Apoptotic Caspases Suppress Type I Interferon Production via the Cleavage of cGAS, MAVS, and IRF3

Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are criti...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 74; no. 1; pp. 19 - 31.e7
Main Authors Ning, Xiaohan, Wang, Yutao, Jing, Miao, Sha, Mengyin, Lv, Mengze, Gao, Pengfei, Zhang, Rui, Huang, Xiaojun, Feng, Ji-Ming, Jiang, Zhengfan
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 04.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3−/− mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection. [Display omitted] •Deficiency in apoptotic caspases leads to elevated IFN production by virus infection•Caspase-3 cleaves cGAS, MAVS, and IRF3 to keep apoptosis immunologically silent•Caspase-7 is differently involved in mouse and human cells to cleave cGAS and MAVS•MAVS is cleaved at alternative sites to ensure caspase-mediated negative regulation Ning et al. find that caspase-3 cleaves and inactivates cGAS, MAVS, and IRF3 to suppress cytokine and type I IFN production. Their findings reveal a role for apoptotic caspases in controlling antiviral innate immunity and keeping apoptosis immunologically silent.
AbstractList Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3 mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection.
Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3−/− mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection. [Display omitted] •Deficiency in apoptotic caspases leads to elevated IFN production by virus infection•Caspase-3 cleaves cGAS, MAVS, and IRF3 to keep apoptosis immunologically silent•Caspase-7 is differently involved in mouse and human cells to cleave cGAS and MAVS•MAVS is cleaved at alternative sites to ensure caspase-mediated negative regulation Ning et al. find that caspase-3 cleaves and inactivates cGAS, MAVS, and IRF3 to suppress cytokine and type I IFN production. Their findings reveal a role for apoptotic caspases in controlling antiviral innate immunity and keeping apoptosis immunologically silent.
Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3−/− mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection.
Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3-/- mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection.Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3-/- mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection.
Author Ning, Xiaohan
Lv, Mengze
Gao, Pengfei
Wang, Yutao
Sha, Mengyin
Jing, Miao
Zhang, Rui
Huang, Xiaojun
Feng, Ji-Ming
Jiang, Zhengfan
Author_xml – sequence: 1
  givenname: Xiaohan
  surname: Ning
  fullname: Ning, Xiaohan
  organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
– sequence: 2
  givenname: Yutao
  surname: Wang
  fullname: Wang, Yutao
  organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
– sequence: 3
  givenname: Miao
  surname: Jing
  fullname: Jing, Miao
  organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
– sequence: 4
  givenname: Mengyin
  surname: Sha
  fullname: Sha, Mengyin
  organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
– sequence: 5
  givenname: Mengze
  surname: Lv
  fullname: Lv, Mengze
  organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
– sequence: 6
  givenname: Pengfei
  surname: Gao
  fullname: Gao, Pengfei
  organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
– sequence: 7
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
– sequence: 8
  givenname: Xiaojun
  surname: Huang
  fullname: Huang, Xiaojun
  organization: Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
– sequence: 9
  givenname: Ji-Ming
  surname: Feng
  fullname: Feng, Ji-Ming
  organization: Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
– sequence: 10
  givenname: Zhengfan
  surname: Jiang
  fullname: Jiang, Zhengfan
  email: jiangzf@pku.edu.cn
  organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30878284$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vEzEUxC1URP_AN0DIRw5ksb221-aAFEW0RCoC0cLVcrzP4GizXmxvpH57HCW9cKCXN-_wmznMXKKzMY6A0GtKGkqofL9tdnFwMDSMUN0Q1hDaPkMXlOhuwankZ6efdVKco8uct4RQLpR-gc5bojrFFL9AdjnFqcQSHF7ZPNkMGd_N05QgZ3z_MAFe4_VYIHlIccTfUuxnV0J998Hi8hvwagC7t78AR4_dzfLuHf6y_FmvHXu8_n7dvkTPvR0yvDrpFfpx_el-9Xlx-_VmvVreLpwgXVlsei1krxhQ3inPiKrCWimV84wKIpnmnGmvmfOth9aJznUbLeWm572wgrdX6O0xd0rxzwy5mF3ItZ_BjhDnbBgTLaOcSPo0SnUriaBKVfTNCZ03O-jNlMLOpgfz2GAFPhwBl2LOCbxxodhDQyXZMBhKzGEuszXHucxhLkOYqXNVM__H_Jj_hO3j0Qa1z32AZLILMDroQwJXTB_D_wP-AkyKrWc
CitedBy_id crossref_primary_10_1038_s41392_024_02044_3
crossref_primary_10_1038_s41556_024_01474_z
crossref_primary_10_1038_s41580_022_00564_w
crossref_primary_10_1002_ctm2_1735
crossref_primary_10_2147_DDDT_S251623
crossref_primary_10_1002_eji_202350386
crossref_primary_10_1083_jcb_202310005
crossref_primary_10_30629_2658_7947_2021_26_1_4_14
crossref_primary_10_15252_embr_201949799
crossref_primary_10_1111_febs_16137
crossref_primary_10_1007_s12035_024_04412_0
crossref_primary_10_1111_imr_13279
crossref_primary_10_1038_s41564_021_00875_2
crossref_primary_10_1016_j_cca_2022_04_003
crossref_primary_10_1038_s41467_022_29266_9
crossref_primary_10_3389_fcimb_2022_852473
crossref_primary_10_1038_s41577_021_00524_z
crossref_primary_10_1016_j_molcel_2023_02_021
crossref_primary_10_1038_s41418_022_01082_0
crossref_primary_10_1016_j_celrep_2022_111582
crossref_primary_10_1093_jmcb_mjab071
crossref_primary_10_1002_mc_23183
crossref_primary_10_1158_2159_8290_CD_22_1220
crossref_primary_10_1186_s12964_020_00659_x
crossref_primary_10_1002_ijc_33698
crossref_primary_10_15252_embj_2019102325
crossref_primary_10_3389_fbioe_2022_952237
crossref_primary_10_3389_fimmu_2024_1352479
crossref_primary_10_1002_ccr3_4218
crossref_primary_10_1515_mr_2023_0061
crossref_primary_10_1016_j_tcb_2019_09_001
crossref_primary_10_1186_s12929_024_01062_1
crossref_primary_10_1111_febs_16241
crossref_primary_10_1038_s41421_024_00750_4
crossref_primary_10_2147_CCID_S476785
crossref_primary_10_1016_j_jbc_2021_101379
crossref_primary_10_1042_EBC20200016
crossref_primary_10_1016_j_bbcan_2025_189280
crossref_primary_10_3389_fmicb_2022_812711
crossref_primary_10_1515_jtim_2025_0004
crossref_primary_10_1016_j_nbd_2024_106785
crossref_primary_10_1038_s41564_022_01136_6
crossref_primary_10_1038_s41423_023_01086_x
crossref_primary_10_3389_fimmu_2023_1166214
crossref_primary_10_1115_1_4056104
crossref_primary_10_3389_fimmu_2021_676861
crossref_primary_10_1016_j_intimp_2022_109364
crossref_primary_10_1038_s41590_020_0751_0
crossref_primary_10_3389_fimmu_2020_00615
crossref_primary_10_1038_s43018_023_00571_6
crossref_primary_10_1146_annurev_pathmechdis_051022_014433
crossref_primary_10_3390_cells9102207
crossref_primary_10_1080_08830185_2022_2070616
crossref_primary_10_1080_1040841X_2019_1660615
crossref_primary_10_1002_smtd_202201406
crossref_primary_10_1186_s12951_024_02809_6
crossref_primary_10_3389_fimmu_2020_01030
crossref_primary_10_1038_s41418_022_01094_w
crossref_primary_10_1038_s41568_020_0246_1
crossref_primary_10_3390_microorganisms12050971
crossref_primary_10_18705_2782_3806_2022_2_2_63_71
crossref_primary_10_1016_j_neurot_2025_e00536
crossref_primary_10_3390_v16111695
crossref_primary_10_1371_journal_ppat_1012287
crossref_primary_10_1186_s13045_020_00946_7
crossref_primary_10_1097_gscm_0000000000000047
crossref_primary_10_3389_fcimb_2022_954581
crossref_primary_10_3389_fimmu_2023_1275408
crossref_primary_10_3389_fimmu_2021_660302
crossref_primary_10_1038_s41590_024_01966_y
crossref_primary_10_1093_jmcb_mjac005
crossref_primary_10_1016_j_jinf_2021_04_014
crossref_primary_10_1111_febs_16051
crossref_primary_10_1186_s40634_023_00637_5
crossref_primary_10_1016_j_vetmic_2023_109970
crossref_primary_10_1038_s41573_022_00415_5
crossref_primary_10_3390_v15102093
crossref_primary_10_1186_s13578_021_00724_z
crossref_primary_10_1016_j_ymthe_2020_11_031
crossref_primary_10_1038_s41556_024_01429_4
crossref_primary_10_1158_2326_6066_CIR_23_0321
crossref_primary_10_3390_biom10081109
crossref_primary_10_3389_fphar_2023_1152934
crossref_primary_10_1038_s41580_019_0173_8
crossref_primary_10_1080_2162402X_2021_1893466
crossref_primary_10_4049_jimmunol_2100757
crossref_primary_10_1242_dmm_048912
crossref_primary_10_1038_s41573_024_00920_9
crossref_primary_10_3389_fimmu_2020_625833
crossref_primary_10_1080_2162402X_2020_1777624
crossref_primary_10_3389_fphar_2024_1409683
crossref_primary_10_1016_j_celrep_2020_108586
crossref_primary_10_1096_fj_202401056R
crossref_primary_10_1038_s41392_021_00613_4
crossref_primary_10_1002_ccr3_3997
crossref_primary_10_1016_j_isci_2023_108080
crossref_primary_10_1038_s41392_021_00554_y
crossref_primary_10_1002_1878_0261_12851
crossref_primary_10_1016_j_celrep_2022_111434
crossref_primary_10_1073_pnas_2207240119
crossref_primary_10_1016_j_ecoenv_2025_118029
crossref_primary_10_1038_s41577_022_00760_x
crossref_primary_10_3389_fimmu_2021_753789
crossref_primary_10_3389_fcell_2019_00100
crossref_primary_10_1016_j_gene_2022_146962
crossref_primary_10_3390_cells11040675
crossref_primary_10_1101_cshperspect_a036475
crossref_primary_10_3390_v16020256
crossref_primary_10_1042_EBC20220248
crossref_primary_10_1002_vms3_1569
crossref_primary_10_1038_s44318_024_00044_1
crossref_primary_10_1186_s43556_020_00006_z
crossref_primary_10_1002_rai2_12104
crossref_primary_10_1038_s41467_023_43635_y
crossref_primary_10_15407_fz66_06_013
crossref_primary_10_15252_embr_202051345
crossref_primary_10_1016_j_molcel_2020_10_018
crossref_primary_10_3390_cells11193043
crossref_primary_10_1146_annurev_biochem_040320_101629
crossref_primary_10_1038_s41419_022_05156_2
crossref_primary_10_1128_mbio_02096_21
crossref_primary_10_1016_j_cell_2020_03_040
crossref_primary_10_4049_jimmunol_2000306
crossref_primary_10_3390_ijms241713316
crossref_primary_10_3390_v15091908
crossref_primary_10_1111_imcb_12555
crossref_primary_10_3390_ijms21217842
crossref_primary_10_1016_j_it_2019_06_001
crossref_primary_10_1038_s41423_020_00602_7
crossref_primary_10_1111_imr_13301
crossref_primary_10_1016_j_immuni_2020_06_014
crossref_primary_10_1172_JCI136824
crossref_primary_10_1016_j_ccell_2024_09_010
crossref_primary_10_1016_j_molcel_2019_09_006
crossref_primary_10_1371_journal_ppat_1011132
crossref_primary_10_1016_j_phrs_2024_107063
crossref_primary_10_1016_j_exer_2022_108970
crossref_primary_10_1038_s41418_022_00985_2
crossref_primary_10_1007_s00018_024_05392_z
crossref_primary_10_1016_j_vetmic_2020_108860
crossref_primary_10_18632_aging_202491
crossref_primary_10_1007_s12017_023_08737_2
crossref_primary_10_3389_fimmu_2020_611347
crossref_primary_10_1016_j_tcb_2022_11_001
crossref_primary_10_1016_j_trecan_2024_01_013
crossref_primary_10_1080_2162402X_2019_1655964
crossref_primary_10_3390_v14081797
crossref_primary_10_1038_s41571_023_00782_x
crossref_primary_10_3390_cells11030318
crossref_primary_10_1016_j_tins_2020_10_008
crossref_primary_10_3390_ijms24033029
crossref_primary_10_1007_s40242_024_4120_7
crossref_primary_10_3390_ijms232315182
crossref_primary_10_1155_2019_3638562
crossref_primary_10_1136_jitc_2023_007625
crossref_primary_10_1590_1678_9199_jvatitd_2020_0183
crossref_primary_10_3390_v16040574
crossref_primary_10_1038_s41586_025_08732_6
crossref_primary_10_1186_s12964_024_01531_y
crossref_primary_10_1042_BST20221525
crossref_primary_10_1021_jacsau_4c00712
crossref_primary_10_1038_s41598_024_66662_1
crossref_primary_10_1016_j_antiviral_2024_105797
crossref_primary_10_1016_j_molcel_2023_03_010
crossref_primary_10_1128_mbio_02446_22
crossref_primary_10_1126_scisignal_abc7931
crossref_primary_10_1038_s41418_020_00624_8
crossref_primary_10_15252_embr_202255536
crossref_primary_10_1016_j_bcp_2023_115938
crossref_primary_10_1016_j_vetmic_2025_110456
crossref_primary_10_1016_j_jtbi_2023_111558
crossref_primary_10_1016_j_niox_2024_05_002
crossref_primary_10_1002_cpz1_372
crossref_primary_10_1038_s41580_020_0244_x
crossref_primary_10_3389_fphar_2021_653940
crossref_primary_10_1128_jvi_00317_24
crossref_primary_10_1016_j_tibtech_2025_01_007
crossref_primary_10_1016_j_virol_2025_110443
crossref_primary_10_1186_s13578_020_00442_y
crossref_primary_10_1155_2021_7157109
crossref_primary_10_1590_0001_3765202220201380
crossref_primary_10_1016_j_cellsig_2020_109772
crossref_primary_10_1042_BST20200522
crossref_primary_10_1073_pnas_2200206119
crossref_primary_10_1371_journal_ppat_1012423
crossref_primary_10_1016_j_tcb_2020_03_004
crossref_primary_10_1038_s41467_023_37146_z
crossref_primary_10_1038_s41590_019_0561_4
crossref_primary_10_1016_j_bbamcr_2022_119341
crossref_primary_10_15789_1563_0625_AAN_2482
crossref_primary_10_1016_j_bcp_2023_115596
crossref_primary_10_1016_j_ejmech_2023_116018
crossref_primary_10_1128_msphere_00236_24
crossref_primary_10_1016_j_celrep_2023_112442
crossref_primary_10_1016_j_virusres_2024_199498
crossref_primary_10_3390_ijms22010426
crossref_primary_10_1038_s41418_020_0545_9
crossref_primary_10_1089_ars_2021_0091
crossref_primary_10_1038_s41419_024_07083_w
crossref_primary_10_15252_embj_2019103397
crossref_primary_10_1080_15384101_2019_1638192
crossref_primary_10_1080_21505594_2021_1996072
crossref_primary_10_1016_j_intimp_2023_109906
crossref_primary_10_1016_j_vetmic_2024_110290
crossref_primary_10_1080_2162402X_2020_1797292
crossref_primary_10_1186_s40164_024_00531_5
crossref_primary_10_1016_j_canlet_2024_217079
crossref_primary_10_1016_j_jbc_2021_101274
crossref_primary_10_1016_j_molimm_2024_10_002
crossref_primary_10_1038_s12276_023_00965_7
crossref_primary_10_1021_acschemneuro_0c00603
crossref_primary_10_3389_fmicb_2021_684953
crossref_primary_10_1002_mco2_511
Cites_doi 10.1016/j.cell.2011.09.022
10.4049/jimmunol.1700699
10.1073/pnas.0900850106
10.1016/j.immuni.2011.10.010
10.1126/science.1148526
10.1016/j.immuni.2009.05.007
10.1038/nature04193
10.1038/35099560
10.1016/j.cell.2017.09.039
10.1038/cdd.2008.119
10.1038/nrm2153
10.1016/j.immuni.2010.12.018
10.1073/pnas.0611506104
10.1074/jbc.M114.559583
10.1038/ni0503-410
10.1016/j.immuni.2017.02.011
10.1016/j.cell.2014.11.036
10.1038/sj.cdd.4402060
10.1074/jbc.M111.257022
10.1038/ni1207
10.1038/nature14156
10.1146/annurev.micro.62.081307.163009
10.1016/j.cell.2014.04.007
10.4049/jimmunol.178.Supp.B84
10.1093/brain/awn077
10.1016/j.immuni.2012.01.011
10.1038/ni.1815
10.1016/j.cell.2010.09.033
10.1016/j.immuni.2012.03.013
10.1146/annurev.immunol.23.021704.115843
10.1038/ni.3558
10.1016/j.cell.2013.04.046
10.1016/j.celrep.2014.01.003
10.1146/annurev-immunol-032712-095944
10.1073/pnas.0508531102
10.1016/j.immuni.2006.08.010
10.1038/nrm2308
10.1016/j.chom.2014.01.010
10.1101/cshperspect.a026716
10.1111/imr.12289
10.1016/j.immuni.2013.05.007
10.1016/j.immuni.2011.05.003
10.1007/978-1-59745-521-3_23
10.1128/JVI.02174-09
10.1016/0167-5699(95)80122-7
10.1371/journal.ppat.1006720
10.1016/j.molcel.2012.04.026
10.1016/j.coviro.2016.11.012
10.1016/j.cell.2014.11.037
10.1016/j.jns.2013.03.002
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.molcel.2019.02.013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 31.e7
ExternalDocumentID 30878284
10_1016_j_molcel_2019_02_013
S1097276519301030
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
5VS
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c507t-bd956d82e1478f20847823668cf21506294429f92cf3fe3c57c7b966bd4d5a543
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Fri Jul 11 16:29:07 EDT 2025
Fri Jul 11 11:45:40 EDT 2025
Mon Jul 21 06:00:41 EDT 2025
Tue Jul 01 03:21:13 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
Fri Feb 23 02:30:35 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords type I-interferon
cleavage
MAVS
innate immunity
IRF3
apoptotic caspase
cGAS
apoptosis
immunologically silent
virus infection
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-bd956d82e1478f20847823668cf21506294429f92cf3fe3c57c7b966bd4d5a543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S1097276519301030/pdf
PMID 30878284
PQID 2193605188
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2253214061
proquest_miscellaneous_2193605188
pubmed_primary_30878284
crossref_citationtrail_10_1016_j_molcel_2019_02_013
crossref_primary_10_1016_j_molcel_2019_02_013
elsevier_sciencedirect_doi_10_1016_j_molcel_2019_02_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-04
PublicationDateYYYYMMDD 2019-04-04
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References von Moltke, Ayres, Kofoed, Chavarría-Smith, Vance (bib41) 2013; 31
Skaug, Chen (bib35) 2010; 143
Stark, Darnell (bib37) 2012; 36
Storek, Monack (bib38) 2015; 265
Mangini, Meyers, Nagai, vanSeventer, vanSeventer (bib21) 2007; 178
Yang, Liang, Qu, Chen, Yi, Li, Lemon (bib45) 2007; 104
Gao, Ascano, Wu, Barchet, Gaffney, Zillinger, Serganov, Liu, Jones, Hartmann (bib9) 2013; 153
Rostami, Ciric (bib33) 2013; 333
West, Khoury-Hanold, Staron, Tal, Pineda, Lang, Bestwick, Duguay, Raimundo, MacDuff (bib43) 2015; 520
McIlwain, Berger, Mak (bib24) 2015; 7
Theofilopoulos, Baccala, Beutler, Kono (bib40) 2005; 23
Fang, Wang, Jiang, Lv, Gao, Yu, Mu, Zhang, Bi, Feng, Jiang (bib7) 2017; 199
Sears, Sen, Stark, Chattopadhyay (bib34) 2011; 286
Martin, Henry, Cullen (bib22) 2012; 46
Kumar (bib16) 2007; 14
You, Sun, Zhou, Sun, Liang, Zhai, Jiang (bib47) 2009; 10
Chen, Sun, Chen (bib5) 2016; 17
Rebsamen, Meylan, Curran, Tschopp (bib30) 2008; 15
Yu, Chiang, Chang, Liao, Lin (bib49) 2010; 84
Banchereau, Pascual (bib2) 2006; 25
Goubau, Deddouche, Reis e Sousa (bib10) 2013; 38
Råberg, Sim, Read (bib28) 2007; 318
Smyth, Trapani (bib36) 1995; 16
Riedl, Salvesen (bib31) 2007; 8
Chen, Sun, You, Sun, Zhou, Chen, Yang, Wang, Tang, Guan (bib4) 2011; 147
Loo, Gale (bib19) 2011; 34
Hashiguchi, Zhang-Akiyama (bib12) 2009; 554
Zhang, Wu, Du, Xu, Sun, Chen, Brautigam, Zhang, Chen (bib50) 2014; 6
Wang, Ning, Gao, Wu, Sha, Lv, Zhou, Gao, Fang, Meng (bib42) 2017; 46
Meylan, Curran, Hofmann, Moradpour, Binder, Bartenschlager, Tschopp (bib25) 2005; 437
Lamkanfi, Dixit (bib17) 2014; 157
McFadden, Gokhale, Horner (bib23) 2017; 22
Rongvaux, Jackson, Harman, Li, West, de Zoete, Wu, Yordy, Lakhani, Kuan (bib32) 2014; 159
Mueller, Yoon, Sadiq (bib26) 2014; 289
Yatim, Albert (bib46) 2011; 35
Alexopoulou, Holt, Medzhitov, Flavell (bib1) 2001; 413
Jiang, Georgel, Du, Shamel, Sovath, Mudd, Huber, Kalis, Keck, Galanos (bib14) 2005; 6
Rajput, Kovalenko, Bogdanov, Yang, Kang, Kim, Du, Wallach (bib29) 2011; 34
Youle, Strasser (bib48) 2008; 9
Lüthi, Cullen, McNeela, Duriez, Afonina, Sheridan, Brumatti, Taylor, Kersse, Vandenabeele (bib20) 2009; 31
Gough, Messina, Clarke, Johnstone, Levy (bib11) 2012; 36
Opferman, Korsmeyer (bib27) 2003; 4
Gaidt, Ebert, Chauhan, Ramshorn, Pinci, Zuber, O’Duill, Schmid-Burgk, Hoss, Buhmann (bib8) 2017; 171
Sun, Li, Chen, Chen, You, Zhou, Zhou, Zhai, Chen, Jiang (bib39) 2009; 106
Li, Sun, Seth, Pineda, Chen (bib18) 2005; 102
Zschaler, Schlorke, Arnhold (bib51) 2014; 34
Jabir, Ritchie, Li, Bayes, Tourlomousis, Puleston, Lupton, Hopkins, Simon, Bryant, Evans (bib13) 2014; 15
Krumbholz, Faber, Steinmeyer, Hoffmann, Kümpfel, Pellkofer, Derfuss, Ionescu, Starck, Hafner (bib15) 2008; 131
White, McArthur, Metcalf, Lane, Cambier, Herold, van Delft, Bedoui, Lessene, Ritchie (bib44) 2014; 159
Fang, Jiang, Zhou, Wang, Guan, Tao, Xi, Feng, Jiang (bib6) 2017; 13
Best (bib3) 2008; 62
Rebsamen (10.1016/j.molcel.2019.02.013_bib30) 2008; 15
Jiang (10.1016/j.molcel.2019.02.013_bib14) 2005; 6
Råberg (10.1016/j.molcel.2019.02.013_bib28) 2007; 318
Rajput (10.1016/j.molcel.2019.02.013_bib29) 2011; 34
McFadden (10.1016/j.molcel.2019.02.013_bib23) 2017; 22
Gough (10.1016/j.molcel.2019.02.013_bib11) 2012; 36
Rostami (10.1016/j.molcel.2019.02.013_bib33) 2013; 333
Mueller (10.1016/j.molcel.2019.02.013_bib26) 2014; 289
Rongvaux (10.1016/j.molcel.2019.02.013_bib32) 2014; 159
Skaug (10.1016/j.molcel.2019.02.013_bib35) 2010; 143
Yang (10.1016/j.molcel.2019.02.013_bib45) 2007; 104
Theofilopoulos (10.1016/j.molcel.2019.02.013_bib40) 2005; 23
McIlwain (10.1016/j.molcel.2019.02.013_bib24) 2015; 7
Lüthi (10.1016/j.molcel.2019.02.013_bib20) 2009; 31
Gao (10.1016/j.molcel.2019.02.013_bib9) 2013; 153
Kumar (10.1016/j.molcel.2019.02.013_bib16) 2007; 14
Mangini (10.1016/j.molcel.2019.02.013_bib21) 2007; 178
Wang (10.1016/j.molcel.2019.02.013_bib42) 2017; 46
You (10.1016/j.molcel.2019.02.013_bib47) 2009; 10
Li (10.1016/j.molcel.2019.02.013_bib18) 2005; 102
Sun (10.1016/j.molcel.2019.02.013_bib39) 2009; 106
Zhang (10.1016/j.molcel.2019.02.013_bib50) 2014; 6
Fang (10.1016/j.molcel.2019.02.013_bib7) 2017; 199
Jabir (10.1016/j.molcel.2019.02.013_bib13) 2014; 15
Storek (10.1016/j.molcel.2019.02.013_bib38) 2015; 265
Chen (10.1016/j.molcel.2019.02.013_bib5) 2016; 17
Meylan (10.1016/j.molcel.2019.02.013_bib25) 2005; 437
Stark (10.1016/j.molcel.2019.02.013_bib37) 2012; 36
Yu (10.1016/j.molcel.2019.02.013_bib49) 2010; 84
Best (10.1016/j.molcel.2019.02.013_bib3) 2008; 62
Banchereau (10.1016/j.molcel.2019.02.013_bib2) 2006; 25
West (10.1016/j.molcel.2019.02.013_bib43) 2015; 520
Hashiguchi (10.1016/j.molcel.2019.02.013_bib12) 2009; 554
White (10.1016/j.molcel.2019.02.013_bib44) 2014; 159
Smyth (10.1016/j.molcel.2019.02.013_bib36) 1995; 16
Martin (10.1016/j.molcel.2019.02.013_bib22) 2012; 46
Krumbholz (10.1016/j.molcel.2019.02.013_bib15) 2008; 131
Fang (10.1016/j.molcel.2019.02.013_bib6) 2017; 13
Yatim (10.1016/j.molcel.2019.02.013_bib46) 2011; 35
Lamkanfi (10.1016/j.molcel.2019.02.013_bib17) 2014; 157
Zschaler (10.1016/j.molcel.2019.02.013_bib51) 2014; 34
Alexopoulou (10.1016/j.molcel.2019.02.013_bib1) 2001; 413
Chen (10.1016/j.molcel.2019.02.013_bib4) 2011; 147
Loo (10.1016/j.molcel.2019.02.013_bib19) 2011; 34
von Moltke (10.1016/j.molcel.2019.02.013_bib41) 2013; 31
Opferman (10.1016/j.molcel.2019.02.013_bib27) 2003; 4
Sears (10.1016/j.molcel.2019.02.013_bib34) 2011; 286
Gaidt (10.1016/j.molcel.2019.02.013_bib8) 2017; 171
Youle (10.1016/j.molcel.2019.02.013_bib48) 2008; 9
Goubau (10.1016/j.molcel.2019.02.013_bib10) 2013; 38
Riedl (10.1016/j.molcel.2019.02.013_bib31) 2007; 8
References_xml – volume: 13
  start-page: e1006720
  year: 2017
  ident: bib6
  article-title: MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner
  publication-title: PLoS Pathog.
– volume: 157
  start-page: 1013
  year: 2014
  end-page: 1022
  ident: bib17
  article-title: Mechanisms and functions of inflammasomes
  publication-title: Cell
– volume: 7
  start-page: a008656
  year: 2015
  ident: bib24
  article-title: Caspase functions in cell death and disease
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 147
  start-page: 436
  year: 2011
  end-page: 446
  ident: bib4
  article-title: Activation of STAT6 by STING is critical for antiviral innate immunity
  publication-title: Cell
– volume: 35
  start-page: 478
  year: 2011
  end-page: 490
  ident: bib46
  article-title: Dying to replicate: the orchestration of the viral life cycle, cell death pathways, and immunity
  publication-title: Immunity
– volume: 38
  start-page: 855
  year: 2013
  end-page: 869
  ident: bib10
  article-title: Cytosolic sensing of viruses
  publication-title: Immunity
– volume: 199
  start-page: 3222
  year: 2017
  end-page: 3233
  ident: bib7
  article-title: NEMO-IKKβ Are Essential for IRF3 and NF-κB Activation in the cGAS-STING Pathway
  publication-title: J. Immunol.
– volume: 36
  start-page: 503
  year: 2012
  end-page: 514
  ident: bib37
  article-title: The JAK-STAT pathway at twenty
  publication-title: Immunity
– volume: 22
  start-page: 36
  year: 2017
  end-page: 43
  ident: bib23
  article-title: Protect this house: cytosolic sensing of viruses
  publication-title: Curr. Opin. Virol.
– volume: 102
  start-page: 17717
  year: 2005
  end-page: 17722
  ident: bib18
  article-title: Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 413
  start-page: 732
  year: 2001
  end-page: 738
  ident: bib1
  article-title: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3
  publication-title: Nature
– volume: 62
  start-page: 171
  year: 2008
  end-page: 192
  ident: bib3
  article-title: Viral subversion of apoptotic enzymes: escape from death row
  publication-title: Annu. Rev. Microbiol.
– volume: 554
  start-page: 383
  year: 2009
  end-page: 391
  ident: bib12
  article-title: Establishment of human cell lines lacking mitochondrial DNA
  publication-title: Methods Mol. Biol.
– volume: 178
  start-page: LB17
  year: 2007
  end-page: LB18
  ident: bib21
  article-title: Type I interferon regulation of Th cell responses in SLE
  publication-title: J. Immunol.
– volume: 265
  start-page: 112
  year: 2015
  end-page: 129
  ident: bib38
  article-title: Bacterial recognition pathways that lead to inflammasome activation
  publication-title: Immunol. Rev.
– volume: 84
  start-page: 2421
  year: 2010
  end-page: 2431
  ident: bib49
  article-title: The interferon stimulator mitochondrial antiviral signaling protein facilitates cell death by disrupting the mitochondrial membrane potential and by activating caspases
  publication-title: J. Virol.
– volume: 46
  start-page: 387
  year: 2012
  end-page: 397
  ident: bib22
  article-title: A perspective on mammalian caspases as positive and negative regulators of inflammation
  publication-title: Mol. Cell
– volume: 159
  start-page: 1563
  year: 2014
  end-page: 1577
  ident: bib32
  article-title: Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA
  publication-title: Cell
– volume: 104
  start-page: 7253
  year: 2007
  end-page: 7258
  ident: bib45
  article-title: Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 437
  start-page: 1167
  year: 2005
  end-page: 1172
  ident: bib25
  article-title: Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus
  publication-title: Nature
– volume: 4
  start-page: 410
  year: 2003
  end-page: 415
  ident: bib27
  article-title: Apoptosis in the development and maintenance of the immune system
  publication-title: Nat. Immunol.
– volume: 159
  start-page: 1549
  year: 2014
  end-page: 1562
  ident: bib44
  article-title: Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production
  publication-title: Cell
– volume: 10
  start-page: 1300
  year: 2009
  end-page: 1308
  ident: bib47
  article-title: PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4
  publication-title: Nat. Immunol.
– volume: 34
  start-page: 340
  year: 2011
  end-page: 351
  ident: bib29
  article-title: RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein
  publication-title: Immunity
– volume: 23
  start-page: 307
  year: 2005
  end-page: 336
  ident: bib40
  article-title: Type I interferons (alpha/beta) in immunity and autoimmunity
  publication-title: Annu. Rev. Immunol.
– volume: 8
  start-page: 405
  year: 2007
  end-page: 413
  ident: bib31
  article-title: The apoptosome: signalling platform of cell death
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 286
  start-page: 33037
  year: 2011
  end-page: 33044
  ident: bib34
  article-title: Caspase-8-mediated cleavage inhibits IRF-3 protein by facilitating its proteasome-mediated degradation
  publication-title: J. Biol. Chem.
– volume: 31
  start-page: 73
  year: 2013
  end-page: 106
  ident: bib41
  article-title: Recognition of bacteria by inflammasomes
  publication-title: Annu. Rev. Immunol.
– volume: 25
  start-page: 383
  year: 2006
  end-page: 392
  ident: bib2
  article-title: Type I interferon in systemic lupus erythematosus and other autoimmune diseases
  publication-title: Immunity
– volume: 46
  start-page: 393
  year: 2017
  end-page: 404
  ident: bib42
  article-title: Inflammasome Activation Triggers Caspase-1-Mediated Cleavage of cGAS to Regulate Responses to DNA Virus Infection
  publication-title: Immunity
– volume: 17
  start-page: 1142
  year: 2016
  end-page: 1149
  ident: bib5
  article-title: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing
  publication-title: Nat. Immunol.
– volume: 31
  start-page: 84
  year: 2009
  end-page: 98
  ident: bib20
  article-title: Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases
  publication-title: Immunity
– volume: 333
  start-page: 76
  year: 2013
  end-page: 87
  ident: bib33
  article-title: Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination
  publication-title: J. Neurol. Sci.
– volume: 36
  start-page: 166
  year: 2012
  end-page: 174
  ident: bib11
  article-title: Constitutive type I interferon modulates homeostatic balance through tonic signaling
  publication-title: Immunity
– volume: 153
  start-page: 1094
  year: 2013
  end-page: 1107
  ident: bib9
  article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase
  publication-title: Cell
– volume: 520
  start-page: 553
  year: 2015
  end-page: 557
  ident: bib43
  article-title: Mitochondrial DNA stress primes the antiviral innate immune response
  publication-title: Nature
– volume: 289
  start-page: 22888
  year: 2014
  end-page: 22899
  ident: bib26
  article-title: Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 421
  year: 2014
  end-page: 430
  ident: bib50
  article-title: The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop
  publication-title: Cell Rep.
– volume: 6
  start-page: 565
  year: 2005
  end-page: 570
  ident: bib14
  article-title: CD14 is required for MyD88-independent LPS signaling
  publication-title: Nat. Immunol.
– volume: 131
  start-page: 1455
  year: 2008
  end-page: 1463
  ident: bib15
  article-title: Interferon-beta increases BAFF levels in multiple sclerosis: implications for B cell autoimmunity
  publication-title: Brain
– volume: 143
  start-page: 187
  year: 2010
  end-page: 190
  ident: bib35
  article-title: Emerging role of ISG15 in antiviral immunity
  publication-title: Cell
– volume: 106
  start-page: 8653
  year: 2009
  end-page: 8658
  ident: bib39
  article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 34
  start-page: 680
  year: 2011
  end-page: 692
  ident: bib19
  article-title: Immune signaling by RIG-I-like receptors
  publication-title: Immunity
– volume: 34
  start-page: 433
  year: 2014
  end-page: 454
  ident: bib51
  article-title: Differences in innate immune response between man and mouse
  publication-title: Crit. Rev. Immunol.
– volume: 15
  start-page: 214
  year: 2014
  end-page: 227
  ident: bib13
  article-title: Caspase-1 cleavage of the TLR adaptor TRIF inhibits autophagy and β-interferon production during Pseudomonas aeruginosa infection
  publication-title: Cell Host Microbe
– volume: 14
  start-page: 32
  year: 2007
  end-page: 43
  ident: bib16
  article-title: Caspase function in programmed cell death
  publication-title: Cell Death Differ.
– volume: 9
  start-page: 47
  year: 2008
  end-page: 59
  ident: bib48
  article-title: The BCL-2 protein family: opposing activities that mediate cell death
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 16
  start-page: 202
  year: 1995
  end-page: 206
  ident: bib36
  article-title: Granzymes: exogenous proteinases that induce target cell apoptosis
  publication-title: Immunol. Today
– volume: 318
  start-page: 812
  year: 2007
  end-page: 814
  ident: bib28
  article-title: Disentangling genetic variation for resistance and tolerance to infectious diseases in animals
  publication-title: Science
– volume: 15
  start-page: 1804
  year: 2008
  end-page: 1811
  ident: bib30
  article-title: The antiviral adaptor proteins Cardif and Trif are processed and inactivated by caspases
  publication-title: Cell Death Differ.
– volume: 171
  start-page: 1110
  year: 2017
  end-page: 1124.e18
  ident: bib8
  article-title: The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3
  publication-title: Cell
– volume: 147
  start-page: 436
  year: 2011
  ident: 10.1016/j.molcel.2019.02.013_bib4
  article-title: Activation of STAT6 by STING is critical for antiviral innate immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.022
– volume: 199
  start-page: 3222
  year: 2017
  ident: 10.1016/j.molcel.2019.02.013_bib7
  article-title: NEMO-IKKβ Are Essential for IRF3 and NF-κB Activation in the cGAS-STING Pathway
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1700699
– volume: 106
  start-page: 8653
  year: 2009
  ident: 10.1016/j.molcel.2019.02.013_bib39
  article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0900850106
– volume: 35
  start-page: 478
  year: 2011
  ident: 10.1016/j.molcel.2019.02.013_bib46
  article-title: Dying to replicate: the orchestration of the viral life cycle, cell death pathways, and immunity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.10.010
– volume: 318
  start-page: 812
  year: 2007
  ident: 10.1016/j.molcel.2019.02.013_bib28
  article-title: Disentangling genetic variation for resistance and tolerance to infectious diseases in animals
  publication-title: Science
  doi: 10.1126/science.1148526
– volume: 31
  start-page: 84
  year: 2009
  ident: 10.1016/j.molcel.2019.02.013_bib20
  article-title: Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.05.007
– volume: 437
  start-page: 1167
  year: 2005
  ident: 10.1016/j.molcel.2019.02.013_bib25
  article-title: Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus
  publication-title: Nature
  doi: 10.1038/nature04193
– volume: 413
  start-page: 732
  year: 2001
  ident: 10.1016/j.molcel.2019.02.013_bib1
  article-title: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3
  publication-title: Nature
  doi: 10.1038/35099560
– volume: 171
  start-page: 1110
  year: 2017
  ident: 10.1016/j.molcel.2019.02.013_bib8
  article-title: The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.039
– volume: 15
  start-page: 1804
  year: 2008
  ident: 10.1016/j.molcel.2019.02.013_bib30
  article-title: The antiviral adaptor proteins Cardif and Trif are processed and inactivated by caspases
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2008.119
– volume: 8
  start-page: 405
  year: 2007
  ident: 10.1016/j.molcel.2019.02.013_bib31
  article-title: The apoptosome: signalling platform of cell death
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2153
– volume: 34
  start-page: 340
  year: 2011
  ident: 10.1016/j.molcel.2019.02.013_bib29
  article-title: RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.12.018
– volume: 104
  start-page: 7253
  year: 2007
  ident: 10.1016/j.molcel.2019.02.013_bib45
  article-title: Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0611506104
– volume: 289
  start-page: 22888
  year: 2014
  ident: 10.1016/j.molcel.2019.02.013_bib26
  article-title: Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.559583
– volume: 4
  start-page: 410
  year: 2003
  ident: 10.1016/j.molcel.2019.02.013_bib27
  article-title: Apoptosis in the development and maintenance of the immune system
  publication-title: Nat. Immunol.
  doi: 10.1038/ni0503-410
– volume: 46
  start-page: 393
  year: 2017
  ident: 10.1016/j.molcel.2019.02.013_bib42
  article-title: Inflammasome Activation Triggers Caspase-1-Mediated Cleavage of cGAS to Regulate Responses to DNA Virus Infection
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.02.011
– volume: 159
  start-page: 1549
  year: 2014
  ident: 10.1016/j.molcel.2019.02.013_bib44
  article-title: Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.036
– volume: 14
  start-page: 32
  year: 2007
  ident: 10.1016/j.molcel.2019.02.013_bib16
  article-title: Caspase function in programmed cell death
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4402060
– volume: 286
  start-page: 33037
  year: 2011
  ident: 10.1016/j.molcel.2019.02.013_bib34
  article-title: Caspase-8-mediated cleavage inhibits IRF-3 protein by facilitating its proteasome-mediated degradation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.257022
– volume: 6
  start-page: 565
  year: 2005
  ident: 10.1016/j.molcel.2019.02.013_bib14
  article-title: CD14 is required for MyD88-independent LPS signaling
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1207
– volume: 520
  start-page: 553
  year: 2015
  ident: 10.1016/j.molcel.2019.02.013_bib43
  article-title: Mitochondrial DNA stress primes the antiviral innate immune response
  publication-title: Nature
  doi: 10.1038/nature14156
– volume: 62
  start-page: 171
  year: 2008
  ident: 10.1016/j.molcel.2019.02.013_bib3
  article-title: Viral subversion of apoptotic enzymes: escape from death row
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.62.081307.163009
– volume: 157
  start-page: 1013
  year: 2014
  ident: 10.1016/j.molcel.2019.02.013_bib17
  article-title: Mechanisms and functions of inflammasomes
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.007
– volume: 178
  start-page: LB17
  issue: 1 Suppl
  year: 2007
  ident: 10.1016/j.molcel.2019.02.013_bib21
  article-title: Type I interferon regulation of Th cell responses in SLE
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.Supp.B84
– volume: 131
  start-page: 1455
  year: 2008
  ident: 10.1016/j.molcel.2019.02.013_bib15
  article-title: Interferon-beta increases BAFF levels in multiple sclerosis: implications for B cell autoimmunity
  publication-title: Brain
  doi: 10.1093/brain/awn077
– volume: 36
  start-page: 166
  year: 2012
  ident: 10.1016/j.molcel.2019.02.013_bib11
  article-title: Constitutive type I interferon modulates homeostatic balance through tonic signaling
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.01.011
– volume: 10
  start-page: 1300
  year: 2009
  ident: 10.1016/j.molcel.2019.02.013_bib47
  article-title: PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1815
– volume: 143
  start-page: 187
  year: 2010
  ident: 10.1016/j.molcel.2019.02.013_bib35
  article-title: Emerging role of ISG15 in antiviral immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2010.09.033
– volume: 36
  start-page: 503
  year: 2012
  ident: 10.1016/j.molcel.2019.02.013_bib37
  article-title: The JAK-STAT pathway at twenty
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.03.013
– volume: 23
  start-page: 307
  year: 2005
  ident: 10.1016/j.molcel.2019.02.013_bib40
  article-title: Type I interferons (alpha/beta) in immunity and autoimmunity
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.23.021704.115843
– volume: 17
  start-page: 1142
  year: 2016
  ident: 10.1016/j.molcel.2019.02.013_bib5
  article-title: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3558
– volume: 153
  start-page: 1094
  year: 2013
  ident: 10.1016/j.molcel.2019.02.013_bib9
  article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.046
– volume: 6
  start-page: 421
  year: 2014
  ident: 10.1016/j.molcel.2019.02.013_bib50
  article-title: The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.01.003
– volume: 31
  start-page: 73
  year: 2013
  ident: 10.1016/j.molcel.2019.02.013_bib41
  article-title: Recognition of bacteria by inflammasomes
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032712-095944
– volume: 102
  start-page: 17717
  year: 2005
  ident: 10.1016/j.molcel.2019.02.013_bib18
  article-title: Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0508531102
– volume: 25
  start-page: 383
  year: 2006
  ident: 10.1016/j.molcel.2019.02.013_bib2
  article-title: Type I interferon in systemic lupus erythematosus and other autoimmune diseases
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.08.010
– volume: 9
  start-page: 47
  year: 2008
  ident: 10.1016/j.molcel.2019.02.013_bib48
  article-title: The BCL-2 protein family: opposing activities that mediate cell death
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2308
– volume: 15
  start-page: 214
  year: 2014
  ident: 10.1016/j.molcel.2019.02.013_bib13
  article-title: Caspase-1 cleavage of the TLR adaptor TRIF inhibits autophagy and β-interferon production during Pseudomonas aeruginosa infection
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.01.010
– volume: 7
  start-page: a008656
  year: 2015
  ident: 10.1016/j.molcel.2019.02.013_bib24
  article-title: Caspase functions in cell death and disease
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a026716
– volume: 265
  start-page: 112
  year: 2015
  ident: 10.1016/j.molcel.2019.02.013_bib38
  article-title: Bacterial recognition pathways that lead to inflammasome activation
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12289
– volume: 38
  start-page: 855
  year: 2013
  ident: 10.1016/j.molcel.2019.02.013_bib10
  article-title: Cytosolic sensing of viruses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.05.007
– volume: 34
  start-page: 680
  year: 2011
  ident: 10.1016/j.molcel.2019.02.013_bib19
  article-title: Immune signaling by RIG-I-like receptors
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.05.003
– volume: 554
  start-page: 383
  year: 2009
  ident: 10.1016/j.molcel.2019.02.013_bib12
  article-title: Establishment of human cell lines lacking mitochondrial DNA
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-521-3_23
– volume: 84
  start-page: 2421
  year: 2010
  ident: 10.1016/j.molcel.2019.02.013_bib49
  article-title: The interferon stimulator mitochondrial antiviral signaling protein facilitates cell death by disrupting the mitochondrial membrane potential and by activating caspases
  publication-title: J. Virol.
  doi: 10.1128/JVI.02174-09
– volume: 16
  start-page: 202
  year: 1995
  ident: 10.1016/j.molcel.2019.02.013_bib36
  article-title: Granzymes: exogenous proteinases that induce target cell apoptosis
  publication-title: Immunol. Today
  doi: 10.1016/0167-5699(95)80122-7
– volume: 34
  start-page: 433
  year: 2014
  ident: 10.1016/j.molcel.2019.02.013_bib51
  article-title: Differences in innate immune response between man and mouse
  publication-title: Crit. Rev. Immunol.
– volume: 13
  start-page: e1006720
  year: 2017
  ident: 10.1016/j.molcel.2019.02.013_bib6
  article-title: MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006720
– volume: 46
  start-page: 387
  year: 2012
  ident: 10.1016/j.molcel.2019.02.013_bib22
  article-title: A perspective on mammalian caspases as positive and negative regulators of inflammation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.04.026
– volume: 22
  start-page: 36
  year: 2017
  ident: 10.1016/j.molcel.2019.02.013_bib23
  article-title: Protect this house: cytosolic sensing of viruses
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2016.11.012
– volume: 159
  start-page: 1563
  year: 2014
  ident: 10.1016/j.molcel.2019.02.013_bib32
  article-title: Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.037
– volume: 333
  start-page: 76
  year: 2013
  ident: 10.1016/j.molcel.2019.02.013_bib33
  article-title: Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2013.03.002
SSID ssj0014589
Score 2.6561844
Snippet Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19
SubjectTerms Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Animals
Apoptosis
apoptotic caspase
Caspase 2 - genetics
Caspase 2 - metabolism
Caspase 3 - genetics
Caspase 3 - metabolism
Caspase 7 - genetics
Caspase 7 - metabolism
Caspase 9 - genetics
Caspase 9 - metabolism
caspase-3
caspase-7
Caspases - genetics
Caspases - metabolism
cGAS
cleavage
cytokines
DNA
encephalitis
Female
HEK293 Cells
HeLa Cells
homeostasis
Host-Pathogen Interactions
Humans
Immunity, Innate
immunologically silent
inflammasomes
innate immunity
Interferon Regulatory Factor-3 - genetics
Interferon Regulatory Factor-3 - metabolism
Interferon Type I - metabolism
interferons
IRF3
Male
MAVS
mice
Mice, Inbred C57BL
Nucleotidyltransferases - genetics
Nucleotidyltransferases - metabolism
RNA
Sendai virus - immunology
Sendai virus - pathogenicity
Signal Transduction
THP-1 Cells
type I-interferon
Vaccinia virus - immunology
Vaccinia virus - pathogenicity
Virus Diseases - enzymology
Virus Diseases - genetics
Virus Diseases - immunology
Virus Diseases - virology
virus infection
Title Apoptotic Caspases Suppress Type I Interferon Production via the Cleavage of cGAS, MAVS, and IRF3
URI https://dx.doi.org/10.1016/j.molcel.2019.02.013
https://www.ncbi.nlm.nih.gov/pubmed/30878284
https://www.proquest.com/docview/2193605188
https://www.proquest.com/docview/2253214061
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-iHPgi96XueUoOfLyw3STdpo91cU9P7hA_9y2k-YCVtV3cVfC_dyZtF3zwhHsptJ1AmKTz-01nMkPIoTKAGQDDrCxNxgACHFNc5MwBF_Gq9ICYMcv37_DkWv6epJM1MurOwmBaZWv7G5serXX7pN9qsz-fTvuXGDvl2RApCDYrQL9dSBUP8U2OVpEEmcY2eCjMULo7PhdzvO7rmfUYgBjksXLnQLwFT2_RzwhD449kq-WPtGim-Ims-eoz-dB0lHz-Qkwxr-fLGl7SkQFjsfALio070amm6HPSUxp_Agb_UFf0vKn3CmtDn6aGAhmko5k3T2BkaB2o_VVc_qR_ihu4msrR04ux-Equx8dXoxPWdlFgFrjekpUOXCCnuB_ITAWeABxhk_OhsoFjeUGeS8CkkHMbRPDCppnNSnCCSiddalIptsl6VVd-l1DPXeITN8wdPM9xOVMgNCYRPmRpFmyPiE552rYlxrHTxUx3uWR3ulG5RpXrhGtQeY-w1ah5U2LjHfmsWxf9aqtoQIF3Rv7ollHDV4ShEVP5-nGhwW4LcOwGSv1DhqfY1QkIUI_sNHtgNV-sqwi-q_z233PbI5t4F5OC5Heyvnx49PvAd5blAdkozi5uzw7ixn4BPur7nw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXxJtAgUWCG1acXTtrHziEQIjpQ4i2KLdlvQ8pKNhRkxb1d_EHO7O2I3EolZB68WG9a41mZ2e-8czOALzJNNoMNMNRWWoZoQmwUcZFHlnEIi4rHVrMkOV7MJweJ19m6WwL_nR3YSitstX9jU4P2rod6bfc7C_n8_4hxU65HBIEoWYFcZtZuevOf6PftnpffMRNfsv55NPReBq1rQUigwBoHZUW_QKbcTdIZOZ5jDqaOn8PM-M51dzjeYKK2ufceOGdMKk0skTPoLSJTXWaCPzuDbiJ6EOSNihmHzahiyQNffeIuojI6-7rhaSyX_XCOIp4DPJQKnQgLrOHl-HdYPcm9-BuC1jZqOHJfdhy1QO41bSwPH8IerSsl-saX7KxRu20citGnULJi2fk5LKChb-O3p3UFfvaFJhFYWBnc80QfbLxwukz1Gqs9sx8Hh2-Y_uj7_jUlWXFt4l4BMfXwtvHsF3VlXsKzHEbu9gOc4vjOclPighKx8J5mUpveiA65inT1jSn1hoL1SWv_VQNyxWxXMVcIct7EG1WLZuaHlfMl92-qL9kU6HZuWLl624bFR5bisXoytWnK4WGQqAnOciyf8zhKbWRQsTVgyeNDGzopUKO6Cwnz_6btldwe3q0v6f2ioPd53CH3oSMpGQHttcnp-4Fgq11-TIIN4Mf132aLgCWizVt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Apoptotic+Caspases+Suppress+Type+I+Interferon+Production+via+the+Cleavage+of+cGAS%2C+MAVS%2C+and+IRF3&rft.jtitle=Molecular+cell&rft.au=Ning%2C+Xiaohan&rft.au=Wang%2C+Yutao&rft.au=Jing%2C+Miao&rft.au=Sha%2C+Mengyin&rft.date=2019-04-04&rft.issn=1097-2765&rft.volume=74&rft.issue=1&rft.spage=19&rft.epage=31.e7&rft_id=info:doi/10.1016%2Fj.molcel.2019.02.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molcel_2019_02_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon