Real-Time Human Detection and Gesture Recognition for On-Board UAV Rescue
Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out work on real-time UAV human detection and recognition of body and hand rescue gestures. We use body-featuring solutions to establish biometric c...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 6; p. 2180 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
20.03.2021
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out work on real-time UAV human detection and recognition of body and hand rescue gestures. We use body-featuring solutions to establish biometric communications, like yolo3-tiny for human detection. When the presence of a person is detected, the system will enter the gesture recognition phase, where the user and the drone can communicate briefly and effectively, avoiding the drawbacks of speech communication. A data-set of ten body rescue gestures (i.e., Kick, Punch, Squat, Stand, Attention, Cancel, Walk, Sit, Direction, and PhoneCall) has been created by a UAV on-board camera. The two most important gestures are the novel dynamic Attention and Cancel which represent the set and reset functions respectively. When the rescue gesture of the human body is recognized as Attention, the drone will gradually approach the user with a larger resolution for hand gesture recognition. The system achieves 99.80% accuracy on testing data in body gesture data-set and 94.71% accuracy on testing data in hand gesture data-set by using the deep learning method. Experiments conducted on real-time UAV cameras confirm our solution can achieve our expected UAV rescue purpose. |
---|---|
AbstractList | Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out work on real-time UAV human detection and recognition of body and hand rescue gestures. We use body-featuring solutions to establish biometric communications, like yolo3-tiny for human detection. When the presence of a person is detected, the system will enter the gesture recognition phase, where the user and the drone can communicate briefly and effectively, avoiding the drawbacks of speech communication. A data-set of ten body rescue gestures (i.e., Kick, Punch, Squat, Stand, Attention, Cancel, Walk, Sit, Direction, and PhoneCall) has been created by a UAV on-board camera. The two most important gestures are the novel dynamic Attention and Cancel which represent the set and reset functions respectively. When the rescue gesture of the human body is recognized as Attention, the drone will gradually approach the user with a larger resolution for hand gesture recognition. The system achieves 99.80% accuracy on testing data in body gesture data-set and 94.71% accuracy on testing data in hand gesture data-set by using the deep learning method. Experiments conducted on real-time UAV cameras confirm our solution can achieve our expected UAV rescue purpose.Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out work on real-time UAV human detection and recognition of body and hand rescue gestures. We use body-featuring solutions to establish biometric communications, like yolo3-tiny for human detection. When the presence of a person is detected, the system will enter the gesture recognition phase, where the user and the drone can communicate briefly and effectively, avoiding the drawbacks of speech communication. A data-set of ten body rescue gestures (i.e., Kick, Punch, Squat, Stand, Attention, Cancel, Walk, Sit, Direction, and PhoneCall) has been created by a UAV on-board camera. The two most important gestures are the novel dynamic Attention and Cancel which represent the set and reset functions respectively. When the rescue gesture of the human body is recognized as Attention, the drone will gradually approach the user with a larger resolution for hand gesture recognition. The system achieves 99.80% accuracy on testing data in body gesture data-set and 94.71% accuracy on testing data in hand gesture data-set by using the deep learning method. Experiments conducted on real-time UAV cameras confirm our solution can achieve our expected UAV rescue purpose. Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out work on real-time UAV human detection and recognition of body and hand rescue gestures. We use body-featuring solutions to establish biometric communications, like yolo3-tiny for human detection. When the presence of a person is detected, the system will enter the gesture recognition phase, where the user and the drone can communicate briefly and effectively, avoiding the drawbacks of speech communication. A data-set of ten body rescue gestures (i.e., Kick, Punch, Squat, Stand, Attention, Cancel, Walk, Sit, Direction, and PhoneCall) has been created by a UAV on-board camera. The two most important gestures are the novel dynamic Attention and Cancel which represent the set and reset functions respectively. When the rescue gesture of the human body is recognized as Attention, the drone will gradually approach the user with a larger resolution for hand gesture recognition. The system achieves 99.80% accuracy on testing data in body gesture data-set and 94.71% accuracy on testing data in hand gesture data-set by using the deep learning method. Experiments conducted on real-time UAV cameras confirm our solution can achieve our expected UAV rescue purpose. |
Author | Szirányi, Tamás Liu, Chang |
AuthorAffiliation | 2 Machine Perception Research Laboratory of Institute for Computer Science and Control (SZTAKI), Kende u. 13-17, 1111 Budapest, Hungary 1 Department of Networked Systems and Services, Budapest University of Technology and Economics, BME Informatika épület Magyar tudósok körútja 2, 1117 Budapest, Hungary |
AuthorAffiliation_xml | – name: 1 Department of Networked Systems and Services, Budapest University of Technology and Economics, BME Informatika épület Magyar tudósok körútja 2, 1117 Budapest, Hungary – name: 2 Machine Perception Research Laboratory of Institute for Computer Science and Control (SZTAKI), Kende u. 13-17, 1111 Budapest, Hungary |
Author_xml | – sequence: 1 givenname: Chang orcidid: 0000-0001-6610-5348 surname: Liu fullname: Liu, Chang – sequence: 2 givenname: Tamás orcidid: 0000-0003-2989-0214 surname: Szirányi fullname: Szirányi, Tamás |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33804718$$D View this record in MEDLINE/PubMed |
BookMark | eNplkUtv3SAQhVGVqnm0i_6Byst24YYxGPCmUl5NrhQpUpR0izCMb4lsSMGu1H9fbm4SJe0G0Jwz36A5-2QnxICEfAT6lbGOHuYGqGhA0TdkD3jDa9U0dOfFe5fs53xHacMYU-_Ibjkpl6D2yOoazVjf-Amri2UyoTrFGe3sY6hMcNU55nlJWF2jjevgH-pDTNVVqI-jSa66PfpRxGwXfE_eDmbM-OHxPiC3389uTi7qy6vz1cnRZW1bKue678G6zgkOrehkh4pSKQUFJQANGia47JgoUovcoVTQ0xZc74xAJ5kZ2AFZbbkumjt9n_xk0h8djdcPhZjW2qTZ2xE1uq5tgQsL3cAdDH3fOymhHxg3dJBNYX3bsu6XfkJnMczJjK-gr5Xgf-p1_K3Lr1kHG8DnR0CKv5ayLD35bHEcTcC4ZN20VLWSKwnF-unlrOchT1kUw-HWYFPMOeGgrZ_NZuVltB81UL1JWz-nXTq-_NPxBP3f-xdJPqfV |
CitedBy_id | crossref_primary_10_1016_j_jvcir_2024_104298 crossref_primary_10_1016_j_procs_2025_01_315 crossref_primary_10_1177_17298806231175238 crossref_primary_10_1109_JSEN_2022_3218829 crossref_primary_10_2147_OAEM_S247020 crossref_primary_10_3390_electronics11121829 crossref_primary_10_1049_ipr2_13282 crossref_primary_10_1109_ACCESS_2024_3354389 crossref_primary_10_1109_TGRS_2023_3332928 crossref_primary_10_1007_s12369_024_01169_3 crossref_primary_10_1109_LRA_2024_3491417 crossref_primary_10_2493_jjspe_91_371 crossref_primary_10_3390_app12199485 crossref_primary_10_3390_technologies11020039 crossref_primary_10_3390_rs14174355 crossref_primary_10_1063_5_0095614 crossref_primary_10_1109_JSTARS_2024_3389072 crossref_primary_10_3390_drones7030148 crossref_primary_10_3390_drones7030203 crossref_primary_10_3390_s23052666 crossref_primary_10_1007_s00170_021_07659_2 crossref_primary_10_1109_JSEN_2022_3218373 crossref_primary_10_3390_drones8090465 crossref_primary_10_1080_13682199_2023_2179965 crossref_primary_10_5847_wjem_j_1920_8642_2023_066 crossref_primary_10_3390_app13169384 crossref_primary_10_3390_s23229216 crossref_primary_10_1177_09544070221145993 crossref_primary_10_3390_drones7020092 crossref_primary_10_1109_ACCESS_2023_3326101 crossref_primary_10_3390_s21103394 crossref_primary_10_1016_j_engappai_2023_106217 crossref_primary_10_3390_s22072513 crossref_primary_10_3390_machines11020210 crossref_primary_10_3390_s22010270 crossref_primary_10_1016_j_dsp_2022_103844 crossref_primary_10_3390_app142210230 crossref_primary_10_3390_drones9020092 crossref_primary_10_1109_TCE_2024_3368062 crossref_primary_10_1080_18824889_2022_2103631 crossref_primary_10_3390_mti9010006 crossref_primary_10_1016_j_robot_2021_103915 crossref_primary_10_3390_s24154850 crossref_primary_10_2478_amns_2023_2_00381 crossref_primary_10_3390_s23135787 crossref_primary_10_1109_ACCESS_2024_3479988 crossref_primary_10_1109_ACCESS_2024_3375351 crossref_primary_10_3390_s21123997 |
Cites_doi | 10.3115/v1/P14-1062 10.1109/MMUL.2009.41 10.1007/978-3-540-39964-3_62 10.3390/s19030652 10.3390/drones3040082 10.1109/CVPR.2017.502 10.3390/s19163542 10.1109/ICSC.2017.83 10.1080/10095020.2017.1420509 10.1016/j.ergon.2017.02.004 10.1109/TPAMI.2019.2929257 10.1016/j.neucom.2016.12.038 10.1007/s11633-019-1194-7 10.1109/CVPR.2016.91 10.3390/s19183827 10.1016/j.compag.2019.04.009 10.1109/TNN.2006.873281 10.1109/IRC.2019.00114 10.1109/MPRV.2017.11 10.3390/s19153371 10.1080/01431160412331269698 10.21437/Interspeech.2019-1390 10.1080/01431161.2016.1252477 10.1007/978-3-642-03983-6_30 10.1080/01431161.2016.1239288 10.1016/j.procs.2020.06.022 10.1016/j.comcom.2019.10.007 10.1016/j.isprsjprs.2015.02.009 10.1109/CVPR.2017.690 10.1109/ACCESS.2019.2912306 10.1109/ICIP.2017.8296962 10.1007/978-3-030-01249-6_23 10.1109/RAHA.2016.7931882 10.1016/j.imavis.2005.07.016 10.1016/j.eja.2020.126030 10.1109/ICIP.2016.7533003 10.1016/j.proenv.2015.03.032 |
ContentType | Journal Article |
Copyright | 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3390/s21062180 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_ed955146c19f4d1fbbbd771bf34a0f72 PMC8003912 33804718 10_3390_s21062180 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c507t-bb1cd9d64156979e80077601861eaea36479366975e4de781b051dbda6ed73af3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:27 EDT 2025 Thu Aug 21 18:15:56 EDT 2025 Fri Jul 11 06:57:07 EDT 2025 Mon Jul 21 05:53:49 EDT 2025 Thu Apr 24 22:56:08 EDT 2025 Tue Jul 01 03:56:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | deep learning unmanned aerial vehicles (UAVs) search and rescue (SAR) body gesture recognition neural networks UAV human communication hand gesture recognition |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-bb1cd9d64156979e80077601861eaea36479366975e4de781b051dbda6ed73af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6610-5348 0000-0003-2989-0214 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21062180 |
PMID | 33804718 |
PQID | 2508574871 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ed955146c19f4d1fbbbd771bf34a0f72 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8003912 proquest_miscellaneous_2508574871 pubmed_primary_33804718 crossref_citationtrail_10_3390_s21062180 crossref_primary_10_3390_s21062180 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210320 |
PublicationDateYYYYMMDD | 2021-03-20 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210320 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Hu (ref_12) 2019; 17 ref_14 Erdelj (ref_6) 2016; 16 ref_11 ref_53 ref_52 Du (ref_30) 2018; 30 Pal (ref_51) 2005; 26 ref_18 Mavroforakis (ref_49) 2006; 17 Liu (ref_50) 2017; 234 ref_17 ref_16 Alotaibi (ref_13) 2019; 7 Lin (ref_43) 2014; 6 ref_25 ref_24 ref_20 Cao (ref_36) 2019; 43 ref_29 ref_28 Samiappan (ref_5) 2017; 38 ref_27 Liu (ref_9) 2019; 162 ref_26 Sudhakar (ref_15) 2020; 149 Chen (ref_39) 2014; 2014 ref_35 ref_34 ref_33 Sharma (ref_23) 2020; 173 (ref_31) 2005; 23 Lu (ref_8) 2018; 21 ref_38 ref_37 Rokhmana (ref_2) 2015; 24 Liu (ref_21) 2018; 68 Torresan (ref_3) 2016; 38 Nalepa (ref_22) 2014; 3 ref_47 ref_46 ref_45 ref_44 ref_42 ref_41 Zhang (ref_19) 2020; 11 ref_40 ref_48 Henriques (ref_1) 2015; 104 Min (ref_4) 2009; 6 Egea (ref_10) 2020; 115 Licsar (ref_32) 2009; 16 ref_7 |
References_xml | – ident: ref_53 doi: 10.3115/v1/P14-1062 – volume: 16 start-page: 48 year: 2009 ident: ref_32 article-title: A folk song retrieval system with a gesture-based interface publication-title: IEEE Multimed. doi: 10.1109/MMUL.2009.41 – ident: ref_48 doi: 10.1007/978-3-540-39964-3_62 – ident: ref_7 doi: 10.3390/s19030652 – ident: ref_28 doi: 10.3390/drones3040082 – ident: ref_47 doi: 10.1109/CVPR.2017.502 – ident: ref_14 doi: 10.3390/s19163542 – ident: ref_11 doi: 10.1109/ICSC.2017.83 – ident: ref_42 – ident: ref_35 – volume: 3 start-page: 79 year: 2014 ident: ref_22 article-title: Wrist localization in color images for hand gesture recognition publication-title: Adv. Hum. Factors Bus. Manag. Train. Educ. – volume: 21 start-page: 21 year: 2018 ident: ref_8 article-title: A survey on vision-based UAV navigation publication-title: Geospat. Inf. Sci. doi: 10.1080/10095020.2017.1420509 – volume: 68 start-page: 355 year: 2018 ident: ref_21 article-title: Gesture recognition for human-robot collaboration: A review publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2017.02.004 – volume: 43 start-page: 172 year: 2019 ident: ref_36 article-title: OpenPose: Realtime multi-person 2D pose estimation using part affinity fields publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2929257 – volume: 234 start-page: 11 year: 2017 ident: ref_50 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – volume: 17 start-page: 17 year: 2019 ident: ref_12 article-title: Deep learning based hand gesture recognition and UAV flight controls publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-019-1194-7 – ident: ref_40 doi: 10.1109/CVPR.2016.91 – ident: ref_27 – ident: ref_52 – ident: ref_26 doi: 10.3390/s19183827 – volume: 162 start-page: 126 year: 2019 ident: ref_9 article-title: Development of a positioning system using UAV-based computer vision for an airboat navigation in paddy field publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.04.009 – ident: ref_38 – volume: 17 start-page: 671 year: 2006 ident: ref_49 article-title: A geometric approach to support vector machine (SVM) classification publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.873281 – ident: ref_16 doi: 10.1109/IRC.2019.00114 – ident: ref_20 – volume: 16 start-page: 24 year: 2016 ident: ref_6 article-title: Help from the sky: Leveraging UAVs for disaster management publication-title: IEEE Pervasive Comput. doi: 10.1109/MPRV.2017.11 – ident: ref_33 doi: 10.3390/s19153371 – volume: 26 start-page: 217 year: 2005 ident: ref_51 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Remote. Sens. doi: 10.1080/01431160412331269698 – ident: ref_17 doi: 10.21437/Interspeech.2019-1390 – volume: 38 start-page: 2427 year: 2016 ident: ref_3 article-title: Forestry applications of UAVs in Europe: A review publication-title: Int. J. Remote. Sens. doi: 10.1080/01431161.2016.1252477 – volume: 6 start-page: 262 year: 2009 ident: ref_4 article-title: Development of a micro quad-rotor UAV for monitoring an indoor environment publication-title: Adv. Robot. doi: 10.1007/978-3-642-03983-6_30 – ident: ref_24 – volume: 38 start-page: 2199 year: 2017 ident: ref_5 article-title: Using unmanned aerial vehicles for high-resolution remote sensing to map invasive Phragmites australis in coastal wetlands publication-title: Int. J. Remote. Sens. doi: 10.1080/01431161.2016.1239288 – ident: ref_34 – volume: 173 start-page: 181 year: 2020 ident: ref_23 article-title: Hand gesture recognition using image processing and feature extraction techniques publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.06.022 – volume: 149 start-page: 1 year: 2020 ident: ref_15 article-title: Unmanned aerial vehicle (UAV) based forest fire detection and monitoring for reducing false alarms in forest-fires publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.10.007 – volume: 104 start-page: 101 year: 2015 ident: ref_1 article-title: UAV photogrammetry for topographic monitoring of coastal areas publication-title: ISPRS J. Photogramm. Remote. Sens. doi: 10.1016/j.isprsjprs.2015.02.009 – ident: ref_41 doi: 10.1109/CVPR.2017.690 – ident: ref_37 – ident: ref_18 – ident: ref_44 – volume: 7 start-page: 55817 year: 2019 ident: ref_13 article-title: LSAR: Multi-UAV collaboration for search and rescue missions publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912306 – ident: ref_45 doi: 10.1109/ICIP.2017.8296962 – volume: 30 start-page: 375 year: 2018 ident: ref_30 article-title: The unmanned aerial vehicle benchmark: Object detection and tracking publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-030-01249-6_23 – ident: ref_25 doi: 10.1109/RAHA.2016.7931882 – ident: ref_29 – volume: 23 start-page: 1102 year: 2005 ident: ref_31 article-title: User-adaptive hand gesture recognition system with interactive training publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2005.07.016 – volume: 115 start-page: 126030 year: 2020 ident: ref_10 article-title: Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2020.126030 – ident: ref_46 doi: 10.1109/ICIP.2016.7533003 – volume: 2014 start-page: 1 year: 2014 ident: ref_39 article-title: Real-time hand gesture recognition using finger segmentation publication-title: Sci. World J. – volume: 24 start-page: 245 year: 2015 ident: ref_2 article-title: The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia publication-title: Procedia Environ. Sci. doi: 10.1016/j.proenv.2015.03.032 – volume: 11 start-page: 3520 year: 2020 ident: ref_19 article-title: The effect of ambiguity awareness on second language learners’ prosodic disambiguation publication-title: Front. Psychol. – volume: 6 start-page: 740 year: 2014 ident: ref_43 article-title: Microsoft COCO: Common objects in context. computer vision publication-title: ECCV |
SSID | ssj0023338 |
Score | 2.5588055 |
Snippet | Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2180 |
SubjectTerms | body gesture recognition Gestures hand gesture recognition Humans neural networks Pattern Recognition, Automated Posture Recognition, Psychology search and rescue (SAR) Speech UAV human communication unmanned aerial vehicles (UAVs) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7Et-uLKB68hG6a7Gb32Kq1CioUK70teaIgW-nj_zvJbksrBS9eN4FkZ5LM9-1OvkHoWiaZS1xuiaK5JlxxRiCMSBJz7uvBa5Mwf8H5-SXtDfjTMBkulfryOWGVPHBluKY1uQ_qqaa544Y6pZQRgirHuIydCKcvxLw5maqpFgPmVekIMSD1zQkQmxSCWbwSfYJI_zpk-TtBcinidHfQdg0Vcbua4i7asOUe2loSENxHj33AecRf48Dhazy-s9OQW1ViWRr8AMPNxhb351lC8BxAKn4tSWcESwMP2u_QONEze4AG3fu32x6piyMQDRBuSpSi2uQm9QQsF7nNgjBPTLOUWmmll4XPWQpNieXGCkCnsP2MMjK1RjDp2CFqlKPSHiPckllsDYPXNS2utZI6NQAcROYczYSKI3QzN1qha-VwX8DiqwAG4e1bLOwboatF1-9KLmNdp463_KKDV7gOD8DvRe334i-_R-hy7rcCdoT_zSFLO5pNCgB1WSKAiNEIHVV-XAwFyyL24ThCYsXDK3NZbSk_P4LqdhbE9Fsn_zH5U7TZ8rkxMYNT6gw1puOZPQdwM1UXYR3_AMDp-O4 priority: 102 providerName: Directory of Open Access Journals |
Title | Real-Time Human Detection and Gesture Recognition for On-Board UAV Rescue |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33804718 https://www.proquest.com/docview/2508574871 https://pubmed.ncbi.nlm.nih.gov/PMC8003912 https://doaj.org/article/ed955146c19f4d1fbbbd771bf34a0f72 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tuxc4IN6ER2UQBy6GOHZi54DQFra7IO2CKop6i_wEpFUKfUjw7xm7abRBPXDJIXbkZMaT-cYefwPwQpcqlKH21LDaUmEEp-hGNM2FiPXgrSt5POB8flGdzcTHeTk_gF2NzU6Aq72hXawnNVtevvr9689bNPg3MeLEkP31CsOWCl0VRu5H6JBktM9z0W8mFJyngtbxTBdFf5hvCYaGjw7cUmLv3wc5_82cvOKKJrfgZochyfFW6bfhwLd34MYVZsG78GGKAJDG8x0kLdOT936dkq5aoltHTnG4zdKT6S59CO8jeiWfWjpe4Jwhs-Ov2LiyG38PZpOTL-_OaFc1gVrEdmtqDLOudlWMzGpZe5UYe3KmKua115EvvuYVNpVeOC8RtqJdOuN05Z3kOvD7cNguWv8QSKFV7h3Hz3WFsNZoWzlEFFKFwJQ0eQYvd0JrbEcpHitbXDYYWkT5Nr18M3jed_255dHY12kcJd93iNTX6cZi-a3pLKnxro4or7KsDsKxYIxxUjITuNB5kEUGz3Z6a9BU4v6Hbv1is2oQ7alSYoTGMniw1WM_FE6RPPrpDORAw4N3Gba0P74nOm6VWPaLR_8x7mO4XsScmJzj3-kJHK6XG_8UQc3ajOCanEu8qsnpCI7GJxefp6O0QDBKk_kvlSP5Nw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Human+Detection+and+Gesture+Recognition+for+On-Board+UAV+Rescue&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Chang&rft.au=Szir%C3%A1nyi%2C+Tam%C3%A1s&rft.date=2021-03-20&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=6&rft_id=info:doi/10.3390%2Fs21062180&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |