UVA-visible photo-excitation of guanine radical cations produces sugar radicals in DNA and model structures

This work presents evidence that photo-excitation of guanine radical cations results in high yields of deoxyribose sugar radicals in DNA, guanine deoxyribonucleosides and deoxyribonucleotides. In dsDNA at low temperatures, formation of C1′• is observed from photo-excitation of G•+ in the 310–480 nm...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 33; no. 17; pp. 5553 - 5564
Main Authors Adhikary, Amitava, Malkhasian, Aramice Y. S., Collins, Sean, Koppen, Jessica, Becker, David, Sevilla, Michael D.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.01.2005
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This work presents evidence that photo-excitation of guanine radical cations results in high yields of deoxyribose sugar radicals in DNA, guanine deoxyribonucleosides and deoxyribonucleotides. In dsDNA at low temperatures, formation of C1′• is observed from photo-excitation of G•+ in the 310–480 nm range with no C1′• formation observed ≥520 nm. Illumination of guanine radical cations in 2′dG, 3′-dGMP and 5′-dGMP in aqueous LiCl glasses at 143 K is found to result in remarkably high yields (∼85–95%) of sugar radicals, namely C1′•, C3′• and C5′•. The amount of each of the sugar radicals formed varies dramatically with compound structure and temperature of illumination. Radical assignments were confirmed using selective deuteration at C5′ or C3′ in 2′-dG and at C8 in all the guanine nucleosides/tides. Studies of the effect of temperature, pH, and wavelength of excitation provide important information about the mechanism of formation of these sugar radicals. Time-dependent density functional theory calculations verify that specific excited states in G•+ show considerable hole delocalization into the sugar structure, in accord with our proposed mechanism of action, namely deprotonation from the sugar moiety of the excited molecular radical cation.
Bibliography:istex:809AC702BDC585FA3892C0422349FB387EDEF13C
local:gki857
ark:/67375/HXZ-NWP022JP-P
To whom correspondence should be addressed. Tel: +1 248 370 2328; Fax: +1 248 370 2321; Email: sevilla@oakland.edu
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gki857