Real-Time Human Detection and Gesture Recognition for On-Board UAV Rescue

Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out work on real-time UAV human detection and recognition of body and hand rescue gestures. We use body-featuring solutions to establish biometric c...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 6; p. 2180
Main Authors Liu, Chang, Szirányi, Tamás
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 20.03.2021
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out work on real-time UAV human detection and recognition of body and hand rescue gestures. We use body-featuring solutions to establish biometric communications, like yolo3-tiny for human detection. When the presence of a person is detected, the system will enter the gesture recognition phase, where the user and the drone can communicate briefly and effectively, avoiding the drawbacks of speech communication. A data-set of ten body rescue gestures (i.e., Kick, Punch, Squat, Stand, Attention, Cancel, Walk, Sit, Direction, and PhoneCall) has been created by a UAV on-board camera. The two most important gestures are the novel dynamic Attention and Cancel which represent the set and reset functions respectively. When the rescue gesture of the human body is recognized as Attention, the drone will gradually approach the user with a larger resolution for hand gesture recognition. The system achieves 99.80% accuracy on testing data in body gesture data-set and 94.71% accuracy on testing data in hand gesture data-set by using the deep learning method. Experiments conducted on real-time UAV cameras confirm our solution can achieve our expected UAV rescue purpose.
AbstractList Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out work on real-time UAV human detection and recognition of body and hand rescue gestures. We use body-featuring solutions to establish biometric communications, like yolo3-tiny for human detection. When the presence of a person is detected, the system will enter the gesture recognition phase, where the user and the drone can communicate briefly and effectively, avoiding the drawbacks of speech communication. A data-set of ten body rescue gestures (i.e., Kick, Punch, Squat, Stand, Attention, Cancel, Walk, Sit, Direction, and PhoneCall) has been created by a UAV on-board camera. The two most important gestures are the novel dynamic Attention and Cancel which represent the set and reset functions respectively. When the rescue gesture of the human body is recognized as Attention, the drone will gradually approach the user with a larger resolution for hand gesture recognition. The system achieves 99.80% accuracy on testing data in body gesture data-set and 94.71% accuracy on testing data in hand gesture data-set by using the deep learning method. Experiments conducted on real-time UAV cameras confirm our solution can achieve our expected UAV rescue purpose.Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out work on real-time UAV human detection and recognition of body and hand rescue gestures. We use body-featuring solutions to establish biometric communications, like yolo3-tiny for human detection. When the presence of a person is detected, the system will enter the gesture recognition phase, where the user and the drone can communicate briefly and effectively, avoiding the drawbacks of speech communication. A data-set of ten body rescue gestures (i.e., Kick, Punch, Squat, Stand, Attention, Cancel, Walk, Sit, Direction, and PhoneCall) has been created by a UAV on-board camera. The two most important gestures are the novel dynamic Attention and Cancel which represent the set and reset functions respectively. When the rescue gesture of the human body is recognized as Attention, the drone will gradually approach the user with a larger resolution for hand gesture recognition. The system achieves 99.80% accuracy on testing data in body gesture data-set and 94.71% accuracy on testing data in hand gesture data-set by using the deep learning method. Experiments conducted on real-time UAV cameras confirm our solution can achieve our expected UAV rescue purpose.
Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out work on real-time UAV human detection and recognition of body and hand rescue gestures. We use body-featuring solutions to establish biometric communications, like yolo3-tiny for human detection. When the presence of a person is detected, the system will enter the gesture recognition phase, where the user and the drone can communicate briefly and effectively, avoiding the drawbacks of speech communication. A data-set of ten body rescue gestures (i.e., Kick, Punch, Squat, Stand, Attention, Cancel, Walk, Sit, Direction, and PhoneCall) has been created by a UAV on-board camera. The two most important gestures are the novel dynamic Attention and Cancel which represent the set and reset functions respectively. When the rescue gesture of the human body is recognized as Attention, the drone will gradually approach the user with a larger resolution for hand gesture recognition. The system achieves 99.80% accuracy on testing data in body gesture data-set and 94.71% accuracy on testing data in hand gesture data-set by using the deep learning method. Experiments conducted on real-time UAV cameras confirm our solution can achieve our expected UAV rescue purpose.
Author Szirányi, Tamás
Liu, Chang
AuthorAffiliation 2 Machine Perception Research Laboratory of Institute for Computer Science and Control (SZTAKI), Kende u. 13-17, 1111 Budapest, Hungary
1 Department of Networked Systems and Services, Budapest University of Technology and Economics, BME Informatika épület Magyar tudósok körútja 2, 1117 Budapest, Hungary
AuthorAffiliation_xml – name: 1 Department of Networked Systems and Services, Budapest University of Technology and Economics, BME Informatika épület Magyar tudósok körútja 2, 1117 Budapest, Hungary
– name: 2 Machine Perception Research Laboratory of Institute for Computer Science and Control (SZTAKI), Kende u. 13-17, 1111 Budapest, Hungary
Author_xml – sequence: 1
  givenname: Chang
  orcidid: 0000-0001-6610-5348
  surname: Liu
  fullname: Liu, Chang
– sequence: 2
  givenname: Tamás
  orcidid: 0000-0003-2989-0214
  surname: Szirányi
  fullname: Szirányi, Tamás
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33804718$$D View this record in MEDLINE/PubMed
BookMark eNplkUtv3SAQhVGVqnm0i_6Byst24YYxGPCmUl5NrhQpUpR0izCMb4lsSMGu1H9fbm4SJe0G0Jwz36A5-2QnxICEfAT6lbGOHuYGqGhA0TdkD3jDa9U0dOfFe5fs53xHacMYU-_Ibjkpl6D2yOoazVjf-Amri2UyoTrFGe3sY6hMcNU55nlJWF2jjevgH-pDTNVVqI-jSa66PfpRxGwXfE_eDmbM-OHxPiC3389uTi7qy6vz1cnRZW1bKue678G6zgkOrehkh4pSKQUFJQANGia47JgoUovcoVTQ0xZc74xAJ5kZ2AFZbbkumjt9n_xk0h8djdcPhZjW2qTZ2xE1uq5tgQsL3cAdDH3fOymhHxg3dJBNYX3bsu6XfkJnMczJjK-gr5Xgf-p1_K3Lr1kHG8DnR0CKv5ayLD35bHEcTcC4ZN20VLWSKwnF-unlrOchT1kUw-HWYFPMOeGgrZ_NZuVltB81UL1JWz-nXTq-_NPxBP3f-xdJPqfV
CitedBy_id crossref_primary_10_1016_j_jvcir_2024_104298
crossref_primary_10_1016_j_procs_2025_01_315
crossref_primary_10_1177_17298806231175238
crossref_primary_10_1109_JSEN_2022_3218829
crossref_primary_10_2147_OAEM_S247020
crossref_primary_10_3390_electronics11121829
crossref_primary_10_1049_ipr2_13282
crossref_primary_10_1109_ACCESS_2024_3354389
crossref_primary_10_1109_TGRS_2023_3332928
crossref_primary_10_1007_s12369_024_01169_3
crossref_primary_10_1109_LRA_2024_3491417
crossref_primary_10_2493_jjspe_91_371
crossref_primary_10_3390_app12199485
crossref_primary_10_3390_technologies11020039
crossref_primary_10_3390_rs14174355
crossref_primary_10_1063_5_0095614
crossref_primary_10_1109_JSTARS_2024_3389072
crossref_primary_10_3390_drones7030148
crossref_primary_10_3390_drones7030203
crossref_primary_10_3390_s23052666
crossref_primary_10_1007_s00170_021_07659_2
crossref_primary_10_1109_JSEN_2022_3218373
crossref_primary_10_3390_drones8090465
crossref_primary_10_1080_13682199_2023_2179965
crossref_primary_10_5847_wjem_j_1920_8642_2023_066
crossref_primary_10_3390_app13169384
crossref_primary_10_3390_s23229216
crossref_primary_10_1177_09544070221145993
crossref_primary_10_3390_drones7020092
crossref_primary_10_1109_ACCESS_2023_3326101
crossref_primary_10_3390_s21103394
crossref_primary_10_1016_j_engappai_2023_106217
crossref_primary_10_3390_s22072513
crossref_primary_10_3390_machines11020210
crossref_primary_10_3390_s22010270
crossref_primary_10_1016_j_dsp_2022_103844
crossref_primary_10_3390_app142210230
crossref_primary_10_3390_drones9020092
crossref_primary_10_1109_TCE_2024_3368062
crossref_primary_10_1080_18824889_2022_2103631
crossref_primary_10_3390_mti9010006
crossref_primary_10_1016_j_robot_2021_103915
crossref_primary_10_3390_s24154850
crossref_primary_10_2478_amns_2023_2_00381
crossref_primary_10_3390_s23135787
crossref_primary_10_1109_ACCESS_2024_3479988
crossref_primary_10_1109_ACCESS_2024_3375351
crossref_primary_10_3390_s21123997
Cites_doi 10.3115/v1/P14-1062
10.1109/MMUL.2009.41
10.1007/978-3-540-39964-3_62
10.3390/s19030652
10.3390/drones3040082
10.1109/CVPR.2017.502
10.3390/s19163542
10.1109/ICSC.2017.83
10.1080/10095020.2017.1420509
10.1016/j.ergon.2017.02.004
10.1109/TPAMI.2019.2929257
10.1016/j.neucom.2016.12.038
10.1007/s11633-019-1194-7
10.1109/CVPR.2016.91
10.3390/s19183827
10.1016/j.compag.2019.04.009
10.1109/TNN.2006.873281
10.1109/IRC.2019.00114
10.1109/MPRV.2017.11
10.3390/s19153371
10.1080/01431160412331269698
10.21437/Interspeech.2019-1390
10.1080/01431161.2016.1252477
10.1007/978-3-642-03983-6_30
10.1080/01431161.2016.1239288
10.1016/j.procs.2020.06.022
10.1016/j.comcom.2019.10.007
10.1016/j.isprsjprs.2015.02.009
10.1109/CVPR.2017.690
10.1109/ACCESS.2019.2912306
10.1109/ICIP.2017.8296962
10.1007/978-3-030-01249-6_23
10.1109/RAHA.2016.7931882
10.1016/j.imavis.2005.07.016
10.1016/j.eja.2020.126030
10.1109/ICIP.2016.7533003
10.1016/j.proenv.2015.03.032
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/s21062180
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ed955146c19f4d1fbbbd771bf34a0f72
PMC8003912
33804718
10_3390_s21062180
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c507t-bb1cd9d64156979e80077601861eaea36479366975e4de781b051dbda6ed73af3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:27 EDT 2025
Thu Aug 21 18:15:56 EDT 2025
Fri Jul 11 06:57:07 EDT 2025
Mon Jul 21 05:53:49 EDT 2025
Thu Apr 24 22:56:08 EDT 2025
Tue Jul 01 03:56:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords deep learning
unmanned aerial vehicles (UAVs)
search and rescue (SAR)
body gesture recognition
neural networks
UAV human communication
hand gesture recognition
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-bb1cd9d64156979e80077601861eaea36479366975e4de781b051dbda6ed73af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6610-5348
0000-0003-2989-0214
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21062180
PMID 33804718
PQID 2508574871
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ed955146c19f4d1fbbbd771bf34a0f72
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8003912
proquest_miscellaneous_2508574871
pubmed_primary_33804718
crossref_citationtrail_10_3390_s21062180
crossref_primary_10_3390_s21062180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210320
PublicationDateYYYYMMDD 2021-03-20
PublicationDate_xml – month: 3
  year: 2021
  text: 20210320
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Hu (ref_12) 2019; 17
ref_14
Erdelj (ref_6) 2016; 16
ref_11
ref_53
ref_52
Du (ref_30) 2018; 30
Pal (ref_51) 2005; 26
ref_18
Mavroforakis (ref_49) 2006; 17
Liu (ref_50) 2017; 234
ref_17
ref_16
Alotaibi (ref_13) 2019; 7
Lin (ref_43) 2014; 6
ref_25
ref_24
ref_20
Cao (ref_36) 2019; 43
ref_29
ref_28
Samiappan (ref_5) 2017; 38
ref_27
Liu (ref_9) 2019; 162
ref_26
Sudhakar (ref_15) 2020; 149
Chen (ref_39) 2014; 2014
ref_35
ref_34
ref_33
Sharma (ref_23) 2020; 173
(ref_31) 2005; 23
Lu (ref_8) 2018; 21
ref_38
ref_37
Rokhmana (ref_2) 2015; 24
Liu (ref_21) 2018; 68
Torresan (ref_3) 2016; 38
Nalepa (ref_22) 2014; 3
ref_47
ref_46
ref_45
ref_44
ref_42
ref_41
Zhang (ref_19) 2020; 11
ref_40
ref_48
Henriques (ref_1) 2015; 104
Min (ref_4) 2009; 6
Egea (ref_10) 2020; 115
Licsar (ref_32) 2009; 16
ref_7
References_xml – ident: ref_53
  doi: 10.3115/v1/P14-1062
– volume: 16
  start-page: 48
  year: 2009
  ident: ref_32
  article-title: A folk song retrieval system with a gesture-based interface
  publication-title: IEEE Multimed.
  doi: 10.1109/MMUL.2009.41
– ident: ref_48
  doi: 10.1007/978-3-540-39964-3_62
– ident: ref_7
  doi: 10.3390/s19030652
– ident: ref_28
  doi: 10.3390/drones3040082
– ident: ref_47
  doi: 10.1109/CVPR.2017.502
– ident: ref_14
  doi: 10.3390/s19163542
– ident: ref_11
  doi: 10.1109/ICSC.2017.83
– ident: ref_42
– ident: ref_35
– volume: 3
  start-page: 79
  year: 2014
  ident: ref_22
  article-title: Wrist localization in color images for hand gesture recognition
  publication-title: Adv. Hum. Factors Bus. Manag. Train. Educ.
– volume: 21
  start-page: 21
  year: 2018
  ident: ref_8
  article-title: A survey on vision-based UAV navigation
  publication-title: Geospat. Inf. Sci.
  doi: 10.1080/10095020.2017.1420509
– volume: 68
  start-page: 355
  year: 2018
  ident: ref_21
  article-title: Gesture recognition for human-robot collaboration: A review
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2017.02.004
– volume: 43
  start-page: 172
  year: 2019
  ident: ref_36
  article-title: OpenPose: Realtime multi-person 2D pose estimation using part affinity fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2929257
– volume: 234
  start-page: 11
  year: 2017
  ident: ref_50
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 17
  start-page: 17
  year: 2019
  ident: ref_12
  article-title: Deep learning based hand gesture recognition and UAV flight controls
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-019-1194-7
– ident: ref_40
  doi: 10.1109/CVPR.2016.91
– ident: ref_27
– ident: ref_52
– ident: ref_26
  doi: 10.3390/s19183827
– volume: 162
  start-page: 126
  year: 2019
  ident: ref_9
  article-title: Development of a positioning system using UAV-based computer vision for an airboat navigation in paddy field
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.04.009
– ident: ref_38
– volume: 17
  start-page: 671
  year: 2006
  ident: ref_49
  article-title: A geometric approach to support vector machine (SVM) classification
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.873281
– ident: ref_16
  doi: 10.1109/IRC.2019.00114
– ident: ref_20
– volume: 16
  start-page: 24
  year: 2016
  ident: ref_6
  article-title: Help from the sky: Leveraging UAVs for disaster management
  publication-title: IEEE Pervasive Comput.
  doi: 10.1109/MPRV.2017.11
– ident: ref_33
  doi: 10.3390/s19153371
– volume: 26
  start-page: 217
  year: 2005
  ident: ref_51
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Remote. Sens.
  doi: 10.1080/01431160412331269698
– ident: ref_17
  doi: 10.21437/Interspeech.2019-1390
– volume: 38
  start-page: 2427
  year: 2016
  ident: ref_3
  article-title: Forestry applications of UAVs in Europe: A review
  publication-title: Int. J. Remote. Sens.
  doi: 10.1080/01431161.2016.1252477
– volume: 6
  start-page: 262
  year: 2009
  ident: ref_4
  article-title: Development of a micro quad-rotor UAV for monitoring an indoor environment
  publication-title: Adv. Robot.
  doi: 10.1007/978-3-642-03983-6_30
– ident: ref_24
– volume: 38
  start-page: 2199
  year: 2017
  ident: ref_5
  article-title: Using unmanned aerial vehicles for high-resolution remote sensing to map invasive Phragmites australis in coastal wetlands
  publication-title: Int. J. Remote. Sens.
  doi: 10.1080/01431161.2016.1239288
– ident: ref_34
– volume: 173
  start-page: 181
  year: 2020
  ident: ref_23
  article-title: Hand gesture recognition using image processing and feature extraction techniques
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.06.022
– volume: 149
  start-page: 1
  year: 2020
  ident: ref_15
  article-title: Unmanned aerial vehicle (UAV) based forest fire detection and monitoring for reducing false alarms in forest-fires
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.10.007
– volume: 104
  start-page: 101
  year: 2015
  ident: ref_1
  article-title: UAV photogrammetry for topographic monitoring of coastal areas
  publication-title: ISPRS J. Photogramm. Remote. Sens.
  doi: 10.1016/j.isprsjprs.2015.02.009
– ident: ref_41
  doi: 10.1109/CVPR.2017.690
– ident: ref_37
– ident: ref_18
– ident: ref_44
– volume: 7
  start-page: 55817
  year: 2019
  ident: ref_13
  article-title: LSAR: Multi-UAV collaboration for search and rescue missions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912306
– ident: ref_45
  doi: 10.1109/ICIP.2017.8296962
– volume: 30
  start-page: 375
  year: 2018
  ident: ref_30
  article-title: The unmanned aerial vehicle benchmark: Object detection and tracking
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-030-01249-6_23
– ident: ref_25
  doi: 10.1109/RAHA.2016.7931882
– ident: ref_29
– volume: 23
  start-page: 1102
  year: 2005
  ident: ref_31
  article-title: User-adaptive hand gesture recognition system with interactive training
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2005.07.016
– volume: 115
  start-page: 126030
  year: 2020
  ident: ref_10
  article-title: Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2020.126030
– ident: ref_46
  doi: 10.1109/ICIP.2016.7533003
– volume: 2014
  start-page: 1
  year: 2014
  ident: ref_39
  article-title: Real-time hand gesture recognition using finger segmentation
  publication-title: Sci. World J.
– volume: 24
  start-page: 245
  year: 2015
  ident: ref_2
  article-title: The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia
  publication-title: Procedia Environ. Sci.
  doi: 10.1016/j.proenv.2015.03.032
– volume: 11
  start-page: 3520
  year: 2020
  ident: ref_19
  article-title: The effect of ambiguity awareness on second language learners’ prosodic disambiguation
  publication-title: Front. Psychol.
– volume: 6
  start-page: 740
  year: 2014
  ident: ref_43
  article-title: Microsoft COCO: Common objects in context. computer vision
  publication-title: ECCV
SSID ssj0023338
Score 2.5588055
Snippet Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2180
SubjectTerms body gesture recognition
Gestures
hand gesture recognition
Humans
neural networks
Pattern Recognition, Automated
Posture
Recognition, Psychology
search and rescue (SAR)
Speech
UAV human communication
unmanned aerial vehicles (UAVs)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7Et-uLKB68hG6a7Gb32Kq1CioUK70teaIgW-nj_zvJbksrBS9eN4FkZ5LM9-1OvkHoWiaZS1xuiaK5JlxxRiCMSBJz7uvBa5Mwf8H5-SXtDfjTMBkulfryOWGVPHBluKY1uQ_qqaa544Y6pZQRgirHuIydCKcvxLw5maqpFgPmVekIMSD1zQkQmxSCWbwSfYJI_zpk-TtBcinidHfQdg0Vcbua4i7asOUe2loSENxHj33AecRf48Dhazy-s9OQW1ViWRr8AMPNxhb351lC8BxAKn4tSWcESwMP2u_QONEze4AG3fu32x6piyMQDRBuSpSi2uQm9QQsF7nNgjBPTLOUWmmll4XPWQpNieXGCkCnsP2MMjK1RjDp2CFqlKPSHiPckllsDYPXNS2utZI6NQAcROYczYSKI3QzN1qha-VwX8DiqwAG4e1bLOwboatF1-9KLmNdp463_KKDV7gOD8DvRe334i-_R-hy7rcCdoT_zSFLO5pNCgB1WSKAiNEIHVV-XAwFyyL24ThCYsXDK3NZbSk_P4LqdhbE9Fsn_zH5U7TZ8rkxMYNT6gw1puOZPQdwM1UXYR3_AMDp-O4
  priority: 102
  providerName: Directory of Open Access Journals
Title Real-Time Human Detection and Gesture Recognition for On-Board UAV Rescue
URI https://www.ncbi.nlm.nih.gov/pubmed/33804718
https://www.proquest.com/docview/2508574871
https://pubmed.ncbi.nlm.nih.gov/PMC8003912
https://doaj.org/article/ed955146c19f4d1fbbbd771bf34a0f72
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tuxc4IN6ER2UQBy6GOHZi54DQFra7IO2CKop6i_wEpFUKfUjw7xm7abRBPXDJIXbkZMaT-cYefwPwQpcqlKH21LDaUmEEp-hGNM2FiPXgrSt5POB8flGdzcTHeTk_gF2NzU6Aq72hXawnNVtevvr9689bNPg3MeLEkP31CsOWCl0VRu5H6JBktM9z0W8mFJyngtbxTBdFf5hvCYaGjw7cUmLv3wc5_82cvOKKJrfgZochyfFW6bfhwLd34MYVZsG78GGKAJDG8x0kLdOT936dkq5aoltHTnG4zdKT6S59CO8jeiWfWjpe4Jwhs-Ov2LiyG38PZpOTL-_OaFc1gVrEdmtqDLOudlWMzGpZe5UYe3KmKua115EvvuYVNpVeOC8RtqJdOuN05Z3kOvD7cNguWv8QSKFV7h3Hz3WFsNZoWzlEFFKFwJQ0eQYvd0JrbEcpHitbXDYYWkT5Nr18M3jed_255dHY12kcJd93iNTX6cZi-a3pLKnxro4or7KsDsKxYIxxUjITuNB5kEUGz3Z6a9BU4v6Hbv1is2oQ7alSYoTGMniw1WM_FE6RPPrpDORAw4N3Gba0P74nOm6VWPaLR_8x7mO4XsScmJzj3-kJHK6XG_8UQc3ajOCanEu8qsnpCI7GJxefp6O0QDBKk_kvlSP5Nw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Human+Detection+and+Gesture+Recognition+for+On-Board+UAV+Rescue&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Chang&rft.au=Szir%C3%A1nyi%2C+Tam%C3%A1s&rft.date=2021-03-20&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=6&rft_id=info:doi/10.3390%2Fs21062180&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon