
BookMark eNqNkUFrFDEUx4NUcFv9CpKL4GXXZDJJJuBBKWqFihcFbyHz5k2bZTYZk2zpXvzsZrrtxcsKD0KS3__3Qt45OQsxICGvOdtwxtW77cZv_W7GcLNpGG82jNdiz8iKd9qshWTmjKyYFu1at-LXC3Ke85YxrplkK_LnG-aYIc4eqAtuOmSfaRwpxAAJC9J9GDBRvAfM2d_hdKC3_uaW5pKcDzS5ikDczWm5jqE6BlofM3lwpe6rK1AfCqZKlIejxV4wFzq44l6S56ObMr56XC_Iz8-fflxera-_f_l6-fF6DZLpsh6klgqV60XjjFK9UUJDq7u-V9z1fDTStRw5Dp3qXDcKZkBq3vZCKdVyCeKCvD165xR_72t3u_MZcJpcwLjPlivTiFqdOI0y0TVVrP8H5Ua1RkhT0TePqMvgpjG5AD7bOfmdSwfbSK0156py748cpJhzwtGCP_7b8uFTVS5WZbf2aeh2GbplvBarcfVP_KnDyeCHYxDrFO48JpvBYwAcfEIodoj-lOIv3RHOpw
CODEN IJIED4
CitedBy_id crossref_primary_10_1016_j_msea_2021_142263
crossref_primary_10_1007_s40571_024_00736_9
crossref_primary_10_1016_j_cemconcomp_2020_103545
crossref_primary_10_1016_j_conbuildmat_2022_128416
crossref_primary_10_1016_j_ijimpeng_2022_104440
crossref_primary_10_3151_jact_22_561
crossref_primary_10_1016_j_conbuildmat_2022_128890
crossref_primary_10_1016_j_conbuildmat_2020_118449
crossref_primary_10_1016_j_engstruct_2019_109573
crossref_primary_10_1016_j_conbuildmat_2023_133570
crossref_primary_10_1016_j_compstruct_2023_117576
crossref_primary_10_1061__ASCE_MT_1943_5533_0003382
crossref_primary_10_1177_13694332241260867
crossref_primary_10_1016_j_engstruct_2023_116042
crossref_primary_10_1002_nme_6276
crossref_primary_10_1016_j_engfracmech_2024_109979
crossref_primary_10_1142_S1758825115500386
crossref_primary_10_1002_suco_202000125
crossref_primary_10_1016_j_istruc_2021_02_038
crossref_primary_10_1016_j_ijimpeng_2022_104279
crossref_primary_10_1016_j_jobe_2024_108587
crossref_primary_10_3390_ma15165710
crossref_primary_10_1016_j_cma_2024_116886
crossref_primary_10_1016_j_ijmecsci_2022_107161
crossref_primary_10_1061__ASCE_MT_1943_5533_0003439
crossref_primary_10_1186_s40069_020_00423_y
crossref_primary_10_1007_s00161_020_00881_5
crossref_primary_10_3390_buildings14123899
crossref_primary_10_1016_j_compstruct_2020_112843
crossref_primary_10_1061__ASCE_CC_1943_5614_0001138
crossref_primary_10_1016_j_engfracmech_2020_106979
crossref_primary_10_3390_polym15092048
crossref_primary_10_1080_09276440_2016_1158529
crossref_primary_10_1016_j_conbuildmat_2023_133166
crossref_primary_10_1080_15376494_2023_2258365
crossref_primary_10_1016_j_cemconres_2022_106799
crossref_primary_10_1016_j_engfracmech_2020_106974
crossref_primary_10_1680_jmacr_22_00091
crossref_primary_10_1016_j_cemconres_2020_106317
crossref_primary_10_1016_j_ijmecsci_2024_109012
crossref_primary_10_1016_j_conbuildmat_2021_124473
crossref_primary_10_1016_j_engfracmech_2024_109876
crossref_primary_10_1016_j_engstruct_2024_118485
crossref_primary_10_1155_2021_6621530
crossref_primary_10_1142_S0219876221430088
crossref_primary_10_3390_buildings12070908
crossref_primary_10_1007_s13369_024_09656_5
crossref_primary_10_1016_j_engfracmech_2022_109030
crossref_primary_10_1177_1369433217734654
crossref_primary_10_1016_j_jobe_2022_105517
crossref_primary_10_1061__ASCE_ST_1943_541X_0002827
crossref_primary_10_1177_13694332211066404
crossref_primary_10_1016_j_istruc_2024_106863
crossref_primary_10_1016_j_compstruc_2017_07_009
crossref_primary_10_1177_13694332221087342
crossref_primary_10_1002_suco_202200678
crossref_primary_10_1142_S1793431113500280
crossref_primary_10_1061__ASCE_MT_1943_5533_0004011
crossref_primary_10_1016_j_cscm_2022_e01056
crossref_primary_10_3390_buildings13030587
crossref_primary_10_1016_j_ijnonlinmec_2025_105039
crossref_primary_10_1016_j_conbuildmat_2017_11_094
crossref_primary_10_1016_j_tafmec_2023_103797
crossref_primary_10_1007_s43452_024_01024_2
crossref_primary_10_1177_13694332231181064
crossref_primary_10_1016_j_ijimpeng_2024_105188
crossref_primary_10_3390_ma14051099
crossref_primary_10_1016_j_ijmecsci_2021_106905
crossref_primary_10_1016_j_engfracmech_2024_110576
crossref_primary_10_3390_buildings13102604
crossref_primary_10_1016_j_engstruct_2022_114379
crossref_primary_10_1016_j_ijimpeng_2021_103907
crossref_primary_10_1016_j_ijmecsci_2021_106622
crossref_primary_10_1016_j_ijsolstr_2015_05_002
crossref_primary_10_1080_13632469_2025_2477157
crossref_primary_10_3390_ma18010015
crossref_primary_10_1016_j_cemconcomp_2023_105069
crossref_primary_10_2139_ssrn_4136988
crossref_primary_10_1007_s00466_016_1309_8
crossref_primary_10_1016_j_conbuildmat_2025_139961
crossref_primary_10_1016_j_ijimpeng_2017_08_003
crossref_primary_10_1680_jmacr_21_00123
crossref_primary_10_1016_j_engfracmech_2021_107870
crossref_primary_10_1061__ASCE_CC_1943_5614_0001041
crossref_primary_10_1016_j_engstruct_2021_112832
crossref_primary_10_1016_j_istruc_2022_09_104
crossref_primary_10_14359_51734483
crossref_primary_10_1016_j_engstruct_2021_112951
crossref_primary_10_1002_suco_201900338
crossref_primary_10_1016_j_actamat_2019_09_038
crossref_primary_10_1142_S1793431113500176
crossref_primary_10_1016_j_ijmecsci_2020_105468
crossref_primary_10_1016_j_compstruct_2022_116440
crossref_primary_10_1177_10567895241245860
crossref_primary_10_1007_s00466_023_02344_5
crossref_primary_10_1016_S1003_6326_13_62803_4
crossref_primary_10_1108_EC_10_2020_0564
crossref_primary_10_1016_j_conbuildmat_2020_119063
crossref_primary_10_1016_j_engfailanal_2024_108785
crossref_primary_10_1016_j_conbuildmat_2021_125199
crossref_primary_10_1016_j_cma_2022_115598
crossref_primary_10_1016_j_conbuildmat_2022_130145
crossref_primary_10_1016_j_conbuildmat_2021_123332
crossref_primary_10_1016_j_conbuildmat_2018_01_040
crossref_primary_10_1016_j_ijimpeng_2016_06_009
crossref_primary_10_1016_j_jcsr_2025_109472
crossref_primary_10_1016_j_engfracmech_2016_06_018
crossref_primary_10_1016_j_istruc_2024_106077
crossref_primary_10_3390_fractalfract8060304
crossref_primary_10_1016_j_istruc_2024_107561
crossref_primary_10_1016_j_conbuildmat_2021_124379
crossref_primary_10_1016_j_cemconres_2021_106577
crossref_primary_10_1007_s43452_024_01038_w
crossref_primary_10_1016_j_jobe_2023_108198
crossref_primary_10_1016_j_ijimpeng_2021_104103
crossref_primary_10_1007_s12205_021_1383_0
crossref_primary_10_1016_j_engfracmech_2022_108661
crossref_primary_10_1016_j_jobe_2023_106210
crossref_primary_10_1051_epjconf_20159404038
crossref_primary_10_1016_j_conbuildmat_2022_127580
crossref_primary_10_1051_epjconf_20159404031
crossref_primary_10_1016_j_compstruct_2022_115600
crossref_primary_10_1016_j_cemconcomp_2020_103889
crossref_primary_10_1016_j_conbuildmat_2020_119639
crossref_primary_10_1016_j_compstruct_2022_116267
crossref_primary_10_1016_j_ijmecsci_2023_108519
crossref_primary_10_1002_suco_202200631
crossref_primary_10_1016_j_conbuildmat_2021_124302
crossref_primary_10_1016_j_ijmecsci_2020_106130
crossref_primary_10_1016_j_compstruct_2022_115690
crossref_primary_10_1016_j_conbuildmat_2022_126485
crossref_primary_10_1016_j_jobe_2022_105693
crossref_primary_10_1016_j_engstruct_2024_119543
crossref_primary_10_1007_s43452_023_00833_1
crossref_primary_10_1016_j_conbuildmat_2023_130346
crossref_primary_10_1016_j_tws_2020_107158
crossref_primary_10_1016_j_engfailanal_2024_108569
crossref_primary_10_1016_j_engfracmech_2020_107080
crossref_primary_10_1061__ASCE_CC_1943_5614_0001236
crossref_primary_10_1016_j_prostr_2018_12_092
crossref_primary_10_1016_j_compstruc_2016_09_005
crossref_primary_10_1177_1056789517735679
crossref_primary_10_1260_2041_4196_4_3_451
crossref_primary_10_1061__ASCE_EM_1943_7889_0002180
crossref_primary_10_1016_j_coldregions_2023_104110
crossref_primary_10_1016_j_ijimpeng_2021_103942
crossref_primary_10_1016_j_istruc_2024_107186
crossref_primary_10_1016_j_istruc_2023_105261
crossref_primary_10_1016_j_mechmat_2023_104866
crossref_primary_10_1177_10567895231160811
crossref_primary_10_1080_09276440_2019_1642018
crossref_primary_10_1061__ASCE_MT_1943_5533_0002602
Cites_doi 10.1260/2041-4196.2.2.177
10.1016/j.ijimpeng.2009.04.009
10.1016/0020-7683(95)00186-7
10.1016/S0734-743X(98)00048-7
10.1016/0022-5096(63)90050-4
10.1016/j.ijimpeng.2007.02.001
10.1260/2041-4196.1.2.197
10.1016/S0020-7683(02)00526-7
10.1016/S0734-743X(02)00073-8
10.1115/1.2903329
10.1243/03093247JSA538
10.1016/j.ijimpeng.2007.12.012
10.1029/JB076i020p04913
10.1016/j.ijsolstr.2003.09.019
10.1016/j.ijsolstr.2008.04.002
10.1016/S0734-743X(97)00023-7
10.1016/S0045-7949(98)00177-1
10.1016/0022-5096(95)00030-M
10.1016/j.finel.2005.11.008
10.1016/S0734-743X(02)00124-0
10.12989/sem.2011.37.2.197
10.1016/S0022-5096(96)00117-2
10.1098/rspa.1995.0039
10.1051/dymat/2009229
10.1016/S0734-743X(01)00020-3
10.1007/BF02472016
10.1016/j.ijimpeng.2007.12.010
10.1061/(ASCE)0733-9399(1999)125:10(1154)
10.1002/nag.771
10.1002/(SICI)1099-1484(199601)1:1<115::AID-CFM6>3.0.CO;2-U
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7QQ
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijimpeng.2012.01.010
DatabaseName CrossRef
Pascal-Francis
Ceramic Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Ceramic Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database
Materials Research Database

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-3509
EndPage 55
ExternalDocumentID 25777116
10_1016_j_ijimpeng_2012_01_010
S0734743X12000255
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7QQ
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c507t-d5756e6ab32a966b9637c478bb61ab1f95a41e1ed868a8f309c5714b3666415c3
IEDL.DBID .~1
ISSN 0734-743X
IngestDate Mon Jul 21 11:35:28 EDT 2025
Fri Jul 11 11:55:26 EDT 2025
Fri Jul 11 02:30:11 EDT 2025
Mon Jul 21 09:14:22 EDT 2025
Tue Jul 01 03:11:36 EDT 2025
Thu Apr 24 22:52:05 EDT 2025
Fri Feb 23 02:28:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mesoscale model
Dynamic strength
Concrete
Stress wave
High strain rate
Confinement
High strain
Data compression
Elastic wave
Test bar
Modeling
Shock wave
Deformation measurement
Size effect
High speed
Strain rate
Transient response
Vibration
Wave effect
Rupture
Brittle material
Mesoscale
Concrete construction
Inertia
Strength
Dynamic load
Mechanical shock
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-d5756e6ab32a966b9637c478bb61ab1f95a41e1ed868a8f309c5714b3666415c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1019649359
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1692392383
proquest_miscellaneous_1038236673
proquest_miscellaneous_1019649359
pascalfrancis_primary_25777116
crossref_citationtrail_10_1016_j_ijimpeng_2012_01_010
crossref_primary_10_1016_j_ijimpeng_2012_01_010
elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2012_01_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of impact engineering
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Follansbee (bib19) 1985; vol. 8
Zhang, Wu, Li, Huang (bib4) 2009; 36
Lu, Song, Tu (bib7) 2010; 1
Dioh, Ivankovic, Leevers, Williams (bib17) 1995; 449
Riedel, Wicklein, Thoma (bib26) 2008; 35
Zhao, Gary (bib11) 1996; 33
Gary (bib1) 1990
Malvar, Crawford, Wesevich (bib29) 1997; 19
Meng, Li (bib34) 2003; 28
Wang, Kwan, Chan (bib24) 1999; 70
Lu, Xu (bib36) 2004; 41
Comite Euro-International du Beton (bib35) 1993
Davies, Hunter (bib8) 1963; 11
Hao, Hao (bib37) 2011; 2
Eckardt, S, Hafner, S, Konke, C. Simulation of the fracture behaviour of concrete using continuum damage models at the mesoscale, The ECCOMAS 2004 Congress, Jyväskylä, Finland.
Meng, Li (bib18) 2003; 28
Gong, Malvern, Jenkins (bib13) 1990; 112
Dupray, Malecot, Daudeville, Buzaud (bib27) 2009; 33
Mogi (bib31) 2006
Zhao, Gary (bib12) 1997; 45
Grote, Park, Zhou (bib3) 2001; 25
Lu, Y, Song, ZH, Tu, ZG. Numerical simulation study of the strain rate effect on concrete in compression considering material heterogeneity, The 9th International Conference of DYMAT Association, Sept. 2009, Brussels, Belgium.
Van, Vliet, van Mier (bib32) 1996; 1
Pankow, Attard, Waas (bib20) 2009; 44
Riedel, Kawai, Kondo (bib21) 2009; 36
Bischoff, Perry (bib15) 1991; 24
Donze, Magnier, Daudeville, Mariotti, Davenne (bib25) 1999; 125
Tu, Lu (bib30) 2009; 36
Zhou, Hao (bib16) 2008; 45
Bacon (bib14) 1990; 22
Zhao, Gary (bib10) 1995; 43
Tu, Lu (bib28) 2011; 37
(bib9) 2000; vol. 8
Li, Meng (bib6) 2003; 40
Ross, Tedesco, Kuennen (bib2) 1990; 92
Brace, Jones (bib5) 1971; 13
Wriggers, Moftah (bib23) 2006; 42
Zhang (10.1016/j.ijimpeng.2012.01.010_bib4) 2009; 36
Zhou (10.1016/j.ijimpeng.2012.01.010_bib16) 2008; 45
10.1016/j.ijimpeng.2012.01.010_bib33
Comite Euro-International du Beton (10.1016/j.ijimpeng.2012.01.010_bib35) 1993
Tu (10.1016/j.ijimpeng.2012.01.010_bib30) 2009; 36
Dioh (10.1016/j.ijimpeng.2012.01.010_bib17) 1995; 449
Dupray (10.1016/j.ijimpeng.2012.01.010_bib27) 2009; 33
Tu (10.1016/j.ijimpeng.2012.01.010_bib28) 2011; 37
Meng (10.1016/j.ijimpeng.2012.01.010_bib18) 2003; 28
Ross (10.1016/j.ijimpeng.2012.01.010_bib2) 1990; 92
Riedel (10.1016/j.ijimpeng.2012.01.010_bib21) 2009; 36
Lu (10.1016/j.ijimpeng.2012.01.010_bib7) 2010; 1
Meng (10.1016/j.ijimpeng.2012.01.010_bib34) 2003; 28
Follansbee (10.1016/j.ijimpeng.2012.01.010_bib19) 1985; vol. 8
Bacon (10.1016/j.ijimpeng.2012.01.010_bib14) 1990; 22
Gary (10.1016/j.ijimpeng.2012.01.010_bib1) 1990
Zhao (10.1016/j.ijimpeng.2012.01.010_bib12) 1997; 45
Wriggers (10.1016/j.ijimpeng.2012.01.010_bib23) 2006; 42
Li (10.1016/j.ijimpeng.2012.01.010_bib6) 2003; 40
Davies (10.1016/j.ijimpeng.2012.01.010_bib8) 1963; 11
Pankow (10.1016/j.ijimpeng.2012.01.010_bib20) 2009; 44
10.1016/j.ijimpeng.2012.01.010_bib22
Donze (10.1016/j.ijimpeng.2012.01.010_bib25) 1999; 125
Grote (10.1016/j.ijimpeng.2012.01.010_bib3) 2001; 25
Zhao (10.1016/j.ijimpeng.2012.01.010_bib11) 1996; 33
Lu (10.1016/j.ijimpeng.2012.01.010_bib36) 2004; 41
Wang (10.1016/j.ijimpeng.2012.01.010_bib24) 1999; 70
Gong (10.1016/j.ijimpeng.2012.01.010_bib13) 1990; 112
Riedel (10.1016/j.ijimpeng.2012.01.010_bib26) 2008; 35
Van, Vliet (10.1016/j.ijimpeng.2012.01.010_bib32) 1996; 1
Zhao (10.1016/j.ijimpeng.2012.01.010_bib10) 1995; 43
Malvar (10.1016/j.ijimpeng.2012.01.010_bib29) 1997; 19
Mogi (10.1016/j.ijimpeng.2012.01.010_bib31) 2006
Brace (10.1016/j.ijimpeng.2012.01.010_bib5) 1971; 13
(10.1016/j.ijimpeng.2012.01.010_bib9) 2000; vol. 8
Bischoff (10.1016/j.ijimpeng.2012.01.010_bib15) 1991; 24
Hao (10.1016/j.ijimpeng.2012.01.010_bib37) 2011; 2
References_xml – volume: 1
  start-page: 197
  year: 2010
  end-page: 217
  ident: bib7
  article-title: Analysis of dynamic response of concrete using a mesoscale model incorporating 3D effects
  publication-title: Int J Prot Struct
– volume: 36
  start-page: 283
  year: 2009
  end-page: 293
  ident: bib21
  article-title: Numerical assessment for impact strength measurements in concrete materials
  publication-title: Int J Impact Eng
– volume: 70
  start-page: 533
  year: 1999
  end-page: 544
  ident: bib24
  article-title: Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh
  publication-title: Comput Struct
– volume: vol. 8
  year: 2000
  ident: bib9
  publication-title: ASM handbook: mechanical testing and evaluation
– reference: Eckardt, S, Hafner, S, Konke, C. Simulation of the fracture behaviour of concrete using continuum damage models at the mesoscale, The ECCOMAS 2004 Congress, Jyväskylä, Finland.
– volume: 36
  year: 2009
  ident: bib30
  article-title: Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations
  publication-title: Int J Impact Eng
– year: 1990
  ident: bib1
  article-title: Essais à grande vitesse sur béton. Problèmes spéci-fiques, Rapport spécifique du GRECO
– volume: 25
  start-page: 869
  year: 2001
  end-page: 886
  ident: bib3
  article-title: Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization
  publication-title: Int J Impact Eng
– volume: 45
  start-page: 1185
  year: 1997
  end-page: 1202
  ident: bib12
  article-title: A new method for the separation of waves: application to the SHPB technique for an unlimited duration of measurement
  publication-title: J Mech Phys Solids
– year: 1993
  ident: bib35
  article-title: Redwood books
– volume: 40
  start-page: 343
  year: 2003
  end-page: 360
  ident: bib6
  article-title: About the dynamic strength enhancement of concrete like materials in a split Hopkinson pressure bar test
  publication-title: Int J Solids Struct
– volume: 13
  start-page: 4913
  year: 1971
  end-page: 4921
  ident: bib5
  article-title: Comparison of uniaxial deformation in shock and static loading of three rocks
  publication-title: J Geophys Res
– volume: 45
  start-page: 4648
  year: 2008
  end-page: 4661
  ident: bib16
  article-title: Modelling of compressive behaviour of concrete-like materials at high strain rate
  publication-title: Int J Solids Struct
– volume: 125
  start-page: 1154
  year: 1999
  end-page: 1163
  ident: bib25
  article-title: Numerical study of compressive behavior of concrete at high strain rates
  publication-title: J Eng Mech-ASCE
– volume: 28
  start-page: 677
  year: 2003
  end-page: 696
  ident: bib34
  article-title: An SHPB set-up with reduced time-shift and pressure bar length
  publication-title: Int J Impact Eng
– volume: 24
  start-page: 425
  year: 1991
  end-page: 450
  ident: bib15
  article-title: Compression behaviour of concrete at high strain-rates
  publication-title: Mater Struct
– volume: 36
  start-page: 1327
  year: 2009
  end-page: 1334
  ident: bib4
  article-title: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests, part I: experiments
  publication-title: Int J Impact Eng
– volume: 22
  start-page: 55
  year: 1990
  end-page: 69
  ident: bib14
  article-title: Separation of waves propagating in an elastic or viscoelastic Hopkinson pressure bar with three dimensional effects
  publication-title: Int J Impact Eng
– reference: Lu, Y, Song, ZH, Tu, ZG. Numerical simulation study of the strain rate effect on concrete in compression considering material heterogeneity, The 9th International Conference of DYMAT Association, Sept. 2009, Brussels, Belgium.
– volume: 11
  start-page: 155
  year: 1963
  end-page: 179
  ident: bib8
  article-title: The dynamic compression testing of solids by the method of the split Hopkinson pressure bar
  publication-title: J Mech Phys Solids
– volume: vol. 8
  start-page: 198
  year: 1985
  end-page: 203
  ident: bib19
  article-title: The Hopkinson pressure bar
  publication-title: ASM handbook
– volume: 19
  start-page: 847
  year: 1997
  end-page: 873
  ident: bib29
  article-title: A plasticity concrete material model for Dyna3D
  publication-title: Int J Impact Eng
– volume: 41
  start-page: 131
  year: 2004
  end-page: 143
  ident: bib36
  article-title: Modelling of concrete materials under blast loading
  publication-title: Int J Solids Struct
– volume: 33
  start-page: 3363
  year: 1996
  end-page: 3375
  ident: bib11
  article-title: On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains
  publication-title: Int J Solids Struct
– volume: 35
  start-page: 155
  year: 2008
  end-page: 171
  ident: bib26
  article-title: Shock properties of conventional and high strength concrete: experimental and mesomechanical analysis
  publication-title: Int J Impact Eng
– volume: 112
  start-page: 309
  year: 1990
  end-page: 314
  ident: bib13
  article-title: Dispersion investigation in the split Hopkinson pressure bar
  publication-title: J Eng Mater Technol
– volume: 2
  start-page: 177
  year: 2011
  end-page: 206
  ident: bib37
  article-title: Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate
  publication-title: Int J Prot Struct
– volume: 33
  start-page: 1407
  year: 2009
  end-page: 1423
  ident: bib27
  article-title: A mesoscopic model for the behaviour of concrete under high confinement
  publication-title: Int J Numer Anal Meth Geomech
– volume: 28
  start-page: 537
  year: 2003
  end-page: 555
  ident: bib18
  article-title: Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments
  publication-title: Int J Impact Eng
– year: 2006
  ident: bib31
  article-title: Experimental rock mechanics
– volume: 449
  start-page: 187
  year: 1995
  end-page: 204
  ident: bib17
  article-title: Stress wave propagation effects in split Hopkinson pressure bar tests
  publication-title: P Roy Soc Lond A Mat
– volume: 37
  start-page: 197
  year: 2011
  end-page: 213
  ident: bib28
  article-title: Mesoscale modeling of concrete for static and dynamic response analysis part 1: model development and implement
  publication-title: Struct Eng Mech
– volume: 1
  start-page: 115
  year: 1996
  end-page: 127
  ident: bib32
  article-title: Experimental investigation of concrete fracture under uniaxial compression
  publication-title: Mech Cohes-Frict Mat
– volume: 92
  start-page: 75
  year: 1990
  end-page: 81
  ident: bib2
  article-title: Effects of strain rate on concrete strength
  publication-title: ACI Mate J
– volume: 43
  start-page: 1335
  year: 1995
  end-page: 1348
  ident: bib10
  article-title: A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar: application to experimental techniques
  publication-title: J Mech Phys Solids
– volume: 42
  start-page: 623
  year: 2006
  end-page: 636
  ident: bib23
  article-title: Mesoscale models for concrete: homogenisation and damage behaviour
  publication-title: Finite Elem Anal Des
– volume: 44
  start-page: 689
  year: 2009
  end-page: 698
  ident: bib20
  article-title: Specimen size and shape effect in split Hopkinson pressure bar testing
  publication-title: J Strain Anal Eng
– volume: 2
  start-page: 177
  issue: 2
  year: 2011
  ident: 10.1016/j.ijimpeng.2012.01.010_bib37
  article-title: Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate
  publication-title: Int J Prot Struct
  doi: 10.1260/2041-4196.2.2.177
– volume: 36
  start-page: 1327
  year: 2009
  ident: 10.1016/j.ijimpeng.2012.01.010_bib4
  article-title: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests, part I: experiments
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2009.04.009
– volume: 33
  start-page: 3363
  year: 1996
  ident: 10.1016/j.ijimpeng.2012.01.010_bib11
  article-title: On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(95)00186-7
– volume: 22
  start-page: 55
  year: 1990
  ident: 10.1016/j.ijimpeng.2012.01.010_bib14
  article-title: Separation of waves propagating in an elastic or viscoelastic Hopkinson pressure bar with three dimensional effects
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(98)00048-7
– ident: 10.1016/j.ijimpeng.2012.01.010_bib22
– volume: 11
  start-page: 155
  year: 1963
  ident: 10.1016/j.ijimpeng.2012.01.010_bib8
  article-title: The dynamic compression testing of solids by the method of the split Hopkinson pressure bar
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(63)90050-4
– volume: vol. 8
  year: 2000
  ident: 10.1016/j.ijimpeng.2012.01.010_bib9
– volume: 35
  start-page: 155
  year: 2008
  ident: 10.1016/j.ijimpeng.2012.01.010_bib26
  article-title: Shock properties of conventional and high strength concrete: experimental and mesomechanical analysis
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2007.02.001
– volume: 1
  start-page: 197
  year: 2010
  ident: 10.1016/j.ijimpeng.2012.01.010_bib7
  article-title: Analysis of dynamic response of concrete using a mesoscale model incorporating 3D effects
  publication-title: Int J Prot Struct
  doi: 10.1260/2041-4196.1.2.197
– volume: 40
  start-page: 343
  year: 2003
  ident: 10.1016/j.ijimpeng.2012.01.010_bib6
  article-title: About the dynamic strength enhancement of concrete like materials in a split Hopkinson pressure bar test
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(02)00526-7
– volume: 28
  start-page: 537
  year: 2003
  ident: 10.1016/j.ijimpeng.2012.01.010_bib18
  article-title: Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(02)00073-8
– volume: 112
  start-page: 309
  year: 1990
  ident: 10.1016/j.ijimpeng.2012.01.010_bib13
  article-title: Dispersion investigation in the split Hopkinson pressure bar
  publication-title: J Eng Mater Technol
  doi: 10.1115/1.2903329
– volume: 44
  start-page: 689
  year: 2009
  ident: 10.1016/j.ijimpeng.2012.01.010_bib20
  article-title: Specimen size and shape effect in split Hopkinson pressure bar testing
  publication-title: J Strain Anal Eng
  doi: 10.1243/03093247JSA538
– volume: 36
  start-page: 283
  year: 2009
  ident: 10.1016/j.ijimpeng.2012.01.010_bib21
  article-title: Numerical assessment for impact strength measurements in concrete materials
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2007.12.012
– volume: 13
  start-page: 4913
  year: 1971
  ident: 10.1016/j.ijimpeng.2012.01.010_bib5
  article-title: Comparison of uniaxial deformation in shock and static loading of three rocks
  publication-title: J Geophys Res
  doi: 10.1029/JB076i020p04913
– volume: 41
  start-page: 131
  year: 2004
  ident: 10.1016/j.ijimpeng.2012.01.010_bib36
  article-title: Modelling of concrete materials under blast loading
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2003.09.019
– volume: 45
  start-page: 4648
  year: 2008
  ident: 10.1016/j.ijimpeng.2012.01.010_bib16
  article-title: Modelling of compressive behaviour of concrete-like materials at high strain rate
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2008.04.002
– volume: 19
  start-page: 847
  year: 1997
  ident: 10.1016/j.ijimpeng.2012.01.010_bib29
  article-title: A plasticity concrete material model for Dyna3D
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(97)00023-7
– year: 1993
  ident: 10.1016/j.ijimpeng.2012.01.010_bib35
– volume: 70
  start-page: 533
  year: 1999
  ident: 10.1016/j.ijimpeng.2012.01.010_bib24
  article-title: Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(98)00177-1
– volume: vol. 8
  start-page: 198
  year: 1985
  ident: 10.1016/j.ijimpeng.2012.01.010_bib19
  article-title: The Hopkinson pressure bar
– volume: 43
  start-page: 1335
  year: 1995
  ident: 10.1016/j.ijimpeng.2012.01.010_bib10
  article-title: A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar: application to experimental techniques
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(95)00030-M
– volume: 42
  start-page: 623
  year: 2006
  ident: 10.1016/j.ijimpeng.2012.01.010_bib23
  article-title: Mesoscale models for concrete: homogenisation and damage behaviour
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2005.11.008
– volume: 28
  start-page: 677
  year: 2003
  ident: 10.1016/j.ijimpeng.2012.01.010_bib34
  article-title: An SHPB set-up with reduced time-shift and pressure bar length
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(02)00124-0
– volume: 37
  start-page: 197
  year: 2011
  ident: 10.1016/j.ijimpeng.2012.01.010_bib28
  article-title: Mesoscale modeling of concrete for static and dynamic response analysis part 1: model development and implement
  publication-title: Struct Eng Mech
  doi: 10.12989/sem.2011.37.2.197
– volume: 45
  start-page: 1185
  year: 1997
  ident: 10.1016/j.ijimpeng.2012.01.010_bib12
  article-title: A new method for the separation of waves: application to the SHPB technique for an unlimited duration of measurement
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(96)00117-2
– volume: 449
  start-page: 187
  year: 1995
  ident: 10.1016/j.ijimpeng.2012.01.010_bib17
  article-title: Stress wave propagation effects in split Hopkinson pressure bar tests
  publication-title: P Roy Soc Lond A Mat
  doi: 10.1098/rspa.1995.0039
– ident: 10.1016/j.ijimpeng.2012.01.010_bib33
  doi: 10.1051/dymat/2009229
– volume: 25
  start-page: 869
  year: 2001
  ident: 10.1016/j.ijimpeng.2012.01.010_bib3
  article-title: Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(01)00020-3
– volume: 92
  start-page: 75
  year: 1990
  ident: 10.1016/j.ijimpeng.2012.01.010_bib2
  article-title: Effects of strain rate on concrete strength
  publication-title: ACI Mate J
– year: 1990
  ident: 10.1016/j.ijimpeng.2012.01.010_bib1
– volume: 24
  start-page: 425
  year: 1991
  ident: 10.1016/j.ijimpeng.2012.01.010_bib15
  article-title: Compression behaviour of concrete at high strain-rates
  publication-title: Mater Struct
  doi: 10.1007/BF02472016
– volume: 36
  year: 2009
  ident: 10.1016/j.ijimpeng.2012.01.010_bib30
  article-title: Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2007.12.010
– volume: 125
  start-page: 1154
  year: 1999
  ident: 10.1016/j.ijimpeng.2012.01.010_bib25
  article-title: Numerical study of compressive behavior of concrete at high strain rates
  publication-title: J Eng Mech-ASCE
  doi: 10.1061/(ASCE)0733-9399(1999)125:10(1154)
– volume: 33
  start-page: 1407
  year: 2009
  ident: 10.1016/j.ijimpeng.2012.01.010_bib27
  article-title: A mesoscopic model for the behaviour of concrete under high confinement
  publication-title: Int J Numer Anal Meth Geomech
  doi: 10.1002/nag.771
– year: 2006
  ident: 10.1016/j.ijimpeng.2012.01.010_bib31
– volume: 1
  start-page: 115
  year: 1996
  ident: 10.1016/j.ijimpeng.2012.01.010_bib32
  article-title: Experimental investigation of concrete fracture under uniaxial compression
  publication-title: Mech Cohes-Frict Mat
  doi: 10.1002/(SICI)1099-1484(199601)1:1<115::AID-CFM6>3.0.CO;2-U
SSID ssj0017050
Score 2.4256344
Snippet The strain rate effect on the behaviour of brittle materials like concrete has been a classical topic of interest in the shock and impact engineering...
An investigation on the dynamic behaviour of concrete specimens under high strain rate compression using mesoscale numerical simulation is presented. Beyond a...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 41
SubjectTerms Compression tests
Compressive strength
Concrete
Concretes
Dynamic strength
Dynamics
Exact sciences and technology
Failure
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Heterogeneity
High strain rate
Mathematical models
Mesoscale model
Physics
Solid mechanics
Strain rate
Stress wave
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Title Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data
URI https://dx.doi.org/10.1016/j.ijimpeng.2012.01.010
https://www.proquest.com/docview/1019649359
https://www.proquest.com/docview/1038236673
https://www.proquest.com/docview/1692392383
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iL4qIV5yXEcHXumZN0vZxiDIVfdHB3kpulQ7phqugL_vtntPL2FDmg9CXtkm65iQnX9bvO4eQSwC9gXA88IRvhcdDH_ygibmX-kb7QZRKXabzeXyS_QG_H4rhGrlutDBIq6x9f-XTS29dX-nUvdmZZFnnGQYnh_VvyFBtAsgYFew8xFF-NZvTPDBaTPk_CxT2sPSCSnh0lY0yAKf5K1K8umX4TlTS_r5AbU_UFLotrfJd_HDd5Xp0u0t2aiBJe9Vv3SNrLt8nWwvhBQ_I7NFNxyg7yQxVdfAROk4pbIEBKxaOooDsnbpPlAqA13v7ohi9mE7LvBEUg0hQpJxXVNkc2rA0W2CgU7iWLZEWsXXArgVF4ukhGdzevFz3vTrfgmcAFRaeBegmnVRgHgW7IA1zMzQ8jLSWTGmWxkJx5pizkYxUlAZ-bETIuA5gCwQ4wARHZD0f5-6YUEwFaYxwwloLt1TEUucLLXTXdlMreIuIppMTUwcjx3d7SxrW2ShpjJOgcRKfweG3SGdeb1KF4_izRtzYMFkaWAmsGX_WbS8Zff5I8HNhyJhskYtmFCQwLfFbi8rd-GOKrcaSo-x5VRn8CIt5V1eUkYDA4YiCk3-8yCnZxLOKuHhG1ov3D3cOYKrQ7XK2tMlG7-6h__QN81QiJw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB5S59CWEpo-qPtIVOh1a8kraXePITQ4TexLE_BNrB5b1oS1iTfQXvrbO7MPY9OQHAo66bUrjTT6hL6ZAfiCoDdWQcaR4l5FMuGoB10mo4I7y-O00LYJ5zOd6cm1_D5X8z047W1hiFbZ6f5WpzfaussZdbM5WpXl6AcuTonn31yQtQki4yewT96p1AD2T84vJrPNY0LCm0CtVD-iBluGwouv5aJEfFr9JJbXuPHgSca0959RL1b5GmeuaENe_KO9myPp7CUcdFiSnbS_ewh7oXoFz7c8DL6GP9OwXpLlSelY3vkfYcuC4S0Y4WIdGNmQ3bLwi6wFUPHd_GbkwJitm9ARjPxIMGKdt2zZCvvwrNwioTPMK3d4i9Q7wteaEff0DVyffbs6nURdyIXIITCsI4_oTQedo4RyvAhZ3J6Jk0lqrRa5FUWmcimCCD7VaZ4WMc-cSoS0Md6CEAq4-C0MqmUV3gGjaJDOqaC891iUp6IIXFllx35ceCWHoPpJNq7zR05juzE98WxheuEYEo7hAhMfwmjTbtV65Hi0RdbL0OysLYPHxqNtj3aEvvkkqrokEUIP4XO_CgzuTHpuyauwvFtTr5mWZPn8UB16h6XQqw_U0QjCMaXx-_8YyDE8nVxNL83l-eziAzyjkpbH-BEG9e1d-ITYqrZH3d75C8UBJNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesoscopic+analysis+of+concrete+under+excessively+high+strain+rate+compression+and+implications+on+interpretation+of+test+data&rft.jtitle=International+journal+of+impact+engineering&rft.au=Song%2C+Zhenhuan&rft.au=Lu%2C+Yong&rft.date=2012-08-01&rft.issn=0734-743X&rft.volume=46&rft.spage=41&rft.epage=55&rft_id=info:doi/10.1016%2Fj.ijimpeng.2012.01.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon