The Architecture of Inactivated SARS-CoV-2 with Postfusion Spikes Revealed by Cryo-EM and Cryo-ET
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) resulted from the outbreak of SARS-CoV-2 in December 2019. Currently, multiple efforts are being made to rapidly develop vaccines and treatments to fight COVID-19. Current vaccine candidates use inactivated SARS-CoV-2 viruses; theref...
Saved in:
Published in | Structure (London) Vol. 28; no. 11; pp. 1218 - 1224.e4 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
03.11.2020
Cell Press |
Subjects | |
Online Access | Get full text |
ISSN | 0969-2126 1878-4186 1878-4186 |
DOI | 10.1016/j.str.2020.10.001 |
Cover
Loading…
Abstract | The ongoing global pandemic of coronavirus disease 2019 (COVID-19) resulted from the outbreak of SARS-CoV-2 in December 2019. Currently, multiple efforts are being made to rapidly develop vaccines and treatments to fight COVID-19. Current vaccine candidates use inactivated SARS-CoV-2 viruses; therefore, it is important to understand the architecture of inactivated SARS-CoV-2. We have genetically and structurally characterized β-propiolactone-inactivated viruses from a propagated and purified clinical strain of SARS-CoV-2. We observed that the virus particles are roughly spherical or moderately pleiomorphic. Although a small fraction of prefusion spikes are found, most spikes appear nail shaped, thus resembling a postfusion state, where the S1 protein of the spike has disassociated from S2. Cryoelectron tomography and subtomogram averaging of these spikes yielded a density map that closely matches the overall structure of the SARS-CoV postfusion spike and its corresponding glycosylation site. Our findings have major implications for SARS-CoV-2 vaccine design, especially those using inactivated viruses.
[Display omitted]
•β-propiolactone-inactivated SARS-CoV-2 viruses display postfusion spikes•Cryo-ET structure of SARS-CoV-2 postfusion spikes was determined at 11 Å resolution•This study calls for crucial structural characterization of vaccine candidates
Several vaccine candidates using inactivated SARS-CoV-2 viruses are under development. Liu et al. used state-of-the-art cryoelectron microscopy technologies to characterize the architecture of inactivated SARS-CoV-2 viruses. They found that the viral spikes are mostly in a postfusion state, which is not desirable for vaccine development. |
---|---|
AbstractList | The ongoing global pandemic of coronavirus disease 2019 (COVID-19) resulted from the outbreak of SARS-CoV-2 in December 2019. Currently, multiple efforts are being made to rapidly develop vaccines and treatments to fight COVID-19. Current vaccine candidates use inactivated SARS-CoV-2 viruses; therefore, it is important to understand the architecture of inactivated SARS-CoV-2. We have genetically and structurally characterized β-propiolactone-inactivated viruses from a propagated and purified clinical strain of SARS-CoV-2. We observed that the virus particles are roughly spherical or moderately pleiomorphic. Although a small fraction of prefusion spikes are found, most spikes appear nail shaped, thus resembling a postfusion state, where the S1 protein of the spike has disassociated from S2. Cryoelectron tomography and subtomogram averaging of these spikes yielded a density map that closely matches the overall structure of the SARS-CoV postfusion spike and its corresponding glycosylation site. Our findings have major implications for SARS-CoV-2 vaccine design, especially those using inactivated viruses.
•
β-propiolactone-inactivated SARS-CoV-2 viruses display postfusion spikes
•
Cryo-ET structure of SARS-CoV-2 postfusion spikes was determined at 11 Å resolution
•
This study calls for crucial structural characterization of vaccine candidates
Several vaccine candidates using inactivated SARS-CoV-2 viruses are under development. Liu et al. used state-of-the-art cryoelectron microscopy technologies to characterize the architecture of inactivated SARS-CoV-2 viruses. They found that the viral spikes are mostly in a postfusion state, which is not desirable for vaccine development. The ongoing global pandemic of coronavirus disease 2019 (COVID-19) resulted from the outbreak of SARS-CoV-2 in December 2019. Currently, multiple efforts are being made to rapidly develop vaccines and treatments to fight COVID-19. Current vaccine candidates use inactivated SARS-CoV-2 viruses; therefore, it is important to understand the architecture of inactivated SARS-CoV-2. We have genetically and structurally characterized β-propiolactone-inactivated viruses from a propagated and purified clinical strain of SARS-CoV-2. We observed that the virus particles are roughly spherical or moderately pleiomorphic. Although a small fraction of prefusion spikes are found, most spikes appear nail shaped, thus resembling a postfusion state, where the S1 protein of the spike has disassociated from S2. Cryoelectron tomography and subtomogram averaging of these spikes yielded a density map that closely matches the overall structure of the SARS-CoV postfusion spike and its corresponding glycosylation site. Our findings have major implications for SARS-CoV-2 vaccine design, especially those using inactivated viruses.The ongoing global pandemic of coronavirus disease 2019 (COVID-19) resulted from the outbreak of SARS-CoV-2 in December 2019. Currently, multiple efforts are being made to rapidly develop vaccines and treatments to fight COVID-19. Current vaccine candidates use inactivated SARS-CoV-2 viruses; therefore, it is important to understand the architecture of inactivated SARS-CoV-2. We have genetically and structurally characterized β-propiolactone-inactivated viruses from a propagated and purified clinical strain of SARS-CoV-2. We observed that the virus particles are roughly spherical or moderately pleiomorphic. Although a small fraction of prefusion spikes are found, most spikes appear nail shaped, thus resembling a postfusion state, where the S1 protein of the spike has disassociated from S2. Cryoelectron tomography and subtomogram averaging of these spikes yielded a density map that closely matches the overall structure of the SARS-CoV postfusion spike and its corresponding glycosylation site. Our findings have major implications for SARS-CoV-2 vaccine design, especially those using inactivated viruses. The ongoing global pandemic of coronavirus disease 2019 (COVID-19) resulted from the outbreak of SARS-CoV-2 in December 2019. Currently, multiple efforts are being made to rapidly develop vaccines and treatments to fight COVID-19. Current vaccine candidates use inactivated SARS-CoV-2 viruses; therefore, it is important to understand the architecture of inactivated SARS-CoV-2. We have genetically and structurally characterized β-propiolactone-inactivated viruses from a propagated and purified clinical strain of SARS-CoV-2. We observed that the virus particles are roughly spherical or moderately pleiomorphic. Although a small fraction of prefusion spikes are found, most spikes appear nail shaped, thus resembling a postfusion state, where the S1 protein of the spike has disassociated from S2. Cryoelectron tomography and subtomogram averaging of these spikes yielded a density map that closely matches the overall structure of the SARS-CoV postfusion spike and its corresponding glycosylation site. Our findings have major implications for SARS-CoV-2 vaccine design, especially those using inactivated viruses. The ongoing global pandemic of coronavirus disease 2019 (COVID-19) resulted from the outbreak of SARS-CoV-2 in December 2019. Currently, multiple efforts are being made to rapidly develop vaccines and treatments to fight COVID-19. Current vaccine candidates use inactivated SARS-CoV-2 viruses; therefore, it is important to understand the architecture of inactivated SARS-CoV-2. We have genetically and structurally characterized β-propiolactone-inactivated viruses from a propagated and purified clinical strain of SARS-CoV-2. We observed that the virus particles are roughly spherical or moderately pleiomorphic. Although a small fraction of prefusion spikes are found, most spikes appear nail shaped, thus resembling a postfusion state, where the S1 protein of the spike has disassociated from S2. Cryoelectron tomography and subtomogram averaging of these spikes yielded a density map that closely matches the overall structure of the SARS-CoV postfusion spike and its corresponding glycosylation site. Our findings have major implications for SARS-CoV-2 vaccine design, especially those using inactivated viruses. [Display omitted] •β-propiolactone-inactivated SARS-CoV-2 viruses display postfusion spikes•Cryo-ET structure of SARS-CoV-2 postfusion spikes was determined at 11 Å resolution•This study calls for crucial structural characterization of vaccine candidates Several vaccine candidates using inactivated SARS-CoV-2 viruses are under development. Liu et al. used state-of-the-art cryoelectron microscopy technologies to characterize the architecture of inactivated SARS-CoV-2 viruses. They found that the viral spikes are mostly in a postfusion state, which is not desirable for vaccine development. |
Author | Mendonça, Luiza Liu, Yingxia Ju, Bin Ma, Xiaomin Liu, Jiwei Yang, Yang Liu, Lei Wu, Jing Liu, Congcong Zhu, Yanan Zhang, Zheng Tang, Xian Zhang, Peijun Xu, Shuman Gao, Yuanzhu Shen, Chenguang Yuan, Jing Wang, Peiyi Liu, Chuang Ni, Tao Liu, Weilong Liu, Zheng Wei, Jinli |
Author_xml | – sequence: 1 givenname: Chuang surname: Liu fullname: Liu, Chuang organization: Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China – sequence: 2 givenname: Luiza surname: Mendonça fullname: Mendonça, Luiza organization: Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK – sequence: 3 givenname: Yang surname: Yang fullname: Yang, Yang organization: Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China – sequence: 4 givenname: Yuanzhu surname: Gao fullname: Gao, Yuanzhu organization: Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China – sequence: 5 givenname: Chenguang surname: Shen fullname: Shen, Chenguang organization: Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China – sequence: 6 givenname: Jiwei surname: Liu fullname: Liu, Jiwei organization: Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK – sequence: 7 givenname: Tao surname: Ni fullname: Ni, Tao organization: Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK – sequence: 8 givenname: Bin surname: Ju fullname: Ju, Bin organization: Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China – sequence: 9 givenname: Congcong orcidid: 0000-0002-8675-9100 surname: Liu fullname: Liu, Congcong organization: Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China – sequence: 10 givenname: Xian surname: Tang fullname: Tang, Xian organization: Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China – sequence: 11 givenname: Jinli surname: Wei fullname: Wei, Jinli organization: Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China – sequence: 12 givenname: Xiaomin surname: Ma fullname: Ma, Xiaomin organization: Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China – sequence: 13 givenname: Yanan surname: Zhu fullname: Zhu, Yanan organization: Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK – sequence: 14 givenname: Weilong surname: Liu fullname: Liu, Weilong organization: Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China – sequence: 15 givenname: Shuman surname: Xu fullname: Xu, Shuman organization: Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China – sequence: 16 givenname: Yingxia surname: Liu fullname: Liu, Yingxia organization: Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China – sequence: 17 givenname: Jing surname: Yuan fullname: Yuan, Jing organization: Department for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province 518112, China – sequence: 18 givenname: Jing surname: Wu fullname: Wu, Jing organization: Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China – sequence: 19 givenname: Zheng surname: Liu fullname: Liu, Zheng organization: Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China – sequence: 20 givenname: Zheng surname: Zhang fullname: Zhang, Zheng email: zhangzheng1975@aliyun.com organization: Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China – sequence: 21 givenname: Lei surname: Liu fullname: Liu, Lei email: liulei3322@aliyun.com organization: Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, Guangdong Province, China – sequence: 22 givenname: Peiyi surname: Wang fullname: Wang, Peiyi email: wangpy@sustech.edu.cn organization: Department of Biology, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China – sequence: 23 givenname: Peijun orcidid: 0000-0003-1803-691X surname: Zhang fullname: Zhang, Peijun email: peijun@strubi.ox.ac.uk organization: Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33058760$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctuEzEUtVARTQsfwAZ5yWbCteflERJSFBWoVARqAlvLjzvEYTIOthOUv8dRUgQsurq-1-chnXNFLkY_IiEvGUwZsObNehpTmHLgx30KwJ6QCROtKCommgsyga7pCs54c0muYlwDAK8BnpHLsoRatA1MiFqukM6CWbmEJu0CUt_T21GZ5PYqoaWL2f2imPtvBae_XFrRLz6mfhedH-li635gpPe4RzVkqD7QeTj44uYTVaM9v5fPydNeDRFfnOc1-fr-Zjn_WNx9_nA7n90VpoY2FRqstp3VDASWoHhtGe-gL6HrtNAVM40CaHmJgmnd99zYDgHrvhQCjNJNeU3enXS3O71Ba3BMQQ1yG9xGhYP0ysl_f0a3kt_9XrZ13bKmzQKvzwLB_9xhTHLjosFhUCP6XZS8qpmoqqoVGfrqb68_Jg-5ZkB7ApjgYwzYS-OSSjm1bO0GyUAeG5RrmRuUxwaPp9xgZrL_mA_ij3HenjiY8907DDIah6NB60JuVVrvHmH_Bsacs6Q |
CitedBy_id | crossref_primary_10_3390_v13061126 crossref_primary_10_1007_s12033_021_00353_4 crossref_primary_10_1016_j_isci_2023_107882 crossref_primary_10_3389_fmicb_2022_1093646 crossref_primary_10_3390_vaccines9121419 crossref_primary_10_3390_pharmaceutics16040465 crossref_primary_10_1126_sciimmunol_adf1421 crossref_primary_10_1038_s41580_021_00418_x crossref_primary_10_1080_0889311X_2024_2363756 crossref_primary_10_1080_02786826_2024_2369638 crossref_primary_10_1007_s00508_021_01835_w crossref_primary_10_1016_j_str_2023_02_006 crossref_primary_10_1042_BST20210433 crossref_primary_10_1021_acsinfecdis_2c00204 crossref_primary_10_1016_j_str_2025_02_009 crossref_primary_10_1002_jcla_24418 crossref_primary_10_2174_1570159X20666220627165846 crossref_primary_10_1016_j_humimm_2024_111227 crossref_primary_10_1007_s13596_023_00739_6 crossref_primary_10_3389_fviro_2024_1399993 crossref_primary_10_1016_j_ebiom_2024_105437 crossref_primary_10_1038_s44318_024_00303_1 crossref_primary_10_1093_pnasnexus_pgac045 crossref_primary_10_3390_vaccines10071051 crossref_primary_10_31857_S0320972521070022 crossref_primary_10_3390_v16091504 crossref_primary_10_1016_j_isci_2021_103426 crossref_primary_10_1016_j_jmaa_2021_125664 crossref_primary_10_1016_j_tim_2020_12_006 crossref_primary_10_1038_s41392_023_01385_9 crossref_primary_10_1016_j_bbrc_2020_11_026 crossref_primary_10_1039_D1CS01170G crossref_primary_10_1515_biol_2022_0035 crossref_primary_10_1016_j_coviro_2023_101338 crossref_primary_10_1073_pnas_2117576119 crossref_primary_10_1080_02786826_2021_2003291 crossref_primary_10_1002_2211_5463_13454 crossref_primary_10_1038_s41586_023_06273_4 crossref_primary_10_3389_fmolb_2022_931949 crossref_primary_10_1021_acs_nanolett_1c00837 crossref_primary_10_1080_21645515_2024_2394265 crossref_primary_10_1038_s41392_022_00884_5 crossref_primary_10_1021_acs_analchem_3c01522 crossref_primary_10_1038_s41592_022_01448_9 crossref_primary_10_3390_pathogens10070788 crossref_primary_10_1021_acsomega_1c00166 crossref_primary_10_3389_fbioe_2021_647874 crossref_primary_10_1126_sciadv_abo0171 crossref_primary_10_55959_10_55959_MSU0137_0952_16_78_3S_4 crossref_primary_10_1016_j_cell_2024_09_043 crossref_primary_10_3390_microorganisms10101996 crossref_primary_10_1016_j_celrep_2022_110786 crossref_primary_10_1042_BST20230103 crossref_primary_10_1016_j_str_2023_01_013 crossref_primary_10_1021_acs_chemrev_1c01062 crossref_primary_10_1371_journal_ppat_1011484 crossref_primary_10_3390_v16020223 crossref_primary_10_1128_mBio_01813_21 crossref_primary_10_3390_vaccines10101751 crossref_primary_10_1016_j_coviro_2021_11_011 crossref_primary_10_1016_j_jsb_2021_107709 crossref_primary_10_1126_science_abe6230 crossref_primary_10_1038_s41541_021_00369_6 crossref_primary_10_3390_ijms25105473 crossref_primary_10_1007_s12026_023_09373_5 crossref_primary_10_1128_jcm_01615_24 crossref_primary_10_1016_j_photonics_2024_101290 crossref_primary_10_1007_s00705_022_05530_7 crossref_primary_10_1038_s41598_022_14884_6 crossref_primary_10_1126_sciadv_abo3153 crossref_primary_10_1128_jvi_01650_22 crossref_primary_10_1016_j_tibs_2021_08_005 crossref_primary_10_3390_vaccines10081223 crossref_primary_10_3390_v15020480 crossref_primary_10_1128_mbio_00171_23 crossref_primary_10_61186_vacres_9_2_18 crossref_primary_10_3389_fimmu_2020_602256 crossref_primary_10_1134_S0006297921030032 crossref_primary_10_1002_advs_202403871 crossref_primary_10_3103_S0096392523700153 crossref_primary_10_1038_s41564_022_01092_1 crossref_primary_10_3390_biomedicines10071690 crossref_primary_10_3748_wjg_v28_i3_275 crossref_primary_10_1039_D0CP04435K crossref_primary_10_1038_s41564_021_01051_2 crossref_primary_10_1038_s41596_021_00648_5 crossref_primary_10_3390_v14061255 crossref_primary_10_7554_eLife_73027 crossref_primary_10_1021_acscentsci_1c00080 crossref_primary_10_1007_s00281_023_00996_2 crossref_primary_10_1016_j_intimp_2021_108351 crossref_primary_10_1021_acs_jproteome_0c00637 crossref_primary_10_1155_ina_8861794 crossref_primary_10_1186_s12979_022_00303_x crossref_primary_10_1016_j_ijbiomac_2024_134850 crossref_primary_10_1080_00949655_2021_2022149 crossref_primary_10_1111_jcmm_17103 crossref_primary_10_3389_fimmu_2023_1307693 crossref_primary_10_1186_s43556_023_00129_z crossref_primary_10_1080_07853890_2022_2087898 crossref_primary_10_1109_TCBB_2021_3065986 crossref_primary_10_1016_j_xcrm_2022_100793 crossref_primary_10_1021_acs_jproteome_0c00764 crossref_primary_10_3389_fbioe_2022_1052436 crossref_primary_10_1016_j_sbi_2023_102619 crossref_primary_10_1016_j_isci_2023_107384 crossref_primary_10_1016_j_jcis_2022_03_098 crossref_primary_10_1128_msystems_00928_22 crossref_primary_10_1126_science_abi9745 crossref_primary_10_1134_S0006297921070026 crossref_primary_10_1002_iid3_638 crossref_primary_10_1126_science_abf2303 crossref_primary_10_1126_science_adn5658 crossref_primary_10_1016_j_sbi_2023_102664 crossref_primary_10_36233_0372_9311_280 crossref_primary_10_1002_jmv_29893 crossref_primary_10_1073_pnas_2112703118 crossref_primary_10_1002_adma_202102991 crossref_primary_10_1186_s12865_024_00625_z crossref_primary_10_3390_v14091938 crossref_primary_10_1021_acsinfecdis_0c00646 crossref_primary_10_1128_mbio_01203_24 crossref_primary_10_2139_ssrn_4126595 crossref_primary_10_3390_ijms252111762 crossref_primary_10_1038_s42003_022_04183_1 crossref_primary_10_1063_10_0034652 crossref_primary_10_3390_v15030639 crossref_primary_10_1186_s12879_022_07593_y crossref_primary_10_1021_jacs_1c00556 crossref_primary_10_3390_v15020558 crossref_primary_10_1111_imm_13540 crossref_primary_10_1002_jmv_28572 crossref_primary_10_1016_j_coviro_2021_08_010 crossref_primary_10_1016_j_str_2023_09_008 |
Cites_doi | 10.1016/j.cell.2020.02.052 10.1016/S0140-6736(20)30185-9 10.1016/j.jinf.2019.07.010 10.1038/srep17554 10.1371/journal.ppat.1007236 10.1038/s41592-018-0167-z 10.1007/s11427-020-1643-8 10.1073/pnas.1708727114 10.1056/NEJMoa2001017 10.1126/science.1234914 10.1038/s41586-020-2380-z 10.1038/s41467-020-18243-9 10.1007/s13238-013-3096-8 10.1016/j.jsb.2005.07.007 10.1038/s41467-020-17371-6 10.1002/jcc.20084 10.1038/nmeth.4193 10.1016/j.jsb.2016.06.007 10.1126/science.abc1932 10.1038/srep34108 10.1016/j.sbi.2019.05.021 10.1038/s41586-020-2180-5 10.1126/science.abc2241 10.1006/jsbi.1996.0013 10.1016/j.jsb.2011.12.017 10.1038/s41594-020-0467-8 10.1126/science.abb2762 10.1038/nrmicro2147 10.1001/jama.2020.15543 10.1038/s41564-020-0695-z |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: 2020 The Authors 2020 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.str.2020.10.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1878-4186 |
EndPage | 1224.e4 |
ExternalDocumentID | PMC7557167 33058760 10_1016_j_str_2020_10_001 S0969212620303725 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: P50 AI150481 – fundername: Wellcome Trust |
GroupedDBID | --- --K -DZ 0R~ 123 1RT 1~5 2WC 4.4 457 4G. 5VS 62- 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFS ADBBV ADEZE ADJPV AENEX AEXQZ AFTJW AGKMS AITUG AKRWK ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IHE IXB J1W JIG LX5 M3Z M41 O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SES SSZ TR2 ZA5 ~02 29Q 53G 6TJ AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFFNX AFPUW AGCQF AGHFR AGQPQ AHHHB AIGII AKAPO AKBMS AKYEP APXCP CAG CITATION COF FGOYB G-2 HZ~ OZT R2- SEW Y6R ZXP CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c507t-b0dbd9db108e30a25d1290f3099b8b41c6a00723e81bbff2cd9e0e5f3880cab63 |
IEDL.DBID | IXB |
ISSN | 0969-2126 1878-4186 |
IngestDate | Thu Aug 21 17:57:35 EDT 2025 Tue Aug 05 10:37:11 EDT 2025 Mon Jul 21 05:43:38 EDT 2025 Tue Jul 01 04:33:35 EDT 2025 Thu Apr 24 23:09:21 EDT 2025 Tue Apr 16 04:37:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | COVID-19 SARS-CoV-2 vaccine postfusion β-propiolactone-inactivated viruses subtomogram averaging glycosylation cryo-ET cryo-EM spike |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-b0dbd9db108e30a25d1290f3099b8b41c6a00723e81bbff2cd9e0e5f3880cab63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
ORCID | 0000-0002-8675-9100 0000-0003-1803-691X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0969212620303725 |
PMID | 33058760 |
PQID | 2451844478 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7557167 proquest_miscellaneous_2451844478 pubmed_primary_33058760 crossref_citationtrail_10_1016_j_str_2020_10_001 crossref_primary_10_1016_j_str_2020_10_001 elsevier_sciencedirect_doi_10_1016_j_str_2020_10_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-03 |
PublicationDateYYYYMMDD | 2020-11-03 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Structure (London) |
PublicationTitleAlternate | Structure |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Cell Press |
Publisher_xml | – name: Elsevier Ltd – name: Cell Press |
References | Yang, Zhang, Geng, Deng, Huang, Guo, Zhao, Tan (bib32) 2013; 4 Yan, Zhang, Li, Xia, Guo, Zhou (bib29) 2020; 367 Xia, Duan, Zhang, Zhao, Zhang, Xie, Li, Peng, Zhang, Zhang (bib28) 2020; 324 Fan, Cao, Kong, Zhang (bib3) 2020; 11 Chen, Xie, Long, Fan, Li, He, Xu, Liao, Wang, Zhang (bib2) 2020 Song, Gui, Wang, Xiang (bib18) 2018; 14 Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi, Wang, Zhang (bib11) 2020; 581 Mastronarde (bib13) 2005; 152 Ni, Gerard, Zhao, Dent, Ning, Zhou, Shi, Anderson-Daniels, Li, Jang (bib15) 2020; 27 WHO (bib23) 2020 Killikelly, Kanekiyo, Graham (bib9) 2016; 6 Yang, Shen, Li, Zou, Wong, Peng, Yang, Fang, Li, Wu (bib30) 2019; 79 Perlman, Netland (bib16) 2009; 7 Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib17) 2004; 25 Wang, Horby, Hayden, Gao (bib22) 2020; 395 Ju, Zhang, Ge, Wang, Sun, Ge, Yu, Shan, Zhou, Song (bib8) 2020; 584 Castaño-Díez, Kudryashev, Arheit, Stahlberg (bib1) 2012; 178 Gao, Bao, Mao, Wang, Xu, Yang, Li, Zhu, Wang, Lv (bib4) 2020; 369 Liu, Yang, Zhang, Huang, Wang, Yuan, Wang, Li, Feng, Zhang (bib12) 2020; 63 WHO (bib24) 2020 Zhang (bib33) 2019; 58 Himes, Zhang (bib6) 2018; 15V Yang, Ye, Zhu, Wang, Deng, Zhao, Tan (bib31) 2015; 5 Kremer, Mastronarde, McIntosh (bib10) 1996; 116 Wu, Wang, Shen, Peng, Li, Zhao, Li, Li, Bi, Yang (bib27) 2020; 368 Walls, Tortorici, Snijder, Xiong, Bosch, Rey, Veesler (bib21) 2017; 114 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib25) 2020 Sutton, Sun, Fu, Kotecha, Hecksel, Clare, Zhang, Stuart, Boyce (bib19) 2020; 11 Zheng, Palovcak, Armache, Verba, Cheng, Agard (bib34) 2017; 14 Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche (bib7) 2020; 181 Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu (bib35) 2020; 382 McLellan, Chen, Leung, Graepel, Du, Yang, Zhou, Baxa, Yasuda, Beaumont (bib14) 2013; 340 Viruses (bib20) 2020; 5 Hagen, Wan, Briggs (bib5) 2017; 197 Wrapp (10.1016/j.str.2020.10.001_bib25) 2020 Song (10.1016/j.str.2020.10.001_bib18) 2018; 14 Yan (10.1016/j.str.2020.10.001_bib29) 2020; 367 Liu (10.1016/j.str.2020.10.001_bib12) 2020; 63 Himes (10.1016/j.str.2020.10.001_bib6) 2018; 15V Pettersen (10.1016/j.str.2020.10.001_bib17) 2004; 25 Hagen (10.1016/j.str.2020.10.001_bib5) 2017; 197 Lan (10.1016/j.str.2020.10.001_bib11) 2020; 581 Zhu (10.1016/j.str.2020.10.001_bib35) 2020; 382 Kremer (10.1016/j.str.2020.10.001_bib10) 1996; 116 Mastronarde (10.1016/j.str.2020.10.001_bib13) 2005; 152 Viruses (10.1016/j.str.2020.10.001_bib20) 2020; 5 Castaño-Díez (10.1016/j.str.2020.10.001_bib1) 2012; 178 Yang (10.1016/j.str.2020.10.001_bib32) 2013; 4 Hoffmann (10.1016/j.str.2020.10.001_bib7) 2020; 181 WHO (10.1016/j.str.2020.10.001_bib24) 2020 Xia (10.1016/j.str.2020.10.001_bib28) 2020; 324 Zheng (10.1016/j.str.2020.10.001_bib34) 2017; 14 Chen (10.1016/j.str.2020.10.001_bib2) 2020 Perlman (10.1016/j.str.2020.10.001_bib16) 2009; 7 Ju (10.1016/j.str.2020.10.001_bib8) 2020; 584 Yang (10.1016/j.str.2020.10.001_bib30) 2019; 79 Yang (10.1016/j.str.2020.10.001_bib31) 2015; 5 Killikelly (10.1016/j.str.2020.10.001_bib9) 2016; 6 Walls (10.1016/j.str.2020.10.001_bib21) 2017; 114 Fan (10.1016/j.str.2020.10.001_bib3) 2020; 11 Gao (10.1016/j.str.2020.10.001_bib4) 2020; 369 Zhang (10.1016/j.str.2020.10.001_bib33) 2019; 58 Ni (10.1016/j.str.2020.10.001_bib15) 2020; 27 Sutton (10.1016/j.str.2020.10.001_bib19) 2020; 11 Wang (10.1016/j.str.2020.10.001_bib22) 2020; 395 Wu (10.1016/j.str.2020.10.001_bib27) 2020; 368 McLellan (10.1016/j.str.2020.10.001_bib14) 2013; 340 WHO (10.1016/j.str.2020.10.001_bib23) 2020 |
References_xml | – volume: 14 start-page: e1007236 year: 2018 ident: bib18 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog. – volume: 58 start-page: 249 year: 2019 end-page: 258 ident: bib33 article-title: Advances in cryo-electron tomography and subtomogram averaging and classification publication-title: Curr. Opin. Struct. Biol. – volume: 152 start-page: 36 year: 2005 end-page: 51 ident: bib13 article-title: Automated electron microscope tomography using robust prediction of specimen movements publication-title: J. Struct. Biol. – volume: 79 start-page: 389 year: 2019 end-page: 399 ident: bib30 article-title: Clinical and virological characteristics of human infections with H7N9 avian influenza virus in Shenzhen, China, 2013-2017 publication-title: J. Infect. – volume: 11 start-page: 3618 year: 2020 ident: bib3 article-title: Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein publication-title: Nat. Commun. – volume: 11 start-page: 4445 year: 2020 ident: bib19 article-title: Assembly intermediates of orthoreovirus captured in the cell publication-title: Nat. Commun. – volume: 114 start-page: 11157 year: 2017 end-page: 11162 ident: bib21 article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion publication-title: Proc. Natl. Acad. Sci. U S A – year: 2020 ident: bib2 article-title: A valid protective immune response elicited in rhesus macaques by an inactivated vaccine is capable of defending against SARS-CoV-2 infection publication-title: bioRxiv – year: 2020 ident: bib24 article-title: WHO Coronavirus Disease (COVID-19) Dashboard – volume: 27 start-page: 855 year: 2020 end-page: 862 ident: bib15 article-title: Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A publication-title: Nat. Struct. Mol. Biol. – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bib17 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 5 start-page: 17554 year: 2015 ident: bib31 article-title: Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets publication-title: Sci. Rep. – volume: 15V start-page: 955 year: 2018 end-page: 961 ident: bib6 article-title: emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging publication-title: Nat. Methods – volume: 5 start-page: 536 year: 2020 end-page: 544 ident: bib20 article-title: The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 publication-title: Nat. Microbiol. – volume: 116 start-page: 71 year: 1996 end-page: 76 ident: bib10 article-title: Computer visualization of three-dimensional image data using IMOD publication-title: J. Struct. Biol. – volume: 6 start-page: 34108 year: 2016 ident: bib9 article-title: Pre-fusion F is absent on the surface of formalin-inactivated respiratory syncytial virus publication-title: Sci. Rep. – volume: 14 start-page: 331 year: 2017 end-page: 332 ident: bib34 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods – volume: 178 start-page: 139 year: 2012 end-page: 151 ident: bib1 article-title: Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments publication-title: J Struct Biol. – volume: 368 start-page: 1274 year: 2020 end-page: 1278 ident: bib27 article-title: A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 publication-title: Science – volume: 197 start-page: 191 year: 2017 end-page: 198 ident: bib5 article-title: Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging publication-title: J. Struct. Biol. – volume: 369 start-page: 77 year: 2020 end-page: 81 ident: bib4 article-title: Development of an inactivated vaccine candidate for SARS-CoV-2 publication-title: Science – volume: 63 start-page: 364 year: 2020 end-page: 374 ident: bib12 article-title: Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury publication-title: Sci. China Life Sci. – volume: 395 start-page: 470 year: 2020 end-page: 473 ident: bib22 article-title: A novel coronavirus outbreak of global health concern publication-title: Lancet – start-page: eabb2507 year: 2020 ident: bib25 article-title: Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation – volume: 340 start-page: 1113 year: 2013 end-page: 1117 ident: bib14 article-title: Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody publication-title: Science – year: 2020 ident: bib23 article-title: Draft Landscape of COVID-19 Candidate Vaccines – volume: 581 start-page: 215 year: 2020 end-page: 220 ident: bib11 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature – volume: 181 start-page: 271 year: 2020 end-page: 280.e8 ident: bib7 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell – volume: 584 start-page: 115 year: 2020 end-page: 119 ident: bib8 article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Nature – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: bib35 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. – volume: 7 start-page: 439 year: 2009 end-page: 450 ident: bib16 article-title: Coronaviruses post-SARS: update on replication and pathogenesis publication-title: Nat. Rev. Microbiol. – volume: 324 start-page: 1 year: 2020 end-page: 10 ident: bib28 article-title: Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials publication-title: JAMA – volume: 367 start-page: 1444 year: 2020 end-page: 1448 ident: bib29 article-title: Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2 publication-title: Science – volume: 4 start-page: 951 year: 2013 end-page: 961 ident: bib32 article-title: The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists publication-title: Protein Cell – volume: 181 start-page: 271 year: 2020 ident: 10.1016/j.str.2020.10.001_bib7 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 395 start-page: 470 year: 2020 ident: 10.1016/j.str.2020.10.001_bib22 article-title: A novel coronavirus outbreak of global health concern publication-title: Lancet doi: 10.1016/S0140-6736(20)30185-9 – volume: 79 start-page: 389 year: 2019 ident: 10.1016/j.str.2020.10.001_bib30 article-title: Clinical and virological characteristics of human infections with H7N9 avian influenza virus in Shenzhen, China, 2013-2017 publication-title: J. Infect. doi: 10.1016/j.jinf.2019.07.010 – volume: 5 start-page: 17554 year: 2015 ident: 10.1016/j.str.2020.10.001_bib31 article-title: Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets publication-title: Sci. Rep. doi: 10.1038/srep17554 – volume: 14 start-page: e1007236 year: 2018 ident: 10.1016/j.str.2020.10.001_bib18 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007236 – volume: 15V start-page: 955 year: 2018 ident: 10.1016/j.str.2020.10.001_bib6 article-title: emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging publication-title: Nat. Methods doi: 10.1038/s41592-018-0167-z – volume: 63 start-page: 364 year: 2020 ident: 10.1016/j.str.2020.10.001_bib12 article-title: Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury publication-title: Sci. China Life Sci. doi: 10.1007/s11427-020-1643-8 – volume: 114 start-page: 11157 year: 2017 ident: 10.1016/j.str.2020.10.001_bib21 article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1708727114 – volume: 382 start-page: 727 year: 2020 ident: 10.1016/j.str.2020.10.001_bib35 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 340 start-page: 1113 year: 2013 ident: 10.1016/j.str.2020.10.001_bib14 article-title: Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody publication-title: Science doi: 10.1126/science.1234914 – year: 2020 ident: 10.1016/j.str.2020.10.001_bib23 – start-page: eabb2507 year: 2020 ident: 10.1016/j.str.2020.10.001_bib25 – volume: 584 start-page: 115 year: 2020 ident: 10.1016/j.str.2020.10.001_bib8 article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Nature doi: 10.1038/s41586-020-2380-z – volume: 11 start-page: 4445 year: 2020 ident: 10.1016/j.str.2020.10.001_bib19 article-title: Assembly intermediates of orthoreovirus captured in the cell publication-title: Nat. Commun. doi: 10.1038/s41467-020-18243-9 – volume: 4 start-page: 951 year: 2013 ident: 10.1016/j.str.2020.10.001_bib32 article-title: The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists publication-title: Protein Cell doi: 10.1007/s13238-013-3096-8 – volume: 152 start-page: 36 year: 2005 ident: 10.1016/j.str.2020.10.001_bib13 article-title: Automated electron microscope tomography using robust prediction of specimen movements publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.07.007 – year: 2020 ident: 10.1016/j.str.2020.10.001_bib24 – volume: 11 start-page: 3618 year: 2020 ident: 10.1016/j.str.2020.10.001_bib3 article-title: Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein publication-title: Nat. Commun. doi: 10.1038/s41467-020-17371-6 – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.str.2020.10.001_bib17 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 14 start-page: 331 year: 2017 ident: 10.1016/j.str.2020.10.001_bib34 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 197 start-page: 191 year: 2017 ident: 10.1016/j.str.2020.10.001_bib5 article-title: Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2016.06.007 – volume: 369 start-page: 77 year: 2020 ident: 10.1016/j.str.2020.10.001_bib4 article-title: Development of an inactivated vaccine candidate for SARS-CoV-2 publication-title: Science doi: 10.1126/science.abc1932 – volume: 6 start-page: 34108 year: 2016 ident: 10.1016/j.str.2020.10.001_bib9 article-title: Pre-fusion F is absent on the surface of formalin-inactivated respiratory syncytial virus publication-title: Sci. Rep. doi: 10.1038/srep34108 – year: 2020 ident: 10.1016/j.str.2020.10.001_bib2 article-title: A valid protective immune response elicited in rhesus macaques by an inactivated vaccine is capable of defending against SARS-CoV-2 infection publication-title: bioRxiv – volume: 58 start-page: 249 year: 2019 ident: 10.1016/j.str.2020.10.001_bib33 article-title: Advances in cryo-electron tomography and subtomogram averaging and classification publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2019.05.021 – volume: 581 start-page: 215 year: 2020 ident: 10.1016/j.str.2020.10.001_bib11 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 368 start-page: 1274 year: 2020 ident: 10.1016/j.str.2020.10.001_bib27 article-title: A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 publication-title: Science doi: 10.1126/science.abc2241 – volume: 116 start-page: 71 year: 1996 ident: 10.1016/j.str.2020.10.001_bib10 article-title: Computer visualization of three-dimensional image data using IMOD publication-title: J. Struct. Biol. doi: 10.1006/jsbi.1996.0013 – volume: 178 start-page: 139 year: 2012 ident: 10.1016/j.str.2020.10.001_bib1 article-title: Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments publication-title: J Struct Biol. doi: 10.1016/j.jsb.2011.12.017 – volume: 27 start-page: 855 year: 2020 ident: 10.1016/j.str.2020.10.001_bib15 article-title: Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0467-8 – volume: 367 start-page: 1444 year: 2020 ident: 10.1016/j.str.2020.10.001_bib29 article-title: Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2 publication-title: Science doi: 10.1126/science.abb2762 – volume: 7 start-page: 439 year: 2009 ident: 10.1016/j.str.2020.10.001_bib16 article-title: Coronaviruses post-SARS: update on replication and pathogenesis publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2147 – volume: 324 start-page: 1 year: 2020 ident: 10.1016/j.str.2020.10.001_bib28 article-title: Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials publication-title: JAMA doi: 10.1001/jama.2020.15543 – volume: 5 start-page: 536 year: 2020 ident: 10.1016/j.str.2020.10.001_bib20 article-title: The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0695-z |
SSID | ssj0002500 |
Score | 2.6435425 |
Snippet | The ongoing global pandemic of coronavirus disease 2019 (COVID-19) resulted from the outbreak of SARS-CoV-2 in December 2019. Currently, multiple efforts are... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1218 |
SubjectTerms | Animals Betacoronavirus - drug effects Betacoronavirus - immunology Betacoronavirus - ultrastructure Chlorocebus aethiops Coronavirus Infections - immunology Coronavirus Infections - prevention & control COVID-19 COVID-19 Vaccines cryo-EM cryo-ET Cryoelectron Microscopy Disinfectants - pharmacology Electron Microscope Tomography glycosylation Humans postfusion Propiolactone - pharmacology SARS-CoV-2 Short spike Spike Glycoprotein, Coronavirus - ultrastructure subtomogram averaging vaccine Vaccines, Inactivated - immunology Vero Cells Viral Vaccines - immunology Virion - drug effects Virion - ultrastructure β-propiolactone-inactivated viruses |
Title | The Architecture of Inactivated SARS-CoV-2 with Postfusion Spikes Revealed by Cryo-EM and Cryo-ET |
URI | https://dx.doi.org/10.1016/j.str.2020.10.001 https://www.ncbi.nlm.nih.gov/pubmed/33058760 https://www.proquest.com/docview/2451844478 https://pubmed.ncbi.nlm.nih.gov/PMC7557167 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4h0Ep7QcA-6PKQkTitZDVx7DyOpWrFguDQwm5vURzb2sIqqWiL1H_PTB4VZbUc9hYnY8mamcx8nvGMAc7jTMW5SnCT4yvLZWIsz2jjGkfSisRDl1gF3G5uw8t7eTVRky3ot7UwdKyysf21Ta-sdfOm23CzO5tOu2ME3wka3lCgngaRoELzQMZVEd_kYm2N0cVXcRYk5kTdZjarM17zBbUEFTSmlMS_fNPf2PPtEcpXPmm4B7sNmGS9er37sGWLA_hQXy-5-gQZ6gDrvcoUsNKxHwWVMjwjxDRs3BuNeb_8yQWjeCyjm3vdkuJnbDybPto5G9lnQpKG6RXrP61KPrhhWWGa57vPcD8c3PUveXOlAs8R-C249ow2idG-F9vAy4QyFIdyAeJEHWvp52FGvcQDi2hWOydyk1jPKkctY_JMh8EX2C7Kwh4Cc0L72iK6ccKXvnUxigCnoAXJQ6eM6YDXMjPNm37jdO3Fn7Q9WPaQIv9T4j-9Qv534Pt6yqxutvEesWwllG5oTIrO4L1pZ600U_yTKD2SFbZczlMhFW53pYziDnytpbteRYBmEf2G14FoQ-5rAurSvfmlmP6uunVHSuGeNPr2f8s9go80qqofg2PYXjwt7QnCoIU-hZ3e9ejX9Wml7y8VbgYz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQviG8KDIzEE5LVxLHz8ViqTS2se1g71Dcrjm3RDSXV2k7qf89dPqqViT3wlsRnybq73P3uzj4DfElzlRYqwyAnVI7LzDqeU-CaJtKJLECXWCfcJmfx6EJ-n6v5AQy7szC0rbK1_Y1Nr611-6XfcrO_XCz6UwTfGRreWKCeRolQD-AhooGYVHs8_7Yzx-jj60QLUnMi70qb9Sav1Zp6ggp6p5rEv5zTXfD59x7KW07p5Bk8bdEkGzQLfg4HrnwBj5r7JbcvIUclYINbpQJWeTYu6SzDDWJMy6aD8ykfVj-5YJSQZXR1r99QAo1Nl4srt2Ln7oagpGVmy4bX24ofT1he2vZ59gouTo5nwxFv71TgBSK_NTeBNTazJgxSFwW5UJYSUT5CoGhSI8MizqmZeOQQzhrvRWEzFzjlqWdMkZs4eg2HZVW6t8C8MKFxCG-8CGXofIoywCloQorYK2t7EHTM1EXbcJzuvfitu51llxr5r4n_9An534OvuynLptvGfcSyk5DeUxmN3uC-aZ87aWr8lag-kpeu2qy0kArjXSmTtAdvGunuVhGhXUTHEfQg2ZP7joDadO-PlItfdbvuRCkMSpN3_7fcT_B4NJuc6tPx2Y_38IRG6qOQ0Qc4XF9v3BFiorX5WOv8HxpuB7c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Architecture+of+Inactivated+SARS-CoV-2+with+Postfusion+Spikes+Revealed+by+Cryo-EM+and+Cryo-ET&rft.jtitle=Structure+%28London%29&rft.au=Liu%2C+Chuang&rft.au=Mendon%C3%A7a%2C+Luiza&rft.au=Yang%2C+Yang&rft.au=Gao%2C+Yuanzhu&rft.date=2020-11-03&rft.eissn=1878-4186&rft.volume=28&rft.issue=11&rft.spage=1218&rft_id=info:doi/10.1016%2Fj.str.2020.10.001&rft_id=info%3Apmid%2F33058760&rft.externalDocID=33058760 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-2126&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-2126&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-2126&client=summon |