Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [ 18F]fluorodeoxyglucose (FDG)
To date, the ketamine/PCP model of psychosis has been proposed to be one of the best pharmacological models to mimic schizophrenic psychosis in healthy volunteers, since ketamine can induce both positive and negative symptoms of schizophrenia. At subanesthetic doses, ketamine has been reported to pr...
Saved in:
Published in | European neuropsychopharmacology Vol. 7; no. 1; pp. 9 - 24 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.1997
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To date, the ketamine/PCP model of psychosis has been proposed to be one of the best pharmacological models to mimic schizophrenic psychosis in healthy volunteers, since ketamine can induce both positive and negative symptoms of schizophrenia. At subanesthetic doses, ketamine has been reported to primarily block
N-methyl-
d-aspartate (NMDA) receptor complex giving support to a glutamate deficiency hypothesis in schizophrenia. Positron emission tomography was used to study ketamine-induced psychotic symptom formation in relation to cerebral metabolic alterations in healthy volunteers. Our study shows that NMDA receptor blockade results in a hyperfrontal metabolic pattern. Increased metabolic activity in the frontomedial and anterior cingulate cortex correlated positively with psychotic symptom formation, in particular with ego pathology. Analysis of correlations between syndrome scores and metabolic rate of glucose (CMRglu) or metabolic gradients (ratios) revealed that each psychopathological syndrome was associated with a number of metabolic alterations in cortical and subcortical brain regions, suggesting that not a single brain region, but distributed neuronal networks are involved in acute psychotic symptom formation. |
---|---|
AbstractList | To date, the ketamine/PCP model of psychosis has been proposed to be one of the best pharmacological models to mimic schizophrenic psychosis in healthy volunteers, since ketamine can induce both positive and negative symptoms of schizophrenia. At subanesthetic doses, ketamine has been reported to primarily block
N-methyl-
d-aspartate (NMDA) receptor complex giving support to a glutamate deficiency hypothesis in schizophrenia. Positron emission tomography was used to study ketamine-induced psychotic symptom formation in relation to cerebral metabolic alterations in healthy volunteers. Our study shows that NMDA receptor blockade results in a hyperfrontal metabolic pattern. Increased metabolic activity in the frontomedial and anterior cingulate cortex correlated positively with psychotic symptom formation, in particular with ego pathology. Analysis of correlations between syndrome scores and metabolic rate of glucose (CMRglu) or metabolic gradients (ratios) revealed that each psychopathological syndrome was associated with a number of metabolic alterations in cortical and subcortical brain regions, suggesting that not a single brain region, but distributed neuronal networks are involved in acute psychotic symptom formation. To date, the ketamine/PCP model of psychosis has been proposed to be one of the best pharmacological models to mimic schizophrenic psychosis in healthy volunteers, since ketamine can induce both positive and negative symptoms of schizophrenia. At subanesthetic doses, ketamine has been reported to primarily block N-methyl-D-aspartate (NMDA) receptor complex giving support to a glutamate deficiency hypothesis in schizophrenia. Positron emission tomography was used to study ketamine-induced psychotic symptom formation in relation to cerebral metabolic alterations in healthy volunteers. Our study shows that NMDA receptor blockade results in a hyperfrontal metabolic pattern. Increased metabolic activity in the frontomedial and anterior cingulate cortex correlated positively with psychotic symptom formation, in particular with ego pathology. Analysis of correlations between syndrome scores and metabolic rate of glucose (CMRglu) or metabolic gradients (ratios) revealed that each psychopathological syndrome was associated with a number of metabolic alterations in cortical and subcortical brain regions, suggesting that not a single brain region, but distributed neuronal networks are involved in acute psychotic symptom formation. |
Author | Antonini, A Scharfetter, C Vollenweider, F.X Leenders, K.L Missimer, J Maguire, P Angst, J |
Author_xml | – sequence: 1 givenname: F.X surname: Vollenweider fullname: Vollenweider, F.X organization: Research Department, Psychiatric University Hospital of Zürich, Box 68, CH-8029 Zürich, Switzerland – sequence: 2 givenname: K.L surname: Leenders fullname: Leenders, K.L organization: Paul Scherrer Institute, PET Department, CH-5232 Villigen, Switzerland – sequence: 3 givenname: C surname: Scharfetter fullname: Scharfetter, C organization: Research Department, Psychiatric University Hospital of Zürich, Box 68, CH-8029 Zürich, Switzerland – sequence: 4 givenname: A surname: Antonini fullname: Antonini, A organization: Paul Scherrer Institute, PET Department, CH-5232 Villigen, Switzerland – sequence: 5 givenname: P surname: Maguire fullname: Maguire, P organization: Paul Scherrer Institute, PET Department, CH-5232 Villigen, Switzerland – sequence: 6 givenname: J surname: Missimer fullname: Missimer, J organization: Paul Scherrer Institute, PET Department, CH-5232 Villigen, Switzerland – sequence: 7 givenname: J surname: Angst fullname: Angst, J organization: Research Department, Psychiatric University Hospital of Zürich, Box 68, CH-8029 Zürich, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9088881$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM9qGzEQh0VISZw_jxDQ0T5sK1n2rnQKJYnTQkoCSaFQitBKI6-S3dUiyaX7LnnYKLbJtbpoYOb7jfSdoMPe94DQBSWfKaHll0ci5otCVNWvqShnhBAmCnGAJpRXrKh4OT9Ek4-RY3QS4zMhdMmYOEJHgvB86AS9_oCkat86jZtxgGCD75NqXRqx6g0e4qgbP6jU-NavR-x6nBrALxnqXA-48wZa7O1-MLqIN9H1azzkOuUsDJ2L0eUi-c6vgxqaEU8fbp5m2_zfmPLVH9tufMhJ_t-4bjfaR8DT1fXt7Ax9sqqNcL6_T9HP1c3T1bfi7v72-9XXu0IvSZWKmigDlPFSV6yyVHBiFrW2RtD8S1MzxQwsuDCKMz1nIEq1ELwUIkN1ZbVlp2i5y9XBxxjAyiG4ToVRUiLfZcutbPluUopSbmVLkbmLHTds6g7MB7W3m_uXuz7kx_91EGTUDnoNxgXQSRrv_rPhDZAJlW4 |
CitedBy_id | crossref_primary_10_1006_anbe_1999_1145 crossref_primary_10_1523_JNEUROSCI_0630_17_2017 crossref_primary_10_1097_FBP_0000000000000354 crossref_primary_10_1177_0269881107077716 crossref_primary_10_3390_ijms23031922 crossref_primary_10_1016_S0193_953X_05_70022_8 crossref_primary_10_1097_RLU_0b013e3181db4d4a crossref_primary_10_1017_S0140525X03320023 crossref_primary_10_1038_sj_npp_1301600 crossref_primary_10_1080_15622975_2019_1679391 crossref_primary_10_1093_schbul_sbt067 crossref_primary_10_1007_s11307_022_01723_3 crossref_primary_10_1016_S0022_3956_99_00031_X crossref_primary_10_1002_hbm_10064 crossref_primary_10_1017_S0140525X03400022 crossref_primary_10_1007_s00213_010_2065_7 crossref_primary_10_1177_0269881114563635 crossref_primary_10_1038_mp_2012_194 crossref_primary_10_1016_j_euroneuro_2021_01_005 crossref_primary_10_1017_S0140525X0328002X crossref_primary_10_3917_psyt_233_0125 crossref_primary_10_1002_da_22501 crossref_primary_10_1016_S0006_3223_00_01037_4 crossref_primary_10_1017_S0140525X03470027 crossref_primary_10_1016_S0006_3223_00_00976_8 crossref_primary_10_1016_j_biopsych_2015_03_013 crossref_primary_10_1038_nrn2884 crossref_primary_10_1016_j_neuropharm_2011_01_022 crossref_primary_10_1111_j_1360_0443_2011_03576_x crossref_primary_10_1007_s00406_011_0281_8 crossref_primary_10_1016_j_jpsychires_2019_07_008 crossref_primary_10_1177_1039856220961642 crossref_primary_10_1016_j_drudis_2018_11_007 crossref_primary_10_1162_jocn_2007_19_1_59 crossref_primary_10_1017_S0140525X03360029 crossref_primary_10_1080_1029842021000022061 crossref_primary_10_1016_j_pharmthera_2011_07_005 crossref_primary_10_1038_mp_2017_249 crossref_primary_10_1016_j_neuropsychologia_2017_12_035 crossref_primary_10_1177_0952695109352413 crossref_primary_10_1007_s00406_018_0942_y crossref_primary_10_1017_S0140525X03270023 crossref_primary_10_1017_S0140525X03440028 crossref_primary_10_1016_j_neuroimage_2010_08_021 crossref_primary_10_1016_S0006_3223_03_00292_0 crossref_primary_10_1016_j_biopsych_2014_05_019 crossref_primary_10_1124_jpet_112_201665 crossref_primary_10_1038_mp_2017_58 crossref_primary_10_1016_j_jad_2019_12_023 crossref_primary_10_1016_S0006_8993_01_01991_6 crossref_primary_10_1016_j_brainresbull_2007_01_007 crossref_primary_10_3390_ijms241411835 crossref_primary_10_1038_npp_2017_270 crossref_primary_10_1080_13546805_2010_546074 crossref_primary_10_1016_j_pnpbp_2020_109887 crossref_primary_10_1016_j_biopsych_2010_08_030 crossref_primary_10_1007_s00213_015_4022_y crossref_primary_10_1016_j_neuroscience_2016_07_028 crossref_primary_10_1016_j_neuroimage_2011_06_045 crossref_primary_10_1017_S0140525X03230028 crossref_primary_10_1016_j_drugalcdep_2007_08_009 crossref_primary_10_1016_S0361_9230_01_00646_3 crossref_primary_10_1016_S0006_8993_99_01776_X crossref_primary_10_1016_S0987_7053_03_00028_5 crossref_primary_10_1093_cercor_bhs238 crossref_primary_10_1038_sj_npp_1300824 crossref_primary_10_1016_S0028_3908_03_00073_X crossref_primary_10_1021_acschemneuro_7b00074 crossref_primary_10_1213_ANE_0000000000005835 crossref_primary_10_1017_S0140525X03310027 crossref_primary_10_1186_1471_2202_9_41 crossref_primary_10_1523_JNEUROSCI_2310_14_2015 crossref_primary_10_1038_npp_2010_163 crossref_primary_10_3389_fpsyt_2018_00022 crossref_primary_10_1016_j_pscychresns_2006_04_002 crossref_primary_10_1098_rstb_1999_0484 crossref_primary_10_1196_annals_1300_020 crossref_primary_10_31887_DCNS_2001_3_4_fxvollenweider crossref_primary_10_1186_s12868_015_0149_3 crossref_primary_10_1017_S0140525X03460020 crossref_primary_10_1007_s00213_010_2052_z crossref_primary_10_1038_s41386_018_0136_3 crossref_primary_10_1007_s00213_017_4613_x crossref_primary_10_1146_annurev_med_053013_062946 crossref_primary_10_1016_j_pharmthera_2003_11_002 crossref_primary_10_1016_j_schres_2004_04_009 crossref_primary_10_1038_srep02348 crossref_primary_10_1097_FBP_0000000000000459 crossref_primary_10_1192_bjp_bp_110_083501 crossref_primary_10_1017_S0140525X03450024 crossref_primary_10_1016_j_biopsych_2014_07_022 crossref_primary_10_1017_S0140525X03350022 crossref_primary_10_3389_fnhum_2017_00245 crossref_primary_10_1208_s12248_015_9739_3 crossref_primary_10_1177_00912700222011409 crossref_primary_10_1016_j_biopsych_2004_10_036 crossref_primary_10_1016_j_neubiorev_2023_105410 crossref_primary_10_1017_S0140525X03390028 crossref_primary_10_1016_j_tins_2020_11_008 crossref_primary_10_1016_j_neuroimage_2014_12_050 crossref_primary_10_1007_s12975_016_0491_5 crossref_primary_10_1016_S0006_3223_98_00036_5 crossref_primary_10_1016_j_schres_2018_12_041 crossref_primary_10_1016_j_pbb_2011_04_003 crossref_primary_10_3390_ijms22179309 crossref_primary_10_1038_tp_2012_105 crossref_primary_10_1016_S0149_7634_03_00035_6 crossref_primary_10_1124_jpet_115_230391 crossref_primary_10_1021_acschemneuro_9b00044 crossref_primary_10_3390_ijms222212203 crossref_primary_10_1017_S0140525X03300020 crossref_primary_10_1017_S0140525X03410029 crossref_primary_10_1017_S0140525X03240024 crossref_primary_10_1016_S0278_5846_03_00159_3 crossref_primary_10_1213_ANE_0000000000005869 crossref_primary_10_1097_01_nmd_0000130138_62770_87 crossref_primary_10_1212_NXI_0000000000000413 crossref_primary_10_1017_S0140525X03220021 crossref_primary_10_1124_pr_115_010967 crossref_primary_10_3389_fphar_2016_00348 crossref_primary_10_1016_j_neuropharm_2013_10_001 crossref_primary_10_1016_S0278_5846_99_00065_2 crossref_primary_10_1038_s41386_020_0718_8 crossref_primary_10_1038_clpt_2011_244 crossref_primary_10_2165_11599770_000000000_00000 crossref_primary_10_1038_sj_npp_1300342 crossref_primary_10_1186_cc13097 crossref_primary_10_1017_S0140525X03340026 crossref_primary_10_1177_13634615221129116 crossref_primary_10_1016_j_neuro_2011_11_001 crossref_primary_10_1017_S0140525X03290026 crossref_primary_10_1016_j_biopsych_2014_11_015 crossref_primary_10_1016_j_brainresrev_2008_07_006 crossref_primary_10_1016_S0306_4522_01_00384_0 crossref_primary_10_3109_08990220_2010_508222 crossref_primary_10_1016_j_pnpbp_2007_08_026 crossref_primary_10_3389_fnbeh_2018_00302 crossref_primary_10_1002_hbm_23516 crossref_primary_10_3389_fnbeh_2014_00075 crossref_primary_10_1007_s00213_010_1840_9 crossref_primary_10_1124_pr_115_011478 crossref_primary_10_1016_j_biopsych_2014_06_024 crossref_primary_10_1080_10673220600642945 crossref_primary_10_1016_j_neuroscience_2010_11_060 crossref_primary_10_1586_ern_10_160 crossref_primary_10_1016_j_neubiorev_2008_03_012 crossref_primary_10_1016_j_schres_2014_12_026 crossref_primary_10_1016_S0924_977X_96_00042_9 crossref_primary_10_1038_nn_2447 crossref_primary_10_1016_j_neulet_2009_03_043 crossref_primary_10_1002_14651858_CD011612_pub2 crossref_primary_10_1176_appi_ajp_2020_20081251 crossref_primary_10_1016_S0006_3223_99_00209_7 crossref_primary_10_1021_acs_jmedchem_0c01193 crossref_primary_10_1097_01_aco_0000189879_67092_12 crossref_primary_10_1017_S0140525X03250020 crossref_primary_10_1017_S0140525X03420025 crossref_primary_10_1007_s00213_009_1561_0 crossref_primary_10_1017_S0140525X03380021 crossref_primary_10_1017_S0140525X0349002X crossref_primary_10_1016_j_bbr_2012_01_057 crossref_primary_10_1016_j_neuropharm_2018_01_017 crossref_primary_10_1038_npp_2013_170 crossref_primary_10_1038_sj_npp_1300438 crossref_primary_10_1016_S0306_9877_03_00175_0 crossref_primary_10_1093_cercor_bhh176 crossref_primary_10_1016_j_neuroscience_2004_01_039 crossref_primary_10_1124_mol_107_035170 crossref_primary_10_1177_0269881114568040 crossref_primary_10_1017_S0140525X03480023 crossref_primary_10_1038_npp_2014_228 crossref_primary_10_1016_j_conb_2015_11_001 crossref_primary_10_1177_0269881116667709 crossref_primary_10_1007_s00406_005_0563_0 crossref_primary_10_1016_j_pharmthera_2018_05_010 crossref_primary_10_1007_s00213_008_1071_5 crossref_primary_10_1016_S0165_0173_99_00002_8 crossref_primary_10_1017_S0140525X0333002X crossref_primary_10_1080_02791072_2000_10400244 crossref_primary_10_3389_fpsyt_2018_00767 crossref_primary_10_1007_s00213_014_3782_0 crossref_primary_10_1016_j_neuroimage_2012_09_037 crossref_primary_10_1016_j_medengphy_2007_12_004 crossref_primary_10_1097_RLU_0000000000000502 crossref_primary_10_1152_jn_00661_2020 crossref_primary_10_1016_j_bandc_2006_11_002 crossref_primary_10_1007_s00702_007_0776_7 crossref_primary_10_1007_s00213_012_2811_0 crossref_primary_10_1017_S1461145714000261 crossref_primary_10_1684_epd_2012_0486 crossref_primary_10_1093_schbul_sbp074 crossref_primary_10_1007_s11836_007_0038_7 crossref_primary_10_1007_s00213_021_05923_7 crossref_primary_10_1046_j_1440_1819_2002_01023_x crossref_primary_10_1038_s41398_018_0310_8 crossref_primary_10_1161_01_STR_29_6_1149 crossref_primary_10_1016_S0361_9230_99_00025_8 crossref_primary_10_1002_14651858_CD011611_pub2 crossref_primary_10_1016_S0924_9338_99_80686_5 crossref_primary_10_3389_fnmol_2019_00185 crossref_primary_10_1038_sj_npp_1300772 crossref_primary_10_1080_10298420290031397 crossref_primary_10_1177_0269881103017001698 crossref_primary_10_1515_revneuro_2019_0090 crossref_primary_10_1016_S0376_8716_98_00076_3 crossref_primary_10_1213_01_ane_0000231635_14872_40 crossref_primary_10_1038_npp_2014_26 crossref_primary_10_1016_j_yebeh_2007_02_014 crossref_primary_10_1016_j_euroneuro_2020_01_017 crossref_primary_10_1007_s00213_005_0154_9 crossref_primary_10_3389_fphar_2019_00455 crossref_primary_10_1097_00001504_199801000_00016 crossref_primary_10_1017_S0140525X03260027 crossref_primary_10_1017_S1092852900024743 crossref_primary_10_1016_S0149_7634_02_00011_8 crossref_primary_10_1017_S0140525X03430021 crossref_primary_10_1017_S1461145713000606 crossref_primary_10_1017_S0140525X03370025 crossref_primary_10_1038_npp_2014_210 crossref_primary_10_1016_j_pscychresns_2019_01_005 crossref_primary_10_1016_j_pnpbp_2007_07_009 crossref_primary_10_3389_fpsyt_2021_727117 |
Cites_doi | 10.1111/j.1471-4159.1989.tb07257.x 10.1016/0893-133X(88)90012-7 10.1001/archneurpsyc.1959.02340150095011 10.1097/00001756-199504190-00011 10.1213/00000539-197405000-00009 10.1001/archpsyc.1987.01800140021003 10.1002/ana.410140604 10.1016/0006-3223(93)90002-U 10.1055/s-2007-1000662 10.1001/archpsyc.1959.03590060113013 10.1080/02791072.1988.10472511 10.1111/j.1600-0447.1987.tb02933.x 10.1002/cpt196563279 10.1016/0925-4927(94)90021-3 10.1016/0920-9964(93)90037-J 10.1016/0304-3940(80)90178-0 10.1007/BF01248936 10.1097/00000542-198206000-00005 10.1016/S0140-6736(83)90798-5 10.1176/ajp.143.2.175 10.1016/0014-2999(87)90546-2 10.1001/archpsyc.1987.01800140028004 10.1001/archpsyc.1966.01730150016003 10.1001/archpsyc.1982.04290030001001 10.1073/pnas.84.2.561 10.1016/0006-3223(91)90155-F 10.1038/282625a0 10.1038/jcbfm.1989.97 10.1016/0006-8993(87)91583-6 10.1111/j.1365-2044.1972.tb08186.x 10.1001/archpsyc.1994.03950020063007 10.1016/0024-3205(88)90116-6 10.1016/0165-1781(89)90040-1 10.1017/S0033291700052090 10.1016/0006-3223(92)90059-9 10.1111/j.1476-5381.1983.tb11031.x 10.1176/ajp.150.9.1325 10.1016/0925-4927(91)90003-9 10.1001/archpsyc.1984.01790140083010 10.1002/syn.890010514 10.1001/archpsyc.1994.03950030035004 10.1016/0165-1781(89)90147-9 10.1126/science.1835799 10.1002/ana.410150731 10.1016/0006-3223(89)90263-1 10.1016/0006-3223(87)90170-3 10.1001/archpsyc.1992.01820120054008 10.1192/bjp.160.2.179 10.1213/00000539-198412000-00007 10.1097/00004728-199107000-00020 10.1007/BF02180042 10.1016/0006-8993(86)90916-9 10.1016/0028-3908(72)90016-0 10.1016/0920-9964(91)90019-N 10.1016/0006-3223(91)90002-4 10.1097/00000542-197204000-00006 10.1016/0014-2999(89)90346-4 10.1073/pnas.79.9.3067 10.1111/j.1471-4159.1990.tb01943.x 10.1136/jnnp.49.10.1199 10.1016/S0010-440X(61)80033-3 10.1007/978-3-642-93353-0_5 10.1097/00007691-199502000-00016 10.1093/brain/115.2.367 10.1097/00000542-198004000-00009 10.1097/00004714-198504000-00003 10.1002/ana.410060502 10.1192/bjp.106.444.912 10.1016/0893-133X(89)90035-3 10.1176/ajp.142.5.564 10.1176/ajp.119.1.61 10.1126/science.8316836 10.1192/bjp.156.2.216 10.1126/science.174.4012.897 10.1016/0014-2999(92)90248-3 10.1177/070674376100600307 10.1093/schbul/16.3.425 10.1213/00000539-197503000-00001 10.1111/j.1471-4159.1990.tb01944.x 10.1176/ajp.144.2.151 10.1213/00000539-196811000-00022 10.1016/0006-3223(94)91197-5 |
ContentType | Journal Article |
Copyright | 1997 Elsevier Science B.V. |
Copyright_xml | – notice: 1997 Elsevier Science B.V. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1016/S0924-977X(96)00039-9 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-7862 |
EndPage | 24 |
ExternalDocumentID | 10_1016_S0924_977X_96_00039_9 9088881 S0924977X96000399 |
Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JO AABNK AACTN AADFP AADPK AAEDT AAEDW AAGJA AAGUQ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXLA AAXUO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABLVK ABMAC ABMZM ABOYX ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ACXNI ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEVXI AFCTW AFKWA AFRHN AFTJW AFXIZ AFYLN AGHFR AGUBO AGWIK AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AJUYK AKRLJ ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDW HMK HMO HMQ HMT HVGLF HZ~ IHE J1W KOM LCYCR LX8 M29 M2V M34 M41 MO0 MOBAO N9A O-L O9- OAUVE OGGZJ OH0 OKEIE OU- OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SNS SPCBC SPT SSB SSH SSN SSP SSY SSZ T5K UNMZH WUQ XPP Z5R ~G- AAXKI AFJKZ AKRWK CGR CUY CVF ECM EIF NPM AAYXX CITATION |
ID | FETCH-LOGICAL-c507t-b0ade1386c737f1980d4bcfd91088db3a3de489da83c23e96a498699de1b7fcf3 |
IEDL.DBID | .~1 |
ISSN | 0924-977X |
IngestDate | Thu Sep 26 17:06:14 EDT 2024 Sat Sep 28 07:37:00 EDT 2024 Fri Feb 23 02:26:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Human Ketamine N-Methyl- d-aspartate (NMDA) receptor PET (positron emission tomography) Psychopathology [ 18F]Fluorodeoxyglucose (FDG) Model psychosis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-b0ade1386c737f1980d4bcfd91088db3a3de489da83c23e96a498699de1b7fcf3 |
PMID | 9088881 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1016_S0924_977X_96_00039_9 pubmed_primary_9088881 elsevier_sciencedirect_doi_10_1016_S0924_977X_96_00039_9 |
PublicationCentury | 1900 |
PublicationDate | 1997-02-01 |
PublicationDateYYYYMMDD | 1997-02-01 |
PublicationDate_xml | – month: 02 year: 1997 text: 1997-02-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | European neuropsychopharmacology |
PublicationTitleAlternate | Eur Neuropsychopharmacol |
PublicationYear | 1997 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bachneff, S.A. (1991) Positron emission tomography and magnetic resonance imaging: A review and a local circuit neurons hypo(dys)function hypothesis of schizophrenia. Biol. Psychiatry 30, 857–886. Bowers, M.B. and Freedman, D.X. (1966) `Psychedelic' experiences in acute psychoses. Arch. Gen. Psychiatry 15, 240–248. Øye, I., Hustveit, O., Maurset, A., Ratti Moberg, E., Paulsen, O. and Skoglund, L.A. (1991) The chiral forms of ketamine as probes for NMDA-receptor function in humans. In Kameyama, T., Nabeshima, T. and Domino, E.F. (Eds.), NMDA Receptor Related Agents: Biochemistry, Pharmacology and Behavior. NPP Books, Ann Arbor, MI, pp. 381–389. Krystal, J.H., Karper, L.P., Seibyl, J.P., Freeman, G.F., Delaney, R., Bremner, J.D., Heiniger, R., Bowers, M.B. and Charney, D.S. (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch. Gen. Psychiatry 51, 199–214. Liddle, P.F., Friston, K.J., Frith, C.D., Hirsch, S.R. and Frackowiak, R.S.J. (1992) Patterns of cerebral blood flow in schizophrenia. Br. J. Psychiatry 160, 179–186. Simpson, M.D.C., Slater, P., Royston, M.C. and Deakin, J.F.W. (1992) Alterations in phencyclidine and sigma binding sites in schizophrenic brains. Schizophrenia Res. 6, 41–48. Bleuler, E. (1911) Dementia praecox oder die Gruppe der Schizophrenien. Deutike, Vienna. Gur, R.E., Resnick, S.M., Alavi, A., Gur, R.C., Caroff, S., Damm, R., Silver, F.L., Seykin, A.J. and Chawluk, J.B. (1987a) Regional brain function in schizophrenia. I. A positron emission tomography study. Arch. Gen. Psychiatry 44, 119–125. Talairach, J. and Tournoux, P. (1988) Co-planar Stereotaxic Atlas of the Human Brain. Thieme, Stuttgart. Phelps, M.E., Huang, S.C., Hoffman, E.J., Selin, C., Sokoloff, L. and Kuhl, D.E. (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with [F Lahti, A.C., Holcomb, H.H., Medoff, D.R. and Tamminga, C.A. (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. NeuroReport 6, 869–872. Fahrenberg, J., Hampel, R. and Selg, H. (1984) Das Freiburger Persönlichkeitsinventar FPI. Hogrefe, Göttingen. Reimherr, F.W., Wood, D.R. and Wender, P.H. (1986) The use of MK-801, a novel sympathomimetic, in adults with attention deficit disorders, residual type. Psychopharmacol. Bull. 22, 237–242. H]MK-801 binding sites in postmortem human brain. J. Neurochem. 54, 1163–1168. methyl- Parellada, E., Catafau, A.M., Bernardo, M., Lomeña, F., González-Monclús, E. and Setoain, J. (1994) Prefrontal dysfunction in young acute neuroleptic-naive schizophrenic patients: a resting and activation SPECT study. Psychiatry Res. Neuroimag. 55, 131–139. Farkas, T., Wolf, A.P., Jaeger, J., Brodie, J.D., Christman, D.R. and Fowler, J.S. (1984) Regional brain glucose metabolism in chronic schizophrenia. A positron emission transaxial tomographic study. Arch. Gen. Psychiatry 41, 293–300. glucose receptor binding technique. Proc. Natl. Acad. Sci. USA 79, 3067–3070. Dittrich, A. (1985) Ätiologie-unabhängige Strukturen veränderter Wachbewusstseinszustände. Ferdinand Enke Verlag, Stuttgart. Buchsbaum, M.S., Potkin, S.G., Siegel, B.V.J., Lohr, J., Katz, M., Gottschalk, L.A., Gulasekaram, B., Marshall, J.F., Lottenberg, S., Teng, C.Y., Bunney, W.E., Abel, L. and Plon, L. (1992) Striatal metabolic rate and clinical response to neuroleptics in schizophrenia. Arch. Gen. Psychiatry 49, 966–974. Scharfetter, C. (1990) EPP (Ego-Psychopathology). Psychiatric University Hospital of Zürich, Research Department, Zürich. Bartlett, E.J., Wolkin, A., Brodie, J.D., Laska, E.M., Wolf, A. and Sanfilipo, M. (1991) Importance of pharmacologic controlling PET studies: effects of thiothixene and haloperidol on cerebral glucose utilisation in chronic schizophrenia. Psychiatry Res. Neuroimag. 40, 115–124. Wilson, F.A.W., Scalaidhe, S.P.O. and Goldman-Rakic, P.S. (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260, 1955–1958. O Positron emission tomography scanning in predominantly never-treated acute schizophrenic patients. Lancet ii, 1448–1452. Ghoneim, M.M., Hinrichs, J.V., Mewaldt, S.P. and Petersen, R.C. (1985) Ketamine: Behavioral effects of subanesthetic doses. J. Clin. Psychopharmacol. 5, 70–77. DeLisi, L.E., Buchsbaum, M.S., Holcomb, H.H., Langston, K.C., King, A.C., Kessler, R., Pickar, D., Carpenter, W.T., Morihisa, J.M., Magolin, R. and Weinberger, D.R. (1989) Increased temporal lobe glucose use in chronic schizophrenic patients. Biol. Psychiatry 25, 835–851. glucose: validation of method. Ann. Neurol. 6, 371–388. Piercey, M.F. and Ray, C.A. (1988) Dramatic limbic and cortical effects mediated by high affinity PCP receptors. Life Sci. 43, 379–385. H]GABA release from cultured cortex neurons. Eur. J. Pharmacol. 143, 287–290. Swerdlow, N.R., Braff, D.L., Taaid, N. and Geyer, M.A. (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch. Gen. Psychiatry 51, 139–154. Harris, J.A., Biersner, R.J., Edwards, D. and Bailey, L.W. (1975) Attention, learning, and personality during ketamine emergence: a pilot study. Anesth. Analg. 54, 169–172. Siegel, B.V.J., Buchsbaum, M.S., Bunney, W.E.J., Gottschalk, L.A., Haier, R.J., Lohr, J.B., Lottenberg, S., Najafi, A., Nuechterlein, K.H., Potkin, S.G. and Wu, J.C. (1993) Cortical-striatal-thalamic circuits and brain glucose metabolic activity in 70 unmedicated male schizophrenic patients. Am. J. Psychiatry 150, 1325–1336. Nabeshima, T., Yamaguchi, K., Ishikawa, K., Furukawa, H. and Kameyama, T. (1987) Potentiation in phencyclidine-induced serotonin-mediated behaviors after intracerebroventricular administration of 5,7-dihydoxytryptamine in rats. J. Pharmacol. Exp. Ther. 243(3), 1139–1146. Dittrich, A., von Arx, S. and Staub, S. (1985) International study on altered states of consciousness (ISASC). Summary of the results. Germ. J. Psychiatry 9, 319–339. Mansbach, R.S. and Geyer, M.A. (1989) Effect of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 2, 299–308. Dittrich, A., von Arx, S. and Staub, S. (1981) International study on altered states of consciousness (ISASC). Schweiz. Z. Psychol. Angew. Pschol. 40, 189–200. Meibach, R.C., Glick, S.D., Cox, R. and Maayani, S. (1979) Localisation of phencyclidine-induced changes in brain energy metabolism. Nature 282, 625–626. Kling, A.S., Metter, E.J., Riege, W.H. and Kuhl, D.E. (1986) Comparison of PET measurement of local brain glucose metabolism and CAT measurement of brain atrophy in chronic schizophrenia and depression. Am. J. Psychiatry 143, 175–180. Domino, E.F., Chodoff, P. and Corssen, S. (1965) Pharmacological effects of Cl-581, a new dissociative anesthetic in man. Clin. Pharmacol. Ther. 6, 279–291. Drejer, J. and Honoré, T. (1987) Phencyclidine analogues inhibit NMDA-stimulated Kim, J.S., Kornhuber, H.H., Schmid-Burke, W. and Holzmüller, B. (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci. Lett. 20, 379–382. Hiramatsu, M., Cho, A.K. and Nabeshima, T. (1989) Comparison of the behavioral and biochemical effects of the NMDA receptor antagonists, MK-801 and phencyclidine. Eur. J. Pharmacol. 166, 359–366. Gur, R.E., Resnick, S.M., Gur, R.C., Alavi, A., Caroff, S., Kushner, M. and Reivich, M. (1987b) Regional brain function in schizophrenia. II. Repeated evaluation with positron emission tomography. Arch. Gen. Psychiatry 44, 126–129. Moretti, R.J., Hassan, S.Z., Goodman, L.I. and Meltzer, H.Y. (1984) Comparison of ketamine and thiopental in healthy volunteers: Effects on mental status, mood, and personality. Anesth. Analg. 63, 1087–1096. Dittrich, A. (1994) Psychological aspects of altered states of consciousness of the LSD type: measurements of their basic dimensions and prediction of individual differences. In: Pletscher, A. and Ladewig, D. (Eds.), 50 years of LSD. Current Status and Perspectives of Hallucinogens. Parthenon Publishing, New York, pp. 101–118. Friston, K.J., Frith, C.D., Liddle, P.F. and Frackowiak, R.S. (1991) Plastic transformation of PET images. J. Comput. Assist. Tomogr. 15, 634–639. Gur, R.E., Resnick, S.M. and Gur, R.C. (1989) Laterality and frontality of cerebral blood flow and metabolism in schizophrenia: relationship to symptom specificity. Psychiatry Res. 27, 325–334. Sheppard, G., Manchanda, C., Gruzelier, J., Hirsch, S.R., Wise, R., Frackowiak, R.J.S. and Jones, T. (1983) Gouzoulis, E., Hermle, L. and Sass, H. (1994) Psychedelische Erlebnisse zu Beginn produktiver Episoden endogener Psychosen. Nervenarzt 65, 198–201. Slogoff, S., Allen, G.V., Wessels, J. and Cheney, D. (1974) Clinical experience with subanesthetic ketamine. Anesth. Analg. 53, 354–358. Carlsson, A. (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1, 179–186. Pribram, K.H. (1991) Brain and Perception. Lawrence Erlbaum Associates, Inc. Publishers, Hillsdale, NJ. Luby, E.D., Gottlieb, J.S., Cohen, B.D., Rosenbaum, G. and Domino, E.F. (1962) Model psychoses and schizophrenia. Am. J. Psychiatry 119, 61–67. Tc-Exametazime in unmedicated schizophrenic patients. Biol. Psychiatry 33, 487–495. Piercey, M.F., Hoffmann, W.E. and Kaczkofsky, P. (1988) Functional evidence for PCP-like effects of the anti-stroke candidate MK-801. Psychopharmacology (Berlin) 96, 561–562. Corssen, G., Miyasaka, M. and Domino, E.F. (1968) Changing concepts in pain control during surgery: Dissociative anesthesia with CI-581. A progress report. Anesth. Analg. 47, 745–759. H]MK-801 binding sites in postmortem brain regions of schizophrenic patients. J. Neuronal. Transm. 77, 231–236. Luby, E.D., Cohen, B.D., Rosenbaum, G., Gottlieb, J.S. and Kelley, R. (1959) Study of a new schizophrenomimetic drug – Sernyl. Arch. Neurol. Psychiatry 81, 363–369. Olney, J.W., Labruyere, J., Wang, G., Wozniak, D.F., Price, M.T. and Sesma, M.A. (1991) NMDA antagonists neurotoxicity: mechanism and prevention. Science 254, 1515–1518. Feng, N. 10.1016/S0924-977X(96)00039-9_BIB82 10.1016/S0924-977X(96)00039-9_BIB83 10.1016/S0924-977X(96)00039-9_BIB80 10.1016/S0924-977X(96)00039-9_BIB81 10.1016/S0924-977X(96)00039-9_BIB86 10.1016/S0924-977X(96)00039-9_BIB87 10.1016/S0924-977X(96)00039-9_BIB84 10.1016/S0924-977X(96)00039-9_BIB85 10.1016/S0924-977X(96)00039-9_BIB88 10.1016/S0924-977X(96)00039-9_BIB89 10.1016/S0924-977X(96)00039-9_BIB93 10.1016/S0924-977X(96)00039-9_BIB94 10.1016/S0924-977X(96)00039-9_BIB91 10.1016/S0924-977X(96)00039-9_BIB92 10.1016/S0924-977X(96)00039-9_BIB97 10.1016/S0924-977X(96)00039-9_BIB10 10.1016/S0924-977X(96)00039-9_BIB98 10.1016/S0924-977X(96)00039-9_BIB95 10.1016/S0924-977X(96)00039-9_BIB96 10.1016/S0924-977X(96)00039-9_BIB90 10.1016/S0924-977X(96)00039-9_BIB19 10.1016/S0924-977X(96)00039-9_BIB13 10.1016/S0924-977X(96)00039-9_BIB14 10.1016/S0924-977X(96)00039-9_BIB11 10.1016/S0924-977X(96)00039-9_BIB99 10.1016/S0924-977X(96)00039-9_BIB12 10.1016/S0924-977X(96)00039-9_BIB17 10.1016/S0924-977X(96)00039-9_BIB18 10.1016/S0924-977X(96)00039-9_BIB15 10.1016/S0924-977X(96)00039-9_BIB16 10.1016/S0924-977X(96)00039-9_BIB60 10.1016/S0924-977X(96)00039-9_BIB61 10.1016/S0924-977X(96)00039-9_BIB64 10.1016/S0924-977X(96)00039-9_BIB65 10.1016/S0924-977X(96)00039-9_BIB62 10.1016/S0924-977X(96)00039-9_BIB63 10.1016/S0924-977X(96)00039-9_BIB68 10.1016/S0924-977X(96)00039-9_BIB69 10.1016/S0924-977X(96)00039-9_BIB66 10.1016/S0924-977X(96)00039-9_BIB67 10.1016/S0924-977X(96)00039-9_BIB71 10.1016/S0924-977X(96)00039-9_BIB72 10.1016/S0924-977X(96)00039-9_BIB70 10.1016/S0924-977X(96)00039-9_BIB75 10.1016/S0924-977X(96)00039-9_BIB76 10.1016/S0924-977X(96)00039-9_BIB73 10.1016/S0924-977X(96)00039-9_BIB74 10.1016/S0924-977X(96)00039-9_BIB79 10.1016/S0924-977X(96)00039-9_BIB77 10.1016/S0924-977X(96)00039-9_BIB78 10.1016/S0924-977X(96)00039-9_BIB42 10.1016/S0924-977X(96)00039-9_BIB43 10.1016/S0924-977X(96)00039-9_BIB40 10.1016/S0924-977X(96)00039-9_BIB41 10.1016/S0924-977X(96)00039-9_BIB46 10.1016/S0924-977X(96)00039-9_BIB47 10.1016/S0924-977X(96)00039-9_BIB44 10.1016/S0924-977X(96)00039-9_BIB45 10.1016/S0924-977X(96)00039-9_BIB48 10.1016/S0924-977X(96)00039-9_BIB49 10.1016/S0924-977X(96)00039-9_BIB100 10.1016/S0924-977X(96)00039-9_BIB50 10.1016/S0924-977X(96)00039-9_BIB101 10.1016/S0924-977X(96)00039-9_BIB53 10.1016/S0924-977X(96)00039-9_BIB54 10.1016/S0924-977X(96)00039-9_BIB51 10.1016/S0924-977X(96)00039-9_BIB52 10.1016/S0924-977X(96)00039-9_BIB57 10.1016/S0924-977X(96)00039-9_BIB58 10.1016/S0924-977X(96)00039-9_BIB55 10.1016/S0924-977X(96)00039-9_BIB56 10.1016/S0924-977X(96)00039-9_BIB59 10.1016/S0924-977X(96)00039-9_BIB20 10.1016/S0924-977X(96)00039-9_BIB21 10.1016/S0924-977X(96)00039-9_BIB24 10.1016/S0924-977X(96)00039-9_BIB25 10.1016/S0924-977X(96)00039-9_BIB22 10.1016/S0924-977X(96)00039-9_BIB23 10.1016/S0924-977X(96)00039-9_BIB28 10.1016/S0924-977X(96)00039-9_BIB29 10.1016/S0924-977X(96)00039-9_BIB26 10.1016/S0924-977X(96)00039-9_BIB27 10.1016/S0924-977X(96)00039-9_BIB31 10.1016/S0924-977X(96)00039-9_BIB32 10.1016/S0924-977X(96)00039-9_BIB30 10.1016/S0924-977X(96)00039-9_BIB9 10.1016/S0924-977X(96)00039-9_BIB8 10.1016/S0924-977X(96)00039-9_BIB3 10.1016/S0924-977X(96)00039-9_BIB35 10.1016/S0924-977X(96)00039-9_BIB2 10.1016/S0924-977X(96)00039-9_BIB36 10.1016/S0924-977X(96)00039-9_BIB1 10.1016/S0924-977X(96)00039-9_BIB33 10.1016/S0924-977X(96)00039-9_BIB34 10.1016/S0924-977X(96)00039-9_BIB7 10.1016/S0924-977X(96)00039-9_BIB39 10.1016/S0924-977X(96)00039-9_BIB6 10.1016/S0924-977X(96)00039-9_BIB5 10.1016/S0924-977X(96)00039-9_BIB37 10.1016/S0924-977X(96)00039-9_BIB4 10.1016/S0924-977X(96)00039-9_BIB38 |
References_xml | – ident: 10.1016/S0924-977X(96)00039-9_BIB21 doi: 10.1111/j.1471-4159.1989.tb07257.x – ident: 10.1016/S0924-977X(96)00039-9_BIB14 doi: 10.1016/0893-133X(88)90012-7 – ident: 10.1016/S0924-977X(96)00039-9_BIB59 doi: 10.1001/archneurpsyc.1959.02340150095011 – ident: 10.1016/S0924-977X(96)00039-9_BIB25 – ident: 10.1016/S0924-977X(96)00039-9_BIB57 doi: 10.1097/00001756-199504190-00011 – ident: 10.1016/S0924-977X(96)00039-9_BIB2 – ident: 10.1016/S0924-977X(96)00039-9_BIB40 – ident: 10.1016/S0924-977X(96)00039-9_BIB31 – ident: 10.1016/S0924-977X(96)00039-9_BIB87 doi: 10.1213/00000539-197405000-00009 – ident: 10.1016/S0924-977X(96)00039-9_BIB41 doi: 10.1001/archpsyc.1987.01800140021003 – ident: 10.1016/S0924-977X(96)00039-9_BIB77 doi: 10.1002/ana.410140604 – ident: 10.1016/S0924-977X(96)00039-9_BIB30 doi: 10.1016/0006-3223(93)90002-U – ident: 10.1016/S0924-977X(96)00039-9_BIB47 doi: 10.1055/s-2007-1000662 – ident: 10.1016/S0924-977X(96)00039-9_BIB78 doi: 10.1001/archpsyc.1959.03590060113013 – ident: 10.1016/S0924-977X(96)00039-9_BIB45 doi: 10.1080/02791072.1988.10472511 – ident: 10.1016/S0924-977X(96)00039-9_BIB97 doi: 10.1111/j.1600-0447.1987.tb02933.x – ident: 10.1016/S0924-977X(96)00039-9_BIB27 doi: 10.1002/cpt196563279 – ident: 10.1016/S0924-977X(96)00039-9_BIB69 doi: 10.1016/0925-4927(94)90021-3 – ident: 10.1016/S0924-977X(96)00039-9_BIB51 doi: 10.1016/0920-9964(93)90037-J – ident: 10.1016/S0924-977X(96)00039-9_BIB52 doi: 10.1016/0304-3940(80)90178-0 – ident: 10.1016/S0924-977X(96)00039-9_BIB54 doi: 10.1007/BF01248936 – ident: 10.1016/S0924-977X(96)00039-9_BIB19 doi: 10.1097/00000542-198206000-00005 – ident: 10.1016/S0924-977X(96)00039-9_BIB83 doi: 10.1016/S0140-6736(83)90798-5 – ident: 10.1016/S0924-977X(96)00039-9_BIB53 doi: 10.1176/ajp.143.2.175 – ident: 10.1016/S0924-977X(96)00039-9_BIB28 doi: 10.1016/0014-2999(87)90546-2 – ident: 10.1016/S0924-977X(96)00039-9_BIB94 – ident: 10.1016/S0924-977X(96)00039-9_BIB42 doi: 10.1001/archpsyc.1987.01800140028004 – ident: 10.1016/S0924-977X(96)00039-9_BIB8 doi: 10.1001/archpsyc.1966.01730150016003 – ident: 10.1016/S0924-977X(96)00039-9_BIB23 – ident: 10.1016/S0924-977X(96)00039-9_BIB10 doi: 10.1001/archpsyc.1982.04290030001001 – ident: 10.1016/S0924-977X(96)00039-9_BIB29 doi: 10.1073/pnas.84.2.561 – ident: 10.1016/S0924-977X(96)00039-9_BIB84 doi: 10.1016/0006-3223(91)90155-F – ident: 10.1016/S0924-977X(96)00039-9_BIB62 doi: 10.1038/282625a0 – ident: 10.1016/S0924-977X(96)00039-9_BIB35 doi: 10.1038/jcbfm.1989.97 – ident: 10.1016/S0924-977X(96)00039-9_BIB91 – ident: 10.1016/S0924-977X(96)00039-9_BIB68 – ident: 10.1016/S0924-977X(96)00039-9_BIB95 doi: 10.1016/0006-8993(87)91583-6 – ident: 10.1016/S0924-977X(96)00039-9_BIB17 doi: 10.1111/j.1365-2044.1972.tb08186.x – ident: 10.1016/S0924-977X(96)00039-9_BIB88 doi: 10.1001/archpsyc.1994.03950020063007 – ident: 10.1016/S0924-977X(96)00039-9_BIB26 – ident: 10.1016/S0924-977X(96)00039-9_BIB71 doi: 10.1016/0024-3205(88)90116-6 – ident: 10.1016/S0924-977X(96)00039-9_BIB16 doi: 10.1016/0165-1781(89)90040-1 – ident: 10.1016/S0924-977X(96)00039-9_BIB79 doi: 10.1017/S0033291700052090 – ident: 10.1016/S0924-977X(96)00039-9_BIB48 doi: 10.1016/0006-3223(92)90059-9 – ident: 10.1016/S0924-977X(96)00039-9_BIB1 doi: 10.1111/j.1476-5381.1983.tb11031.x – ident: 10.1016/S0924-977X(96)00039-9_BIB85 doi: 10.1176/ajp.150.9.1325 – ident: 10.1016/S0924-977X(96)00039-9_BIB6 doi: 10.1016/0925-4927(91)90003-9 – ident: 10.1016/S0924-977X(96)00039-9_BIB32 doi: 10.1001/archpsyc.1984.01790140083010 – ident: 10.1016/S0924-977X(96)00039-9_BIB67 – ident: 10.1016/S0924-977X(96)00039-9_BIB96 – ident: 10.1016/S0924-977X(96)00039-9_BIB90 doi: 10.1002/syn.890010514 – ident: 10.1016/S0924-977X(96)00039-9_BIB56 doi: 10.1001/archpsyc.1994.03950030035004 – ident: 10.1016/S0924-977X(96)00039-9_BIB43 doi: 10.1016/0165-1781(89)90147-9 – ident: 10.1016/S0924-977X(96)00039-9_BIB66 doi: 10.1126/science.1835799 – ident: 10.1016/S0924-977X(96)00039-9_BIB9 doi: 10.1002/ana.410150731 – ident: 10.1016/S0924-977X(96)00039-9_BIB22 doi: 10.1016/0006-3223(89)90263-1 – ident: 10.1016/S0924-977X(96)00039-9_BIB11 doi: 10.1016/0006-3223(87)90170-3 – ident: 10.1016/S0924-977X(96)00039-9_BIB73 – ident: 10.1016/S0924-977X(96)00039-9_BIB13 doi: 10.1001/archpsyc.1992.01820120054008 – ident: 10.1016/S0924-977X(96)00039-9_BIB58 doi: 10.1192/bjp.160.2.179 – ident: 10.1016/S0924-977X(96)00039-9_BIB63 doi: 10.1213/00000539-198412000-00007 – ident: 10.1016/S0924-977X(96)00039-9_BIB36 doi: 10.1097/00004728-199107000-00020 – ident: 10.1016/S0924-977X(96)00039-9_BIB24 – ident: 10.1016/S0924-977X(96)00039-9_BIB72 doi: 10.1007/BF02180042 – ident: 10.1016/S0924-977X(96)00039-9_BIB55 doi: 10.1016/0006-8993(86)90916-9 – ident: 10.1016/S0924-977X(96)00039-9_BIB99 doi: 10.1016/0028-3908(72)90016-0 – ident: 10.1016/S0924-977X(96)00039-9_BIB86 doi: 10.1016/0920-9964(91)90019-N – ident: 10.1016/S0924-977X(96)00039-9_BIB3 doi: 10.1016/0006-3223(91)90002-4 – ident: 10.1016/S0924-977X(96)00039-9_BIB38 doi: 10.1097/00000542-197204000-00006 – ident: 10.1016/S0924-977X(96)00039-9_BIB76 – ident: 10.1016/S0924-977X(96)00039-9_BIB82 – ident: 10.1016/S0924-977X(96)00039-9_BIB49 doi: 10.1016/0014-2999(89)90346-4 – ident: 10.1016/S0924-977X(96)00039-9_BIB44 doi: 10.1073/pnas.79.9.3067 – ident: 10.1016/S0924-977X(96)00039-9_BIB75 doi: 10.1111/j.1471-4159.1990.tb01943.x – ident: 10.1016/S0924-977X(96)00039-9_BIB92 doi: 10.1136/jnnp.49.10.1199 – ident: 10.1016/S0924-977X(96)00039-9_BIB4 doi: 10.1016/S0010-440X(61)80033-3 – ident: 10.1016/S0924-977X(96)00039-9_BIB80 doi: 10.1007/978-3-642-93353-0_5 – ident: 10.1016/S0924-977X(96)00039-9_BIB33 doi: 10.1097/00007691-199502000-00016 – ident: 10.1016/S0924-977X(96)00039-9_BIB37 doi: 10.1093/brain/115.2.367 – ident: 10.1016/S0924-977X(96)00039-9_BIB81 – ident: 10.1016/S0924-977X(96)00039-9_BIB65 doi: 10.1097/00000542-198004000-00009 – ident: 10.1016/S0924-977X(96)00039-9_BIB39 doi: 10.1097/00004714-198504000-00003 – ident: 10.1016/S0924-977X(96)00039-9_BIB70 doi: 10.1002/ana.410060502 – ident: 10.1016/S0924-977X(96)00039-9_BIB20 doi: 10.1192/bjp.106.444.912 – ident: 10.1016/S0924-977X(96)00039-9_BIB61 doi: 10.1016/0893-133X(89)90035-3 – ident: 10.1016/S0924-977X(96)00039-9_BIB100 doi: 10.1176/ajp.142.5.564 – ident: 10.1016/S0924-977X(96)00039-9_BIB60 doi: 10.1176/ajp.119.1.61 – ident: 10.1016/S0924-977X(96)00039-9_BIB98 doi: 10.1126/science.8316836 – ident: 10.1016/S0924-977X(96)00039-9_BIB7 – ident: 10.1016/S0924-977X(96)00039-9_BIB12 doi: 10.1192/bjp.156.2.216 – ident: 10.1016/S0924-977X(96)00039-9_BIB34 doi: 10.1126/science.174.4012.897 – ident: 10.1016/S0924-977X(96)00039-9_BIB64 – ident: 10.1016/S0924-977X(96)00039-9_BIB101 doi: 10.1016/0014-2999(92)90248-3 – ident: 10.1016/S0924-977X(96)00039-9_BIB89 – ident: 10.1016/S0924-977X(96)00039-9_BIB5 doi: 10.1177/070674376100600307 – ident: 10.1016/S0924-977X(96)00039-9_BIB15 doi: 10.1093/schbul/16.3.425 – ident: 10.1016/S0924-977X(96)00039-9_BIB46 doi: 10.1213/00000539-197503000-00001 – ident: 10.1016/S0924-977X(96)00039-9_BIB74 doi: 10.1111/j.1471-4159.1990.tb01944.x – ident: 10.1016/S0924-977X(96)00039-9_BIB93 doi: 10.1176/ajp.144.2.151 – ident: 10.1016/S0924-977X(96)00039-9_BIB18 doi: 10.1213/00000539-196811000-00022 – ident: 10.1016/S0924-977X(96)00039-9_BIB50 doi: 10.1016/0006-3223(94)91197-5 |
SSID | ssj0015339 |
Score | 2.0275867 |
Snippet | To date, the ketamine/PCP model of psychosis has been proposed to be one of the best pharmacological models to mimic schizophrenic psychosis in healthy... |
SourceID | crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 9 |
SubjectTerms | [ 18F]Fluorodeoxyglucose (FDG) Adult Brain Chemistry - drug effects Deoxyglucose - analogs & derivatives Excitatory Amino Acid Antagonists - pharmacokinetics Female Fluorine Radioisotopes Fluorodeoxyglucose F18 Frontal Lobe - metabolism Functional Laterality - physiology Glucose - metabolism Human Humans Ketamine Ketamine - pharmacokinetics Male Model psychosis N-Methyl- d-aspartate (NMDA) receptor PET (positron emission tomography) Psychometrics Psychopathology Psychoses, Substance-Induced - metabolism Psychoses, Substance-Induced - psychology Surveys and Questionnaires Tomography, Emission-Computed |
Title | Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [ 18F]fluorodeoxyglucose (FDG) |
URI | https://dx.doi.org/10.1016/S0924-977X(96)00039-9 https://www.ncbi.nlm.nih.gov/pubmed/9088881 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF_EvvSltFXRfsg8iNyB8ZLbNdl9FOt5eihHe9KDUkL2IzWoifQi9F76l_SPdSab8_RJ6FNg2ZmEzDDz2-Q3M4zt4PksMiG3gdHWBQKdJtCYloIsVFbEwtnIUaHw-UU8vBRn04PpCjta1MIQrbKN_T6mN9G6Xem1b7N3VxS9byEdHZJkihicKkypiE9g-kOf3v_7SPMgOOP77fVFQLuXVTxeQ7PYUXG3URKoF_LTk-QzeMvetKgRDv2DvWMrrnzPdse-7fR8DybLKqrZHuzCeNmQer7G_p27Gm19Uxi4wmMn-mJFNZCIvyErLfhCLBpN3OyHogREhXCNQreIQaEZlgNV3m6cFTMgtvwvaAhfqAtoZhx9dYO6um1bYENnfDzpNvp_QCQHP_Ob-wqDtav-zFuaPHQGX0666-xycDw5GgbtVIbAIHas0ZSZdRGXsUl4kkdKhlZok1vEHVJazTNunZDKZpKbPncqzoSSsVIopJPc5HyDrZZV6TYZJLpvosyFrh_n4sCEWZhoQ3_quNKhFnyL7S9skd755hvpkpWGxkvJeKkiZh7KpGqLyYXF0mdelGKCeEl0w1v48U7EAJMy-vD_Oj-y177bLbFfPrHV-ve9-4wYptbbjZNus1eHp6PhBV1HX7-PHgDAjvJ1 |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF5ROLSXCgqo9EHnUKFEwsTOLvbuEQFp2hIUqUGKVFWW9-HWKtioMRK59JfwY5nxOqSckHpd7cxantHMt_Y3M4x9xPtZZEJuA6OtCwQ6TaAxLQVZqKyIhbORo0Lh0Xk8vBBfpofTFXa8qIUhWmUb-31Mb6J1u9Jr32bvuih630K6OiTJFDE4VZiqZ2xNED5Gpz74-8DzIDzjG-71RUDbl2U8XkWz2FFxt9ESqCcS1D_ZZ7DOXrawEY78k22wFVe-Yntj33d6vg-TZRnVbB_2YLzsSD3fZHcjV6OxLwsDv_Deic5YUREkAnDISgu-EotmEzf7oSgBYSH8RqErBKHQTMuBKm83zooZEF3-JzSML9QFNDSOPrtBXV21PbChMz6ddBv93yGSgx_55U2F0dpVt_OWJw-dwcmn7ha7GJxOjodBO5YhMAgea7RlZl3EZWwSnuSRkqEV2uQWgYeUVvOMWyekspnkps-dijOhZKwUCukkNznfZqtlVbrXDBLdN1HmQtePc3FowixMtKFfdVzpUAu-ww4WtkivffeNdElLQ-OlZLxUETUPZVK1w-TCYukjN0oxQzwluu0t_HASUcCkjN78v84P7PlwMjpLzz6ff33LXvjWt0SFecdW6z837j0CmlrvNg57D9cB8ms |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+hyperfrontality+and+psychopathology+in+the+ketamine+model+of+psychosis+using+positron+emission+tomography+%28PET%29+and+%5B18F%5Dfluorodeoxyglucose+%28FDG%29&rft.jtitle=European+neuropsychopharmacology&rft.au=Vollenweider%2C+F+X&rft.au=Leenders%2C+K+L&rft.au=Scharfetter%2C+C&rft.au=Antonini%2C+A&rft.date=1997-02-01&rft.issn=0924-977X&rft.volume=7&rft.issue=1&rft.spage=9&rft_id=info:doi/10.1016%2FS0924-977X%2896%2900039-9&rft_id=info%3Apmid%2F9088881&rft.externalDocID=9088881 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-977X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-977X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-977X&client=summon |