A unified Petrov–Galerkin spectral method for fractional PDEs

Existing numerical methods for fractional PDEs suffer from low accuracy and inefficiency in dealing with three-dimensional problems or with long-time integrations. We develop a unified and spectrally accurate Petrov–Galerkin (PG) spectral method for a weak formulation of the general linear Fractiona...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 283; no. C; pp. 1545 - 1569
Main Authors Zayernouri, Mohsen, Ainsworth, Mark, Karniadakis, George Em
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2015
Elsevier
Subjects
Online AccessGet full text
ISSN0045-7825
1879-2138
DOI10.1016/j.cma.2014.10.051

Cover

Loading…
Abstract Existing numerical methods for fractional PDEs suffer from low accuracy and inefficiency in dealing with three-dimensional problems or with long-time integrations. We develop a unified and spectrally accurate Petrov–Galerkin (PG) spectral method for a weak formulation of the general linear Fractional Partial Differential Equations (FPDEs) of the form 0Dt2τu+∑j=1dcj[ajDxj2μju]+γu=f, where 2τ, μj∈(0,1), in a (1+d)-dimensional space–time domain subject to Dirichlet initial and boundary conditions. We perform the stability analysis (in 1-D) and the corresponding convergence study of the scheme (in multi-D). The unified PG spectral method applies to the entire family of linear hyperbolic-, parabolic- and elliptic-like equations. We develop the PG method based on a new spectral theory for fractional Sturm–Liouville problems (FSLPs), recently introduced in Zayernouri and Karniadakis (2013). Specifically, we employ the eigenfunctions of the FSLP of first kind (FSLP-I), called Jacobi poly-fractonomials, as temporal/spatial bases. Next, we construct a different space for test functions from poly-fractonomial eigenfunctions of the FSLP of second kind (FSLP-II). Besides the high-order spatial accuracy of the PG method, we demonstrate its efficiency and spectral accuracy in time-integration schemes for solving time-dependent FPDEs as well, rather than employing algebraically accurate traditional methods, especially when 2τ=1. Finally, we formulate a general fast linear solver based on the eigenpairs of the corresponding temporal and spatial mass matrices with respect to the stiffness matrices, which reduces the computational cost drastically. We demonstrate that this framework can reduce to hyperbolic FPDEs such as time- and space-fractional advection (TSFA), parabolic FPDEs such as time- and space-fractional diffusion (TSFD) model, and elliptic FPDEs such as fractional Helmholtz/Poisson equations with the same ease and cost. Several numerical tests confirm the efficiency and spectral convergence of the unified PG spectral method for the aforementioned families of FPDEs. Moreover, we demonstrate the computational efficiency of the new approach in higher-dimensions e.g., (1+3), (1+5) and (1+9)-dimensional problems.
AbstractList Existing numerical methods for fractional PDEs suffer from low accuracy and inefficiency in dealing with three-dimensional problems or with long-time integrations. We develop a unified and spectrally accurate Petrov–Galerkin (PG) spectral method for a weak formulation of the general linear Fractional Partial Differential Equations (FPDEs) of the form 0Dt2τu+∑j=1dcj[ajDxj2μju]+γu=f, where 2τ, μj∈(0,1), in a (1+d)-dimensional space–time domain subject to Dirichlet initial and boundary conditions. We perform the stability analysis (in 1-D) and the corresponding convergence study of the scheme (in multi-D). The unified PG spectral method applies to the entire family of linear hyperbolic-, parabolic- and elliptic-like equations. We develop the PG method based on a new spectral theory for fractional Sturm–Liouville problems (FSLPs), recently introduced in Zayernouri and Karniadakis (2013). Specifically, we employ the eigenfunctions of the FSLP of first kind (FSLP-I), called Jacobi poly-fractonomials, as temporal/spatial bases. Next, we construct a different space for test functions from poly-fractonomial eigenfunctions of the FSLP of second kind (FSLP-II). Besides the high-order spatial accuracy of the PG method, we demonstrate its efficiency and spectral accuracy in time-integration schemes for solving time-dependent FPDEs as well, rather than employing algebraically accurate traditional methods, especially when 2τ=1. Finally, we formulate a general fast linear solver based on the eigenpairs of the corresponding temporal and spatial mass matrices with respect to the stiffness matrices, which reduces the computational cost drastically. We demonstrate that this framework can reduce to hyperbolic FPDEs such as time- and space-fractional advection (TSFA), parabolic FPDEs such as time- and space-fractional diffusion (TSFD) model, and elliptic FPDEs such as fractional Helmholtz/Poisson equations with the same ease and cost. Several numerical tests confirm the efficiency and spectral convergence of the unified PG spectral method for the aforementioned families of FPDEs. Moreover, we demonstrate the computational efficiency of the new approach in higher-dimensions e.g., (1+3), (1+5) and (1+9)-dimensional problems.
Author Karniadakis, George Em
Ainsworth, Mark
Zayernouri, Mohsen
Author_xml – sequence: 1
  givenname: Mohsen
  surname: Zayernouri
  fullname: Zayernouri, Mohsen
– sequence: 2
  givenname: Mark
  surname: Ainsworth
  fullname: Ainsworth, Mark
– sequence: 3
  givenname: George Em
  surname: Karniadakis
  fullname: Karniadakis, George Em
  email: george_karniadakis@brown.edu
BackLink https://www.osti.gov/biblio/1255337$$D View this record in Osti.gov
BookMark eNp9kM1KAzEUhYNUsK0-gLvB_Yz5mUxSXEiptQoFu9B1SPNDU6dJScaCO9_BN_RJzFBXLno3l3u53-WcMwIDH7wB4BrBCkHU3G4rtZMVhqjOcwUpOgNDxNmkxIjwARhCWNOScUwvwCilLczFER6C-2nx4Z11Rhcr08Vw-Pn6XsjWxHfni7Q3qouyLXam2wRd2BALG6XqXPB5u3qYp0twbmWbzNVfH4O3x_nr7KlcviyeZ9NlqShkXcn1WlldE11bRaSUE94Qq7GuDYNryZhuGoUp44jVFltLKGfUKqmMUlhPCCRjcHP8G1LnRFKuM2qjgvdZoUCYUkJYPkLHIxVDStFYsY9uJ-OnQFD0MYmtyDGJPqZ-lWPKDPvH5N-yd5idu_YkeXckTfZ9cCb2soxXRrvYq9LBnaB_ARTlhRk
CitedBy_id crossref_primary_10_1007_s42967_020_00070_w
crossref_primary_10_1016_j_apm_2015_01_029
crossref_primary_10_1137_19M1261225
crossref_primary_10_1016_j_jcp_2018_02_014
crossref_primary_10_1007_s10915_019_00953_y
crossref_primary_10_1016_j_cma_2024_117189
crossref_primary_10_1007_s10915_019_00979_2
crossref_primary_10_1016_j_apnum_2022_06_013
crossref_primary_10_1016_j_jcp_2015_06_030
crossref_primary_10_1016_j_jcp_2016_01_041
crossref_primary_10_1017_S096249292000001X
crossref_primary_10_3390_fractalfract2010013
crossref_primary_10_1007_s10915_017_0369_z
crossref_primary_10_1007_s10092_014_0132_x
crossref_primary_10_1016_j_cam_2019_03_032
crossref_primary_10_32513_tbilisi_1593223223
crossref_primary_10_1007_s11043_022_09545_0
crossref_primary_10_1016_j_apnum_2020_05_014
crossref_primary_10_1016_j_cma_2016_05_030
crossref_primary_10_3390_fractalfract9020078
crossref_primary_10_1007_s10543_018_0697_x
crossref_primary_10_1016_j_amc_2024_128954
crossref_primary_10_1080_00207160_2024_2395977
crossref_primary_10_1515_fca_2017_0058
crossref_primary_10_1007_s11425_019_1720_1
crossref_primary_10_1108_AJMS_02_2021_0052
crossref_primary_10_1016_j_camwa_2021_06_016
crossref_primary_10_1007_s00466_020_01853_x
crossref_primary_10_1016_j_camwa_2019_04_003
crossref_primary_10_1016_j_jcp_2017_02_060
crossref_primary_10_1080_00207160_2016_1184262
crossref_primary_10_1137_15M1061496
crossref_primary_10_1016_j_jcp_2019_06_005
crossref_primary_10_1016_j_camwa_2017_07_022
crossref_primary_10_1515_cmam_2021_0118
crossref_primary_10_1016_j_amc_2021_126229
crossref_primary_10_1137_17M1113060
crossref_primary_10_1186_s13661_024_01948_x
crossref_primary_10_1063_5_0091043
crossref_primary_10_1007_s40314_019_0845_1
crossref_primary_10_1007_s41779_018_0275_3
crossref_primary_10_1515_fca_2018_0079
crossref_primary_10_1016_j_jcp_2015_03_063
crossref_primary_10_1016_j_apnum_2022_07_016
crossref_primary_10_1016_j_enganabound_2023_10_005
crossref_primary_10_1002_nme_6144
crossref_primary_10_1002_num_22554
crossref_primary_10_1002_mma_6907
crossref_primary_10_1016_j_apnum_2019_01_005
crossref_primary_10_1016_j_jcp_2015_11_047
crossref_primary_10_1080_00207160_2017_1343941
crossref_primary_10_1016_j_cnsns_2022_107017
crossref_primary_10_1016_j_cnsns_2021_106047
crossref_primary_10_1137_140985536
crossref_primary_10_1016_j_jcp_2015_01_025
crossref_primary_10_1007_s00466_020_01848_8
crossref_primary_10_1016_j_cnsns_2020_105510
crossref_primary_10_1016_j_jocs_2024_102364
crossref_primary_10_1016_j_jcp_2017_12_035
crossref_primary_10_1515_fca_2020_0067
crossref_primary_10_1137_16M1094257
crossref_primary_10_1002_num_23134
crossref_primary_10_1002_num_22320
crossref_primary_10_1515_cmam_2017_0026
crossref_primary_10_1016_j_apnum_2017_03_009
crossref_primary_10_1515_cmam_2017_0027
crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_118
crossref_primary_10_1186_s13662_020_02978_2
crossref_primary_10_1016_j_camwa_2019_08_001
crossref_primary_10_1016_j_cma_2017_06_006
crossref_primary_10_1007_s11071_015_2588_x
crossref_primary_10_1016_j_camwa_2016_04_042
crossref_primary_10_1137_140988218
crossref_primary_10_1137_17M1118816
crossref_primary_10_1016_j_cnsns_2019_01_005
crossref_primary_10_1007_s00366_016_0491_9
crossref_primary_10_1007_s42967_019_00012_1
crossref_primary_10_1137_141001299
crossref_primary_10_1142_S0129183123500419
crossref_primary_10_1007_s10915_020_01365_z
crossref_primary_10_1016_j_cma_2018_12_011
crossref_primary_10_1016_j_amc_2019_05_017
crossref_primary_10_1016_j_apnum_2019_05_007
crossref_primary_10_1016_j_jcp_2018_07_041
crossref_primary_10_1007_s10915_019_01052_8
crossref_primary_10_1007_s10915_019_01056_4
crossref_primary_10_1007_s10915_021_01419_w
crossref_primary_10_1515_cmam_2017_0036
Cites_doi 10.1137/130935884
10.1017/S0022112064000040
10.1137/130940967
10.1016/j.jcp.2012.12.013
10.1016/S0378-4371(99)00469-0
10.1016/j.camwa.2011.07.024
10.1016/0165-2125(85)90019-8
10.1016/j.jcp.2013.06.031
10.1016/j.jcp.2004.11.025
10.1029/2000WR900031
10.1137/0725022
10.1137/080718942
10.1137/0517050
10.1016/j.jcp.2013.09.039
10.4208/cicp.020709.221209a
10.1007/BF00946746
10.1016/j.jcp.2007.02.001
10.1186/1687-1847-2012-8
10.1155/2013/306746
10.1016/0370-1573(90)90099-N
10.1016/j.cnsns.2010.09.007
10.1016/j.cam.2005.06.005
10.1016/j.jcp.2013.09.041
10.1016/j.jde.2013.06.016
10.1016/j.apnum.2005.03.003
10.1016/j.camwa.2004.10.003
10.1093/imanum/3.4.439
10.1016/j.amc.2005.09.059
10.1137/130933216
10.1016/S0370-1573(00)00070-3
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.cma.2014.10.051
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
EndPage 1569
ExternalDocumentID 1255337
10_1016_j_cma_2014_10_051
S0045782514004216
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
VH1
VOH
WUQ
ZY4
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
PQEST
ID FETCH-LOGICAL-c507t-8dbcfd43d4fc3aaa9863fd2d4e70ba77d66c2578174f2ff35875fcacecc2d9303
IEDL.DBID .~1
ISSN 0045-7825
IngestDate Fri May 19 02:09:14 EDT 2023
Thu Apr 24 23:07:42 EDT 2025
Tue Jul 01 02:00:51 EDT 2025
Fri Feb 23 02:24:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Fractional basis/test functions
Unified fast FPDE solver
Spectral convergence
Jacobi poly-fractonomial
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-8dbcfd43d4fc3aaa9863fd2d4e70ba77d66c2578174f2ff35875fcacecc2d9303
Notes USDOE
SC0009247
OpenAccessLink https://www.osti.gov/biblio/1255337
PageCount 25
ParticipantIDs osti_scitechconnect_1255337
crossref_primary_10_1016_j_cma_2014_10_051
crossref_citationtrail_10_1016_j_cma_2014_10_051
elsevier_sciencedirect_doi_10_1016_j_cma_2014_10_051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2015
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Doha, Bhrawy, Ezz-Eldien (br000170) 2011; 62
Karniadakis, Kirby (br000245) 2003
Sun, Wu (br000120) 2006; 56
Zayernouri, Cao, Zhang, Karniadakis (br000205) 2014; 36
Podlubny (br000010) 1999
Rawashdeh (br000140) 2006; 176
Zayernouri, Karniadakis (br000210) 2013; 252
Cao, Xu (br000130) 2013; 238
Piret, Hanert (br000165) 2012
Lubich (br000100) 1983; 3
Keller (br000035) 1981; 32
Zayernouri, Karniadakis (br000215) 2014; 36
A. Bhrawy, M. Alghamdia, A New Legendre spectral Galerkin and pseudo-spectral approximations for fractional initial value problems, 2013.
Li, Xu (br000145) 2009; 47
Zayernouri, Karniadakis (br000200) 2014; 257
Zayernouri, Karniadakis (br000220) 2014; 36
Sanz-Serna (br000110) 1988; 25
Gustafsson, Kreiss, Oliger (br000080) 1995
Bouchaud, Georges (br000050) 1990; 195
Zayernouri, Karniadakis (br000225) 2014
Sugimoto, Kakutani (br000040) 1985; 7
Klages, Radons, Sokolov (br000060) 2008
Lubich (br000105) 1986; 17
Ern (br000240) 2004
Lin, Xu (br000125) 2007; 225
Baleanu, Bhrawy, Taha (br000185) 2013
Henry, Wearne (br000065) 2000; 276
Chester (br000030) 1964; 18
Metzler, Klafter (br000055) 2000; 339
West, Bologna, Grigolini (br000015) 2003
Blank (br000135) 1996
Fix, Roop (br000155) 2004; 48
Maleki, Hashim, Kajani, Abbasbandy (br000180) 2012
Bhrawy, Al-Shomrani (br000175) 2012; 2012
Miller, Ross (br000005) 1993
Karniadakis, Sherwin (br000095) 2005
Autuori, Pucci (br000075) 2013; 255
Khader (br000160) 2011; 16
Benson, Wheatcraft, Meerschaert (br000025) 2000; 36
Xu, Hesthaven (br000195) 2014; 257
Langlands, Henry (br000115) 2005; 205
Mainardi (br000020) 2010
Hesthaven, Gottlieb, Gottlieb (br000085) 2007
Magin (br000045) 2006
Roop (br000230) 2004
Li, Xu (br000150) 2010; 8
Zienkiewicz, Taylor, Zhu (br000090) 2005
Roop (br000235) 2006; 193
Sugimoto (br000070) 1991; 225
Benson (10.1016/j.cma.2014.10.051_br000025) 2000; 36
Bhrawy (10.1016/j.cma.2014.10.051_br000175) 2012; 2012
Miller (10.1016/j.cma.2014.10.051_br000005) 1993
Podlubny (10.1016/j.cma.2014.10.051_br000010) 1999
Ern (10.1016/j.cma.2014.10.051_br000240) 2004
Keller (10.1016/j.cma.2014.10.051_br000035) 1981; 32
Rawashdeh (10.1016/j.cma.2014.10.051_br000140) 2006; 176
Zayernouri (10.1016/j.cma.2014.10.051_br000210) 2013; 252
Bouchaud (10.1016/j.cma.2014.10.051_br000050) 1990; 195
Hesthaven (10.1016/j.cma.2014.10.051_br000085) 2007
Lubich (10.1016/j.cma.2014.10.051_br000105) 1986; 17
Zayernouri (10.1016/j.cma.2014.10.051_br000200) 2014; 257
Chester (10.1016/j.cma.2014.10.051_br000030) 1964; 18
Roop (10.1016/j.cma.2014.10.051_br000230) 2004
Lin (10.1016/j.cma.2014.10.051_br000125) 2007; 225
Zayernouri (10.1016/j.cma.2014.10.051_br000205) 2014; 36
Li (10.1016/j.cma.2014.10.051_br000145) 2009; 47
Zienkiewicz (10.1016/j.cma.2014.10.051_br000090) 2005
Doha (10.1016/j.cma.2014.10.051_br000170) 2011; 62
10.1016/j.cma.2014.10.051_br000190
Baleanu (10.1016/j.cma.2014.10.051_br000185) 2013
Blank (10.1016/j.cma.2014.10.051_br000135) 1996
Piret (10.1016/j.cma.2014.10.051_br000165) 2012
Sugimoto (10.1016/j.cma.2014.10.051_br000040) 1985; 7
Cao (10.1016/j.cma.2014.10.051_br000130) 2013; 238
Sugimoto (10.1016/j.cma.2014.10.051_br000070) 1991; 225
Autuori (10.1016/j.cma.2014.10.051_br000075) 2013; 255
Roop (10.1016/j.cma.2014.10.051_br000235) 2006; 193
Karniadakis (10.1016/j.cma.2014.10.051_br000245) 2003
Sanz-Serna (10.1016/j.cma.2014.10.051_br000110) 1988; 25
Karniadakis (10.1016/j.cma.2014.10.051_br000095) 2005
Zayernouri (10.1016/j.cma.2014.10.051_br000215) 2014; 36
West (10.1016/j.cma.2014.10.051_br000015) 2003
Klages (10.1016/j.cma.2014.10.051_br000060) 2008
Langlands (10.1016/j.cma.2014.10.051_br000115) 2005; 205
Xu (10.1016/j.cma.2014.10.051_br000195) 2014; 257
Lubich (10.1016/j.cma.2014.10.051_br000100) 1983; 3
Khader (10.1016/j.cma.2014.10.051_br000160) 2011; 16
Magin (10.1016/j.cma.2014.10.051_br000045) 2006
Li (10.1016/j.cma.2014.10.051_br000150) 2010; 8
Maleki (10.1016/j.cma.2014.10.051_br000180) 2012
Zayernouri (10.1016/j.cma.2014.10.051_br000220) 2014; 36
Sun (10.1016/j.cma.2014.10.051_br000120) 2006; 56
Fix (10.1016/j.cma.2014.10.051_br000155) 2004; 48
Mainardi (10.1016/j.cma.2014.10.051_br000020) 2010
Zayernouri (10.1016/j.cma.2014.10.051_br000225) 2014
Metzler (10.1016/j.cma.2014.10.051_br000055) 2000; 339
Henry (10.1016/j.cma.2014.10.051_br000065) 2000; 276
Gustafsson (10.1016/j.cma.2014.10.051_br000080) 1995
References_xml – reference: A. Bhrawy, M. Alghamdia, A New Legendre spectral Galerkin and pseudo-spectral approximations for fractional initial value problems, 2013.
– volume: 62
  start-page: 2364
  year: 2011
  end-page: 2373
  ident: br000170
  article-title: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
  publication-title: Comput. Math. Appl.
– year: 2006
  ident: br000045
  article-title: Fractional Calculus in Bioengineering
– year: 2010
  ident: br000020
  article-title: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
– volume: 17
  start-page: 704
  year: 1986
  end-page: 719
  ident: br000105
  article-title: Discretized fractional calculus
  publication-title: SIAM J. Math. Anal.
– year: 2013
  ident: br000185
  article-title: Two efficient generalized Laguerre spectral algorithms for fractional initial value problems
  publication-title: Abstract and Applied Analysis, vol. 2013
– volume: 255
  start-page: 2340
  year: 2013
  end-page: 2362
  ident: br000075
  article-title: Elliptic problems involving the fractional Laplacian in RN
  publication-title: J. Differential Equations
– volume: 47
  start-page: 2108
  year: 2009
  end-page: 2131
  ident: br000145
  article-title: A space–time spectral method for the time fractional diffusion equation
  publication-title: SIAM J. Numer. Anal.
– volume: 257
  start-page: 460
  year: 2014
  end-page: 480
  ident: br000200
  article-title: Exponentially accurate spectral and spectral element methods for fractional ODEs
  publication-title: J. Comput. Phys.
– year: 2014
  ident: br000225
  article-title: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs
  publication-title: J. Comput. Phys.
– start-page: 71
  year: 2012
  end-page: 81
  ident: br000165
  article-title: A radial basis functions method for fractional diffusion equations
  publication-title: J. Comput. Phys.
– year: 2012
  ident: br000180
  article-title: An adaptive pseudospectral method for fractional order boundary value problems
  publication-title: Abstract and Applied Analysis, vol. 2012
– year: 2008
  ident: br000060
  article-title: Anomalous Transport: Foundations and Applications
– year: 2004
  ident: br000230
  article-title: Variational solution of the fractional advection–dispersion equation
– volume: 56
  start-page: 193
  year: 2006
  end-page: 209
  ident: br000120
  article-title: A fully discrete difference scheme for a diffusion-wave system
  publication-title: Appl. Numer. Math.
– volume: 36
  start-page: 1403
  year: 2000
  end-page: 1412
  ident: br000025
  article-title: Application of a fractional advection–dispersion equation
  publication-title: Water Resour. Res.
– year: 2005
  ident: br000095
  article-title: Spectral/HP Element Methods for CFD
– volume: 36
  start-page: A40
  year: 2014
  end-page: A62
  ident: br000220
  article-title: Fractional spectral collocation method
  publication-title: SIAM J. Sci. Comput.
– volume: 16
  start-page: 2535
  year: 2011
  end-page: 2542
  ident: br000160
  article-title: On the numerical solutions for the fractional diffusion equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– year: 1999
  ident: br000010
  article-title: Fractional Differential Equations
– year: 1996
  ident: br000135
  article-title: Numerical treatment of differential equations of fractional order
  publication-title: Citeseer
– volume: 252
  start-page: 495
  year: 2013
  end-page: 517
  ident: br000210
  article-title: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation
  publication-title: J. Comput. Phys.
– year: 2004
  ident: br000240
  article-title: Theory and Practice of Finite Elements, Vol. 159
– volume: 36
  start-page: B904
  year: 2014
  end-page: B929
  ident: br000205
  article-title: Spectral and discontinuous spectral element methods for fractional delay equations
  publication-title: SIAM J. Sci. Comput.
– volume: 3
  start-page: 439
  year: 1983
  end-page: 465
  ident: br000100
  article-title: On the stability of linear multistep methods for Volterra convolution equations
  publication-title: IMA J. Numer. Anal.
– volume: 225
  start-page: 1533
  year: 2007
  end-page: 1552
  ident: br000125
  article-title: Finite difference/spectral approximations for the time-fractional diffusion equation
  publication-title: J. Comput. Phys.
– year: 1995
  ident: br000080
  article-title: Time Dependent Problems and Difference Methods, Vol. 67
– volume: 276
  start-page: 448
  year: 2000
  end-page: 455
  ident: br000065
  article-title: Fractional reaction–diffusion
  publication-title: Physica A
– year: 2003
  ident: br000015
  article-title: Physics of Fractal Operators
– volume: 18
  start-page: 44
  year: 1964
  end-page: 64
  ident: br000030
  article-title: Resonant oscillations in closed tubes
  publication-title: J. Fluid Mech.
– volume: 36
  start-page: B684
  year: 2014
  end-page: B707
  ident: br000215
  article-title: Discontinuous spectral element methods for time- and space-fractional advection equations
  publication-title: SIAM J. Sci. Comput.
– year: 2005
  ident: br000090
  article-title: The Finite Element Method: its Basis and Fundamentals
– year: 1993
  ident: br000005
  article-title: An Introduction to the Fractional Calculus and Fractional Differential Equations
– volume: 8
  start-page: 1016
  year: 2010
  ident: br000150
  article-title: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation
  publication-title: Commun. Comput. Phys.
– volume: 48
  start-page: 1017
  year: 2004
  end-page: 1033
  ident: br000155
  article-title: Least squares finite-element solution of a fractional order two-point boundary value problem
  publication-title: Comput. Math. Appl.
– volume: 205
  start-page: 719
  year: 2005
  end-page: 736
  ident: br000115
  article-title: The accuracy and stability of an implicit solution method for the fractional diffusion equation
  publication-title: J. Comput. Phys.
– volume: 193
  start-page: 243
  year: 2006
  end-page: 268
  ident: br000235
  article-title: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2
  publication-title: J. Comput. Appl. Math.
– volume: 176
  start-page: 1
  year: 2006
  end-page: 6
  ident: br000140
  article-title: Numerical solution of fractional integro-differential equations by collocation method
  publication-title: Appl. Math. Comput.
– volume: 238
  start-page: 154
  year: 2013
  end-page: 168
  ident: br000130
  article-title: A high order schema for the numerical solution of the fractional ordinary differential equations
  publication-title: J. Comput. Phys.
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 19
  ident: br000175
  article-title: A shifted Legendre spectral method for fractional-order multi-point boundary value problems
  publication-title: Adv. Difference Equ.
– volume: 339
  start-page: 1
  year: 2000
  end-page: 77
  ident: br000055
  article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach
  publication-title: Phys. Rep.
– year: 2003
  ident: br000245
  article-title: Parallel Scientific Computing in C++ and MPI: a Seamless Approach to Parallel Algorithms and their Implementation
– volume: 225
  start-page: 4
  year: 1991
  ident: br000070
  article-title: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves
  publication-title: J. Fluid Mech.
– volume: 25
  start-page: 319
  year: 1988
  end-page: 327
  ident: br000110
  article-title: A numerical method for a partial integro-differential equation
  publication-title: SIAM J. Numer. Anal.
– volume: 195
  start-page: 127
  year: 1990
  end-page: 293
  ident: br000050
  article-title: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications
  publication-title: Phys. Rep.
– volume: 32
  start-page: 170
  year: 1981
  end-page: 181
  ident: br000035
  article-title: Propagation of simple non-linear waves in gas filled tubes with friction
  publication-title: Z. Angew. Math. Phys.
– volume: 257
  start-page: 241
  year: 2014
  end-page: 258
  ident: br000195
  article-title: Stable multi-domain spectral penalty methods for fractional partial differential equations
  publication-title: J. Comput. Phys.
– year: 2007
  ident: br000085
  article-title: Spectral Methods for Time-dependent Problems, Vol. 21
– volume: 7
  start-page: 447
  year: 1985
  end-page: 458
  ident: br000040
  article-title: Generalized Burgers’ equation for nonlinear viscoelastic waves
  publication-title: Wave Motion
– volume: 36
  start-page: B904
  issue: 6
  year: 2014
  ident: 10.1016/j.cma.2014.10.051_br000205
  article-title: Spectral and discontinuous spectral element methods for fractional delay equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130935884
– volume: 18
  start-page: 44
  issue: 1
  year: 1964
  ident: 10.1016/j.cma.2014.10.051_br000030
  article-title: Resonant oscillations in closed tubes
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112064000040
– volume: 36
  start-page: B684
  issue: 4
  year: 2014
  ident: 10.1016/j.cma.2014.10.051_br000215
  article-title: Discontinuous spectral element methods for time- and space-fractional advection equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130940967
– year: 2003
  ident: 10.1016/j.cma.2014.10.051_br000015
– volume: 238
  start-page: 154
  issue: 1
  year: 2013
  ident: 10.1016/j.cma.2014.10.051_br000130
  article-title: A high order schema for the numerical solution of the fractional ordinary differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.12.013
– year: 2013
  ident: 10.1016/j.cma.2014.10.051_br000185
  article-title: Two efficient generalized Laguerre spectral algorithms for fractional initial value problems
– volume: 276
  start-page: 448
  issue: 3
  year: 2000
  ident: 10.1016/j.cma.2014.10.051_br000065
  article-title: Fractional reaction–diffusion
  publication-title: Physica A
  doi: 10.1016/S0378-4371(99)00469-0
– volume: 225
  start-page: 4
  issue: 631–653
  year: 1991
  ident: 10.1016/j.cma.2014.10.051_br000070
  article-title: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves
  publication-title: J. Fluid Mech.
– volume: 62
  start-page: 2364
  issue: 5
  year: 2011
  ident: 10.1016/j.cma.2014.10.051_br000170
  article-title: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.07.024
– volume: 7
  start-page: 447
  issue: 5
  year: 1985
  ident: 10.1016/j.cma.2014.10.051_br000040
  article-title: Generalized Burgers’ equation for nonlinear viscoelastic waves
  publication-title: Wave Motion
  doi: 10.1016/0165-2125(85)90019-8
– volume: 252
  start-page: 495
  year: 2013
  ident: 10.1016/j.cma.2014.10.051_br000210
  article-title: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.06.031
– year: 2008
  ident: 10.1016/j.cma.2014.10.051_br000060
– volume: 205
  start-page: 719
  issue: 2
  year: 2005
  ident: 10.1016/j.cma.2014.10.051_br000115
  article-title: The accuracy and stability of an implicit solution method for the fractional diffusion equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.11.025
– year: 2005
  ident: 10.1016/j.cma.2014.10.051_br000095
– volume: 36
  start-page: 1403
  issue: 6
  year: 2000
  ident: 10.1016/j.cma.2014.10.051_br000025
  article-title: Application of a fractional advection–dispersion equation
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900031
– year: 1995
  ident: 10.1016/j.cma.2014.10.051_br000080
– volume: 25
  start-page: 319
  issue: 2
  year: 1988
  ident: 10.1016/j.cma.2014.10.051_br000110
  article-title: A numerical method for a partial integro-differential equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0725022
– volume: 47
  start-page: 2108
  issue: 3
  year: 2009
  ident: 10.1016/j.cma.2014.10.051_br000145
  article-title: A space–time spectral method for the time fractional diffusion equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080718942
– volume: 17
  start-page: 704
  issue: 3
  year: 1986
  ident: 10.1016/j.cma.2014.10.051_br000105
  article-title: Discretized fractional calculus
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0517050
– volume: 257
  start-page: 460
  year: 2014
  ident: 10.1016/j.cma.2014.10.051_br000200
  article-title: Exponentially accurate spectral and spectral element methods for fractional ODEs
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.09.039
– volume: 8
  start-page: 1016
  issue: 5
  year: 2010
  ident: 10.1016/j.cma.2014.10.051_br000150
  article-title: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.020709.221209a
– volume: 32
  start-page: 170
  issue: 2
  year: 1981
  ident: 10.1016/j.cma.2014.10.051_br000035
  article-title: Propagation of simple non-linear waves in gas filled tubes with friction
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/BF00946746
– volume: 225
  start-page: 1533
  issue: 2
  year: 2007
  ident: 10.1016/j.cma.2014.10.051_br000125
  article-title: Finite difference/spectral approximations for the time-fractional diffusion equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.02.001
– volume: 2012
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.cma.2014.10.051_br000175
  article-title: A shifted Legendre spectral method for fractional-order multi-point boundary value problems
  publication-title: Adv. Difference Equ.
  doi: 10.1186/1687-1847-2012-8
– ident: 10.1016/j.cma.2014.10.051_br000190
  doi: 10.1155/2013/306746
– volume: 195
  start-page: 127
  issue: 4
  year: 1990
  ident: 10.1016/j.cma.2014.10.051_br000050
  article-title: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(90)90099-N
– start-page: 71
  year: 2012
  ident: 10.1016/j.cma.2014.10.051_br000165
  article-title: A radial basis functions method for fractional diffusion equations
  publication-title: J. Comput. Phys.
– year: 2003
  ident: 10.1016/j.cma.2014.10.051_br000245
– volume: 16
  start-page: 2535
  issue: 6
  year: 2011
  ident: 10.1016/j.cma.2014.10.051_br000160
  article-title: On the numerical solutions for the fractional diffusion equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.09.007
– volume: 193
  start-page: 243
  issue: 1
  year: 2006
  ident: 10.1016/j.cma.2014.10.051_br000235
  article-title: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.06.005
– year: 2007
  ident: 10.1016/j.cma.2014.10.051_br000085
– volume: 257
  start-page: 241
  year: 2014
  ident: 10.1016/j.cma.2014.10.051_br000195
  article-title: Stable multi-domain spectral penalty methods for fractional partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.09.041
– year: 2010
  ident: 10.1016/j.cma.2014.10.051_br000020
– volume: 255
  start-page: 2340
  issue: 8
  year: 2013
  ident: 10.1016/j.cma.2014.10.051_br000075
  article-title: Elliptic problems involving the fractional Laplacian in RN
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2013.06.016
– volume: 56
  start-page: 193
  issue: 2
  year: 2006
  ident: 10.1016/j.cma.2014.10.051_br000120
  article-title: A fully discrete difference scheme for a diffusion-wave system
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2005.03.003
– volume: 48
  start-page: 1017
  issue: 7
  year: 2004
  ident: 10.1016/j.cma.2014.10.051_br000155
  article-title: Least squares finite-element solution of a fractional order two-point boundary value problem
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2004.10.003
– year: 1999
  ident: 10.1016/j.cma.2014.10.051_br000010
– year: 2014
  ident: 10.1016/j.cma.2014.10.051_br000225
  article-title: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs
  publication-title: J. Comput. Phys.
– volume: 3
  start-page: 439
  issue: 4
  year: 1983
  ident: 10.1016/j.cma.2014.10.051_br000100
  article-title: On the stability of linear multistep methods for Volterra convolution equations
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/3.4.439
– year: 2004
  ident: 10.1016/j.cma.2014.10.051_br000240
– year: 2006
  ident: 10.1016/j.cma.2014.10.051_br000045
– volume: 176
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.cma.2014.10.051_br000140
  article-title: Numerical solution of fractional integro-differential equations by collocation method
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.09.059
– year: 2012
  ident: 10.1016/j.cma.2014.10.051_br000180
  article-title: An adaptive pseudospectral method for fractional order boundary value problems
– year: 2005
  ident: 10.1016/j.cma.2014.10.051_br000090
– volume: 36
  start-page: A40
  issue: 1
  year: 2014
  ident: 10.1016/j.cma.2014.10.051_br000220
  article-title: Fractional spectral collocation method
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130933216
– year: 1993
  ident: 10.1016/j.cma.2014.10.051_br000005
– year: 1996
  ident: 10.1016/j.cma.2014.10.051_br000135
  article-title: Numerical treatment of differential equations of fractional order
  publication-title: Citeseer
– volume: 339
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.cma.2014.10.051_br000055
  article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(00)00070-3
– year: 2004
  ident: 10.1016/j.cma.2014.10.051_br000230
SSID ssj0000812
Score 2.4949694
Snippet Existing numerical methods for fractional PDEs suffer from low accuracy and inefficiency in dealing with three-dimensional problems or with long-time...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1545
SubjectTerms Fractional basis/test functions
Jacobi poly-fractonomial
Spectral convergence
Unified fast FPDE solver
Title A unified Petrov–Galerkin spectral method for fractional PDEs
URI https://dx.doi.org/10.1016/j.cma.2014.10.051
https://www.osti.gov/biblio/1255337
Volume 283
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4AohSoDE1L6SOzYmVBVWgqIioFK3SLHD6kIpVUfjIj_wD_kl3CXB5SBDoyxfFZ0d_Z9Tu6-I-SCB2GshKdd4wvpUs5iF64RDAwSAzpVgtu0S8TDMBiM6N2YjUukW9TCYFplfvZnZ3p6WucjzVybzdlkgjW-FLnYIeKj57WRdptSjl7eePtJ84CQlzGGU-bi7OLPZprjpVLqoTZtYIIXa_8Vm8pT2G5rYae_T3ZzvOh0slc6ICWTVMhejh2dfGcuKmRnjVjwkFx1nFUysTgFW2ZNXz_fP24gFOCHcSctrpzDoln3aAdgq2PnWYEDjD5e9xZHZNTvPXUHbt4qwVUA6Jau0LGymvqaWuVLKUMR-FZ7mhreiiXnOggUbk64f1jPWp_BNcUqqcCAng4hjB2TcjJNzAlxmPSFCajUTAJUEkL6RoClQd4YakNWJa1CSZHKecSxncVLVCSMPUeg1wj1ikOg1yq5_BaZZSQamybTQvPRL0-I4JDfJFZDK6EIst8qTBMCGcBvAGj56f8WrZFteGLZJ5czUl7OV-YcQMgyrqdeVidbndv7wfALDWja4g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBRwHxJgMTUoA2duJOqIJCSx9iaKVukeOHVITaqg9m_gP_kF_CXeJAGWBgdXxWdGfffU7uvgM4j8JKokRZ-yYQ0mcRT3y8RnA0SILoVInIpl0i2p2w3mOPfd5fgtu8FobSKp3vz3x66q3dyJXT5tV4MKAaX0Zc7BjxaeeVwmVYIXYqXoCVaqNZ73w7ZFHKSMMZ90kg_7mZpnmplH2oxC4px4uXfgtPhRGeuIXIc78FGw4yetXsrbZhyQyLsOngo-cO57QI6wvcgjtwU_Xmw4GlKdQ1a_T68fb-gNGAvo17aX3lBBfNGkh7iFw9O8lqHHD06a423YXefa17W_ddtwRfIaab-UInymoWaGZVIKWsiDCwuqyZia4TGUU6DBWdT7yC2LK1AcebilVSoQ3LuoKRbA8Kw9HQ7IPHZSBMyKTmEtGSEDIwAo2N8sYwW-EHcJ0rKVaOSpw6WrzEec7Yc4x6jUmvNIR6PYCLL5FxxqPx12SWaz7-sRli9PN_iR2RlUiECHAVZQqhDEI4xLTR4f8WPYPVerfdiluNTvMI1vAJz77AHENhNpmbE8Qks-TU7blPmlXdkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+unified+Petrov%E2%80%93Galerkin+spectral+method+for+fractional+PDEs&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Zayernouri%2C+Mohsen&rft.au=Ainsworth%2C+Mark&rft.au=Karniadakis%2C+George+Em&rft.date=2015-01-01&rft.issn=0045-7825&rft.volume=283&rft.spage=1545&rft.epage=1569&rft_id=info:doi/10.1016%2Fj.cma.2014.10.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2014_10_051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon