Genome-wide analysis of NAC transcription factor family in maize under drought stress and rewatering
The plant-specific NAC transcription factor (TFs) plays crucial role in plant growth as well as in stress resistance. In the present study, 87 Zea mays NAC TFs were obtained from the transcriptome analysis using drought-resistant maize inbred line Y882 as experimental material under PEG stress and r...
Saved in:
Published in | Physiology and molecular biology of plants Vol. 26; no. 4; pp. 705 - 717 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.04.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0971-5894 0974-0430 |
DOI | 10.1007/s12298-020-00770-w |
Cover
Loading…
Abstract | The plant-specific NAC transcription factor (TFs) plays crucial role in plant growth as well as in stress resistance. In the present study, 87
Zea mays
NAC TFs were obtained from the transcriptome analysis using drought-resistant maize inbred line Y882 as experimental material under PEG stress and rewatering treatment. Comprehensive analyses were conducted including genes structure, chromosomal localization, phylogenetic tree and motif prediction,
cis
-elements and expression patterns. The results showed that the 87
ZmNAC
genes distributed on 10 chromosomes and were categorized into 15 groups based on their conserved gene structure and motifs. Phylogenetic tree analysis was also constructed referencing to the counterparts of
Arabidopsis
and rice, and the stress-related
cis
-elements in the promoter region were also analyzed. 87
ZmNAC
genes exhibited different expression levels at 3 treatment points, indicating different response to drought stress. This genome-wide analysis of 87
ZmNAC
genes will provide basis for further gene function detection. |
---|---|
AbstractList | The plant-specific NAC transcription factor (TFs) plays crucial role in plant growth as well as in stress resistance. In the present study, 87 Zea mays NAC TFs were obtained from the transcriptome analysis using drought-resistant maize inbred line Y882 as experimental material under PEG stress and rewatering treatment. Comprehensive analyses were conducted including genes structure, chromosomal localization, phylogenetic tree and motif prediction, cis-elements and expression patterns. The results showed that the 87 ZmNAC genes distributed on 10 chromosomes and were categorized into 15 groups based on their conserved gene structure and motifs. Phylogenetic tree analysis was also constructed referencing to the counterparts of Arabidopsis and rice, and the stress-related cis-elements in the promoter region were also analyzed. 87 ZmNAC genes exhibited different expression levels at 3 treatment points, indicating different response to drought stress. This genome-wide analysis of 87 ZmNAC genes will provide basis for further gene function detection.The plant-specific NAC transcription factor (TFs) plays crucial role in plant growth as well as in stress resistance. In the present study, 87 Zea mays NAC TFs were obtained from the transcriptome analysis using drought-resistant maize inbred line Y882 as experimental material under PEG stress and rewatering treatment. Comprehensive analyses were conducted including genes structure, chromosomal localization, phylogenetic tree and motif prediction, cis-elements and expression patterns. The results showed that the 87 ZmNAC genes distributed on 10 chromosomes and were categorized into 15 groups based on their conserved gene structure and motifs. Phylogenetic tree analysis was also constructed referencing to the counterparts of Arabidopsis and rice, and the stress-related cis-elements in the promoter region were also analyzed. 87 ZmNAC genes exhibited different expression levels at 3 treatment points, indicating different response to drought stress. This genome-wide analysis of 87 ZmNAC genes will provide basis for further gene function detection. The plant-specific NAC transcription factor (TFs) plays crucial role in plant growth as well as in stress resistance. In the present study, 87 Zea mays NAC TFs were obtained from the transcriptome analysis using drought-resistant maize inbred line Y882 as experimental material under PEG stress and rewatering treatment. Comprehensive analyses were conducted including genes structure, chromosomal localization, phylogenetic tree and motif prediction, cis-elements and expression patterns. The results showed that the 87 ZmNAC genes distributed on 10 chromosomes and were categorized into 15 groups based on their conserved gene structure and motifs. Phylogenetic tree analysis was also constructed referencing to the counterparts of Arabidopsis and rice, and the stress-related cis-elements in the promoter region were also analyzed. 87 ZmNAC genes exhibited different expression levels at 3 treatment points, indicating different response to drought stress. This genome-wide analysis of 87 ZmNAC genes will provide basis for further gene function detection. The plant-specific NAC transcription factor (TFs) plays crucial role in plant growth as well as in stress resistance. In the present study, 87 NAC TFs were obtained from the transcriptome analysis using drought-resistant maize inbred line Y882 as experimental material under PEG stress and rewatering treatment. Comprehensive analyses were conducted including genes structure, chromosomal localization, phylogenetic tree and motif prediction, -elements and expression patterns. The results showed that the 87 genes distributed on 10 chromosomes and were categorized into 15 groups based on their conserved gene structure and motifs. Phylogenetic tree analysis was also constructed referencing to the counterparts of and rice, and the stress-related -elements in the promoter region were also analyzed. 87 genes exhibited different expression levels at 3 treatment points, indicating different response to drought stress. This genome-wide analysis of 87 genes will provide basis for further gene function detection. The plant-specific NAC transcription factor (TFs) plays crucial role in plant growth as well as in stress resistance. In the present study, 87 Zea mays NAC TFs were obtained from the transcriptome analysis using drought-resistant maize inbred line Y882 as experimental material under PEG stress and rewatering treatment. Comprehensive analyses were conducted including genes structure, chromosomal localization, phylogenetic tree and motif prediction, cis -elements and expression patterns. The results showed that the 87 ZmNAC genes distributed on 10 chromosomes and were categorized into 15 groups based on their conserved gene structure and motifs. Phylogenetic tree analysis was also constructed referencing to the counterparts of Arabidopsis and rice, and the stress-related cis -elements in the promoter region were also analyzed. 87 ZmNAC genes exhibited different expression levels at 3 treatment points, indicating different response to drought stress. This genome-wide analysis of 87 ZmNAC genes will provide basis for further gene function detection. |
Author | Wang, Guorui Liu, Zhixue Yuan, Zhen Zhang, Pengyu Wang, Tongchao Wei, Li |
Author_xml | – sequence: 1 givenname: Guorui surname: Wang fullname: Wang, Guorui organization: Agricultural College of Henan Agricultural University – sequence: 2 givenname: Zhen surname: Yuan fullname: Yuan, Zhen organization: Agricultural College of Henan Agricultural University – sequence: 3 givenname: Pengyu surname: Zhang fullname: Zhang, Pengyu organization: Agricultural College of Henan Agricultural University – sequence: 4 givenname: Zhixue surname: Liu fullname: Liu, Zhixue organization: Agricultural College of Henan Agricultural University – sequence: 5 givenname: Tongchao surname: Wang fullname: Wang, Tongchao organization: Agricultural College of Henan Agricultural University – sequence: 6 givenname: Li surname: Wei fullname: Wei, Li email: weili-wtc@126.com organization: Agricultural College of Henan Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32255934$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUl1vFCEUJabGfugf8MGQ-OLLKAwwwItJs7GtSaMv-kwYuLulmYEVZrpZf73sbq3ah_p0IZxzOPfec4qOYoqA0GtK3lNC5IdC21arhrSkqVdJms0zdEK05A3hjBztz7QRSvNjdFrKLSEd45K-QMesbYXQjJ8gfwkxjdBsggdsox22JRSclvjL-QJP2cbiclhPIUW8tG5KuZYxDFscIh5t-Al4jh4y9jnNq5sJlylDKVXJ4wwbO0EOcfUSPV_aocCr-3qGvl98-ra4aq6_Xn5enF83ThA5NX1LQAvoekeWGjpnPQUvbCeZpqC84A4IE7UHy4ntXdtZJ1VHNPW13Z4TdoY-HnTXcz-CdxBrB4NZ5zDavDXJBvPvSww3ZpXujKSUMSGrwLt7gZx-zFAmM4biYBhshDQX03Km619ciP9DmZKdEkrubL19BL1Nc66z3qME40orXVFv_jb_4Pr3riqgPQBcTqVkWD5AKDG7QJhDIEwNhNkHwmwqST0iuTDZ3T7rAMLwNJUdqGW9WyLkP7afYP0CLvPLtw |
CitedBy_id | crossref_primary_10_3390_f14071404 crossref_primary_10_3390_ijms24054712 crossref_primary_10_1007_s44154_023_00125_x crossref_primary_10_1016_j_scienta_2025_113951 crossref_primary_10_1016_j_stress_2023_100276 crossref_primary_10_3389_fpls_2020_572540 crossref_primary_10_1186_s12870_023_04489_0 crossref_primary_10_3389_fpls_2022_972734 crossref_primary_10_1155_2022_1027288 crossref_primary_10_1016_j_ijbiomac_2025_142400 crossref_primary_10_3389_fpls_2022_928897 crossref_primary_10_1093_hr_uhab046 crossref_primary_10_1007_s11032_023_01433_w crossref_primary_10_3389_fpls_2024_1361422 crossref_primary_10_1111_plb_13715 crossref_primary_10_2139_ssrn_4004919 crossref_primary_10_3390_agronomy13061459 crossref_primary_10_1016_j_cj_2024_09_005 crossref_primary_10_1016_j_scienta_2022_111048 crossref_primary_10_1071_FP23282 crossref_primary_10_1007_s10725_024_01170_w crossref_primary_10_3390_ijms23115873 crossref_primary_10_1007_s12298_021_01013_2 crossref_primary_10_1016_j_bbrc_2021_06_026 crossref_primary_10_3390_biom14020182 crossref_primary_10_3389_fpls_2022_1065261 crossref_primary_10_1111_tpj_16538 crossref_primary_10_3390_genes15081087 crossref_primary_10_3390_horticulturae8090786 crossref_primary_10_1016_j_jplph_2022_153883 crossref_primary_10_3390_antiox13010094 crossref_primary_10_1007_s10681_022_03082_0 crossref_primary_10_3390_plants10102200 crossref_primary_10_3390_ijms241511946 crossref_primary_10_1186_s12870_023_04393_7 crossref_primary_10_15252_msb_20209667 crossref_primary_10_1007_s12298_022_01147_x crossref_primary_10_3390_agronomy14061267 crossref_primary_10_1093_jxb_eraa507 crossref_primary_10_3390_plants10020382 |
Cites_doi | 10.1105/tpc.104.022699 10.1016/j.mgene.2014.05.001 10.1093/jxb/erv386 10.1534/g3.117.043679 10.1007/s12041-015-0526-9 10.1007/s12374-018-0285-2 10.1093/mp/ssr013 10.1186/s12870-019-1760-8 10.1016/j.bbagrm.2011.10.005 10.1038/nsmb.1659 10.1007/s11738-012-1195-4 10.14083/j.issn.1001-4942.2015.02.001 10.1016/j.tplants.2012.02.004 10.1016/j.plaphy.2015.08.013 10.1038/nprot.2012.016 10.1007/s00299-014-1576-9 10.1007/s10725-017-0295-y 10.1038/cr.2009.108 10.1626/pps.7.406 10.1007/s11105-013-0655-3 10.1016/j.gene.2010.06.008 10.1016/j.plaphy.2016.04.018 10.3321/j.issn:1000-7601.2003.01.001 10.3969/j.issn.1004-1389.2009.02.020 10.1006/meth.2001.1262 10.1016/j.plaphy.2016.12.028 10.1186/gb-2013-14-4-r36 10.1007/s10265-016-0833-0 10.1186/s12870-018-1367-5 10.1007/s00299-015-1756-2 10.1093/jexbot/53.366.13 10.1093/dnares/dsr015 10.1007/s00299-012-1284-2 10.1038/nmeth.1923 10.1007/s11427-016-5001-1 |
ContentType | Journal Article |
Copyright | Prof. H.S. Srivastava Foundation for Science and Society 2020 Prof. H.S. Srivastava Foundation for Science and Society 2020. |
Copyright_xml | – notice: Prof. H.S. Srivastava Foundation for Science and Society 2020 – notice: Prof. H.S. Srivastava Foundation for Science and Society 2020. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1007/s12298-020-00770-w |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 0974-0430 |
EndPage | 717 |
ExternalDocumentID | PMC7113357 32255934 10_1007_s12298_020_00770_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Basic Research Program of China grantid: 2017YFD0301106 – fundername: ; grantid: 2017YFD0301106 |
GroupedDBID | -56 -5G -BR -EM -Y2 -~C .VR 06C 06D 0R~ 0VY 123 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5VS 67N 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABLLD ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BAWUL BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DIK DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HYE HZ~ IJ- IKXTQ IWAJR IXC IXD I~Z J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9I O9J OK1 PF0 PT4 QOR QOS R89 R9I RIG ROL RPM RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z7U ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c507t-b20e95e6bc0f9e6cad1ed5a67391e8d54ce035634a40abc26ac786091d430b403 |
IEDL.DBID | U2A |
ISSN | 0971-5894 |
IngestDate | Thu Aug 21 18:23:59 EDT 2025 Fri Jul 11 02:13:27 EDT 2025 Mon Jul 21 10:37:47 EDT 2025 Fri Jul 25 11:07:27 EDT 2025 Mon Jul 21 05:57:50 EDT 2025 Thu Apr 24 22:56:26 EDT 2025 Tue Jul 01 02:17:05 EDT 2025 Fri Feb 21 02:34:43 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | NAC transcription factors Drought Expression pattern Zea mays |
Language | English |
License | Prof. H.S. Srivastava Foundation for Science and Society 2020. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-b20e95e6bc0f9e6cad1ed5a67391e8d54ce035634a40abc26ac786091d430b403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7113357 |
PMID | 32255934 |
PQID | 2385348989 |
PQPubID | 2044193 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7113357 proquest_miscellaneous_2439430455 proquest_miscellaneous_2387685870 proquest_journals_2385348989 pubmed_primary_32255934 crossref_primary_10_1007_s12298_020_00770_w crossref_citationtrail_10_1007_s12298_020_00770_w springer_journals_10_1007_s12298_020_00770_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: India – name: Heidelberg |
PublicationSubtitle | An International Journal of Functional Plant Biology |
PublicationTitle | Physiology and molecular biology of plants |
PublicationTitleAbbrev | Physiol Mol Biol Plants |
PublicationTitleAlternate | Physiol Mol Biol Plants |
PublicationYear | 2020 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | Livak, Schmittgen (CR15) 2001; 25 Sun, Hu, Li, Chen, Li, Zhang, Zhang, Yang (CR28) 2018 Ge, Tang, Bi, Liu (CR7) 2015; 47 Kadier, Zu, Dai, Song, Lin, Sun, Pan, Lu (CR9) 2017; 83 Bu, Zhang, Han, Xue, Chang (CR3) 2009; 18 Wang, Dane (CR31) 2013; 35 Yang, Wang, Ji, Yi, Fu, Ran, Hu, Zhou (CR35) 2015; 34 Borrill, Harrington, Uauy (CR1) 2017; 7 Xu, Gongbuzhaxi, Xue, Zhang, Ji (CR33) 2015; 96 Schwartz, Meshorer, Ast (CR23) 2009; 16 Dung Tien, Nishiyama, Watanabe, Mochida, Yamaguchi-Shinozaki, Shinozaki, Lam-Son Phan (CR5) 2011; 18 Fang, Liao, Du, Xu, Song, Li, Xiong (CR6) 2015; 66 Mao, Yu, Han, Li, Liu (CR17) 2016; 105 Trapnell, Roberts, Goff, Pertea, Kim, Kelley, Pimentel, Salzberg, Rinn, Pachter (CR30) 2012; 7 Gong, Zhao, Song, Lin, Gu, Yan, Zhang, Tao, Huang (CR8) 2019 Shan (CR24) 2003 So, Lee (CR27) 2019; 62 Nakashima, Takasaki, Mizoi, Shinozaki, Yamaguchi-Shinozaki (CR18) 2012; 1819 Wu, Deng, Lai, Zhang, Yang, Yin, Zhao, Zhang, Li, Yang, Xie (CR32) 2009; 19 Shiriga, Sharma, Kumar, Yadav, Hossain, Thirunavukkarasu (CR26) 2014; 2 Kou, Wang, Wu, Guo, Xue, Meng, Tao, Chen, Zhang (CR12) 2014; 32 Nuruzzaman, Manimekalai, Sharoni, Satoh, Kondoh, Ooka, Kikuchi (CR19) 2010; 465 Shang, Wang, Zou, Zhang, Li, Li, Shi, Gong, Chen, Liu, Gong, Ge, Yuan (CR25) 2016; 59 Saidi, Mergby, Brini (CR22) 2017; 112 Bruce, Edmeades, Barker (CR2) 2002; 53 Puranik, Sahu, Srivastava, Prasad (CR21) 2012; 17 Capella, Re, Arce, Chan (CR4) 2014; 33 Kim, Pertea, Trapnell, Pimentel, Kelley, Salzberg (CR11) 2013 Langmead, Salzberg (CR13) 2012; 9 Peng, Zhao, Li, Wu, Chai, Sheng, Wang, Dong, Jiang, Cheng (CR20) 2015; 94 Kamoshita, Rodriguez, Yamauchi, Wade (CR10) 2004; 7 Lu, Ying, Zhang, Shi, Song, Wang, Li (CR16) 2012; 31 Xue, Way, Richardson, Drenth, Joyce, McIntyre (CR34) 2011; 4 Liu, Sun, Wu (CR14) 2016; 129 Tran, Nakashima, Sakuma, Simpson, Fujita, Maruyama, Fujita, Seki, Shinozaki, Yamaguchi-Shinozaki (CR29) 2004; 16 A Kamoshita (770_CR10) 2004; 7 LD Bu (770_CR3) 2009; 18 X Kou (770_CR12) 2014; 32 X Peng (770_CR20) 2015; 94 C Trapnell (770_CR30) 2012; 7 LSP Tran (770_CR29) 2004; 16 K Nakashima (770_CR18) 2012; 1819 P Borrill (770_CR1) 2017; 7 Z Wang (770_CR31) 2013; 35 Z Xu (770_CR33) 2015; 96 M Lu (770_CR16) 2012; 31 M Nuruzzaman (770_CR19) 2010; 465 S Puranik (770_CR21) 2012; 17 L Dung Tien (770_CR5) 2011; 18 Y Kadier (770_CR9) 2017; 83 SS Ge (770_CR7) 2015; 47 X Yang (770_CR35) 2015; 34 Y Liu (770_CR14) 2016; 129 MN Saidi (770_CR22) 2017; 112 G-P Xue (770_CR34) 2011; 4 K Shiriga (770_CR26) 2014; 2 KJ Livak (770_CR15) 2001; 25 WB Bruce (770_CR2) 2002; 53 Y Fang (770_CR6) 2015; 66 H Shang (770_CR25) 2016; 59 Y Wu (770_CR32) 2009; 19 S Schwartz (770_CR23) 2009; 16 H-A So (770_CR27) 2019; 62 L Shan (770_CR24) 2003 H Sun (770_CR28) 2018 M Capella (770_CR4) 2014; 33 H Mao (770_CR17) 2016; 105 X Gong (770_CR8) 2019 D Kim (770_CR11) 2013 B Langmead (770_CR13) 2012; 9 |
References_xml | – volume: 16 start-page: 2481 year: 2004 end-page: 2498 ident: CR29 article-title: Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive -element in the early responsive to dehydration stress 1 promoter publication-title: Plant Cell doi: 10.1105/tpc.104.022699 – volume: 2 start-page: 407 year: 2014 end-page: 417 ident: CR26 article-title: Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize publication-title: Meta Gene doi: 10.1016/j.mgene.2014.05.001 – volume: 66 start-page: 6803 year: 2015 end-page: 6817 ident: CR6 article-title: A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice publication-title: J Exp Bot doi: 10.1093/jxb/erv386 – volume: 7 start-page: 3019 year: 2017 end-page: 3029 ident: CR1 article-title: Genome-wide sequence and expression analysis of the NAC transcription factor family in polyploid wheat publication-title: G3 Genes Genomes Genet doi: 10.1534/g3.117.043679 – volume: 94 start-page: 377 year: 2015 end-page: 390 ident: CR20 article-title: Genomewide identification, classification and analysis of NAC type gene family in maize publication-title: J Genet doi: 10.1007/s12041-015-0526-9 – volume: 62 start-page: 147 year: 2019 end-page: 160 ident: CR27 article-title: NAC transcription factors from soybean ( L.) differentially regulated by abiotic stress publication-title: J Plant Biol doi: 10.1007/s12374-018-0285-2 – volume: 4 start-page: 697 year: 2011 end-page: 712 ident: CR34 article-title: Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat publication-title: Mol Plant doi: 10.1093/mp/ssr013 – year: 2019 ident: CR8 article-title: Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear ( ) publication-title: BMC Plant Biol doi: 10.1186/s12870-019-1760-8 – volume: 1819 start-page: 97 year: 2012 end-page: 103 ident: CR18 article-title: NAC transcription factors in plant abiotic stress responses publication-title: Biochim Biophys Acta Gene Regul Mech doi: 10.1016/j.bbagrm.2011.10.005 – volume: 16 start-page: 990 year: 2009 end-page: 995 ident: CR23 article-title: Chromatin organization marks exon-intron structure publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1659 – volume: 35 start-page: 1397 year: 2013 end-page: 1408 ident: CR31 article-title: NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway publication-title: Acta Physiol Plant doi: 10.1007/s11738-012-1195-4 – volume: 47 start-page: 1 year: 2015 end-page: 6 ident: CR7 article-title: Genome-wide identification and analysis of NAC gene family in maize publication-title: Shandong Agric Sci doi: 10.14083/j.issn.1001-4942.2015.02.001 – volume: 17 start-page: 369 year: 2012 end-page: 381 ident: CR21 article-title: NAC proteins: regulation and role in stress tolerance publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2012.02.004 – volume: 96 start-page: 356 year: 2015 end-page: 363 ident: CR33 article-title: Wheat NAC transcription factor TaNAC29 is involved in response to salt stress publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2015.08.013 – volume: 7 start-page: 562 year: 2012 end-page: 578 ident: CR30 article-title: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks publication-title: Nat Protoc doi: 10.1038/nprot.2012.016 – volume: 33 start-page: 955 year: 2014 end-page: 967 ident: CR4 article-title: Plant homeodomain-leucine zipper I transcription factors exhibit different functional AHA motifs that selectively interact with TBP or/and TFIIB publication-title: Plant Cell Rep doi: 10.1007/s00299-014-1576-9 – volume: 83 start-page: 301 year: 2017 end-page: 312 ident: CR9 article-title: Genome-wide identification, classification and expression analysis of NAC family of genes in sorghum (L.) Moench publication-title: Plant Growth Regul doi: 10.1007/s10725-017-0295-y – volume: 19 start-page: 1279 year: 2009 end-page: 1290 ident: CR32 article-title: Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses publication-title: Cell Res doi: 10.1038/cr.2009.108 – volume: 7 start-page: 406 year: 2004 end-page: 420 ident: CR10 article-title: Genotypic variation in response of rainfed lowland rice to prolonged drought and rewatering publication-title: Plant Prod Sci doi: 10.1626/pps.7.406 – volume: 32 start-page: 501 year: 2014 end-page: 516 ident: CR12 article-title: Molecular characterization and expression analysis of NAC family transcription factors in tomato publication-title: Plant Mol Biol Rep doi: 10.1007/s11105-013-0655-3 – volume: 465 start-page: 30 year: 2010 end-page: 44 ident: CR19 article-title: Genome-wide analysis of NAC transcription factor family in rice publication-title: Gene doi: 10.1016/j.gene.2010.06.008 – volume: 105 start-page: 55 year: 2016 end-page: 66 ident: CR17 article-title: ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2016.04.018 – year: 2003 ident: CR24 article-title: Issues of science and technology on water saving agricultural development in China publication-title: Agric Res Arid Areas doi: 10.3321/j.issn:1000-7601.2003.01.001 – volume: 18 start-page: 88 year: 2009 end-page: 92 ident: CR3 article-title: The physiological mechanism of compensation effect in maize leaf by rewatering after draught stress publication-title: Acta Agric Boreal Occident Sin doi: 10.3969/j.issn.1004-1389.2009.02.020 – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: CR15 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method publication-title: Methods (San Diego, Calif) doi: 10.1006/meth.2001.1262 – volume: 112 start-page: 117 year: 2017 end-page: 128 ident: CR22 article-title: Identification and expression analysis of the NAC transcription factor family in durum wheat ( L. ssp. durum) publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2016.12.028 – year: 2013 ident: CR11 article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biol doi: 10.1186/gb-2013-14-4-r36 – volume: 129 start-page: 955 year: 2016 end-page: 962 ident: CR14 article-title: Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice publication-title: J Plant Res doi: 10.1007/s10265-016-0833-0 – year: 2018 ident: CR28 article-title: Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton publication-title: BMC Plant Biol doi: 10.1186/s12870-018-1367-5 – volume: 34 start-page: 943 year: 2015 end-page: 958 ident: CR35 article-title: Overexpression of a NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis publication-title: Plant Cell Rep doi: 10.1007/s00299-015-1756-2 – volume: 53 start-page: 13 year: 2002 end-page: 25 ident: CR2 article-title: Molecular and physiological approaches to maize improvement for drought tolerance publication-title: J Exp Bot doi: 10.1093/jexbot/53.366.13 – volume: 18 start-page: 263 year: 2011 end-page: 276 ident: CR5 article-title: Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress publication-title: DNA Res doi: 10.1093/dnares/dsr015 – volume: 31 start-page: 1701 year: 2012 end-page: 1711 ident: CR16 article-title: A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis publication-title: Plant Cell Rep doi: 10.1007/s00299-012-1284-2 – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: CR13 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat Methods doi: 10.1038/nmeth.1923 – volume: 59 start-page: 142 year: 2016 end-page: 153 ident: CR25 article-title: Comprehensive analysis of NAC transcription factors in diploid : sequence conservation and expression analysis uncover their roles during fiber development publication-title: Sci China Life Sci doi: 10.1007/s11427-016-5001-1 – volume: 1819 start-page: 97 year: 2012 ident: 770_CR18 publication-title: Biochim Biophys Acta Gene Regul Mech doi: 10.1016/j.bbagrm.2011.10.005 – volume: 94 start-page: 377 year: 2015 ident: 770_CR20 publication-title: J Genet doi: 10.1007/s12041-015-0526-9 – volume: 129 start-page: 955 year: 2016 ident: 770_CR14 publication-title: J Plant Res doi: 10.1007/s10265-016-0833-0 – volume: 25 start-page: 402 year: 2001 ident: 770_CR15 publication-title: Methods (San Diego, Calif) doi: 10.1006/meth.2001.1262 – volume: 2 start-page: 407 year: 2014 ident: 770_CR26 publication-title: Meta Gene doi: 10.1016/j.mgene.2014.05.001 – volume: 4 start-page: 697 year: 2011 ident: 770_CR34 publication-title: Mol Plant doi: 10.1093/mp/ssr013 – volume: 47 start-page: 1 year: 2015 ident: 770_CR7 publication-title: Shandong Agric Sci doi: 10.14083/j.issn.1001-4942.2015.02.001 – volume: 7 start-page: 562 year: 2012 ident: 770_CR30 publication-title: Nat Protoc doi: 10.1038/nprot.2012.016 – volume: 7 start-page: 406 year: 2004 ident: 770_CR10 publication-title: Plant Prod Sci doi: 10.1626/pps.7.406 – volume: 62 start-page: 147 year: 2019 ident: 770_CR27 publication-title: J Plant Biol doi: 10.1007/s12374-018-0285-2 – volume: 31 start-page: 1701 year: 2012 ident: 770_CR16 publication-title: Plant Cell Rep doi: 10.1007/s00299-012-1284-2 – volume: 33 start-page: 955 year: 2014 ident: 770_CR4 publication-title: Plant Cell Rep doi: 10.1007/s00299-014-1576-9 – year: 2019 ident: 770_CR8 publication-title: BMC Plant Biol doi: 10.1186/s12870-019-1760-8 – volume: 7 start-page: 3019 year: 2017 ident: 770_CR1 publication-title: G3 Genes Genomes Genet doi: 10.1534/g3.117.043679 – volume: 17 start-page: 369 year: 2012 ident: 770_CR21 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2012.02.004 – volume: 83 start-page: 301 year: 2017 ident: 770_CR9 publication-title: Plant Growth Regul doi: 10.1007/s10725-017-0295-y – volume: 112 start-page: 117 year: 2017 ident: 770_CR22 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2016.12.028 – volume: 96 start-page: 356 year: 2015 ident: 770_CR33 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2015.08.013 – volume: 9 start-page: 357 year: 2012 ident: 770_CR13 publication-title: Nat Methods doi: 10.1038/nmeth.1923 – volume: 19 start-page: 1279 year: 2009 ident: 770_CR32 publication-title: Cell Res doi: 10.1038/cr.2009.108 – volume: 53 start-page: 13 year: 2002 ident: 770_CR2 publication-title: J Exp Bot doi: 10.1093/jexbot/53.366.13 – volume: 32 start-page: 501 year: 2014 ident: 770_CR12 publication-title: Plant Mol Biol Rep doi: 10.1007/s11105-013-0655-3 – volume: 34 start-page: 943 year: 2015 ident: 770_CR35 publication-title: Plant Cell Rep doi: 10.1007/s00299-015-1756-2 – volume: 465 start-page: 30 year: 2010 ident: 770_CR19 publication-title: Gene doi: 10.1016/j.gene.2010.06.008 – volume: 35 start-page: 1397 year: 2013 ident: 770_CR31 publication-title: Acta Physiol Plant doi: 10.1007/s11738-012-1195-4 – year: 2018 ident: 770_CR28 publication-title: BMC Plant Biol doi: 10.1186/s12870-018-1367-5 – volume: 16 start-page: 990 year: 2009 ident: 770_CR23 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1659 – volume: 18 start-page: 88 year: 2009 ident: 770_CR3 publication-title: Acta Agric Boreal Occident Sin doi: 10.3969/j.issn.1004-1389.2009.02.020 – volume: 66 start-page: 6803 year: 2015 ident: 770_CR6 publication-title: J Exp Bot doi: 10.1093/jxb/erv386 – volume: 18 start-page: 263 year: 2011 ident: 770_CR5 publication-title: DNA Res doi: 10.1093/dnares/dsr015 – volume: 59 start-page: 142 year: 2016 ident: 770_CR25 publication-title: Sci China Life Sci doi: 10.1007/s11427-016-5001-1 – volume: 16 start-page: 2481 year: 2004 ident: 770_CR29 publication-title: Plant Cell doi: 10.1105/tpc.104.022699 – year: 2013 ident: 770_CR11 publication-title: Genome Biol doi: 10.1186/gb-2013-14-4-r36 – year: 2003 ident: 770_CR24 publication-title: Agric Res Arid Areas doi: 10.3321/j.issn:1000-7601.2003.01.001 – volume: 105 start-page: 55 year: 2016 ident: 770_CR17 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2016.04.018 |
SSID | ssj0063471 |
Score | 2.3638208 |
Snippet | The plant-specific NAC transcription factor (TFs) plays crucial role in plant growth as well as in stress resistance. In the present study, 87
Zea mays
NAC TFs... The plant-specific NAC transcription factor (TFs) plays crucial role in plant growth as well as in stress resistance. In the present study, 87 NAC TFs were... The plant-specific NAC transcription factor (TFs) plays crucial role in plant growth as well as in stress resistance. In the present study, 87 Zea mays NAC TFs... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 705 |
SubjectTerms | Arabidopsis Biological and Medical Physics Biomedical and Life Sciences Biophysics Cell Biology chromosome mapping Chromosomes Corn Drought resistance drought tolerance Gene expression Genes genome-wide association study Genomes inbred lines Inbreeding Life Sciences Localization Phylogenetics Phylogeny Plant growth Plant Physiology Plant Sciences prediction promoter regions Research Article rice stress tolerance Transcription factors transcriptomics water stress Zea mays |
Title | Genome-wide analysis of NAC transcription factor family in maize under drought stress and rewatering |
URI | https://link.springer.com/article/10.1007/s12298-020-00770-w https://www.ncbi.nlm.nih.gov/pubmed/32255934 https://www.proquest.com/docview/2385348989 https://www.proquest.com/docview/2387685870 https://www.proquest.com/docview/2439430455 https://pubmed.ncbi.nlm.nih.gov/PMC7113357 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5By4EL4k2grIzEDSwl8Wv3uFR9CERPrFROkR8TsRJN0DbViv76epxkV0uhEmdPLMfjx2ePv28A3jtfOCu05qKWgkuDgbuIY7lQVkqF8QgQiDv89UyfLuTnc3U-kMIux9fuY0gyrdRbsltZEh2sJCa0MTlf34d9Fc_uNK4X5Xxcf7Xoj1kkjsTVdCYHqszf69jdjm5hzNtPJf-Il6Zt6PgxPBrwI5v3Dn8C97B5Cg8-tRHj_X4G4QSb9gL5ehmQ2UFvhLU1O5sfso62pXGRYH2iHdZfcLBlwy7s8hoZccpWLKTkPR3rmSSxpsBWuLZd0i18Dovjo2-Hp3zIo8B9RHsdd2WOs9jvzuf1DLW3ocCgrDZiVuA0KEk5w1TsNytz63yprTdTHYFEkCJ3MhcvYK9pG3wFzLraayxkrXwta--sRz0NWglXY4QKeQbF2J2VH0TGKdfFz2orj0wuqKILquSCap3Bh803v3qJjTutD0YvVcN0u6wi7lBCUibMDN5tiuNEoeiHbbC9SjaGxPZNfocN8YQpdqwyeNk7ftMkWvnUTMgMzM6Q2BiQUPduSbP8kQS7TVEIoUwGH8fBs236v__09f-Zv4GHZRrY9KroAPa61RW-jYCpcxPYn598_3I0SXdZkzRbbgARDBHT |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6CDom9cGcEBhiJN_CUxLfmsUzbCtv6tErjKfLlRFSwBHWpKvbrsXNp1Q0m7dknli_H9uf4fN8B-GhsYjSTkrKCM8oVOmo8jqVMaM4F-iuAC9zh04kcT_m3c3HekcIu-2j3_kmy2anXZLc0DXSwNDChlYrp8j5scX8HFwPYGh19Pz7od2DJ2otWkEeiYpjxjizz71o2D6QbKPNmsOS1F9PmIDp8DNO-C238yc-9RW327NU1dce79vEJPOqQKRm1rvQU7mH5DB58qTx6_PMc3BGW1QXS5cwh0Z2SCakKMhntkzoceP32Q9oUPqT9dUJmJbnQsyskga02J65JC1STlqPia3JkjktdN4qIL2B6eHC2P6ZdhgZqPY6sqUljzPyMGhsXGUqrXYJOaKlYluDQCR6ykQk_H5rH2thUaquG0kMUx1lseMxewqCsSnwFRJvCSkx4IWzBC2u0RTl0UjBToAchcQRJP0257eTLQxaNX_laeDkMXu4HL28GL19G8Gn1ze9WvONW691-9vNuIV_mHtEIxkOOzQg-rIr9EgzvKrrEatHYqCDjr-JbbAIDObxKiwh2WodaNSnsqSJjPAK14WorgyABvllSzn40UuAqSRgTKoLPvT-tm_7_nr6-m_l7eDg-Oz3JT75Ojt_Adtq4Z4hd2oVBPV_gWw_LavOuW4V_AagGL1c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7BghAXxJvAAkbiBtYm8as5loWyvCoOVNpb5KeoxCarklUFvx6Pk7SUhZU4Z2I5Hnv8OZ7vG4DnxhZGMykpC5xRrryjJuJYyoTmXPh4BHDIHf40l0cL_v5YHP_G4k_Z7uOVZM9pQJWmpjs4deFgS3wrS6SGlciKViqn68twJYbjApO6FuV0jMWS9UcuFEqiYlLxgTbz9zZ2t6ZzePN82uQfd6dpS5rdhBsDliTT3vm34JJvbsPVV23Eez_ugHvrm_bE0_XSeaIH7RHSBjKfHpIOt6gxYJC-6A7pf3aQZUNO9PKnJ8gvWxGXCvl0pGeVxJYcWfm17pKG4V1YzN58OTyiQ00FaiPy66gpc19FHxibh8pLq13hndBSsarwEyc41g8Tcdw0z7WxpdRWTWQEFY6z3PCc3YO9pm38AyDaBCt9wYOwgQdrtPVy4qRgJvgIG_IMinE4azsIjmPdi2_1VioZXVBHF9TJBfU6gxebd057uY0LrfdHL9XD0vteRwwiGMeqmBk82zyOiwZvQnTj27Nko1B4X-UX2CBnGO-RRQb3e8dvuoRRUFSMZ6B2psTGAEW7d580y69JvFsVBWNCZfBynDzbrv_7Sx_-n_lTuPb59az--G7-4RFcL9Mcx2SjfdjrVmf-ccRRnXmSlsoveQ8WXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+analysis+of+NAC+transcription+factor+family+in+maize+under+drought+stress+and+rewatering&rft.jtitle=Physiology+and+molecular+biology+of+plants&rft.au=Wang%2C+Guorui&rft.au=Yuan%2C+Zhen&rft.au=Zhang%2C+Pengyu&rft.au=Liu%2C+Zhixue&rft.date=2020-04-01&rft.issn=0971-5894&rft.volume=26&rft.issue=4&rft.spage=705&rft_id=info:doi/10.1007%2Fs12298-020-00770-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0971-5894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0971-5894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0971-5894&client=summon |