Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [ 18F]fluorodeoxyglucose (FDG)

To date, the ketamine/PCP model of psychosis has been proposed to be one of the best pharmacological models to mimic schizophrenic psychosis in healthy volunteers, since ketamine can induce both positive and negative symptoms of schizophrenia. At subanesthetic doses, ketamine has been reported to pr...

Full description

Saved in:
Bibliographic Details
Published inEuropean neuropsychopharmacology Vol. 7; no. 1; pp. 9 - 24
Main Authors Vollenweider, F.X, Leenders, K.L, Scharfetter, C, Antonini, A, Maguire, P, Missimer, J, Angst, J
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.1997
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To date, the ketamine/PCP model of psychosis has been proposed to be one of the best pharmacological models to mimic schizophrenic psychosis in healthy volunteers, since ketamine can induce both positive and negative symptoms of schizophrenia. At subanesthetic doses, ketamine has been reported to primarily block N-methyl- d-aspartate (NMDA) receptor complex giving support to a glutamate deficiency hypothesis in schizophrenia. Positron emission tomography was used to study ketamine-induced psychotic symptom formation in relation to cerebral metabolic alterations in healthy volunteers. Our study shows that NMDA receptor blockade results in a hyperfrontal metabolic pattern. Increased metabolic activity in the frontomedial and anterior cingulate cortex correlated positively with psychotic symptom formation, in particular with ego pathology. Analysis of correlations between syndrome scores and metabolic rate of glucose (CMRglu) or metabolic gradients (ratios) revealed that each psychopathological syndrome was associated with a number of metabolic alterations in cortical and subcortical brain regions, suggesting that not a single brain region, but distributed neuronal networks are involved in acute psychotic symptom formation.
AbstractList To date, the ketamine/PCP model of psychosis has been proposed to be one of the best pharmacological models to mimic schizophrenic psychosis in healthy volunteers, since ketamine can induce both positive and negative symptoms of schizophrenia. At subanesthetic doses, ketamine has been reported to primarily block N-methyl- d-aspartate (NMDA) receptor complex giving support to a glutamate deficiency hypothesis in schizophrenia. Positron emission tomography was used to study ketamine-induced psychotic symptom formation in relation to cerebral metabolic alterations in healthy volunteers. Our study shows that NMDA receptor blockade results in a hyperfrontal metabolic pattern. Increased metabolic activity in the frontomedial and anterior cingulate cortex correlated positively with psychotic symptom formation, in particular with ego pathology. Analysis of correlations between syndrome scores and metabolic rate of glucose (CMRglu) or metabolic gradients (ratios) revealed that each psychopathological syndrome was associated with a number of metabolic alterations in cortical and subcortical brain regions, suggesting that not a single brain region, but distributed neuronal networks are involved in acute psychotic symptom formation.
To date, the ketamine/PCP model of psychosis has been proposed to be one of the best pharmacological models to mimic schizophrenic psychosis in healthy volunteers, since ketamine can induce both positive and negative symptoms of schizophrenia. At subanesthetic doses, ketamine has been reported to primarily block N-methyl-D-aspartate (NMDA) receptor complex giving support to a glutamate deficiency hypothesis in schizophrenia. Positron emission tomography was used to study ketamine-induced psychotic symptom formation in relation to cerebral metabolic alterations in healthy volunteers. Our study shows that NMDA receptor blockade results in a hyperfrontal metabolic pattern. Increased metabolic activity in the frontomedial and anterior cingulate cortex correlated positively with psychotic symptom formation, in particular with ego pathology. Analysis of correlations between syndrome scores and metabolic rate of glucose (CMRglu) or metabolic gradients (ratios) revealed that each psychopathological syndrome was associated with a number of metabolic alterations in cortical and subcortical brain regions, suggesting that not a single brain region, but distributed neuronal networks are involved in acute psychotic symptom formation.
Author Antonini, A
Scharfetter, C
Vollenweider, F.X
Leenders, K.L
Missimer, J
Maguire, P
Angst, J
Author_xml – sequence: 1
  givenname: F.X
  surname: Vollenweider
  fullname: Vollenweider, F.X
  organization: Research Department, Psychiatric University Hospital of Zürich, Box 68, CH-8029 Zürich, Switzerland
– sequence: 2
  givenname: K.L
  surname: Leenders
  fullname: Leenders, K.L
  organization: Paul Scherrer Institute, PET Department, CH-5232 Villigen, Switzerland
– sequence: 3
  givenname: C
  surname: Scharfetter
  fullname: Scharfetter, C
  organization: Research Department, Psychiatric University Hospital of Zürich, Box 68, CH-8029 Zürich, Switzerland
– sequence: 4
  givenname: A
  surname: Antonini
  fullname: Antonini, A
  organization: Paul Scherrer Institute, PET Department, CH-5232 Villigen, Switzerland
– sequence: 5
  givenname: P
  surname: Maguire
  fullname: Maguire, P
  organization: Paul Scherrer Institute, PET Department, CH-5232 Villigen, Switzerland
– sequence: 6
  givenname: J
  surname: Missimer
  fullname: Missimer, J
  organization: Paul Scherrer Institute, PET Department, CH-5232 Villigen, Switzerland
– sequence: 7
  givenname: J
  surname: Angst
  fullname: Angst, J
  organization: Research Department, Psychiatric University Hospital of Zürich, Box 68, CH-8029 Zürich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9088881$$D View this record in MEDLINE/PubMed
BookMark eNqFkM9qGzEQh0VISZw_jxDQ0T5sK1n2rnQKJYnTQkoCSaFQitBKI6-S3dUiyaX7LnnYKLbJtbpoYOb7jfSdoMPe94DQBSWfKaHll0ci5otCVNWvqShnhBAmCnGAJpRXrKh4OT9Ek4-RY3QS4zMhdMmYOEJHgvB86AS9_oCkat86jZtxgGCD75NqXRqx6g0e4qgbP6jU-NavR-x6nBrALxnqXA-48wZa7O1-MLqIN9H1azzkOuUsDJ2L0eUi-c6vgxqaEU8fbp5m2_zfmPLVH9tufMhJ_t-4bjfaR8DT1fXt7Ax9sqqNcL6_T9HP1c3T1bfi7v72-9XXu0IvSZWKmigDlPFSV6yyVHBiFrW2RtD8S1MzxQwsuDCKMz1nIEq1ELwUIkN1ZbVlp2i5y9XBxxjAyiG4ToVRUiLfZcutbPluUopSbmVLkbmLHTds6g7MB7W3m_uXuz7kx_91EGTUDnoNxgXQSRrv_rPhDZAJlW4
CitedBy_id crossref_primary_10_1006_anbe_1999_1145
crossref_primary_10_1523_JNEUROSCI_0630_17_2017
crossref_primary_10_1097_FBP_0000000000000354
crossref_primary_10_1177_0269881107077716
crossref_primary_10_3390_ijms23031922
crossref_primary_10_1016_S0193_953X_05_70022_8
crossref_primary_10_1097_RLU_0b013e3181db4d4a
crossref_primary_10_1017_S0140525X03320023
crossref_primary_10_1038_sj_npp_1301600
crossref_primary_10_1080_15622975_2019_1679391
crossref_primary_10_1093_schbul_sbt067
crossref_primary_10_1007_s11307_022_01723_3
crossref_primary_10_1016_S0022_3956_99_00031_X
crossref_primary_10_1002_hbm_10064
crossref_primary_10_1017_S0140525X03400022
crossref_primary_10_1007_s00213_010_2065_7
crossref_primary_10_1177_0269881114563635
crossref_primary_10_1038_mp_2012_194
crossref_primary_10_1016_j_euroneuro_2021_01_005
crossref_primary_10_1017_S0140525X0328002X
crossref_primary_10_3917_psyt_233_0125
crossref_primary_10_1002_da_22501
crossref_primary_10_1016_S0006_3223_00_01037_4
crossref_primary_10_1017_S0140525X03470027
crossref_primary_10_1016_S0006_3223_00_00976_8
crossref_primary_10_1016_j_biopsych_2015_03_013
crossref_primary_10_1038_nrn2884
crossref_primary_10_1016_j_neuropharm_2011_01_022
crossref_primary_10_1111_j_1360_0443_2011_03576_x
crossref_primary_10_1007_s00406_011_0281_8
crossref_primary_10_1016_j_jpsychires_2019_07_008
crossref_primary_10_1177_1039856220961642
crossref_primary_10_1016_j_drudis_2018_11_007
crossref_primary_10_1162_jocn_2007_19_1_59
crossref_primary_10_1017_S0140525X03360029
crossref_primary_10_1080_1029842021000022061
crossref_primary_10_1016_j_pharmthera_2011_07_005
crossref_primary_10_1038_mp_2017_249
crossref_primary_10_1016_j_neuropsychologia_2017_12_035
crossref_primary_10_1177_0952695109352413
crossref_primary_10_1007_s00406_018_0942_y
crossref_primary_10_1017_S0140525X03270023
crossref_primary_10_1017_S0140525X03440028
crossref_primary_10_1016_j_neuroimage_2010_08_021
crossref_primary_10_1016_S0006_3223_03_00292_0
crossref_primary_10_1016_j_biopsych_2014_05_019
crossref_primary_10_1124_jpet_112_201665
crossref_primary_10_1038_mp_2017_58
crossref_primary_10_1016_j_jad_2019_12_023
crossref_primary_10_1016_S0006_8993_01_01991_6
crossref_primary_10_1016_j_brainresbull_2007_01_007
crossref_primary_10_3390_ijms241411835
crossref_primary_10_1038_npp_2017_270
crossref_primary_10_1080_13546805_2010_546074
crossref_primary_10_1016_j_pnpbp_2020_109887
crossref_primary_10_1016_j_biopsych_2010_08_030
crossref_primary_10_1007_s00213_015_4022_y
crossref_primary_10_1016_j_neuroscience_2016_07_028
crossref_primary_10_1016_j_neuroimage_2011_06_045
crossref_primary_10_1017_S0140525X03230028
crossref_primary_10_1016_j_drugalcdep_2007_08_009
crossref_primary_10_1016_S0361_9230_01_00646_3
crossref_primary_10_1016_S0006_8993_99_01776_X
crossref_primary_10_1016_S0987_7053_03_00028_5
crossref_primary_10_1093_cercor_bhs238
crossref_primary_10_1038_sj_npp_1300824
crossref_primary_10_1016_S0028_3908_03_00073_X
crossref_primary_10_1021_acschemneuro_7b00074
crossref_primary_10_1213_ANE_0000000000005835
crossref_primary_10_1017_S0140525X03310027
crossref_primary_10_1186_1471_2202_9_41
crossref_primary_10_1523_JNEUROSCI_2310_14_2015
crossref_primary_10_1038_npp_2010_163
crossref_primary_10_3389_fpsyt_2018_00022
crossref_primary_10_1016_j_pscychresns_2006_04_002
crossref_primary_10_1098_rstb_1999_0484
crossref_primary_10_1196_annals_1300_020
crossref_primary_10_31887_DCNS_2001_3_4_fxvollenweider
crossref_primary_10_1186_s12868_015_0149_3
crossref_primary_10_1017_S0140525X03460020
crossref_primary_10_1007_s00213_010_2052_z
crossref_primary_10_1038_s41386_018_0136_3
crossref_primary_10_1007_s00213_017_4613_x
crossref_primary_10_1146_annurev_med_053013_062946
crossref_primary_10_1016_j_pharmthera_2003_11_002
crossref_primary_10_1016_j_schres_2004_04_009
crossref_primary_10_1038_srep02348
crossref_primary_10_1097_FBP_0000000000000459
crossref_primary_10_1192_bjp_bp_110_083501
crossref_primary_10_1017_S0140525X03450024
crossref_primary_10_1016_j_biopsych_2014_07_022
crossref_primary_10_1017_S0140525X03350022
crossref_primary_10_3389_fnhum_2017_00245
crossref_primary_10_1208_s12248_015_9739_3
crossref_primary_10_1177_00912700222011409
crossref_primary_10_1016_j_biopsych_2004_10_036
crossref_primary_10_1016_j_neubiorev_2023_105410
crossref_primary_10_1017_S0140525X03390028
crossref_primary_10_1016_j_tins_2020_11_008
crossref_primary_10_1016_j_neuroimage_2014_12_050
crossref_primary_10_1007_s12975_016_0491_5
crossref_primary_10_1016_S0006_3223_98_00036_5
crossref_primary_10_1016_j_schres_2018_12_041
crossref_primary_10_1016_j_pbb_2011_04_003
crossref_primary_10_3390_ijms22179309
crossref_primary_10_1038_tp_2012_105
crossref_primary_10_1016_S0149_7634_03_00035_6
crossref_primary_10_1124_jpet_115_230391
crossref_primary_10_1021_acschemneuro_9b00044
crossref_primary_10_3390_ijms222212203
crossref_primary_10_1017_S0140525X03300020
crossref_primary_10_1017_S0140525X03410029
crossref_primary_10_1017_S0140525X03240024
crossref_primary_10_1016_S0278_5846_03_00159_3
crossref_primary_10_1213_ANE_0000000000005869
crossref_primary_10_1097_01_nmd_0000130138_62770_87
crossref_primary_10_1212_NXI_0000000000000413
crossref_primary_10_1017_S0140525X03220021
crossref_primary_10_1124_pr_115_010967
crossref_primary_10_3389_fphar_2016_00348
crossref_primary_10_1016_j_neuropharm_2013_10_001
crossref_primary_10_1016_S0278_5846_99_00065_2
crossref_primary_10_1038_s41386_020_0718_8
crossref_primary_10_1038_clpt_2011_244
crossref_primary_10_2165_11599770_000000000_00000
crossref_primary_10_1038_sj_npp_1300342
crossref_primary_10_1186_cc13097
crossref_primary_10_1017_S0140525X03340026
crossref_primary_10_1177_13634615221129116
crossref_primary_10_1016_j_neuro_2011_11_001
crossref_primary_10_1017_S0140525X03290026
crossref_primary_10_1016_j_biopsych_2014_11_015
crossref_primary_10_1016_j_brainresrev_2008_07_006
crossref_primary_10_1016_S0306_4522_01_00384_0
crossref_primary_10_3109_08990220_2010_508222
crossref_primary_10_1016_j_pnpbp_2007_08_026
crossref_primary_10_3389_fnbeh_2018_00302
crossref_primary_10_1002_hbm_23516
crossref_primary_10_3389_fnbeh_2014_00075
crossref_primary_10_1007_s00213_010_1840_9
crossref_primary_10_1124_pr_115_011478
crossref_primary_10_1016_j_biopsych_2014_06_024
crossref_primary_10_1080_10673220600642945
crossref_primary_10_1016_j_neuroscience_2010_11_060
crossref_primary_10_1586_ern_10_160
crossref_primary_10_1016_j_neubiorev_2008_03_012
crossref_primary_10_1016_j_schres_2014_12_026
crossref_primary_10_1016_S0924_977X_96_00042_9
crossref_primary_10_1038_nn_2447
crossref_primary_10_1016_j_neulet_2009_03_043
crossref_primary_10_1002_14651858_CD011612_pub2
crossref_primary_10_1176_appi_ajp_2020_20081251
crossref_primary_10_1016_S0006_3223_99_00209_7
crossref_primary_10_1021_acs_jmedchem_0c01193
crossref_primary_10_1097_01_aco_0000189879_67092_12
crossref_primary_10_1017_S0140525X03250020
crossref_primary_10_1017_S0140525X03420025
crossref_primary_10_1007_s00213_009_1561_0
crossref_primary_10_1017_S0140525X03380021
crossref_primary_10_1017_S0140525X0349002X
crossref_primary_10_1016_j_bbr_2012_01_057
crossref_primary_10_1016_j_neuropharm_2018_01_017
crossref_primary_10_1038_npp_2013_170
crossref_primary_10_1038_sj_npp_1300438
crossref_primary_10_1016_S0306_9877_03_00175_0
crossref_primary_10_1093_cercor_bhh176
crossref_primary_10_1016_j_neuroscience_2004_01_039
crossref_primary_10_1124_mol_107_035170
crossref_primary_10_1177_0269881114568040
crossref_primary_10_1017_S0140525X03480023
crossref_primary_10_1038_npp_2014_228
crossref_primary_10_1016_j_conb_2015_11_001
crossref_primary_10_1177_0269881116667709
crossref_primary_10_1007_s00406_005_0563_0
crossref_primary_10_1016_j_pharmthera_2018_05_010
crossref_primary_10_1007_s00213_008_1071_5
crossref_primary_10_1016_S0165_0173_99_00002_8
crossref_primary_10_1017_S0140525X0333002X
crossref_primary_10_1080_02791072_2000_10400244
crossref_primary_10_3389_fpsyt_2018_00767
crossref_primary_10_1007_s00213_014_3782_0
crossref_primary_10_1016_j_neuroimage_2012_09_037
crossref_primary_10_1016_j_medengphy_2007_12_004
crossref_primary_10_1097_RLU_0000000000000502
crossref_primary_10_1152_jn_00661_2020
crossref_primary_10_1016_j_bandc_2006_11_002
crossref_primary_10_1007_s00702_007_0776_7
crossref_primary_10_1007_s00213_012_2811_0
crossref_primary_10_1017_S1461145714000261
crossref_primary_10_1684_epd_2012_0486
crossref_primary_10_1093_schbul_sbp074
crossref_primary_10_1007_s11836_007_0038_7
crossref_primary_10_1007_s00213_021_05923_7
crossref_primary_10_1046_j_1440_1819_2002_01023_x
crossref_primary_10_1038_s41398_018_0310_8
crossref_primary_10_1161_01_STR_29_6_1149
crossref_primary_10_1016_S0361_9230_99_00025_8
crossref_primary_10_1002_14651858_CD011611_pub2
crossref_primary_10_1016_S0924_9338_99_80686_5
crossref_primary_10_3389_fnmol_2019_00185
crossref_primary_10_1038_sj_npp_1300772
crossref_primary_10_1080_10298420290031397
crossref_primary_10_1177_0269881103017001698
crossref_primary_10_1515_revneuro_2019_0090
crossref_primary_10_1016_S0376_8716_98_00076_3
crossref_primary_10_1213_01_ane_0000231635_14872_40
crossref_primary_10_1038_npp_2014_26
crossref_primary_10_1016_j_yebeh_2007_02_014
crossref_primary_10_1016_j_euroneuro_2020_01_017
crossref_primary_10_1007_s00213_005_0154_9
crossref_primary_10_3389_fphar_2019_00455
crossref_primary_10_1097_00001504_199801000_00016
crossref_primary_10_1017_S0140525X03260027
crossref_primary_10_1017_S1092852900024743
crossref_primary_10_1016_S0149_7634_02_00011_8
crossref_primary_10_1017_S0140525X03430021
crossref_primary_10_1017_S1461145713000606
crossref_primary_10_1017_S0140525X03370025
crossref_primary_10_1038_npp_2014_210
crossref_primary_10_1016_j_pscychresns_2019_01_005
crossref_primary_10_1016_j_pnpbp_2007_07_009
crossref_primary_10_3389_fpsyt_2021_727117
Cites_doi 10.1111/j.1471-4159.1989.tb07257.x
10.1016/0893-133X(88)90012-7
10.1001/archneurpsyc.1959.02340150095011
10.1097/00001756-199504190-00011
10.1213/00000539-197405000-00009
10.1001/archpsyc.1987.01800140021003
10.1002/ana.410140604
10.1016/0006-3223(93)90002-U
10.1055/s-2007-1000662
10.1001/archpsyc.1959.03590060113013
10.1080/02791072.1988.10472511
10.1111/j.1600-0447.1987.tb02933.x
10.1002/cpt196563279
10.1016/0925-4927(94)90021-3
10.1016/0920-9964(93)90037-J
10.1016/0304-3940(80)90178-0
10.1007/BF01248936
10.1097/00000542-198206000-00005
10.1016/S0140-6736(83)90798-5
10.1176/ajp.143.2.175
10.1016/0014-2999(87)90546-2
10.1001/archpsyc.1987.01800140028004
10.1001/archpsyc.1966.01730150016003
10.1001/archpsyc.1982.04290030001001
10.1073/pnas.84.2.561
10.1016/0006-3223(91)90155-F
10.1038/282625a0
10.1038/jcbfm.1989.97
10.1016/0006-8993(87)91583-6
10.1111/j.1365-2044.1972.tb08186.x
10.1001/archpsyc.1994.03950020063007
10.1016/0024-3205(88)90116-6
10.1016/0165-1781(89)90040-1
10.1017/S0033291700052090
10.1016/0006-3223(92)90059-9
10.1111/j.1476-5381.1983.tb11031.x
10.1176/ajp.150.9.1325
10.1016/0925-4927(91)90003-9
10.1001/archpsyc.1984.01790140083010
10.1002/syn.890010514
10.1001/archpsyc.1994.03950030035004
10.1016/0165-1781(89)90147-9
10.1126/science.1835799
10.1002/ana.410150731
10.1016/0006-3223(89)90263-1
10.1016/0006-3223(87)90170-3
10.1001/archpsyc.1992.01820120054008
10.1192/bjp.160.2.179
10.1213/00000539-198412000-00007
10.1097/00004728-199107000-00020
10.1007/BF02180042
10.1016/0006-8993(86)90916-9
10.1016/0028-3908(72)90016-0
10.1016/0920-9964(91)90019-N
10.1016/0006-3223(91)90002-4
10.1097/00000542-197204000-00006
10.1016/0014-2999(89)90346-4
10.1073/pnas.79.9.3067
10.1111/j.1471-4159.1990.tb01943.x
10.1136/jnnp.49.10.1199
10.1016/S0010-440X(61)80033-3
10.1007/978-3-642-93353-0_5
10.1097/00007691-199502000-00016
10.1093/brain/115.2.367
10.1097/00000542-198004000-00009
10.1097/00004714-198504000-00003
10.1002/ana.410060502
10.1192/bjp.106.444.912
10.1016/0893-133X(89)90035-3
10.1176/ajp.142.5.564
10.1176/ajp.119.1.61
10.1126/science.8316836
10.1192/bjp.156.2.216
10.1126/science.174.4012.897
10.1016/0014-2999(92)90248-3
10.1177/070674376100600307
10.1093/schbul/16.3.425
10.1213/00000539-197503000-00001
10.1111/j.1471-4159.1990.tb01944.x
10.1176/ajp.144.2.151
10.1213/00000539-196811000-00022
10.1016/0006-3223(94)91197-5
ContentType Journal Article
Copyright 1997 Elsevier Science B.V.
Copyright_xml – notice: 1997 Elsevier Science B.V.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1016/S0924-977X(96)00039-9
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-7862
EndPage 24
ExternalDocumentID 10_1016_S0924_977X_96_00039_9
9088881
S0924977X96000399
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AACTN
AADFP
AADPK
AAEDT
AAEDW
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXLA
AAXUO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLVK
ABMAC
ABMZM
ABOYX
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACXNI
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEVXI
AFCTW
AFKWA
AFRHN
AFTJW
AFXIZ
AFYLN
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
AJUYK
AKRLJ
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDW
HMK
HMO
HMQ
HMT
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LX8
M29
M2V
M34
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OGGZJ
OH0
OKEIE
OU-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNS
SPCBC
SPT
SSB
SSH
SSN
SSP
SSY
SSZ
T5K
UNMZH
WUQ
XPP
Z5R
~G-
AAXKI
AFJKZ
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ID FETCH-LOGICAL-c507t-b0ade1386c737f1980d4bcfd91088db3a3de489da83c23e96a498699de1b7fcf3
IEDL.DBID .~1
ISSN 0924-977X
IngestDate Thu Sep 26 17:06:14 EDT 2024
Sat Sep 28 07:37:00 EDT 2024
Fri Feb 23 02:26:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Human
Ketamine
N-Methyl- d-aspartate (NMDA) receptor
PET (positron emission tomography)
Psychopathology
[ 18F]Fluorodeoxyglucose (FDG)
Model psychosis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-b0ade1386c737f1980d4bcfd91088db3a3de489da83c23e96a498699de1b7fcf3
PMID 9088881
PageCount 16
ParticipantIDs crossref_primary_10_1016_S0924_977X_96_00039_9
pubmed_primary_9088881
elsevier_sciencedirect_doi_10_1016_S0924_977X_96_00039_9
PublicationCentury 1900
PublicationDate 1997-02-01
PublicationDateYYYYMMDD 1997-02-01
PublicationDate_xml – month: 02
  year: 1997
  text: 1997-02-01
  day: 01
PublicationDecade 1990
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle European neuropsychopharmacology
PublicationTitleAlternate Eur Neuropsychopharmacol
PublicationYear 1997
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bachneff, S.A. (1991) Positron emission tomography and magnetic resonance imaging: A review and a local circuit neurons hypo(dys)function hypothesis of schizophrenia. Biol. Psychiatry 30, 857–886.
Bowers, M.B. and Freedman, D.X. (1966) `Psychedelic' experiences in acute psychoses. Arch. Gen. Psychiatry 15, 240–248.
Øye, I., Hustveit, O., Maurset, A., Ratti Moberg, E., Paulsen, O. and Skoglund, L.A. (1991) The chiral forms of ketamine as probes for NMDA-receptor function in humans. In Kameyama, T., Nabeshima, T. and Domino, E.F. (Eds.), NMDA Receptor Related Agents: Biochemistry, Pharmacology and Behavior. NPP Books, Ann Arbor, MI, pp. 381–389.
Krystal, J.H., Karper, L.P., Seibyl, J.P., Freeman, G.F., Delaney, R., Bremner, J.D., Heiniger, R., Bowers, M.B. and Charney, D.S. (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch. Gen. Psychiatry 51, 199–214.
Liddle, P.F., Friston, K.J., Frith, C.D., Hirsch, S.R. and Frackowiak, R.S.J. (1992) Patterns of cerebral blood flow in schizophrenia. Br. J. Psychiatry 160, 179–186.
Simpson, M.D.C., Slater, P., Royston, M.C. and Deakin, J.F.W. (1992) Alterations in phencyclidine and sigma binding sites in schizophrenic brains. Schizophrenia Res. 6, 41–48.
Bleuler, E. (1911) Dementia praecox oder die Gruppe der Schizophrenien. Deutike, Vienna.
Gur, R.E., Resnick, S.M., Alavi, A., Gur, R.C., Caroff, S., Damm, R., Silver, F.L., Seykin, A.J. and Chawluk, J.B. (1987a) Regional brain function in schizophrenia. I. A positron emission tomography study. Arch. Gen. Psychiatry 44, 119–125.
Talairach, J. and Tournoux, P. (1988) Co-planar Stereotaxic Atlas of the Human Brain. Thieme, Stuttgart.
Phelps, M.E., Huang, S.C., Hoffman, E.J., Selin, C., Sokoloff, L. and Kuhl, D.E. (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with [F
Lahti, A.C., Holcomb, H.H., Medoff, D.R. and Tamminga, C.A. (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. NeuroReport 6, 869–872.
Fahrenberg, J., Hampel, R. and Selg, H. (1984) Das Freiburger Persönlichkeitsinventar FPI. Hogrefe, Göttingen.
Reimherr, F.W., Wood, D.R. and Wender, P.H. (1986) The use of MK-801, a novel sympathomimetic, in adults with attention deficit disorders, residual type. Psychopharmacol. Bull. 22, 237–242.
H]MK-801 binding sites in postmortem human brain. J. Neurochem. 54, 1163–1168.
methyl-
Parellada, E., Catafau, A.M., Bernardo, M., Lomeña, F., González-Monclús, E. and Setoain, J. (1994) Prefrontal dysfunction in young acute neuroleptic-naive schizophrenic patients: a resting and activation SPECT study. Psychiatry Res. Neuroimag. 55, 131–139.
Farkas, T., Wolf, A.P., Jaeger, J., Brodie, J.D., Christman, D.R. and Fowler, J.S. (1984) Regional brain glucose metabolism in chronic schizophrenia. A positron emission transaxial tomographic study. Arch. Gen. Psychiatry 41, 293–300.
glucose receptor binding technique. Proc. Natl. Acad. Sci. USA 79, 3067–3070.
Dittrich, A. (1985) Ätiologie-unabhängige Strukturen veränderter Wachbewusstseinszustände. Ferdinand Enke Verlag, Stuttgart.
Buchsbaum, M.S., Potkin, S.G., Siegel, B.V.J., Lohr, J., Katz, M., Gottschalk, L.A., Gulasekaram, B., Marshall, J.F., Lottenberg, S., Teng, C.Y., Bunney, W.E., Abel, L. and Plon, L. (1992) Striatal metabolic rate and clinical response to neuroleptics in schizophrenia. Arch. Gen. Psychiatry 49, 966–974.
Scharfetter, C. (1990) EPP (Ego-Psychopathology). Psychiatric University Hospital of Zürich, Research Department, Zürich.
Bartlett, E.J., Wolkin, A., Brodie, J.D., Laska, E.M., Wolf, A. and Sanfilipo, M. (1991) Importance of pharmacologic controlling PET studies: effects of thiothixene and haloperidol on cerebral glucose utilisation in chronic schizophrenia. Psychiatry Res. Neuroimag. 40, 115–124.
Wilson, F.A.W., Scalaidhe, S.P.O. and Goldman-Rakic, P.S. (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260, 1955–1958.
O Positron emission tomography scanning in predominantly never-treated acute schizophrenic patients. Lancet ii, 1448–1452.
Ghoneim, M.M., Hinrichs, J.V., Mewaldt, S.P. and Petersen, R.C. (1985) Ketamine: Behavioral effects of subanesthetic doses. J. Clin. Psychopharmacol. 5, 70–77.
DeLisi, L.E., Buchsbaum, M.S., Holcomb, H.H., Langston, K.C., King, A.C., Kessler, R., Pickar, D., Carpenter, W.T., Morihisa, J.M., Magolin, R. and Weinberger, D.R. (1989) Increased temporal lobe glucose use in chronic schizophrenic patients. Biol. Psychiatry 25, 835–851.
glucose: validation of method. Ann. Neurol. 6, 371–388.
Piercey, M.F. and Ray, C.A. (1988) Dramatic limbic and cortical effects mediated by high affinity PCP receptors. Life Sci. 43, 379–385.
H]GABA release from cultured cortex neurons. Eur. J. Pharmacol. 143, 287–290.
Swerdlow, N.R., Braff, D.L., Taaid, N. and Geyer, M.A. (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch. Gen. Psychiatry 51, 139–154.
Harris, J.A., Biersner, R.J., Edwards, D. and Bailey, L.W. (1975) Attention, learning, and personality during ketamine emergence: a pilot study. Anesth. Analg. 54, 169–172.
Siegel, B.V.J., Buchsbaum, M.S., Bunney, W.E.J., Gottschalk, L.A., Haier, R.J., Lohr, J.B., Lottenberg, S., Najafi, A., Nuechterlein, K.H., Potkin, S.G. and Wu, J.C. (1993) Cortical-striatal-thalamic circuits and brain glucose metabolic activity in 70 unmedicated male schizophrenic patients. Am. J. Psychiatry 150, 1325–1336.
Nabeshima, T., Yamaguchi, K., Ishikawa, K., Furukawa, H. and Kameyama, T. (1987) Potentiation in phencyclidine-induced serotonin-mediated behaviors after intracerebroventricular administration of 5,7-dihydoxytryptamine in rats. J. Pharmacol. Exp. Ther. 243(3), 1139–1146.
Dittrich, A., von Arx, S. and Staub, S. (1985) International study on altered states of consciousness (ISASC). Summary of the results. Germ. J. Psychiatry 9, 319–339.
Mansbach, R.S. and Geyer, M.A. (1989) Effect of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 2, 299–308.
Dittrich, A., von Arx, S. and Staub, S. (1981) International study on altered states of consciousness (ISASC). Schweiz. Z. Psychol. Angew. Pschol. 40, 189–200.
Meibach, R.C., Glick, S.D., Cox, R. and Maayani, S. (1979) Localisation of phencyclidine-induced changes in brain energy metabolism. Nature 282, 625–626.
Kling, A.S., Metter, E.J., Riege, W.H. and Kuhl, D.E. (1986) Comparison of PET measurement of local brain glucose metabolism and CAT measurement of brain atrophy in chronic schizophrenia and depression. Am. J. Psychiatry 143, 175–180.
Domino, E.F., Chodoff, P. and Corssen, S. (1965) Pharmacological effects of Cl-581, a new dissociative anesthetic in man. Clin. Pharmacol. Ther. 6, 279–291.
Drejer, J. and Honoré, T. (1987) Phencyclidine analogues inhibit NMDA-stimulated
Kim, J.S., Kornhuber, H.H., Schmid-Burke, W. and Holzmüller, B. (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci. Lett. 20, 379–382.
Hiramatsu, M., Cho, A.K. and Nabeshima, T. (1989) Comparison of the behavioral and biochemical effects of the NMDA receptor antagonists, MK-801 and phencyclidine. Eur. J. Pharmacol. 166, 359–366.
Gur, R.E., Resnick, S.M., Gur, R.C., Alavi, A., Caroff, S., Kushner, M. and Reivich, M. (1987b) Regional brain function in schizophrenia. II. Repeated evaluation with positron emission tomography. Arch. Gen. Psychiatry 44, 126–129.
Moretti, R.J., Hassan, S.Z., Goodman, L.I. and Meltzer, H.Y. (1984) Comparison of ketamine and thiopental in healthy volunteers: Effects on mental status, mood, and personality. Anesth. Analg. 63, 1087–1096.
Dittrich, A. (1994) Psychological aspects of altered states of consciousness of the LSD type: measurements of their basic dimensions and prediction of individual differences. In: Pletscher, A. and Ladewig, D. (Eds.), 50 years of LSD. Current Status and Perspectives of Hallucinogens. Parthenon Publishing, New York, pp. 101–118.
Friston, K.J., Frith, C.D., Liddle, P.F. and Frackowiak, R.S. (1991) Plastic transformation of PET images. J. Comput. Assist. Tomogr. 15, 634–639.
Gur, R.E., Resnick, S.M. and Gur, R.C. (1989) Laterality and frontality of cerebral blood flow and metabolism in schizophrenia: relationship to symptom specificity. Psychiatry Res. 27, 325–334.
Sheppard, G., Manchanda, C., Gruzelier, J., Hirsch, S.R., Wise, R., Frackowiak, R.J.S. and Jones, T. (1983)
Gouzoulis, E., Hermle, L. and Sass, H. (1994) Psychedelische Erlebnisse zu Beginn produktiver Episoden endogener Psychosen. Nervenarzt 65, 198–201.
Slogoff, S., Allen, G.V., Wessels, J. and Cheney, D. (1974) Clinical experience with subanesthetic ketamine. Anesth. Analg. 53, 354–358.
Carlsson, A. (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1, 179–186.
Pribram, K.H. (1991) Brain and Perception. Lawrence Erlbaum Associates, Inc. Publishers, Hillsdale, NJ.
Luby, E.D., Gottlieb, J.S., Cohen, B.D., Rosenbaum, G. and Domino, E.F. (1962) Model psychoses and schizophrenia. Am. J. Psychiatry 119, 61–67.
Tc-Exametazime in unmedicated schizophrenic patients. Biol. Psychiatry 33, 487–495.
Piercey, M.F., Hoffmann, W.E. and Kaczkofsky, P. (1988) Functional evidence for PCP-like effects of the anti-stroke candidate MK-801. Psychopharmacology (Berlin) 96, 561–562.
Corssen, G., Miyasaka, M. and Domino, E.F. (1968) Changing concepts in pain control during surgery: Dissociative anesthesia with CI-581. A progress report. Anesth. Analg. 47, 745–759.
H]MK-801 binding sites in postmortem brain regions of schizophrenic patients. J. Neuronal. Transm. 77, 231–236.
Luby, E.D., Cohen, B.D., Rosenbaum, G., Gottlieb, J.S. and Kelley, R. (1959) Study of a new schizophrenomimetic drug – Sernyl. Arch. Neurol. Psychiatry 81, 363–369.
Olney, J.W., Labruyere, J., Wang, G., Wozniak, D.F., Price, M.T. and Sesma, M.A. (1991) NMDA antagonists neurotoxicity: mechanism and prevention. Science 254, 1515–1518.
Feng, N.
10.1016/S0924-977X(96)00039-9_BIB82
10.1016/S0924-977X(96)00039-9_BIB83
10.1016/S0924-977X(96)00039-9_BIB80
10.1016/S0924-977X(96)00039-9_BIB81
10.1016/S0924-977X(96)00039-9_BIB86
10.1016/S0924-977X(96)00039-9_BIB87
10.1016/S0924-977X(96)00039-9_BIB84
10.1016/S0924-977X(96)00039-9_BIB85
10.1016/S0924-977X(96)00039-9_BIB88
10.1016/S0924-977X(96)00039-9_BIB89
10.1016/S0924-977X(96)00039-9_BIB93
10.1016/S0924-977X(96)00039-9_BIB94
10.1016/S0924-977X(96)00039-9_BIB91
10.1016/S0924-977X(96)00039-9_BIB92
10.1016/S0924-977X(96)00039-9_BIB97
10.1016/S0924-977X(96)00039-9_BIB10
10.1016/S0924-977X(96)00039-9_BIB98
10.1016/S0924-977X(96)00039-9_BIB95
10.1016/S0924-977X(96)00039-9_BIB96
10.1016/S0924-977X(96)00039-9_BIB90
10.1016/S0924-977X(96)00039-9_BIB19
10.1016/S0924-977X(96)00039-9_BIB13
10.1016/S0924-977X(96)00039-9_BIB14
10.1016/S0924-977X(96)00039-9_BIB11
10.1016/S0924-977X(96)00039-9_BIB99
10.1016/S0924-977X(96)00039-9_BIB12
10.1016/S0924-977X(96)00039-9_BIB17
10.1016/S0924-977X(96)00039-9_BIB18
10.1016/S0924-977X(96)00039-9_BIB15
10.1016/S0924-977X(96)00039-9_BIB16
10.1016/S0924-977X(96)00039-9_BIB60
10.1016/S0924-977X(96)00039-9_BIB61
10.1016/S0924-977X(96)00039-9_BIB64
10.1016/S0924-977X(96)00039-9_BIB65
10.1016/S0924-977X(96)00039-9_BIB62
10.1016/S0924-977X(96)00039-9_BIB63
10.1016/S0924-977X(96)00039-9_BIB68
10.1016/S0924-977X(96)00039-9_BIB69
10.1016/S0924-977X(96)00039-9_BIB66
10.1016/S0924-977X(96)00039-9_BIB67
10.1016/S0924-977X(96)00039-9_BIB71
10.1016/S0924-977X(96)00039-9_BIB72
10.1016/S0924-977X(96)00039-9_BIB70
10.1016/S0924-977X(96)00039-9_BIB75
10.1016/S0924-977X(96)00039-9_BIB76
10.1016/S0924-977X(96)00039-9_BIB73
10.1016/S0924-977X(96)00039-9_BIB74
10.1016/S0924-977X(96)00039-9_BIB79
10.1016/S0924-977X(96)00039-9_BIB77
10.1016/S0924-977X(96)00039-9_BIB78
10.1016/S0924-977X(96)00039-9_BIB42
10.1016/S0924-977X(96)00039-9_BIB43
10.1016/S0924-977X(96)00039-9_BIB40
10.1016/S0924-977X(96)00039-9_BIB41
10.1016/S0924-977X(96)00039-9_BIB46
10.1016/S0924-977X(96)00039-9_BIB47
10.1016/S0924-977X(96)00039-9_BIB44
10.1016/S0924-977X(96)00039-9_BIB45
10.1016/S0924-977X(96)00039-9_BIB48
10.1016/S0924-977X(96)00039-9_BIB49
10.1016/S0924-977X(96)00039-9_BIB100
10.1016/S0924-977X(96)00039-9_BIB50
10.1016/S0924-977X(96)00039-9_BIB101
10.1016/S0924-977X(96)00039-9_BIB53
10.1016/S0924-977X(96)00039-9_BIB54
10.1016/S0924-977X(96)00039-9_BIB51
10.1016/S0924-977X(96)00039-9_BIB52
10.1016/S0924-977X(96)00039-9_BIB57
10.1016/S0924-977X(96)00039-9_BIB58
10.1016/S0924-977X(96)00039-9_BIB55
10.1016/S0924-977X(96)00039-9_BIB56
10.1016/S0924-977X(96)00039-9_BIB59
10.1016/S0924-977X(96)00039-9_BIB20
10.1016/S0924-977X(96)00039-9_BIB21
10.1016/S0924-977X(96)00039-9_BIB24
10.1016/S0924-977X(96)00039-9_BIB25
10.1016/S0924-977X(96)00039-9_BIB22
10.1016/S0924-977X(96)00039-9_BIB23
10.1016/S0924-977X(96)00039-9_BIB28
10.1016/S0924-977X(96)00039-9_BIB29
10.1016/S0924-977X(96)00039-9_BIB26
10.1016/S0924-977X(96)00039-9_BIB27
10.1016/S0924-977X(96)00039-9_BIB31
10.1016/S0924-977X(96)00039-9_BIB32
10.1016/S0924-977X(96)00039-9_BIB30
10.1016/S0924-977X(96)00039-9_BIB9
10.1016/S0924-977X(96)00039-9_BIB8
10.1016/S0924-977X(96)00039-9_BIB3
10.1016/S0924-977X(96)00039-9_BIB35
10.1016/S0924-977X(96)00039-9_BIB2
10.1016/S0924-977X(96)00039-9_BIB36
10.1016/S0924-977X(96)00039-9_BIB1
10.1016/S0924-977X(96)00039-9_BIB33
10.1016/S0924-977X(96)00039-9_BIB34
10.1016/S0924-977X(96)00039-9_BIB7
10.1016/S0924-977X(96)00039-9_BIB39
10.1016/S0924-977X(96)00039-9_BIB6
10.1016/S0924-977X(96)00039-9_BIB5
10.1016/S0924-977X(96)00039-9_BIB37
10.1016/S0924-977X(96)00039-9_BIB4
10.1016/S0924-977X(96)00039-9_BIB38
References_xml – ident: 10.1016/S0924-977X(96)00039-9_BIB21
  doi: 10.1111/j.1471-4159.1989.tb07257.x
– ident: 10.1016/S0924-977X(96)00039-9_BIB14
  doi: 10.1016/0893-133X(88)90012-7
– ident: 10.1016/S0924-977X(96)00039-9_BIB59
  doi: 10.1001/archneurpsyc.1959.02340150095011
– ident: 10.1016/S0924-977X(96)00039-9_BIB25
– ident: 10.1016/S0924-977X(96)00039-9_BIB57
  doi: 10.1097/00001756-199504190-00011
– ident: 10.1016/S0924-977X(96)00039-9_BIB2
– ident: 10.1016/S0924-977X(96)00039-9_BIB40
– ident: 10.1016/S0924-977X(96)00039-9_BIB31
– ident: 10.1016/S0924-977X(96)00039-9_BIB87
  doi: 10.1213/00000539-197405000-00009
– ident: 10.1016/S0924-977X(96)00039-9_BIB41
  doi: 10.1001/archpsyc.1987.01800140021003
– ident: 10.1016/S0924-977X(96)00039-9_BIB77
  doi: 10.1002/ana.410140604
– ident: 10.1016/S0924-977X(96)00039-9_BIB30
  doi: 10.1016/0006-3223(93)90002-U
– ident: 10.1016/S0924-977X(96)00039-9_BIB47
  doi: 10.1055/s-2007-1000662
– ident: 10.1016/S0924-977X(96)00039-9_BIB78
  doi: 10.1001/archpsyc.1959.03590060113013
– ident: 10.1016/S0924-977X(96)00039-9_BIB45
  doi: 10.1080/02791072.1988.10472511
– ident: 10.1016/S0924-977X(96)00039-9_BIB97
  doi: 10.1111/j.1600-0447.1987.tb02933.x
– ident: 10.1016/S0924-977X(96)00039-9_BIB27
  doi: 10.1002/cpt196563279
– ident: 10.1016/S0924-977X(96)00039-9_BIB69
  doi: 10.1016/0925-4927(94)90021-3
– ident: 10.1016/S0924-977X(96)00039-9_BIB51
  doi: 10.1016/0920-9964(93)90037-J
– ident: 10.1016/S0924-977X(96)00039-9_BIB52
  doi: 10.1016/0304-3940(80)90178-0
– ident: 10.1016/S0924-977X(96)00039-9_BIB54
  doi: 10.1007/BF01248936
– ident: 10.1016/S0924-977X(96)00039-9_BIB19
  doi: 10.1097/00000542-198206000-00005
– ident: 10.1016/S0924-977X(96)00039-9_BIB83
  doi: 10.1016/S0140-6736(83)90798-5
– ident: 10.1016/S0924-977X(96)00039-9_BIB53
  doi: 10.1176/ajp.143.2.175
– ident: 10.1016/S0924-977X(96)00039-9_BIB28
  doi: 10.1016/0014-2999(87)90546-2
– ident: 10.1016/S0924-977X(96)00039-9_BIB94
– ident: 10.1016/S0924-977X(96)00039-9_BIB42
  doi: 10.1001/archpsyc.1987.01800140028004
– ident: 10.1016/S0924-977X(96)00039-9_BIB8
  doi: 10.1001/archpsyc.1966.01730150016003
– ident: 10.1016/S0924-977X(96)00039-9_BIB23
– ident: 10.1016/S0924-977X(96)00039-9_BIB10
  doi: 10.1001/archpsyc.1982.04290030001001
– ident: 10.1016/S0924-977X(96)00039-9_BIB29
  doi: 10.1073/pnas.84.2.561
– ident: 10.1016/S0924-977X(96)00039-9_BIB84
  doi: 10.1016/0006-3223(91)90155-F
– ident: 10.1016/S0924-977X(96)00039-9_BIB62
  doi: 10.1038/282625a0
– ident: 10.1016/S0924-977X(96)00039-9_BIB35
  doi: 10.1038/jcbfm.1989.97
– ident: 10.1016/S0924-977X(96)00039-9_BIB91
– ident: 10.1016/S0924-977X(96)00039-9_BIB68
– ident: 10.1016/S0924-977X(96)00039-9_BIB95
  doi: 10.1016/0006-8993(87)91583-6
– ident: 10.1016/S0924-977X(96)00039-9_BIB17
  doi: 10.1111/j.1365-2044.1972.tb08186.x
– ident: 10.1016/S0924-977X(96)00039-9_BIB88
  doi: 10.1001/archpsyc.1994.03950020063007
– ident: 10.1016/S0924-977X(96)00039-9_BIB26
– ident: 10.1016/S0924-977X(96)00039-9_BIB71
  doi: 10.1016/0024-3205(88)90116-6
– ident: 10.1016/S0924-977X(96)00039-9_BIB16
  doi: 10.1016/0165-1781(89)90040-1
– ident: 10.1016/S0924-977X(96)00039-9_BIB79
  doi: 10.1017/S0033291700052090
– ident: 10.1016/S0924-977X(96)00039-9_BIB48
  doi: 10.1016/0006-3223(92)90059-9
– ident: 10.1016/S0924-977X(96)00039-9_BIB1
  doi: 10.1111/j.1476-5381.1983.tb11031.x
– ident: 10.1016/S0924-977X(96)00039-9_BIB85
  doi: 10.1176/ajp.150.9.1325
– ident: 10.1016/S0924-977X(96)00039-9_BIB6
  doi: 10.1016/0925-4927(91)90003-9
– ident: 10.1016/S0924-977X(96)00039-9_BIB32
  doi: 10.1001/archpsyc.1984.01790140083010
– ident: 10.1016/S0924-977X(96)00039-9_BIB67
– ident: 10.1016/S0924-977X(96)00039-9_BIB96
– ident: 10.1016/S0924-977X(96)00039-9_BIB90
  doi: 10.1002/syn.890010514
– ident: 10.1016/S0924-977X(96)00039-9_BIB56
  doi: 10.1001/archpsyc.1994.03950030035004
– ident: 10.1016/S0924-977X(96)00039-9_BIB43
  doi: 10.1016/0165-1781(89)90147-9
– ident: 10.1016/S0924-977X(96)00039-9_BIB66
  doi: 10.1126/science.1835799
– ident: 10.1016/S0924-977X(96)00039-9_BIB9
  doi: 10.1002/ana.410150731
– ident: 10.1016/S0924-977X(96)00039-9_BIB22
  doi: 10.1016/0006-3223(89)90263-1
– ident: 10.1016/S0924-977X(96)00039-9_BIB11
  doi: 10.1016/0006-3223(87)90170-3
– ident: 10.1016/S0924-977X(96)00039-9_BIB73
– ident: 10.1016/S0924-977X(96)00039-9_BIB13
  doi: 10.1001/archpsyc.1992.01820120054008
– ident: 10.1016/S0924-977X(96)00039-9_BIB58
  doi: 10.1192/bjp.160.2.179
– ident: 10.1016/S0924-977X(96)00039-9_BIB63
  doi: 10.1213/00000539-198412000-00007
– ident: 10.1016/S0924-977X(96)00039-9_BIB36
  doi: 10.1097/00004728-199107000-00020
– ident: 10.1016/S0924-977X(96)00039-9_BIB24
– ident: 10.1016/S0924-977X(96)00039-9_BIB72
  doi: 10.1007/BF02180042
– ident: 10.1016/S0924-977X(96)00039-9_BIB55
  doi: 10.1016/0006-8993(86)90916-9
– ident: 10.1016/S0924-977X(96)00039-9_BIB99
  doi: 10.1016/0028-3908(72)90016-0
– ident: 10.1016/S0924-977X(96)00039-9_BIB86
  doi: 10.1016/0920-9964(91)90019-N
– ident: 10.1016/S0924-977X(96)00039-9_BIB3
  doi: 10.1016/0006-3223(91)90002-4
– ident: 10.1016/S0924-977X(96)00039-9_BIB38
  doi: 10.1097/00000542-197204000-00006
– ident: 10.1016/S0924-977X(96)00039-9_BIB76
– ident: 10.1016/S0924-977X(96)00039-9_BIB82
– ident: 10.1016/S0924-977X(96)00039-9_BIB49
  doi: 10.1016/0014-2999(89)90346-4
– ident: 10.1016/S0924-977X(96)00039-9_BIB44
  doi: 10.1073/pnas.79.9.3067
– ident: 10.1016/S0924-977X(96)00039-9_BIB75
  doi: 10.1111/j.1471-4159.1990.tb01943.x
– ident: 10.1016/S0924-977X(96)00039-9_BIB92
  doi: 10.1136/jnnp.49.10.1199
– ident: 10.1016/S0924-977X(96)00039-9_BIB4
  doi: 10.1016/S0010-440X(61)80033-3
– ident: 10.1016/S0924-977X(96)00039-9_BIB80
  doi: 10.1007/978-3-642-93353-0_5
– ident: 10.1016/S0924-977X(96)00039-9_BIB33
  doi: 10.1097/00007691-199502000-00016
– ident: 10.1016/S0924-977X(96)00039-9_BIB37
  doi: 10.1093/brain/115.2.367
– ident: 10.1016/S0924-977X(96)00039-9_BIB81
– ident: 10.1016/S0924-977X(96)00039-9_BIB65
  doi: 10.1097/00000542-198004000-00009
– ident: 10.1016/S0924-977X(96)00039-9_BIB39
  doi: 10.1097/00004714-198504000-00003
– ident: 10.1016/S0924-977X(96)00039-9_BIB70
  doi: 10.1002/ana.410060502
– ident: 10.1016/S0924-977X(96)00039-9_BIB20
  doi: 10.1192/bjp.106.444.912
– ident: 10.1016/S0924-977X(96)00039-9_BIB61
  doi: 10.1016/0893-133X(89)90035-3
– ident: 10.1016/S0924-977X(96)00039-9_BIB100
  doi: 10.1176/ajp.142.5.564
– ident: 10.1016/S0924-977X(96)00039-9_BIB60
  doi: 10.1176/ajp.119.1.61
– ident: 10.1016/S0924-977X(96)00039-9_BIB98
  doi: 10.1126/science.8316836
– ident: 10.1016/S0924-977X(96)00039-9_BIB7
– ident: 10.1016/S0924-977X(96)00039-9_BIB12
  doi: 10.1192/bjp.156.2.216
– ident: 10.1016/S0924-977X(96)00039-9_BIB34
  doi: 10.1126/science.174.4012.897
– ident: 10.1016/S0924-977X(96)00039-9_BIB64
– ident: 10.1016/S0924-977X(96)00039-9_BIB101
  doi: 10.1016/0014-2999(92)90248-3
– ident: 10.1016/S0924-977X(96)00039-9_BIB89
– ident: 10.1016/S0924-977X(96)00039-9_BIB5
  doi: 10.1177/070674376100600307
– ident: 10.1016/S0924-977X(96)00039-9_BIB15
  doi: 10.1093/schbul/16.3.425
– ident: 10.1016/S0924-977X(96)00039-9_BIB46
  doi: 10.1213/00000539-197503000-00001
– ident: 10.1016/S0924-977X(96)00039-9_BIB74
  doi: 10.1111/j.1471-4159.1990.tb01944.x
– ident: 10.1016/S0924-977X(96)00039-9_BIB93
  doi: 10.1176/ajp.144.2.151
– ident: 10.1016/S0924-977X(96)00039-9_BIB18
  doi: 10.1213/00000539-196811000-00022
– ident: 10.1016/S0924-977X(96)00039-9_BIB50
  doi: 10.1016/0006-3223(94)91197-5
SSID ssj0015339
Score 2.0275867
Snippet To date, the ketamine/PCP model of psychosis has been proposed to be one of the best pharmacological models to mimic schizophrenic psychosis in healthy...
SourceID crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 9
SubjectTerms [ 18F]Fluorodeoxyglucose (FDG)
Adult
Brain Chemistry - drug effects
Deoxyglucose - analogs & derivatives
Excitatory Amino Acid Antagonists - pharmacokinetics
Female
Fluorine Radioisotopes
Fluorodeoxyglucose F18
Frontal Lobe - metabolism
Functional Laterality - physiology
Glucose - metabolism
Human
Humans
Ketamine
Ketamine - pharmacokinetics
Male
Model psychosis
N-Methyl- d-aspartate (NMDA) receptor
PET (positron emission tomography)
Psychometrics
Psychopathology
Psychoses, Substance-Induced - metabolism
Psychoses, Substance-Induced - psychology
Surveys and Questionnaires
Tomography, Emission-Computed
Title Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [ 18F]fluorodeoxyglucose (FDG)
URI https://dx.doi.org/10.1016/S0924-977X(96)00039-9
https://www.ncbi.nlm.nih.gov/pubmed/9088881
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF_EvvSltFXRfsg8iNyB8ZLbNdl9FOt5eihHe9KDUkL2IzWoifQi9F76l_SPdSab8_RJ6FNg2ZmEzDDz2-Q3M4zt4PksMiG3gdHWBQKdJtCYloIsVFbEwtnIUaHw-UU8vBRn04PpCjta1MIQrbKN_T6mN9G6Xem1b7N3VxS9byEdHZJkihicKkypiE9g-kOf3v_7SPMgOOP77fVFQLuXVTxeQ7PYUXG3URKoF_LTk-QzeMvetKgRDv2DvWMrrnzPdse-7fR8DybLKqrZHuzCeNmQer7G_p27Gm19Uxi4wmMn-mJFNZCIvyErLfhCLBpN3OyHogREhXCNQreIQaEZlgNV3m6cFTMgtvwvaAhfqAtoZhx9dYO6um1bYENnfDzpNvp_QCQHP_Ob-wqDtav-zFuaPHQGX0666-xycDw5GgbtVIbAIHas0ZSZdRGXsUl4kkdKhlZok1vEHVJazTNunZDKZpKbPncqzoSSsVIopJPc5HyDrZZV6TYZJLpvosyFrh_n4sCEWZhoQ3_quNKhFnyL7S9skd755hvpkpWGxkvJeKkiZh7KpGqLyYXF0mdelGKCeEl0w1v48U7EAJMy-vD_Oj-y177bLbFfPrHV-ve9-4wYptbbjZNus1eHp6PhBV1HX7-PHgDAjvJ1
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF5ROLSXCgqo9EHnUKFEwsTOLvbuEQFp2hIUqUGKVFWW9-HWKtioMRK59JfwY5nxOqSckHpd7cxantHMt_Y3M4x9xPtZZEJuA6OtCwQ6TaAxLQVZqKyIhbORo0Lh0Xk8vBBfpofTFXa8qIUhWmUb-31Mb6J1u9Jr32bvuih630K6OiTJFDE4VZiqZ2xNED5Gpz74-8DzIDzjG-71RUDbl2U8XkWz2FFxt9ESqCcS1D_ZZ7DOXrawEY78k22wFVe-Yntj33d6vg-TZRnVbB_2YLzsSD3fZHcjV6OxLwsDv_Deic5YUREkAnDISgu-EotmEzf7oSgBYSH8RqErBKHQTMuBKm83zooZEF3-JzSML9QFNDSOPrtBXV21PbChMz6ddBv93yGSgx_55U2F0dpVt_OWJw-dwcmn7ha7GJxOjodBO5YhMAgea7RlZl3EZWwSnuSRkqEV2uQWgYeUVvOMWyekspnkps-dijOhZKwUCukkNznfZqtlVbrXDBLdN1HmQtePc3FowixMtKFfdVzpUAu-ww4WtkivffeNdElLQ-OlZLxUETUPZVK1w-TCYukjN0oxQzwluu0t_HASUcCkjN78v84P7PlwMjpLzz6ff33LXvjWt0SFecdW6z837j0CmlrvNg57D9cB8ms
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+hyperfrontality+and+psychopathology+in+the+ketamine+model+of+psychosis+using+positron+emission+tomography+%28PET%29+and+%5B18F%5Dfluorodeoxyglucose+%28FDG%29&rft.jtitle=European+neuropsychopharmacology&rft.au=Vollenweider%2C+F+X&rft.au=Leenders%2C+K+L&rft.au=Scharfetter%2C+C&rft.au=Antonini%2C+A&rft.date=1997-02-01&rft.issn=0924-977X&rft.volume=7&rft.issue=1&rft.spage=9&rft_id=info:doi/10.1016%2FS0924-977X%2896%2900039-9&rft_id=info%3Apmid%2F9088881&rft.externalDocID=9088881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-977X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-977X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-977X&client=summon