A unified Petrov–Galerkin spectral method for fractional PDEs
Existing numerical methods for fractional PDEs suffer from low accuracy and inefficiency in dealing with three-dimensional problems or with long-time integrations. We develop a unified and spectrally accurate Petrov–Galerkin (PG) spectral method for a weak formulation of the general linear Fractiona...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 283; no. C; pp. 1545 - 1569 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2015
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0045-7825 1879-2138 |
DOI | 10.1016/j.cma.2014.10.051 |
Cover
Loading…
Abstract | Existing numerical methods for fractional PDEs suffer from low accuracy and inefficiency in dealing with three-dimensional problems or with long-time integrations. We develop a unified and spectrally accurate Petrov–Galerkin (PG) spectral method for a weak formulation of the general linear Fractional Partial Differential Equations (FPDEs) of the form 0Dt2τu+∑j=1dcj[ajDxj2μju]+γu=f, where 2τ, μj∈(0,1), in a (1+d)-dimensional space–time domain subject to Dirichlet initial and boundary conditions. We perform the stability analysis (in 1-D) and the corresponding convergence study of the scheme (in multi-D). The unified PG spectral method applies to the entire family of linear hyperbolic-, parabolic- and elliptic-like equations. We develop the PG method based on a new spectral theory for fractional Sturm–Liouville problems (FSLPs), recently introduced in Zayernouri and Karniadakis (2013). Specifically, we employ the eigenfunctions of the FSLP of first kind (FSLP-I), called Jacobi poly-fractonomials, as temporal/spatial bases. Next, we construct a different space for test functions from poly-fractonomial eigenfunctions of the FSLP of second kind (FSLP-II). Besides the high-order spatial accuracy of the PG method, we demonstrate its efficiency and spectral accuracy in time-integration schemes for solving time-dependent FPDEs as well, rather than employing algebraically accurate traditional methods, especially when 2τ=1. Finally, we formulate a general fast linear solver based on the eigenpairs of the corresponding temporal and spatial mass matrices with respect to the stiffness matrices, which reduces the computational cost drastically. We demonstrate that this framework can reduce to hyperbolic FPDEs such as time- and space-fractional advection (TSFA), parabolic FPDEs such as time- and space-fractional diffusion (TSFD) model, and elliptic FPDEs such as fractional Helmholtz/Poisson equations with the same ease and cost. Several numerical tests confirm the efficiency and spectral convergence of the unified PG spectral method for the aforementioned families of FPDEs. Moreover, we demonstrate the computational efficiency of the new approach in higher-dimensions e.g., (1+3), (1+5) and (1+9)-dimensional problems. |
---|---|
AbstractList | Existing numerical methods for fractional PDEs suffer from low accuracy and inefficiency in dealing with three-dimensional problems or with long-time integrations. We develop a unified and spectrally accurate Petrov–Galerkin (PG) spectral method for a weak formulation of the general linear Fractional Partial Differential Equations (FPDEs) of the form 0Dt2τu+∑j=1dcj[ajDxj2μju]+γu=f, where 2τ, μj∈(0,1), in a (1+d)-dimensional space–time domain subject to Dirichlet initial and boundary conditions. We perform the stability analysis (in 1-D) and the corresponding convergence study of the scheme (in multi-D). The unified PG spectral method applies to the entire family of linear hyperbolic-, parabolic- and elliptic-like equations. We develop the PG method based on a new spectral theory for fractional Sturm–Liouville problems (FSLPs), recently introduced in Zayernouri and Karniadakis (2013). Specifically, we employ the eigenfunctions of the FSLP of first kind (FSLP-I), called Jacobi poly-fractonomials, as temporal/spatial bases. Next, we construct a different space for test functions from poly-fractonomial eigenfunctions of the FSLP of second kind (FSLP-II). Besides the high-order spatial accuracy of the PG method, we demonstrate its efficiency and spectral accuracy in time-integration schemes for solving time-dependent FPDEs as well, rather than employing algebraically accurate traditional methods, especially when 2τ=1. Finally, we formulate a general fast linear solver based on the eigenpairs of the corresponding temporal and spatial mass matrices with respect to the stiffness matrices, which reduces the computational cost drastically. We demonstrate that this framework can reduce to hyperbolic FPDEs such as time- and space-fractional advection (TSFA), parabolic FPDEs such as time- and space-fractional diffusion (TSFD) model, and elliptic FPDEs such as fractional Helmholtz/Poisson equations with the same ease and cost. Several numerical tests confirm the efficiency and spectral convergence of the unified PG spectral method for the aforementioned families of FPDEs. Moreover, we demonstrate the computational efficiency of the new approach in higher-dimensions e.g., (1+3), (1+5) and (1+9)-dimensional problems. |
Author | Karniadakis, George Em Ainsworth, Mark Zayernouri, Mohsen |
Author_xml | – sequence: 1 givenname: Mohsen surname: Zayernouri fullname: Zayernouri, Mohsen – sequence: 2 givenname: Mark surname: Ainsworth fullname: Ainsworth, Mark – sequence: 3 givenname: George Em surname: Karniadakis fullname: Karniadakis, George Em email: george_karniadakis@brown.edu |
BackLink | https://www.osti.gov/biblio/1255337$$D View this record in Osti.gov |
BookMark | eNp9kM1KAzEUhYNUsK0-gLvB_Yz5mUxSXEiptQoFu9B1SPNDU6dJScaCO9_BN_RJzFBXLno3l3u53-WcMwIDH7wB4BrBCkHU3G4rtZMVhqjOcwUpOgNDxNmkxIjwARhCWNOScUwvwCilLczFER6C-2nx4Z11Rhcr08Vw-Pn6XsjWxHfni7Q3qouyLXam2wRd2BALG6XqXPB5u3qYp0twbmWbzNVfH4O3x_nr7KlcviyeZ9NlqShkXcn1WlldE11bRaSUE94Qq7GuDYNryZhuGoUp44jVFltLKGfUKqmMUlhPCCRjcHP8G1LnRFKuM2qjgvdZoUCYUkJYPkLHIxVDStFYsY9uJ-OnQFD0MYmtyDGJPqZ-lWPKDPvH5N-yd5idu_YkeXckTfZ9cCb2soxXRrvYq9LBnaB_ARTlhRk |
CitedBy_id | crossref_primary_10_1007_s42967_020_00070_w crossref_primary_10_1016_j_apm_2015_01_029 crossref_primary_10_1137_19M1261225 crossref_primary_10_1016_j_jcp_2018_02_014 crossref_primary_10_1007_s10915_019_00953_y crossref_primary_10_1016_j_cma_2024_117189 crossref_primary_10_1007_s10915_019_00979_2 crossref_primary_10_1016_j_apnum_2022_06_013 crossref_primary_10_1016_j_jcp_2015_06_030 crossref_primary_10_1016_j_jcp_2016_01_041 crossref_primary_10_1017_S096249292000001X crossref_primary_10_3390_fractalfract2010013 crossref_primary_10_1007_s10915_017_0369_z crossref_primary_10_1007_s10092_014_0132_x crossref_primary_10_1016_j_cam_2019_03_032 crossref_primary_10_32513_tbilisi_1593223223 crossref_primary_10_1007_s11043_022_09545_0 crossref_primary_10_1016_j_apnum_2020_05_014 crossref_primary_10_1016_j_cma_2016_05_030 crossref_primary_10_3390_fractalfract9020078 crossref_primary_10_1007_s10543_018_0697_x crossref_primary_10_1016_j_amc_2024_128954 crossref_primary_10_1080_00207160_2024_2395977 crossref_primary_10_1515_fca_2017_0058 crossref_primary_10_1007_s11425_019_1720_1 crossref_primary_10_1108_AJMS_02_2021_0052 crossref_primary_10_1016_j_camwa_2021_06_016 crossref_primary_10_1007_s00466_020_01853_x crossref_primary_10_1016_j_camwa_2019_04_003 crossref_primary_10_1016_j_jcp_2017_02_060 crossref_primary_10_1080_00207160_2016_1184262 crossref_primary_10_1137_15M1061496 crossref_primary_10_1016_j_jcp_2019_06_005 crossref_primary_10_1016_j_camwa_2017_07_022 crossref_primary_10_1515_cmam_2021_0118 crossref_primary_10_1016_j_amc_2021_126229 crossref_primary_10_1137_17M1113060 crossref_primary_10_1186_s13661_024_01948_x crossref_primary_10_1063_5_0091043 crossref_primary_10_1007_s40314_019_0845_1 crossref_primary_10_1007_s41779_018_0275_3 crossref_primary_10_1515_fca_2018_0079 crossref_primary_10_1016_j_jcp_2015_03_063 crossref_primary_10_1016_j_apnum_2022_07_016 crossref_primary_10_1016_j_enganabound_2023_10_005 crossref_primary_10_1002_nme_6144 crossref_primary_10_1002_num_22554 crossref_primary_10_1002_mma_6907 crossref_primary_10_1016_j_apnum_2019_01_005 crossref_primary_10_1016_j_jcp_2015_11_047 crossref_primary_10_1080_00207160_2017_1343941 crossref_primary_10_1016_j_cnsns_2022_107017 crossref_primary_10_1016_j_cnsns_2021_106047 crossref_primary_10_1137_140985536 crossref_primary_10_1016_j_jcp_2015_01_025 crossref_primary_10_1007_s00466_020_01848_8 crossref_primary_10_1016_j_cnsns_2020_105510 crossref_primary_10_1016_j_jocs_2024_102364 crossref_primary_10_1016_j_jcp_2017_12_035 crossref_primary_10_1515_fca_2020_0067 crossref_primary_10_1137_16M1094257 crossref_primary_10_1002_num_23134 crossref_primary_10_1002_num_22320 crossref_primary_10_1515_cmam_2017_0026 crossref_primary_10_1016_j_apnum_2017_03_009 crossref_primary_10_1515_cmam_2017_0027 crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_118 crossref_primary_10_1186_s13662_020_02978_2 crossref_primary_10_1016_j_camwa_2019_08_001 crossref_primary_10_1016_j_cma_2017_06_006 crossref_primary_10_1007_s11071_015_2588_x crossref_primary_10_1016_j_camwa_2016_04_042 crossref_primary_10_1137_140988218 crossref_primary_10_1137_17M1118816 crossref_primary_10_1016_j_cnsns_2019_01_005 crossref_primary_10_1007_s00366_016_0491_9 crossref_primary_10_1007_s42967_019_00012_1 crossref_primary_10_1137_141001299 crossref_primary_10_1142_S0129183123500419 crossref_primary_10_1007_s10915_020_01365_z crossref_primary_10_1016_j_cma_2018_12_011 crossref_primary_10_1016_j_amc_2019_05_017 crossref_primary_10_1016_j_apnum_2019_05_007 crossref_primary_10_1016_j_jcp_2018_07_041 crossref_primary_10_1007_s10915_019_01052_8 crossref_primary_10_1007_s10915_019_01056_4 crossref_primary_10_1007_s10915_021_01419_w crossref_primary_10_1515_cmam_2017_0036 |
Cites_doi | 10.1137/130935884 10.1017/S0022112064000040 10.1137/130940967 10.1016/j.jcp.2012.12.013 10.1016/S0378-4371(99)00469-0 10.1016/j.camwa.2011.07.024 10.1016/0165-2125(85)90019-8 10.1016/j.jcp.2013.06.031 10.1016/j.jcp.2004.11.025 10.1029/2000WR900031 10.1137/0725022 10.1137/080718942 10.1137/0517050 10.1016/j.jcp.2013.09.039 10.4208/cicp.020709.221209a 10.1007/BF00946746 10.1016/j.jcp.2007.02.001 10.1186/1687-1847-2012-8 10.1155/2013/306746 10.1016/0370-1573(90)90099-N 10.1016/j.cnsns.2010.09.007 10.1016/j.cam.2005.06.005 10.1016/j.jcp.2013.09.041 10.1016/j.jde.2013.06.016 10.1016/j.apnum.2005.03.003 10.1016/j.camwa.2004.10.003 10.1093/imanum/3.4.439 10.1016/j.amc.2005.09.059 10.1137/130933216 10.1016/S0370-1573(00)00070-3 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1016/j.cma.2014.10.051 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2138 |
EndPage | 1569 |
ExternalDocumentID | 1255337 10_1016_j_cma_2014_10_051 S0045782514004216 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADIYS ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH VH1 VOH WUQ ZY4 AALMO AAPBV ABPIF ABPTK OTOTI PQEST |
ID | FETCH-LOGICAL-c507t-8dbcfd43d4fc3aaa9863fd2d4e70ba77d66c2578174f2ff35875fcacecc2d9303 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 |
IngestDate | Fri May 19 02:09:14 EDT 2023 Thu Apr 24 23:07:42 EDT 2025 Tue Jul 01 02:00:51 EDT 2025 Fri Feb 23 02:24:27 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Fractional basis/test functions Unified fast FPDE solver Spectral convergence Jacobi poly-fractonomial |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-8dbcfd43d4fc3aaa9863fd2d4e70ba77d66c2578174f2ff35875fcacecc2d9303 |
Notes | USDOE SC0009247 |
OpenAccessLink | https://www.osti.gov/biblio/1255337 |
PageCount | 25 |
ParticipantIDs | osti_scitechconnect_1255337 crossref_primary_10_1016_j_cma_2014_10_051 crossref_citationtrail_10_1016_j_cma_2014_10_051 elsevier_sciencedirect_doi_10_1016_j_cma_2014_10_051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2015 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Doha, Bhrawy, Ezz-Eldien (br000170) 2011; 62 Karniadakis, Kirby (br000245) 2003 Sun, Wu (br000120) 2006; 56 Zayernouri, Cao, Zhang, Karniadakis (br000205) 2014; 36 Podlubny (br000010) 1999 Rawashdeh (br000140) 2006; 176 Zayernouri, Karniadakis (br000210) 2013; 252 Cao, Xu (br000130) 2013; 238 Piret, Hanert (br000165) 2012 Lubich (br000100) 1983; 3 Keller (br000035) 1981; 32 Zayernouri, Karniadakis (br000215) 2014; 36 A. Bhrawy, M. Alghamdia, A New Legendre spectral Galerkin and pseudo-spectral approximations for fractional initial value problems, 2013. Li, Xu (br000145) 2009; 47 Zayernouri, Karniadakis (br000200) 2014; 257 Zayernouri, Karniadakis (br000220) 2014; 36 Sanz-Serna (br000110) 1988; 25 Gustafsson, Kreiss, Oliger (br000080) 1995 Bouchaud, Georges (br000050) 1990; 195 Zayernouri, Karniadakis (br000225) 2014 Sugimoto, Kakutani (br000040) 1985; 7 Klages, Radons, Sokolov (br000060) 2008 Lubich (br000105) 1986; 17 Ern (br000240) 2004 Lin, Xu (br000125) 2007; 225 Baleanu, Bhrawy, Taha (br000185) 2013 Henry, Wearne (br000065) 2000; 276 Chester (br000030) 1964; 18 Metzler, Klafter (br000055) 2000; 339 West, Bologna, Grigolini (br000015) 2003 Blank (br000135) 1996 Fix, Roop (br000155) 2004; 48 Maleki, Hashim, Kajani, Abbasbandy (br000180) 2012 Bhrawy, Al-Shomrani (br000175) 2012; 2012 Miller, Ross (br000005) 1993 Karniadakis, Sherwin (br000095) 2005 Autuori, Pucci (br000075) 2013; 255 Khader (br000160) 2011; 16 Benson, Wheatcraft, Meerschaert (br000025) 2000; 36 Xu, Hesthaven (br000195) 2014; 257 Langlands, Henry (br000115) 2005; 205 Mainardi (br000020) 2010 Hesthaven, Gottlieb, Gottlieb (br000085) 2007 Magin (br000045) 2006 Roop (br000230) 2004 Li, Xu (br000150) 2010; 8 Zienkiewicz, Taylor, Zhu (br000090) 2005 Roop (br000235) 2006; 193 Sugimoto (br000070) 1991; 225 Benson (10.1016/j.cma.2014.10.051_br000025) 2000; 36 Bhrawy (10.1016/j.cma.2014.10.051_br000175) 2012; 2012 Miller (10.1016/j.cma.2014.10.051_br000005) 1993 Podlubny (10.1016/j.cma.2014.10.051_br000010) 1999 Ern (10.1016/j.cma.2014.10.051_br000240) 2004 Keller (10.1016/j.cma.2014.10.051_br000035) 1981; 32 Rawashdeh (10.1016/j.cma.2014.10.051_br000140) 2006; 176 Zayernouri (10.1016/j.cma.2014.10.051_br000210) 2013; 252 Bouchaud (10.1016/j.cma.2014.10.051_br000050) 1990; 195 Hesthaven (10.1016/j.cma.2014.10.051_br000085) 2007 Lubich (10.1016/j.cma.2014.10.051_br000105) 1986; 17 Zayernouri (10.1016/j.cma.2014.10.051_br000200) 2014; 257 Chester (10.1016/j.cma.2014.10.051_br000030) 1964; 18 Roop (10.1016/j.cma.2014.10.051_br000230) 2004 Lin (10.1016/j.cma.2014.10.051_br000125) 2007; 225 Zayernouri (10.1016/j.cma.2014.10.051_br000205) 2014; 36 Li (10.1016/j.cma.2014.10.051_br000145) 2009; 47 Zienkiewicz (10.1016/j.cma.2014.10.051_br000090) 2005 Doha (10.1016/j.cma.2014.10.051_br000170) 2011; 62 10.1016/j.cma.2014.10.051_br000190 Baleanu (10.1016/j.cma.2014.10.051_br000185) 2013 Blank (10.1016/j.cma.2014.10.051_br000135) 1996 Piret (10.1016/j.cma.2014.10.051_br000165) 2012 Sugimoto (10.1016/j.cma.2014.10.051_br000040) 1985; 7 Cao (10.1016/j.cma.2014.10.051_br000130) 2013; 238 Sugimoto (10.1016/j.cma.2014.10.051_br000070) 1991; 225 Autuori (10.1016/j.cma.2014.10.051_br000075) 2013; 255 Roop (10.1016/j.cma.2014.10.051_br000235) 2006; 193 Karniadakis (10.1016/j.cma.2014.10.051_br000245) 2003 Sanz-Serna (10.1016/j.cma.2014.10.051_br000110) 1988; 25 Karniadakis (10.1016/j.cma.2014.10.051_br000095) 2005 Zayernouri (10.1016/j.cma.2014.10.051_br000215) 2014; 36 West (10.1016/j.cma.2014.10.051_br000015) 2003 Klages (10.1016/j.cma.2014.10.051_br000060) 2008 Langlands (10.1016/j.cma.2014.10.051_br000115) 2005; 205 Xu (10.1016/j.cma.2014.10.051_br000195) 2014; 257 Lubich (10.1016/j.cma.2014.10.051_br000100) 1983; 3 Khader (10.1016/j.cma.2014.10.051_br000160) 2011; 16 Magin (10.1016/j.cma.2014.10.051_br000045) 2006 Li (10.1016/j.cma.2014.10.051_br000150) 2010; 8 Maleki (10.1016/j.cma.2014.10.051_br000180) 2012 Zayernouri (10.1016/j.cma.2014.10.051_br000220) 2014; 36 Sun (10.1016/j.cma.2014.10.051_br000120) 2006; 56 Fix (10.1016/j.cma.2014.10.051_br000155) 2004; 48 Mainardi (10.1016/j.cma.2014.10.051_br000020) 2010 Zayernouri (10.1016/j.cma.2014.10.051_br000225) 2014 Metzler (10.1016/j.cma.2014.10.051_br000055) 2000; 339 Henry (10.1016/j.cma.2014.10.051_br000065) 2000; 276 Gustafsson (10.1016/j.cma.2014.10.051_br000080) 1995 |
References_xml | – reference: A. Bhrawy, M. Alghamdia, A New Legendre spectral Galerkin and pseudo-spectral approximations for fractional initial value problems, 2013. – volume: 62 start-page: 2364 year: 2011 end-page: 2373 ident: br000170 article-title: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order publication-title: Comput. Math. Appl. – year: 2006 ident: br000045 article-title: Fractional Calculus in Bioengineering – year: 2010 ident: br000020 article-title: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models – volume: 17 start-page: 704 year: 1986 end-page: 719 ident: br000105 article-title: Discretized fractional calculus publication-title: SIAM J. Math. Anal. – year: 2013 ident: br000185 article-title: Two efficient generalized Laguerre spectral algorithms for fractional initial value problems publication-title: Abstract and Applied Analysis, vol. 2013 – volume: 255 start-page: 2340 year: 2013 end-page: 2362 ident: br000075 article-title: Elliptic problems involving the fractional Laplacian in RN publication-title: J. Differential Equations – volume: 47 start-page: 2108 year: 2009 end-page: 2131 ident: br000145 article-title: A space–time spectral method for the time fractional diffusion equation publication-title: SIAM J. Numer. Anal. – volume: 257 start-page: 460 year: 2014 end-page: 480 ident: br000200 article-title: Exponentially accurate spectral and spectral element methods for fractional ODEs publication-title: J. Comput. Phys. – year: 2014 ident: br000225 article-title: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs publication-title: J. Comput. Phys. – start-page: 71 year: 2012 end-page: 81 ident: br000165 article-title: A radial basis functions method for fractional diffusion equations publication-title: J. Comput. Phys. – year: 2012 ident: br000180 article-title: An adaptive pseudospectral method for fractional order boundary value problems publication-title: Abstract and Applied Analysis, vol. 2012 – year: 2008 ident: br000060 article-title: Anomalous Transport: Foundations and Applications – year: 2004 ident: br000230 article-title: Variational solution of the fractional advection–dispersion equation – volume: 56 start-page: 193 year: 2006 end-page: 209 ident: br000120 article-title: A fully discrete difference scheme for a diffusion-wave system publication-title: Appl. Numer. Math. – volume: 36 start-page: 1403 year: 2000 end-page: 1412 ident: br000025 article-title: Application of a fractional advection–dispersion equation publication-title: Water Resour. Res. – year: 2005 ident: br000095 article-title: Spectral/HP Element Methods for CFD – volume: 36 start-page: A40 year: 2014 end-page: A62 ident: br000220 article-title: Fractional spectral collocation method publication-title: SIAM J. Sci. Comput. – volume: 16 start-page: 2535 year: 2011 end-page: 2542 ident: br000160 article-title: On the numerical solutions for the fractional diffusion equation publication-title: Commun. Nonlinear Sci. Numer. Simul. – year: 1999 ident: br000010 article-title: Fractional Differential Equations – year: 1996 ident: br000135 article-title: Numerical treatment of differential equations of fractional order publication-title: Citeseer – volume: 252 start-page: 495 year: 2013 end-page: 517 ident: br000210 article-title: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation publication-title: J. Comput. Phys. – year: 2004 ident: br000240 article-title: Theory and Practice of Finite Elements, Vol. 159 – volume: 36 start-page: B904 year: 2014 end-page: B929 ident: br000205 article-title: Spectral and discontinuous spectral element methods for fractional delay equations publication-title: SIAM J. Sci. Comput. – volume: 3 start-page: 439 year: 1983 end-page: 465 ident: br000100 article-title: On the stability of linear multistep methods for Volterra convolution equations publication-title: IMA J. Numer. Anal. – volume: 225 start-page: 1533 year: 2007 end-page: 1552 ident: br000125 article-title: Finite difference/spectral approximations for the time-fractional diffusion equation publication-title: J. Comput. Phys. – year: 1995 ident: br000080 article-title: Time Dependent Problems and Difference Methods, Vol. 67 – volume: 276 start-page: 448 year: 2000 end-page: 455 ident: br000065 article-title: Fractional reaction–diffusion publication-title: Physica A – year: 2003 ident: br000015 article-title: Physics of Fractal Operators – volume: 18 start-page: 44 year: 1964 end-page: 64 ident: br000030 article-title: Resonant oscillations in closed tubes publication-title: J. Fluid Mech. – volume: 36 start-page: B684 year: 2014 end-page: B707 ident: br000215 article-title: Discontinuous spectral element methods for time- and space-fractional advection equations publication-title: SIAM J. Sci. Comput. – year: 2005 ident: br000090 article-title: The Finite Element Method: its Basis and Fundamentals – year: 1993 ident: br000005 article-title: An Introduction to the Fractional Calculus and Fractional Differential Equations – volume: 8 start-page: 1016 year: 2010 ident: br000150 article-title: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation publication-title: Commun. Comput. Phys. – volume: 48 start-page: 1017 year: 2004 end-page: 1033 ident: br000155 article-title: Least squares finite-element solution of a fractional order two-point boundary value problem publication-title: Comput. Math. Appl. – volume: 205 start-page: 719 year: 2005 end-page: 736 ident: br000115 article-title: The accuracy and stability of an implicit solution method for the fractional diffusion equation publication-title: J. Comput. Phys. – volume: 193 start-page: 243 year: 2006 end-page: 268 ident: br000235 article-title: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2 publication-title: J. Comput. Appl. Math. – volume: 176 start-page: 1 year: 2006 end-page: 6 ident: br000140 article-title: Numerical solution of fractional integro-differential equations by collocation method publication-title: Appl. Math. Comput. – volume: 238 start-page: 154 year: 2013 end-page: 168 ident: br000130 article-title: A high order schema for the numerical solution of the fractional ordinary differential equations publication-title: J. Comput. Phys. – volume: 2012 start-page: 1 year: 2012 end-page: 19 ident: br000175 article-title: A shifted Legendre spectral method for fractional-order multi-point boundary value problems publication-title: Adv. Difference Equ. – volume: 339 start-page: 1 year: 2000 end-page: 77 ident: br000055 article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach publication-title: Phys. Rep. – year: 2003 ident: br000245 article-title: Parallel Scientific Computing in C++ and MPI: a Seamless Approach to Parallel Algorithms and their Implementation – volume: 225 start-page: 4 year: 1991 ident: br000070 article-title: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves publication-title: J. Fluid Mech. – volume: 25 start-page: 319 year: 1988 end-page: 327 ident: br000110 article-title: A numerical method for a partial integro-differential equation publication-title: SIAM J. Numer. Anal. – volume: 195 start-page: 127 year: 1990 end-page: 293 ident: br000050 article-title: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications publication-title: Phys. Rep. – volume: 32 start-page: 170 year: 1981 end-page: 181 ident: br000035 article-title: Propagation of simple non-linear waves in gas filled tubes with friction publication-title: Z. Angew. Math. Phys. – volume: 257 start-page: 241 year: 2014 end-page: 258 ident: br000195 article-title: Stable multi-domain spectral penalty methods for fractional partial differential equations publication-title: J. Comput. Phys. – year: 2007 ident: br000085 article-title: Spectral Methods for Time-dependent Problems, Vol. 21 – volume: 7 start-page: 447 year: 1985 end-page: 458 ident: br000040 article-title: Generalized Burgers’ equation for nonlinear viscoelastic waves publication-title: Wave Motion – volume: 36 start-page: B904 issue: 6 year: 2014 ident: 10.1016/j.cma.2014.10.051_br000205 article-title: Spectral and discontinuous spectral element methods for fractional delay equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/130935884 – volume: 18 start-page: 44 issue: 1 year: 1964 ident: 10.1016/j.cma.2014.10.051_br000030 article-title: Resonant oscillations in closed tubes publication-title: J. Fluid Mech. doi: 10.1017/S0022112064000040 – volume: 36 start-page: B684 issue: 4 year: 2014 ident: 10.1016/j.cma.2014.10.051_br000215 article-title: Discontinuous spectral element methods for time- and space-fractional advection equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/130940967 – year: 2003 ident: 10.1016/j.cma.2014.10.051_br000015 – volume: 238 start-page: 154 issue: 1 year: 2013 ident: 10.1016/j.cma.2014.10.051_br000130 article-title: A high order schema for the numerical solution of the fractional ordinary differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.12.013 – year: 2013 ident: 10.1016/j.cma.2014.10.051_br000185 article-title: Two efficient generalized Laguerre spectral algorithms for fractional initial value problems – volume: 276 start-page: 448 issue: 3 year: 2000 ident: 10.1016/j.cma.2014.10.051_br000065 article-title: Fractional reaction–diffusion publication-title: Physica A doi: 10.1016/S0378-4371(99)00469-0 – volume: 225 start-page: 4 issue: 631–653 year: 1991 ident: 10.1016/j.cma.2014.10.051_br000070 article-title: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves publication-title: J. Fluid Mech. – volume: 62 start-page: 2364 issue: 5 year: 2011 ident: 10.1016/j.cma.2014.10.051_br000170 article-title: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.07.024 – volume: 7 start-page: 447 issue: 5 year: 1985 ident: 10.1016/j.cma.2014.10.051_br000040 article-title: Generalized Burgers’ equation for nonlinear viscoelastic waves publication-title: Wave Motion doi: 10.1016/0165-2125(85)90019-8 – volume: 252 start-page: 495 year: 2013 ident: 10.1016/j.cma.2014.10.051_br000210 article-title: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.06.031 – year: 2008 ident: 10.1016/j.cma.2014.10.051_br000060 – volume: 205 start-page: 719 issue: 2 year: 2005 ident: 10.1016/j.cma.2014.10.051_br000115 article-title: The accuracy and stability of an implicit solution method for the fractional diffusion equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.11.025 – year: 2005 ident: 10.1016/j.cma.2014.10.051_br000095 – volume: 36 start-page: 1403 issue: 6 year: 2000 ident: 10.1016/j.cma.2014.10.051_br000025 article-title: Application of a fractional advection–dispersion equation publication-title: Water Resour. Res. doi: 10.1029/2000WR900031 – year: 1995 ident: 10.1016/j.cma.2014.10.051_br000080 – volume: 25 start-page: 319 issue: 2 year: 1988 ident: 10.1016/j.cma.2014.10.051_br000110 article-title: A numerical method for a partial integro-differential equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/0725022 – volume: 47 start-page: 2108 issue: 3 year: 2009 ident: 10.1016/j.cma.2014.10.051_br000145 article-title: A space–time spectral method for the time fractional diffusion equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/080718942 – volume: 17 start-page: 704 issue: 3 year: 1986 ident: 10.1016/j.cma.2014.10.051_br000105 article-title: Discretized fractional calculus publication-title: SIAM J. Math. Anal. doi: 10.1137/0517050 – volume: 257 start-page: 460 year: 2014 ident: 10.1016/j.cma.2014.10.051_br000200 article-title: Exponentially accurate spectral and spectral element methods for fractional ODEs publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.09.039 – volume: 8 start-page: 1016 issue: 5 year: 2010 ident: 10.1016/j.cma.2014.10.051_br000150 article-title: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.020709.221209a – volume: 32 start-page: 170 issue: 2 year: 1981 ident: 10.1016/j.cma.2014.10.051_br000035 article-title: Propagation of simple non-linear waves in gas filled tubes with friction publication-title: Z. Angew. Math. Phys. doi: 10.1007/BF00946746 – volume: 225 start-page: 1533 issue: 2 year: 2007 ident: 10.1016/j.cma.2014.10.051_br000125 article-title: Finite difference/spectral approximations for the time-fractional diffusion equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.02.001 – volume: 2012 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.cma.2014.10.051_br000175 article-title: A shifted Legendre spectral method for fractional-order multi-point boundary value problems publication-title: Adv. Difference Equ. doi: 10.1186/1687-1847-2012-8 – ident: 10.1016/j.cma.2014.10.051_br000190 doi: 10.1155/2013/306746 – volume: 195 start-page: 127 issue: 4 year: 1990 ident: 10.1016/j.cma.2014.10.051_br000050 article-title: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications publication-title: Phys. Rep. doi: 10.1016/0370-1573(90)90099-N – start-page: 71 year: 2012 ident: 10.1016/j.cma.2014.10.051_br000165 article-title: A radial basis functions method for fractional diffusion equations publication-title: J. Comput. Phys. – year: 2003 ident: 10.1016/j.cma.2014.10.051_br000245 – volume: 16 start-page: 2535 issue: 6 year: 2011 ident: 10.1016/j.cma.2014.10.051_br000160 article-title: On the numerical solutions for the fractional diffusion equation publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.09.007 – volume: 193 start-page: 243 issue: 1 year: 2006 ident: 10.1016/j.cma.2014.10.051_br000235 article-title: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2005.06.005 – year: 2007 ident: 10.1016/j.cma.2014.10.051_br000085 – volume: 257 start-page: 241 year: 2014 ident: 10.1016/j.cma.2014.10.051_br000195 article-title: Stable multi-domain spectral penalty methods for fractional partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.09.041 – year: 2010 ident: 10.1016/j.cma.2014.10.051_br000020 – volume: 255 start-page: 2340 issue: 8 year: 2013 ident: 10.1016/j.cma.2014.10.051_br000075 article-title: Elliptic problems involving the fractional Laplacian in RN publication-title: J. Differential Equations doi: 10.1016/j.jde.2013.06.016 – volume: 56 start-page: 193 issue: 2 year: 2006 ident: 10.1016/j.cma.2014.10.051_br000120 article-title: A fully discrete difference scheme for a diffusion-wave system publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2005.03.003 – volume: 48 start-page: 1017 issue: 7 year: 2004 ident: 10.1016/j.cma.2014.10.051_br000155 article-title: Least squares finite-element solution of a fractional order two-point boundary value problem publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2004.10.003 – year: 1999 ident: 10.1016/j.cma.2014.10.051_br000010 – year: 2014 ident: 10.1016/j.cma.2014.10.051_br000225 article-title: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs publication-title: J. Comput. Phys. – volume: 3 start-page: 439 issue: 4 year: 1983 ident: 10.1016/j.cma.2014.10.051_br000100 article-title: On the stability of linear multistep methods for Volterra convolution equations publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/3.4.439 – year: 2004 ident: 10.1016/j.cma.2014.10.051_br000240 – year: 2006 ident: 10.1016/j.cma.2014.10.051_br000045 – volume: 176 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.cma.2014.10.051_br000140 article-title: Numerical solution of fractional integro-differential equations by collocation method publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.09.059 – year: 2012 ident: 10.1016/j.cma.2014.10.051_br000180 article-title: An adaptive pseudospectral method for fractional order boundary value problems – year: 2005 ident: 10.1016/j.cma.2014.10.051_br000090 – volume: 36 start-page: A40 issue: 1 year: 2014 ident: 10.1016/j.cma.2014.10.051_br000220 article-title: Fractional spectral collocation method publication-title: SIAM J. Sci. Comput. doi: 10.1137/130933216 – year: 1993 ident: 10.1016/j.cma.2014.10.051_br000005 – year: 1996 ident: 10.1016/j.cma.2014.10.051_br000135 article-title: Numerical treatment of differential equations of fractional order publication-title: Citeseer – volume: 339 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.cma.2014.10.051_br000055 article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach publication-title: Phys. Rep. doi: 10.1016/S0370-1573(00)00070-3 – year: 2004 ident: 10.1016/j.cma.2014.10.051_br000230 |
SSID | ssj0000812 |
Score | 2.4949694 |
Snippet | Existing numerical methods for fractional PDEs suffer from low accuracy and inefficiency in dealing with three-dimensional problems or with long-time... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 1545 |
SubjectTerms | Fractional basis/test functions Jacobi poly-fractonomial Spectral convergence Unified fast FPDE solver |
Title | A unified Petrov–Galerkin spectral method for fractional PDEs |
URI | https://dx.doi.org/10.1016/j.cma.2014.10.051 https://www.osti.gov/biblio/1255337 |
Volume | 283 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4AohSoDE1L6SOzYmVBVWgqIioFK3SLHD6kIpVUfjIj_wD_kl3CXB5SBDoyxfFZ0d_Z9Tu6-I-SCB2GshKdd4wvpUs5iF64RDAwSAzpVgtu0S8TDMBiM6N2YjUukW9TCYFplfvZnZ3p6WucjzVybzdlkgjW-FLnYIeKj57WRdptSjl7eePtJ84CQlzGGU-bi7OLPZprjpVLqoTZtYIIXa_8Vm8pT2G5rYae_T3ZzvOh0slc6ICWTVMhejh2dfGcuKmRnjVjwkFx1nFUysTgFW2ZNXz_fP24gFOCHcSctrpzDoln3aAdgq2PnWYEDjD5e9xZHZNTvPXUHbt4qwVUA6Jau0LGymvqaWuVLKUMR-FZ7mhreiiXnOggUbk64f1jPWp_BNcUqqcCAng4hjB2TcjJNzAlxmPSFCajUTAJUEkL6RoClQd4YakNWJa1CSZHKecSxncVLVCSMPUeg1wj1ikOg1yq5_BaZZSQamybTQvPRL0-I4JDfJFZDK6EIst8qTBMCGcBvAGj56f8WrZFteGLZJ5czUl7OV-YcQMgyrqdeVidbndv7wfALDWja4g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBRwHxJgMTUoA2duJOqIJCSx9iaKVukeOHVITaqg9m_gP_kF_CXeJAGWBgdXxWdGfffU7uvgM4j8JKokRZ-yYQ0mcRT3y8RnA0SILoVInIpl0i2p2w3mOPfd5fgtu8FobSKp3vz3x66q3dyJXT5tV4MKAaX0Zc7BjxaeeVwmVYIXYqXoCVaqNZ73w7ZFHKSMMZ90kg_7mZpnmplH2oxC4px4uXfgtPhRGeuIXIc78FGw4yetXsrbZhyQyLsOngo-cO57QI6wvcgjtwU_Xmw4GlKdQ1a_T68fb-gNGAvo17aX3lBBfNGkh7iFw9O8lqHHD06a423YXefa17W_ddtwRfIaab-UInymoWaGZVIKWsiDCwuqyZia4TGUU6DBWdT7yC2LK1AcebilVSoQ3LuoKRbA8Kw9HQ7IPHZSBMyKTmEtGSEDIwAo2N8sYwW-EHcJ0rKVaOSpw6WrzEec7Yc4x6jUmvNIR6PYCLL5FxxqPx12SWaz7-sRli9PN_iR2RlUiECHAVZQqhDEI4xLTR4f8WPYPVerfdiluNTvMI1vAJz77AHENhNpmbE8Qks-TU7blPmlXdkw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+unified+Petrov%E2%80%93Galerkin+spectral+method+for+fractional+PDEs&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Zayernouri%2C+Mohsen&rft.au=Ainsworth%2C+Mark&rft.au=Karniadakis%2C+George+Em&rft.date=2015-01-01&rft.issn=0045-7825&rft.volume=283&rft.spage=1545&rft.epage=1569&rft_id=info:doi/10.1016%2Fj.cma.2014.10.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2014_10_051 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |