Apoptotic Caspases Suppress Type I Interferon Production via the Cleavage of cGAS, MAVS, and IRF3
Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are criti...
Saved in:
Published in | Molecular cell Vol. 74; no. 1; pp. 19 - 31.e7 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
04.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3−/− mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection.
[Display omitted]
•Deficiency in apoptotic caspases leads to elevated IFN production by virus infection•Caspase-3 cleaves cGAS, MAVS, and IRF3 to keep apoptosis immunologically silent•Caspase-7 is differently involved in mouse and human cells to cleave cGAS and MAVS•MAVS is cleaved at alternative sites to ensure caspase-mediated negative regulation
Ning et al. find that caspase-3 cleaves and inactivates cGAS, MAVS, and IRF3 to suppress cytokine and type I IFN production. Their findings reveal a role for apoptotic caspases in controlling antiviral innate immunity and keeping apoptosis immunologically silent. |
---|---|
AbstractList | Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3
mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection. Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3−/− mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection. [Display omitted] •Deficiency in apoptotic caspases leads to elevated IFN production by virus infection•Caspase-3 cleaves cGAS, MAVS, and IRF3 to keep apoptosis immunologically silent•Caspase-7 is differently involved in mouse and human cells to cleave cGAS and MAVS•MAVS is cleaved at alternative sites to ensure caspase-mediated negative regulation Ning et al. find that caspase-3 cleaves and inactivates cGAS, MAVS, and IRF3 to suppress cytokine and type I IFN production. Their findings reveal a role for apoptotic caspases in controlling antiviral innate immunity and keeping apoptosis immunologically silent. Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3−/− mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection. Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3-/- mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection.Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3-/- mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection. |
Author | Ning, Xiaohan Lv, Mengze Gao, Pengfei Wang, Yutao Sha, Mengyin Jing, Miao Zhang, Rui Huang, Xiaojun Feng, Ji-Ming Jiang, Zhengfan |
Author_xml | – sequence: 1 givenname: Xiaohan surname: Ning fullname: Ning, Xiaohan organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China – sequence: 2 givenname: Yutao surname: Wang fullname: Wang, Yutao organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China – sequence: 3 givenname: Miao surname: Jing fullname: Jing, Miao organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China – sequence: 4 givenname: Mengyin surname: Sha fullname: Sha, Mengyin organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China – sequence: 5 givenname: Mengze surname: Lv fullname: Lv, Mengze organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China – sequence: 6 givenname: Pengfei surname: Gao fullname: Gao, Pengfei organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China – sequence: 7 givenname: Rui surname: Zhang fullname: Zhang, Rui organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China – sequence: 8 givenname: Xiaojun surname: Huang fullname: Huang, Xiaojun organization: Peking-Tsinghua Center for Life Sciences, Beijing 100871, China – sequence: 9 givenname: Ji-Ming surname: Feng fullname: Feng, Ji-Ming organization: Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA – sequence: 10 givenname: Zhengfan surname: Jiang fullname: Jiang, Zhengfan email: jiangzf@pku.edu.cn organization: Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30878284$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vEzEUxC1URP_AN0DIRw5ksb221-aAFEW0RCoC0cLVcrzP4GizXmxvpH57HCW9cKCXN-_wmznMXKKzMY6A0GtKGkqofL9tdnFwMDSMUN0Q1hDaPkMXlOhuwankZ6efdVKco8uct4RQLpR-gc5bojrFFL9AdjnFqcQSHF7ZPNkMGd_N05QgZ3z_MAFe4_VYIHlIccTfUuxnV0J998Hi8hvwagC7t78AR4_dzfLuHf6y_FmvHXu8_n7dvkTPvR0yvDrpFfpx_el-9Xlx-_VmvVreLpwgXVlsei1krxhQ3inPiKrCWimV84wKIpnmnGmvmfOth9aJznUbLeWm572wgrdX6O0xd0rxzwy5mF3ItZ_BjhDnbBgTLaOcSPo0SnUriaBKVfTNCZ03O-jNlMLOpgfz2GAFPhwBl2LOCbxxodhDQyXZMBhKzGEuszXHucxhLkOYqXNVM__H_Jj_hO3j0Qa1z32AZLILMDroQwJXTB_D_wP-AkyKrWc |
CitedBy_id | crossref_primary_10_1038_s41392_024_02044_3 crossref_primary_10_1038_s41556_024_01474_z crossref_primary_10_1038_s41580_022_00564_w crossref_primary_10_1002_ctm2_1735 crossref_primary_10_2147_DDDT_S251623 crossref_primary_10_1002_eji_202350386 crossref_primary_10_1083_jcb_202310005 crossref_primary_10_30629_2658_7947_2021_26_1_4_14 crossref_primary_10_15252_embr_201949799 crossref_primary_10_1111_febs_16137 crossref_primary_10_1007_s12035_024_04412_0 crossref_primary_10_1111_imr_13279 crossref_primary_10_1038_s41564_021_00875_2 crossref_primary_10_1016_j_cca_2022_04_003 crossref_primary_10_1038_s41467_022_29266_9 crossref_primary_10_3389_fcimb_2022_852473 crossref_primary_10_1038_s41577_021_00524_z crossref_primary_10_1016_j_molcel_2023_02_021 crossref_primary_10_1038_s41418_022_01082_0 crossref_primary_10_1016_j_celrep_2022_111582 crossref_primary_10_1093_jmcb_mjab071 crossref_primary_10_1002_mc_23183 crossref_primary_10_1158_2159_8290_CD_22_1220 crossref_primary_10_1186_s12964_020_00659_x crossref_primary_10_1002_ijc_33698 crossref_primary_10_15252_embj_2019102325 crossref_primary_10_3389_fbioe_2022_952237 crossref_primary_10_3389_fimmu_2024_1352479 crossref_primary_10_1002_ccr3_4218 crossref_primary_10_1515_mr_2023_0061 crossref_primary_10_1016_j_tcb_2019_09_001 crossref_primary_10_1186_s12929_024_01062_1 crossref_primary_10_1111_febs_16241 crossref_primary_10_1038_s41421_024_00750_4 crossref_primary_10_2147_CCID_S476785 crossref_primary_10_1016_j_jbc_2021_101379 crossref_primary_10_1042_EBC20200016 crossref_primary_10_1016_j_bbcan_2025_189280 crossref_primary_10_3389_fmicb_2022_812711 crossref_primary_10_1515_jtim_2025_0004 crossref_primary_10_1016_j_nbd_2024_106785 crossref_primary_10_1038_s41564_022_01136_6 crossref_primary_10_1038_s41423_023_01086_x crossref_primary_10_3389_fimmu_2023_1166214 crossref_primary_10_1115_1_4056104 crossref_primary_10_3389_fimmu_2021_676861 crossref_primary_10_1016_j_intimp_2022_109364 crossref_primary_10_1038_s41590_020_0751_0 crossref_primary_10_3389_fimmu_2020_00615 crossref_primary_10_1038_s43018_023_00571_6 crossref_primary_10_1146_annurev_pathmechdis_051022_014433 crossref_primary_10_3390_cells9102207 crossref_primary_10_1080_08830185_2022_2070616 crossref_primary_10_1080_1040841X_2019_1660615 crossref_primary_10_1002_smtd_202201406 crossref_primary_10_1186_s12951_024_02809_6 crossref_primary_10_3389_fimmu_2020_01030 crossref_primary_10_1038_s41418_022_01094_w crossref_primary_10_1038_s41568_020_0246_1 crossref_primary_10_3390_microorganisms12050971 crossref_primary_10_18705_2782_3806_2022_2_2_63_71 crossref_primary_10_1016_j_neurot_2025_e00536 crossref_primary_10_3390_v16111695 crossref_primary_10_1371_journal_ppat_1012287 crossref_primary_10_1186_s13045_020_00946_7 crossref_primary_10_1097_gscm_0000000000000047 crossref_primary_10_3389_fcimb_2022_954581 crossref_primary_10_3389_fimmu_2023_1275408 crossref_primary_10_3389_fimmu_2021_660302 crossref_primary_10_1038_s41590_024_01966_y crossref_primary_10_1093_jmcb_mjac005 crossref_primary_10_1016_j_jinf_2021_04_014 crossref_primary_10_1111_febs_16051 crossref_primary_10_1186_s40634_023_00637_5 crossref_primary_10_1016_j_vetmic_2023_109970 crossref_primary_10_1038_s41573_022_00415_5 crossref_primary_10_3390_v15102093 crossref_primary_10_1186_s13578_021_00724_z crossref_primary_10_1016_j_ymthe_2020_11_031 crossref_primary_10_1038_s41556_024_01429_4 crossref_primary_10_1158_2326_6066_CIR_23_0321 crossref_primary_10_3390_biom10081109 crossref_primary_10_3389_fphar_2023_1152934 crossref_primary_10_1038_s41580_019_0173_8 crossref_primary_10_1080_2162402X_2021_1893466 crossref_primary_10_4049_jimmunol_2100757 crossref_primary_10_1242_dmm_048912 crossref_primary_10_1038_s41573_024_00920_9 crossref_primary_10_3389_fimmu_2020_625833 crossref_primary_10_1080_2162402X_2020_1777624 crossref_primary_10_3389_fphar_2024_1409683 crossref_primary_10_1016_j_celrep_2020_108586 crossref_primary_10_1096_fj_202401056R crossref_primary_10_1038_s41392_021_00613_4 crossref_primary_10_1002_ccr3_3997 crossref_primary_10_1016_j_isci_2023_108080 crossref_primary_10_1038_s41392_021_00554_y crossref_primary_10_1002_1878_0261_12851 crossref_primary_10_1016_j_celrep_2022_111434 crossref_primary_10_1073_pnas_2207240119 crossref_primary_10_1016_j_ecoenv_2025_118029 crossref_primary_10_1038_s41577_022_00760_x crossref_primary_10_3389_fimmu_2021_753789 crossref_primary_10_3389_fcell_2019_00100 crossref_primary_10_1016_j_gene_2022_146962 crossref_primary_10_3390_cells11040675 crossref_primary_10_1101_cshperspect_a036475 crossref_primary_10_3390_v16020256 crossref_primary_10_1042_EBC20220248 crossref_primary_10_1002_vms3_1569 crossref_primary_10_1038_s44318_024_00044_1 crossref_primary_10_1186_s43556_020_00006_z crossref_primary_10_1002_rai2_12104 crossref_primary_10_1038_s41467_023_43635_y crossref_primary_10_15407_fz66_06_013 crossref_primary_10_15252_embr_202051345 crossref_primary_10_1016_j_molcel_2020_10_018 crossref_primary_10_3390_cells11193043 crossref_primary_10_1146_annurev_biochem_040320_101629 crossref_primary_10_1038_s41419_022_05156_2 crossref_primary_10_1128_mbio_02096_21 crossref_primary_10_1016_j_cell_2020_03_040 crossref_primary_10_4049_jimmunol_2000306 crossref_primary_10_3390_ijms241713316 crossref_primary_10_3390_v15091908 crossref_primary_10_1111_imcb_12555 crossref_primary_10_3390_ijms21217842 crossref_primary_10_1016_j_it_2019_06_001 crossref_primary_10_1038_s41423_020_00602_7 crossref_primary_10_1111_imr_13301 crossref_primary_10_1016_j_immuni_2020_06_014 crossref_primary_10_1172_JCI136824 crossref_primary_10_1016_j_ccell_2024_09_010 crossref_primary_10_1016_j_molcel_2019_09_006 crossref_primary_10_1371_journal_ppat_1011132 crossref_primary_10_1016_j_phrs_2024_107063 crossref_primary_10_1016_j_exer_2022_108970 crossref_primary_10_1038_s41418_022_00985_2 crossref_primary_10_1007_s00018_024_05392_z crossref_primary_10_1016_j_vetmic_2020_108860 crossref_primary_10_18632_aging_202491 crossref_primary_10_1007_s12017_023_08737_2 crossref_primary_10_3389_fimmu_2020_611347 crossref_primary_10_1016_j_tcb_2022_11_001 crossref_primary_10_1016_j_trecan_2024_01_013 crossref_primary_10_1080_2162402X_2019_1655964 crossref_primary_10_3390_v14081797 crossref_primary_10_1038_s41571_023_00782_x crossref_primary_10_3390_cells11030318 crossref_primary_10_1016_j_tins_2020_10_008 crossref_primary_10_3390_ijms24033029 crossref_primary_10_1007_s40242_024_4120_7 crossref_primary_10_3390_ijms232315182 crossref_primary_10_1155_2019_3638562 crossref_primary_10_1136_jitc_2023_007625 crossref_primary_10_1590_1678_9199_jvatitd_2020_0183 crossref_primary_10_3390_v16040574 crossref_primary_10_1038_s41586_025_08732_6 crossref_primary_10_1186_s12964_024_01531_y crossref_primary_10_1042_BST20221525 crossref_primary_10_1021_jacsau_4c00712 crossref_primary_10_1038_s41598_024_66662_1 crossref_primary_10_1016_j_antiviral_2024_105797 crossref_primary_10_1016_j_molcel_2023_03_010 crossref_primary_10_1128_mbio_02446_22 crossref_primary_10_1126_scisignal_abc7931 crossref_primary_10_1038_s41418_020_00624_8 crossref_primary_10_15252_embr_202255536 crossref_primary_10_1016_j_bcp_2023_115938 crossref_primary_10_1016_j_vetmic_2025_110456 crossref_primary_10_1016_j_jtbi_2023_111558 crossref_primary_10_1016_j_niox_2024_05_002 crossref_primary_10_1002_cpz1_372 crossref_primary_10_1038_s41580_020_0244_x crossref_primary_10_3389_fphar_2021_653940 crossref_primary_10_1128_jvi_00317_24 crossref_primary_10_1016_j_tibtech_2025_01_007 crossref_primary_10_1016_j_virol_2025_110443 crossref_primary_10_1186_s13578_020_00442_y crossref_primary_10_1155_2021_7157109 crossref_primary_10_1590_0001_3765202220201380 crossref_primary_10_1016_j_cellsig_2020_109772 crossref_primary_10_1042_BST20200522 crossref_primary_10_1073_pnas_2200206119 crossref_primary_10_1371_journal_ppat_1012423 crossref_primary_10_1016_j_tcb_2020_03_004 crossref_primary_10_1038_s41467_023_37146_z crossref_primary_10_1038_s41590_019_0561_4 crossref_primary_10_1016_j_bbamcr_2022_119341 crossref_primary_10_15789_1563_0625_AAN_2482 crossref_primary_10_1016_j_bcp_2023_115596 crossref_primary_10_1016_j_ejmech_2023_116018 crossref_primary_10_1128_msphere_00236_24 crossref_primary_10_1016_j_celrep_2023_112442 crossref_primary_10_1016_j_virusres_2024_199498 crossref_primary_10_3390_ijms22010426 crossref_primary_10_1038_s41418_020_0545_9 crossref_primary_10_1089_ars_2021_0091 crossref_primary_10_1038_s41419_024_07083_w crossref_primary_10_15252_embj_2019103397 crossref_primary_10_1080_15384101_2019_1638192 crossref_primary_10_1080_21505594_2021_1996072 crossref_primary_10_1016_j_intimp_2023_109906 crossref_primary_10_1016_j_vetmic_2024_110290 crossref_primary_10_1080_2162402X_2020_1797292 crossref_primary_10_1186_s40164_024_00531_5 crossref_primary_10_1016_j_canlet_2024_217079 crossref_primary_10_1016_j_jbc_2021_101274 crossref_primary_10_1016_j_molimm_2024_10_002 crossref_primary_10_1038_s12276_023_00965_7 crossref_primary_10_1021_acschemneuro_0c00603 crossref_primary_10_3389_fmicb_2021_684953 crossref_primary_10_1002_mco2_511 |
Cites_doi | 10.1016/j.cell.2011.09.022 10.4049/jimmunol.1700699 10.1073/pnas.0900850106 10.1016/j.immuni.2011.10.010 10.1126/science.1148526 10.1016/j.immuni.2009.05.007 10.1038/nature04193 10.1038/35099560 10.1016/j.cell.2017.09.039 10.1038/cdd.2008.119 10.1038/nrm2153 10.1016/j.immuni.2010.12.018 10.1073/pnas.0611506104 10.1074/jbc.M114.559583 10.1038/ni0503-410 10.1016/j.immuni.2017.02.011 10.1016/j.cell.2014.11.036 10.1038/sj.cdd.4402060 10.1074/jbc.M111.257022 10.1038/ni1207 10.1038/nature14156 10.1146/annurev.micro.62.081307.163009 10.1016/j.cell.2014.04.007 10.4049/jimmunol.178.Supp.B84 10.1093/brain/awn077 10.1016/j.immuni.2012.01.011 10.1038/ni.1815 10.1016/j.cell.2010.09.033 10.1016/j.immuni.2012.03.013 10.1146/annurev.immunol.23.021704.115843 10.1038/ni.3558 10.1016/j.cell.2013.04.046 10.1016/j.celrep.2014.01.003 10.1146/annurev-immunol-032712-095944 10.1073/pnas.0508531102 10.1016/j.immuni.2006.08.010 10.1038/nrm2308 10.1016/j.chom.2014.01.010 10.1101/cshperspect.a026716 10.1111/imr.12289 10.1016/j.immuni.2013.05.007 10.1016/j.immuni.2011.05.003 10.1007/978-1-59745-521-3_23 10.1128/JVI.02174-09 10.1016/0167-5699(95)80122-7 10.1371/journal.ppat.1006720 10.1016/j.molcel.2012.04.026 10.1016/j.coviro.2016.11.012 10.1016/j.cell.2014.11.037 10.1016/j.jns.2013.03.002 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.molcel.2019.02.013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 31.e7 |
ExternalDocumentID | 30878284 10_1016_j_molcel_2019_02_013 S1097276519301030 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c507t-bd956d82e1478f20847823668cf21506294429f92cf3fe3c57c7b966bd4d5a543 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Fri Jul 11 16:29:07 EDT 2025 Fri Jul 11 11:45:40 EDT 2025 Mon Jul 21 06:00:41 EDT 2025 Tue Jul 01 03:21:13 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Fri Feb 23 02:30:35 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | type I-interferon cleavage MAVS innate immunity IRF3 apoptotic caspase cGAS apoptosis immunologically silent virus infection |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-bd956d82e1478f20847823668cf21506294429f92cf3fe3c57c7b966bd4d5a543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S1097276519301030/pdf |
PMID | 30878284 |
PQID | 2193605188 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2253214061 proquest_miscellaneous_2193605188 pubmed_primary_30878284 crossref_citationtrail_10_1016_j_molcel_2019_02_013 crossref_primary_10_1016_j_molcel_2019_02_013 elsevier_sciencedirect_doi_10_1016_j_molcel_2019_02_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-04 |
PublicationDateYYYYMMDD | 2019-04-04 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | von Moltke, Ayres, Kofoed, Chavarría-Smith, Vance (bib41) 2013; 31 Skaug, Chen (bib35) 2010; 143 Stark, Darnell (bib37) 2012; 36 Storek, Monack (bib38) 2015; 265 Mangini, Meyers, Nagai, vanSeventer, vanSeventer (bib21) 2007; 178 Yang, Liang, Qu, Chen, Yi, Li, Lemon (bib45) 2007; 104 Gao, Ascano, Wu, Barchet, Gaffney, Zillinger, Serganov, Liu, Jones, Hartmann (bib9) 2013; 153 Rostami, Ciric (bib33) 2013; 333 West, Khoury-Hanold, Staron, Tal, Pineda, Lang, Bestwick, Duguay, Raimundo, MacDuff (bib43) 2015; 520 McIlwain, Berger, Mak (bib24) 2015; 7 Theofilopoulos, Baccala, Beutler, Kono (bib40) 2005; 23 Fang, Wang, Jiang, Lv, Gao, Yu, Mu, Zhang, Bi, Feng, Jiang (bib7) 2017; 199 Sears, Sen, Stark, Chattopadhyay (bib34) 2011; 286 Martin, Henry, Cullen (bib22) 2012; 46 Kumar (bib16) 2007; 14 You, Sun, Zhou, Sun, Liang, Zhai, Jiang (bib47) 2009; 10 Chen, Sun, Chen (bib5) 2016; 17 Rebsamen, Meylan, Curran, Tschopp (bib30) 2008; 15 Yu, Chiang, Chang, Liao, Lin (bib49) 2010; 84 Banchereau, Pascual (bib2) 2006; 25 Goubau, Deddouche, Reis e Sousa (bib10) 2013; 38 Råberg, Sim, Read (bib28) 2007; 318 Smyth, Trapani (bib36) 1995; 16 Riedl, Salvesen (bib31) 2007; 8 Chen, Sun, You, Sun, Zhou, Chen, Yang, Wang, Tang, Guan (bib4) 2011; 147 Loo, Gale (bib19) 2011; 34 Hashiguchi, Zhang-Akiyama (bib12) 2009; 554 Zhang, Wu, Du, Xu, Sun, Chen, Brautigam, Zhang, Chen (bib50) 2014; 6 Wang, Ning, Gao, Wu, Sha, Lv, Zhou, Gao, Fang, Meng (bib42) 2017; 46 Meylan, Curran, Hofmann, Moradpour, Binder, Bartenschlager, Tschopp (bib25) 2005; 437 Lamkanfi, Dixit (bib17) 2014; 157 McFadden, Gokhale, Horner (bib23) 2017; 22 Rongvaux, Jackson, Harman, Li, West, de Zoete, Wu, Yordy, Lakhani, Kuan (bib32) 2014; 159 Mueller, Yoon, Sadiq (bib26) 2014; 289 Yatim, Albert (bib46) 2011; 35 Alexopoulou, Holt, Medzhitov, Flavell (bib1) 2001; 413 Jiang, Georgel, Du, Shamel, Sovath, Mudd, Huber, Kalis, Keck, Galanos (bib14) 2005; 6 Rajput, Kovalenko, Bogdanov, Yang, Kang, Kim, Du, Wallach (bib29) 2011; 34 Youle, Strasser (bib48) 2008; 9 Lüthi, Cullen, McNeela, Duriez, Afonina, Sheridan, Brumatti, Taylor, Kersse, Vandenabeele (bib20) 2009; 31 Gough, Messina, Clarke, Johnstone, Levy (bib11) 2012; 36 Opferman, Korsmeyer (bib27) 2003; 4 Gaidt, Ebert, Chauhan, Ramshorn, Pinci, Zuber, O’Duill, Schmid-Burgk, Hoss, Buhmann (bib8) 2017; 171 Sun, Li, Chen, Chen, You, Zhou, Zhou, Zhai, Chen, Jiang (bib39) 2009; 106 Li, Sun, Seth, Pineda, Chen (bib18) 2005; 102 Zschaler, Schlorke, Arnhold (bib51) 2014; 34 Jabir, Ritchie, Li, Bayes, Tourlomousis, Puleston, Lupton, Hopkins, Simon, Bryant, Evans (bib13) 2014; 15 Krumbholz, Faber, Steinmeyer, Hoffmann, Kümpfel, Pellkofer, Derfuss, Ionescu, Starck, Hafner (bib15) 2008; 131 White, McArthur, Metcalf, Lane, Cambier, Herold, van Delft, Bedoui, Lessene, Ritchie (bib44) 2014; 159 Fang, Jiang, Zhou, Wang, Guan, Tao, Xi, Feng, Jiang (bib6) 2017; 13 Best (bib3) 2008; 62 Rebsamen (10.1016/j.molcel.2019.02.013_bib30) 2008; 15 Jiang (10.1016/j.molcel.2019.02.013_bib14) 2005; 6 Råberg (10.1016/j.molcel.2019.02.013_bib28) 2007; 318 Rajput (10.1016/j.molcel.2019.02.013_bib29) 2011; 34 McFadden (10.1016/j.molcel.2019.02.013_bib23) 2017; 22 Gough (10.1016/j.molcel.2019.02.013_bib11) 2012; 36 Rostami (10.1016/j.molcel.2019.02.013_bib33) 2013; 333 Mueller (10.1016/j.molcel.2019.02.013_bib26) 2014; 289 Rongvaux (10.1016/j.molcel.2019.02.013_bib32) 2014; 159 Skaug (10.1016/j.molcel.2019.02.013_bib35) 2010; 143 Yang (10.1016/j.molcel.2019.02.013_bib45) 2007; 104 Theofilopoulos (10.1016/j.molcel.2019.02.013_bib40) 2005; 23 McIlwain (10.1016/j.molcel.2019.02.013_bib24) 2015; 7 Lüthi (10.1016/j.molcel.2019.02.013_bib20) 2009; 31 Gao (10.1016/j.molcel.2019.02.013_bib9) 2013; 153 Kumar (10.1016/j.molcel.2019.02.013_bib16) 2007; 14 Mangini (10.1016/j.molcel.2019.02.013_bib21) 2007; 178 Wang (10.1016/j.molcel.2019.02.013_bib42) 2017; 46 You (10.1016/j.molcel.2019.02.013_bib47) 2009; 10 Li (10.1016/j.molcel.2019.02.013_bib18) 2005; 102 Sun (10.1016/j.molcel.2019.02.013_bib39) 2009; 106 Zhang (10.1016/j.molcel.2019.02.013_bib50) 2014; 6 Fang (10.1016/j.molcel.2019.02.013_bib7) 2017; 199 Jabir (10.1016/j.molcel.2019.02.013_bib13) 2014; 15 Storek (10.1016/j.molcel.2019.02.013_bib38) 2015; 265 Chen (10.1016/j.molcel.2019.02.013_bib5) 2016; 17 Meylan (10.1016/j.molcel.2019.02.013_bib25) 2005; 437 Stark (10.1016/j.molcel.2019.02.013_bib37) 2012; 36 Yu (10.1016/j.molcel.2019.02.013_bib49) 2010; 84 Best (10.1016/j.molcel.2019.02.013_bib3) 2008; 62 Banchereau (10.1016/j.molcel.2019.02.013_bib2) 2006; 25 West (10.1016/j.molcel.2019.02.013_bib43) 2015; 520 Hashiguchi (10.1016/j.molcel.2019.02.013_bib12) 2009; 554 White (10.1016/j.molcel.2019.02.013_bib44) 2014; 159 Smyth (10.1016/j.molcel.2019.02.013_bib36) 1995; 16 Martin (10.1016/j.molcel.2019.02.013_bib22) 2012; 46 Krumbholz (10.1016/j.molcel.2019.02.013_bib15) 2008; 131 Fang (10.1016/j.molcel.2019.02.013_bib6) 2017; 13 Yatim (10.1016/j.molcel.2019.02.013_bib46) 2011; 35 Lamkanfi (10.1016/j.molcel.2019.02.013_bib17) 2014; 157 Zschaler (10.1016/j.molcel.2019.02.013_bib51) 2014; 34 Alexopoulou (10.1016/j.molcel.2019.02.013_bib1) 2001; 413 Chen (10.1016/j.molcel.2019.02.013_bib4) 2011; 147 Loo (10.1016/j.molcel.2019.02.013_bib19) 2011; 34 von Moltke (10.1016/j.molcel.2019.02.013_bib41) 2013; 31 Opferman (10.1016/j.molcel.2019.02.013_bib27) 2003; 4 Sears (10.1016/j.molcel.2019.02.013_bib34) 2011; 286 Gaidt (10.1016/j.molcel.2019.02.013_bib8) 2017; 171 Youle (10.1016/j.molcel.2019.02.013_bib48) 2008; 9 Goubau (10.1016/j.molcel.2019.02.013_bib10) 2013; 38 Riedl (10.1016/j.molcel.2019.02.013_bib31) 2007; 8 |
References_xml | – volume: 13 start-page: e1006720 year: 2017 ident: bib6 article-title: MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner publication-title: PLoS Pathog. – volume: 157 start-page: 1013 year: 2014 end-page: 1022 ident: bib17 article-title: Mechanisms and functions of inflammasomes publication-title: Cell – volume: 7 start-page: a008656 year: 2015 ident: bib24 article-title: Caspase functions in cell death and disease publication-title: Cold Spring Harb. Perspect. Biol. – volume: 147 start-page: 436 year: 2011 end-page: 446 ident: bib4 article-title: Activation of STAT6 by STING is critical for antiviral innate immunity publication-title: Cell – volume: 35 start-page: 478 year: 2011 end-page: 490 ident: bib46 article-title: Dying to replicate: the orchestration of the viral life cycle, cell death pathways, and immunity publication-title: Immunity – volume: 38 start-page: 855 year: 2013 end-page: 869 ident: bib10 article-title: Cytosolic sensing of viruses publication-title: Immunity – volume: 199 start-page: 3222 year: 2017 end-page: 3233 ident: bib7 article-title: NEMO-IKKβ Are Essential for IRF3 and NF-κB Activation in the cGAS-STING Pathway publication-title: J. Immunol. – volume: 36 start-page: 503 year: 2012 end-page: 514 ident: bib37 article-title: The JAK-STAT pathway at twenty publication-title: Immunity – volume: 22 start-page: 36 year: 2017 end-page: 43 ident: bib23 article-title: Protect this house: cytosolic sensing of viruses publication-title: Curr. Opin. Virol. – volume: 102 start-page: 17717 year: 2005 end-page: 17722 ident: bib18 article-title: Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity publication-title: Proc. Natl. Acad. Sci. USA – volume: 413 start-page: 732 year: 2001 end-page: 738 ident: bib1 article-title: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3 publication-title: Nature – volume: 62 start-page: 171 year: 2008 end-page: 192 ident: bib3 article-title: Viral subversion of apoptotic enzymes: escape from death row publication-title: Annu. Rev. Microbiol. – volume: 554 start-page: 383 year: 2009 end-page: 391 ident: bib12 article-title: Establishment of human cell lines lacking mitochondrial DNA publication-title: Methods Mol. Biol. – volume: 178 start-page: LB17 year: 2007 end-page: LB18 ident: bib21 article-title: Type I interferon regulation of Th cell responses in SLE publication-title: J. Immunol. – volume: 265 start-page: 112 year: 2015 end-page: 129 ident: bib38 article-title: Bacterial recognition pathways that lead to inflammasome activation publication-title: Immunol. Rev. – volume: 84 start-page: 2421 year: 2010 end-page: 2431 ident: bib49 article-title: The interferon stimulator mitochondrial antiviral signaling protein facilitates cell death by disrupting the mitochondrial membrane potential and by activating caspases publication-title: J. Virol. – volume: 46 start-page: 387 year: 2012 end-page: 397 ident: bib22 article-title: A perspective on mammalian caspases as positive and negative regulators of inflammation publication-title: Mol. Cell – volume: 159 start-page: 1563 year: 2014 end-page: 1577 ident: bib32 article-title: Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA publication-title: Cell – volume: 104 start-page: 7253 year: 2007 end-page: 7258 ident: bib45 article-title: Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor publication-title: Proc. Natl. Acad. Sci. USA – volume: 437 start-page: 1167 year: 2005 end-page: 1172 ident: bib25 article-title: Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus publication-title: Nature – volume: 4 start-page: 410 year: 2003 end-page: 415 ident: bib27 article-title: Apoptosis in the development and maintenance of the immune system publication-title: Nat. Immunol. – volume: 159 start-page: 1549 year: 2014 end-page: 1562 ident: bib44 article-title: Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production publication-title: Cell – volume: 10 start-page: 1300 year: 2009 end-page: 1308 ident: bib47 article-title: PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4 publication-title: Nat. Immunol. – volume: 34 start-page: 340 year: 2011 end-page: 351 ident: bib29 article-title: RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein publication-title: Immunity – volume: 23 start-page: 307 year: 2005 end-page: 336 ident: bib40 article-title: Type I interferons (alpha/beta) in immunity and autoimmunity publication-title: Annu. Rev. Immunol. – volume: 8 start-page: 405 year: 2007 end-page: 413 ident: bib31 article-title: The apoptosome: signalling platform of cell death publication-title: Nat. Rev. Mol. Cell Biol. – volume: 286 start-page: 33037 year: 2011 end-page: 33044 ident: bib34 article-title: Caspase-8-mediated cleavage inhibits IRF-3 protein by facilitating its proteasome-mediated degradation publication-title: J. Biol. Chem. – volume: 31 start-page: 73 year: 2013 end-page: 106 ident: bib41 article-title: Recognition of bacteria by inflammasomes publication-title: Annu. Rev. Immunol. – volume: 25 start-page: 383 year: 2006 end-page: 392 ident: bib2 article-title: Type I interferon in systemic lupus erythematosus and other autoimmune diseases publication-title: Immunity – volume: 46 start-page: 393 year: 2017 end-page: 404 ident: bib42 article-title: Inflammasome Activation Triggers Caspase-1-Mediated Cleavage of cGAS to Regulate Responses to DNA Virus Infection publication-title: Immunity – volume: 17 start-page: 1142 year: 2016 end-page: 1149 ident: bib5 article-title: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing publication-title: Nat. Immunol. – volume: 31 start-page: 84 year: 2009 end-page: 98 ident: bib20 article-title: Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases publication-title: Immunity – volume: 333 start-page: 76 year: 2013 end-page: 87 ident: bib33 article-title: Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination publication-title: J. Neurol. Sci. – volume: 36 start-page: 166 year: 2012 end-page: 174 ident: bib11 article-title: Constitutive type I interferon modulates homeostatic balance through tonic signaling publication-title: Immunity – volume: 153 start-page: 1094 year: 2013 end-page: 1107 ident: bib9 article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase publication-title: Cell – volume: 520 start-page: 553 year: 2015 end-page: 557 ident: bib43 article-title: Mitochondrial DNA stress primes the antiviral innate immune response publication-title: Nature – volume: 289 start-page: 22888 year: 2014 end-page: 22899 ident: bib26 article-title: Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS publication-title: J. Biol. Chem. – volume: 6 start-page: 421 year: 2014 end-page: 430 ident: bib50 article-title: The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop publication-title: Cell Rep. – volume: 6 start-page: 565 year: 2005 end-page: 570 ident: bib14 article-title: CD14 is required for MyD88-independent LPS signaling publication-title: Nat. Immunol. – volume: 131 start-page: 1455 year: 2008 end-page: 1463 ident: bib15 article-title: Interferon-beta increases BAFF levels in multiple sclerosis: implications for B cell autoimmunity publication-title: Brain – volume: 143 start-page: 187 year: 2010 end-page: 190 ident: bib35 article-title: Emerging role of ISG15 in antiviral immunity publication-title: Cell – volume: 106 start-page: 8653 year: 2009 end-page: 8658 ident: bib39 article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization publication-title: Proc. Natl. Acad. Sci. USA – volume: 34 start-page: 680 year: 2011 end-page: 692 ident: bib19 article-title: Immune signaling by RIG-I-like receptors publication-title: Immunity – volume: 34 start-page: 433 year: 2014 end-page: 454 ident: bib51 article-title: Differences in innate immune response between man and mouse publication-title: Crit. Rev. Immunol. – volume: 15 start-page: 214 year: 2014 end-page: 227 ident: bib13 article-title: Caspase-1 cleavage of the TLR adaptor TRIF inhibits autophagy and β-interferon production during Pseudomonas aeruginosa infection publication-title: Cell Host Microbe – volume: 14 start-page: 32 year: 2007 end-page: 43 ident: bib16 article-title: Caspase function in programmed cell death publication-title: Cell Death Differ. – volume: 9 start-page: 47 year: 2008 end-page: 59 ident: bib48 article-title: The BCL-2 protein family: opposing activities that mediate cell death publication-title: Nat. Rev. Mol. Cell Biol. – volume: 16 start-page: 202 year: 1995 end-page: 206 ident: bib36 article-title: Granzymes: exogenous proteinases that induce target cell apoptosis publication-title: Immunol. Today – volume: 318 start-page: 812 year: 2007 end-page: 814 ident: bib28 article-title: Disentangling genetic variation for resistance and tolerance to infectious diseases in animals publication-title: Science – volume: 15 start-page: 1804 year: 2008 end-page: 1811 ident: bib30 article-title: The antiviral adaptor proteins Cardif and Trif are processed and inactivated by caspases publication-title: Cell Death Differ. – volume: 171 start-page: 1110 year: 2017 end-page: 1124.e18 ident: bib8 article-title: The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3 publication-title: Cell – volume: 147 start-page: 436 year: 2011 ident: 10.1016/j.molcel.2019.02.013_bib4 article-title: Activation of STAT6 by STING is critical for antiviral innate immunity publication-title: Cell doi: 10.1016/j.cell.2011.09.022 – volume: 199 start-page: 3222 year: 2017 ident: 10.1016/j.molcel.2019.02.013_bib7 article-title: NEMO-IKKβ Are Essential for IRF3 and NF-κB Activation in the cGAS-STING Pathway publication-title: J. Immunol. doi: 10.4049/jimmunol.1700699 – volume: 106 start-page: 8653 year: 2009 ident: 10.1016/j.molcel.2019.02.013_bib39 article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0900850106 – volume: 35 start-page: 478 year: 2011 ident: 10.1016/j.molcel.2019.02.013_bib46 article-title: Dying to replicate: the orchestration of the viral life cycle, cell death pathways, and immunity publication-title: Immunity doi: 10.1016/j.immuni.2011.10.010 – volume: 318 start-page: 812 year: 2007 ident: 10.1016/j.molcel.2019.02.013_bib28 article-title: Disentangling genetic variation for resistance and tolerance to infectious diseases in animals publication-title: Science doi: 10.1126/science.1148526 – volume: 31 start-page: 84 year: 2009 ident: 10.1016/j.molcel.2019.02.013_bib20 article-title: Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases publication-title: Immunity doi: 10.1016/j.immuni.2009.05.007 – volume: 437 start-page: 1167 year: 2005 ident: 10.1016/j.molcel.2019.02.013_bib25 article-title: Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus publication-title: Nature doi: 10.1038/nature04193 – volume: 413 start-page: 732 year: 2001 ident: 10.1016/j.molcel.2019.02.013_bib1 article-title: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3 publication-title: Nature doi: 10.1038/35099560 – volume: 171 start-page: 1110 year: 2017 ident: 10.1016/j.molcel.2019.02.013_bib8 article-title: The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3 publication-title: Cell doi: 10.1016/j.cell.2017.09.039 – volume: 15 start-page: 1804 year: 2008 ident: 10.1016/j.molcel.2019.02.013_bib30 article-title: The antiviral adaptor proteins Cardif and Trif are processed and inactivated by caspases publication-title: Cell Death Differ. doi: 10.1038/cdd.2008.119 – volume: 8 start-page: 405 year: 2007 ident: 10.1016/j.molcel.2019.02.013_bib31 article-title: The apoptosome: signalling platform of cell death publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2153 – volume: 34 start-page: 340 year: 2011 ident: 10.1016/j.molcel.2019.02.013_bib29 article-title: RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein publication-title: Immunity doi: 10.1016/j.immuni.2010.12.018 – volume: 104 start-page: 7253 year: 2007 ident: 10.1016/j.molcel.2019.02.013_bib45 article-title: Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0611506104 – volume: 289 start-page: 22888 year: 2014 ident: 10.1016/j.molcel.2019.02.013_bib26 article-title: Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.559583 – volume: 4 start-page: 410 year: 2003 ident: 10.1016/j.molcel.2019.02.013_bib27 article-title: Apoptosis in the development and maintenance of the immune system publication-title: Nat. Immunol. doi: 10.1038/ni0503-410 – volume: 46 start-page: 393 year: 2017 ident: 10.1016/j.molcel.2019.02.013_bib42 article-title: Inflammasome Activation Triggers Caspase-1-Mediated Cleavage of cGAS to Regulate Responses to DNA Virus Infection publication-title: Immunity doi: 10.1016/j.immuni.2017.02.011 – volume: 159 start-page: 1549 year: 2014 ident: 10.1016/j.molcel.2019.02.013_bib44 article-title: Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production publication-title: Cell doi: 10.1016/j.cell.2014.11.036 – volume: 14 start-page: 32 year: 2007 ident: 10.1016/j.molcel.2019.02.013_bib16 article-title: Caspase function in programmed cell death publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4402060 – volume: 286 start-page: 33037 year: 2011 ident: 10.1016/j.molcel.2019.02.013_bib34 article-title: Caspase-8-mediated cleavage inhibits IRF-3 protein by facilitating its proteasome-mediated degradation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.257022 – volume: 6 start-page: 565 year: 2005 ident: 10.1016/j.molcel.2019.02.013_bib14 article-title: CD14 is required for MyD88-independent LPS signaling publication-title: Nat. Immunol. doi: 10.1038/ni1207 – volume: 520 start-page: 553 year: 2015 ident: 10.1016/j.molcel.2019.02.013_bib43 article-title: Mitochondrial DNA stress primes the antiviral innate immune response publication-title: Nature doi: 10.1038/nature14156 – volume: 62 start-page: 171 year: 2008 ident: 10.1016/j.molcel.2019.02.013_bib3 article-title: Viral subversion of apoptotic enzymes: escape from death row publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.62.081307.163009 – volume: 157 start-page: 1013 year: 2014 ident: 10.1016/j.molcel.2019.02.013_bib17 article-title: Mechanisms and functions of inflammasomes publication-title: Cell doi: 10.1016/j.cell.2014.04.007 – volume: 178 start-page: LB17 issue: 1 Suppl year: 2007 ident: 10.1016/j.molcel.2019.02.013_bib21 article-title: Type I interferon regulation of Th cell responses in SLE publication-title: J. Immunol. doi: 10.4049/jimmunol.178.Supp.B84 – volume: 131 start-page: 1455 year: 2008 ident: 10.1016/j.molcel.2019.02.013_bib15 article-title: Interferon-beta increases BAFF levels in multiple sclerosis: implications for B cell autoimmunity publication-title: Brain doi: 10.1093/brain/awn077 – volume: 36 start-page: 166 year: 2012 ident: 10.1016/j.molcel.2019.02.013_bib11 article-title: Constitutive type I interferon modulates homeostatic balance through tonic signaling publication-title: Immunity doi: 10.1016/j.immuni.2012.01.011 – volume: 10 start-page: 1300 year: 2009 ident: 10.1016/j.molcel.2019.02.013_bib47 article-title: PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4 publication-title: Nat. Immunol. doi: 10.1038/ni.1815 – volume: 143 start-page: 187 year: 2010 ident: 10.1016/j.molcel.2019.02.013_bib35 article-title: Emerging role of ISG15 in antiviral immunity publication-title: Cell doi: 10.1016/j.cell.2010.09.033 – volume: 36 start-page: 503 year: 2012 ident: 10.1016/j.molcel.2019.02.013_bib37 article-title: The JAK-STAT pathway at twenty publication-title: Immunity doi: 10.1016/j.immuni.2012.03.013 – volume: 23 start-page: 307 year: 2005 ident: 10.1016/j.molcel.2019.02.013_bib40 article-title: Type I interferons (alpha/beta) in immunity and autoimmunity publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.23.021704.115843 – volume: 17 start-page: 1142 year: 2016 ident: 10.1016/j.molcel.2019.02.013_bib5 article-title: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing publication-title: Nat. Immunol. doi: 10.1038/ni.3558 – volume: 153 start-page: 1094 year: 2013 ident: 10.1016/j.molcel.2019.02.013_bib9 article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase publication-title: Cell doi: 10.1016/j.cell.2013.04.046 – volume: 6 start-page: 421 year: 2014 ident: 10.1016/j.molcel.2019.02.013_bib50 article-title: The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.01.003 – volume: 31 start-page: 73 year: 2013 ident: 10.1016/j.molcel.2019.02.013_bib41 article-title: Recognition of bacteria by inflammasomes publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032712-095944 – volume: 102 start-page: 17717 year: 2005 ident: 10.1016/j.molcel.2019.02.013_bib18 article-title: Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0508531102 – volume: 25 start-page: 383 year: 2006 ident: 10.1016/j.molcel.2019.02.013_bib2 article-title: Type I interferon in systemic lupus erythematosus and other autoimmune diseases publication-title: Immunity doi: 10.1016/j.immuni.2006.08.010 – volume: 9 start-page: 47 year: 2008 ident: 10.1016/j.molcel.2019.02.013_bib48 article-title: The BCL-2 protein family: opposing activities that mediate cell death publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2308 – volume: 15 start-page: 214 year: 2014 ident: 10.1016/j.molcel.2019.02.013_bib13 article-title: Caspase-1 cleavage of the TLR adaptor TRIF inhibits autophagy and β-interferon production during Pseudomonas aeruginosa infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.01.010 – volume: 7 start-page: a008656 year: 2015 ident: 10.1016/j.molcel.2019.02.013_bib24 article-title: Caspase functions in cell death and disease publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a026716 – volume: 265 start-page: 112 year: 2015 ident: 10.1016/j.molcel.2019.02.013_bib38 article-title: Bacterial recognition pathways that lead to inflammasome activation publication-title: Immunol. Rev. doi: 10.1111/imr.12289 – volume: 38 start-page: 855 year: 2013 ident: 10.1016/j.molcel.2019.02.013_bib10 article-title: Cytosolic sensing of viruses publication-title: Immunity doi: 10.1016/j.immuni.2013.05.007 – volume: 34 start-page: 680 year: 2011 ident: 10.1016/j.molcel.2019.02.013_bib19 article-title: Immune signaling by RIG-I-like receptors publication-title: Immunity doi: 10.1016/j.immuni.2011.05.003 – volume: 554 start-page: 383 year: 2009 ident: 10.1016/j.molcel.2019.02.013_bib12 article-title: Establishment of human cell lines lacking mitochondrial DNA publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-521-3_23 – volume: 84 start-page: 2421 year: 2010 ident: 10.1016/j.molcel.2019.02.013_bib49 article-title: The interferon stimulator mitochondrial antiviral signaling protein facilitates cell death by disrupting the mitochondrial membrane potential and by activating caspases publication-title: J. Virol. doi: 10.1128/JVI.02174-09 – volume: 16 start-page: 202 year: 1995 ident: 10.1016/j.molcel.2019.02.013_bib36 article-title: Granzymes: exogenous proteinases that induce target cell apoptosis publication-title: Immunol. Today doi: 10.1016/0167-5699(95)80122-7 – volume: 34 start-page: 433 year: 2014 ident: 10.1016/j.molcel.2019.02.013_bib51 article-title: Differences in innate immune response between man and mouse publication-title: Crit. Rev. Immunol. – volume: 13 start-page: e1006720 year: 2017 ident: 10.1016/j.molcel.2019.02.013_bib6 article-title: MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006720 – volume: 46 start-page: 387 year: 2012 ident: 10.1016/j.molcel.2019.02.013_bib22 article-title: A perspective on mammalian caspases as positive and negative regulators of inflammation publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.04.026 – volume: 22 start-page: 36 year: 2017 ident: 10.1016/j.molcel.2019.02.013_bib23 article-title: Protect this house: cytosolic sensing of viruses publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2016.11.012 – volume: 159 start-page: 1563 year: 2014 ident: 10.1016/j.molcel.2019.02.013_bib32 article-title: Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA publication-title: Cell doi: 10.1016/j.cell.2014.11.037 – volume: 333 start-page: 76 year: 2013 ident: 10.1016/j.molcel.2019.02.013_bib33 article-title: Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2013.03.002 |
SSID | ssj0014589 |
Score | 2.6561844 |
Snippet | Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19 |
SubjectTerms | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Animals Apoptosis apoptotic caspase Caspase 2 - genetics Caspase 2 - metabolism Caspase 3 - genetics Caspase 3 - metabolism Caspase 7 - genetics Caspase 7 - metabolism Caspase 9 - genetics Caspase 9 - metabolism caspase-3 caspase-7 Caspases - genetics Caspases - metabolism cGAS cleavage cytokines DNA encephalitis Female HEK293 Cells HeLa Cells homeostasis Host-Pathogen Interactions Humans Immunity, Innate immunologically silent inflammasomes innate immunity Interferon Regulatory Factor-3 - genetics Interferon Regulatory Factor-3 - metabolism Interferon Type I - metabolism interferons IRF3 Male MAVS mice Mice, Inbred C57BL Nucleotidyltransferases - genetics Nucleotidyltransferases - metabolism RNA Sendai virus - immunology Sendai virus - pathogenicity Signal Transduction THP-1 Cells type I-interferon Vaccinia virus - immunology Vaccinia virus - pathogenicity Virus Diseases - enzymology Virus Diseases - genetics Virus Diseases - immunology Virus Diseases - virology virus infection |
Title | Apoptotic Caspases Suppress Type I Interferon Production via the Cleavage of cGAS, MAVS, and IRF3 |
URI | https://dx.doi.org/10.1016/j.molcel.2019.02.013 https://www.ncbi.nlm.nih.gov/pubmed/30878284 https://www.proquest.com/docview/2193605188 https://www.proquest.com/docview/2253214061 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-iHPgi96XueUoOfLyw3STdpo91cU9P7hA_9y2k-YCVtV3cVfC_dyZtF3zwhHsptJ1AmKTz-01nMkPIoTKAGQDDrCxNxgACHFNc5MwBF_Gq9ICYMcv37_DkWv6epJM1MurOwmBaZWv7G5serXX7pN9qsz-fTvuXGDvl2RApCDYrQL9dSBUP8U2OVpEEmcY2eCjMULo7PhdzvO7rmfUYgBjksXLnQLwFT2_RzwhD449kq-WPtGim-Ims-eoz-dB0lHz-Qkwxr-fLGl7SkQFjsfALio070amm6HPSUxp_Agb_UFf0vKn3CmtDn6aGAhmko5k3T2BkaB2o_VVc_qR_ihu4msrR04ux-Equx8dXoxPWdlFgFrjekpUOXCCnuB_ITAWeABxhk_OhsoFjeUGeS8CkkHMbRPDCppnNSnCCSiddalIptsl6VVd-l1DPXeITN8wdPM9xOVMgNCYRPmRpFmyPiE552rYlxrHTxUx3uWR3ulG5RpXrhGtQeY-w1ah5U2LjHfmsWxf9aqtoQIF3Rv7ollHDV4ShEVP5-nGhwW4LcOwGSv1DhqfY1QkIUI_sNHtgNV-sqwi-q_z233PbI5t4F5OC5Heyvnx49PvAd5blAdkozi5uzw7ixn4BPur7nw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXxJtAgUWCG1acXTtrHziEQIjpQ4i2KLdlvQ8pKNhRkxb1d_EHO7O2I3EolZB68WG9a41mZ2e-8czOALzJNNoMNMNRWWoZoQmwUcZFHlnEIi4rHVrMkOV7MJweJ19m6WwL_nR3YSitstX9jU4P2rod6bfc7C_n8_4hxU65HBIEoWYFcZtZuevOf6PftnpffMRNfsv55NPReBq1rQUigwBoHZUW_QKbcTdIZOZ5jDqaOn8PM-M51dzjeYKK2ufceOGdMKk0skTPoLSJTXWaCPzuDbiJ6EOSNihmHzahiyQNffeIuojI6-7rhaSyX_XCOIp4DPJQKnQgLrOHl-HdYPcm9-BuC1jZqOHJfdhy1QO41bSwPH8IerSsl-saX7KxRu20citGnULJi2fk5LKChb-O3p3UFfvaFJhFYWBnc80QfbLxwukz1Gqs9sx8Hh2-Y_uj7_jUlWXFt4l4BMfXwtvHsF3VlXsKzHEbu9gOc4vjOclPighKx8J5mUpveiA65inT1jSn1hoL1SWv_VQNyxWxXMVcIct7EG1WLZuaHlfMl92-qL9kU6HZuWLl624bFR5bisXoytWnK4WGQqAnOciyf8zhKbWRQsTVgyeNDGzopUKO6Cwnz_6btldwe3q0v6f2ioPd53CH3oSMpGQHttcnp-4Fgq11-TIIN4Mf132aLgCWizVt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Apoptotic+Caspases+Suppress+Type+I+Interferon+Production+via+the+Cleavage+of+cGAS%2C+MAVS%2C+and+IRF3&rft.jtitle=Molecular+cell&rft.au=Ning%2C+Xiaohan&rft.au=Wang%2C+Yutao&rft.au=Jing%2C+Miao&rft.au=Sha%2C+Mengyin&rft.date=2019-04-04&rft.issn=1097-2765&rft.volume=74&rft.issue=1&rft.spage=19&rft.epage=31.e7&rft_id=info:doi/10.1016%2Fj.molcel.2019.02.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molcel_2019_02_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |