A Review and Perspective of Environmental Disinfection Technology Based on Microwave Irradiation
Purpose of Review In the context of COVID-19 sweeping the world, the development of microbial disinfection methods in gas, liquid, and solid media has received widespread attention from researchers. As a disinfection technology that can adapt to different environmental media, microwave-assisted disi...
Saved in:
Published in | Current pollution reports Vol. 9; no. 1; pp. 46 - 59 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose of Review
In the context of COVID-19 sweeping the world, the development of microbial disinfection methods in gas, liquid, and solid media has received widespread attention from researchers. As a disinfection technology that can adapt to different environmental media, microwave-assisted disinfection has the advantages of strong permeability, no secondary pollution, etc. The purpose of this review is to put forward new development requirements for future microwave disinfection strategies by summarizing current microwave disinfection methods and effects. From the perspective of the interaction mechanism of microwave and microorganisms, this review provides a development direction for more accurate and microscopic disinfection mechanism research.
Recent Findings
Compared to other traditional environmental disinfection techniques, microwave-assisted disinfection means have the advantages of being more destructive, free of secondary contamination, and thorough. Currently, researchers generally agree that the efficiency of microwave disinfection is the result of a combination of thermal and non-thermal effects. However, the performance of microwave disinfection shows the differences in the face of different environmental media as well as different types of microorganisms.
Summary
This review highlights the inactivation mechanism of microwave-assisted disinfection techniques used in different scenarios. Suggestions for promoting the efficiency and overcoming the limitations of low energy utilization, complex reactor design, and inaccurate monitoring methods are proposed. |
---|---|
AbstractList | PURPOSE OF REVIEW: In the context of COVID-19 sweeping the world, the development of microbial disinfection methods in gas, liquid, and solid media has received widespread attention from researchers. As a disinfection technology that can adapt to different environmental media, microwave-assisted disinfection has the advantages of strong permeability, no secondary pollution, etc. The purpose of this review is to put forward new development requirements for future microwave disinfection strategies by summarizing current microwave disinfection methods and effects. From the perspective of the interaction mechanism of microwave and microorganisms, this review provides a development direction for more accurate and microscopic disinfection mechanism research. RECENT FINDINGS: Compared to other traditional environmental disinfection techniques, microwave-assisted disinfection means have the advantages of being more destructive, free of secondary contamination, and thorough. Currently, researchers generally agree that the efficiency of microwave disinfection is the result of a combination of thermal and non-thermal effects. However, the performance of microwave disinfection shows the differences in the face of different environmental media as well as different types of microorganisms. This review highlights the inactivation mechanism of microwave-assisted disinfection techniques used in different scenarios. Suggestions for promoting the efficiency and overcoming the limitations of low energy utilization, complex reactor design, and inaccurate monitoring methods are proposed. In the context of COVID-19 sweeping the world, the development of microbial disinfection methods in gas, liquid, and solid media has received widespread attention from researchers. As a disinfection technology that can adapt to different environmental media, microwave-assisted disinfection has the advantages of strong permeability, no secondary pollution, etc. The purpose of this review is to put forward new development requirements for future microwave disinfection strategies by summarizing current microwave disinfection methods and effects. From the perspective of the interaction mechanism of microwave and microorganisms, this review provides a development direction for more accurate and microscopic disinfection mechanism research. Compared to other traditional environmental disinfection techniques, microwave-assisted disinfection means have the advantages of being more destructive, free of secondary contamination, and thorough. Currently, researchers generally agree that the efficiency of microwave disinfection is the result of a combination of thermal and non-thermal effects. However, the performance of microwave disinfection shows the differences in the face of different environmental media as well as different types of microorganisms. This review highlights the inactivation mechanism of microwave-assisted disinfection techniques used in different scenarios. Suggestions for promoting the efficiency and overcoming the limitations of low energy utilization, complex reactor design, and inaccurate monitoring methods are proposed. Purpose of Review In the context of COVID-19 sweeping the world, the development of microbial disinfection methods in gas, liquid, and solid media has received widespread attention from researchers. As a disinfection technology that can adapt to different environmental media, microwave-assisted disinfection has the advantages of strong permeability, no secondary pollution, etc. The purpose of this review is to put forward new development requirements for future microwave disinfection strategies by summarizing current microwave disinfection methods and effects. From the perspective of the interaction mechanism of microwave and microorganisms, this review provides a development direction for more accurate and microscopic disinfection mechanism research. Recent Findings Compared to other traditional environmental disinfection techniques, microwave-assisted disinfection means have the advantages of being more destructive, free of secondary contamination, and thorough. Currently, researchers generally agree that the efficiency of microwave disinfection is the result of a combination of thermal and non-thermal effects. However, the performance of microwave disinfection shows the differences in the face of different environmental media as well as different types of microorganisms. Summary This review highlights the inactivation mechanism of microwave-assisted disinfection techniques used in different scenarios. Suggestions for promoting the efficiency and overcoming the limitations of low energy utilization, complex reactor design, and inaccurate monitoring methods are proposed. In the context of COVID-19 sweeping the world, the development of microbial disinfection methods in gas, liquid, and solid media has received widespread attention from researchers. As a disinfection technology that can adapt to different environmental media, microwave-assisted disinfection has the advantages of strong permeability, no secondary pollution, etc. The purpose of this review is to put forward new development requirements for future microwave disinfection strategies by summarizing current microwave disinfection methods and effects. From the perspective of the interaction mechanism of microwave and microorganisms, this review provides a development direction for more accurate and microscopic disinfection mechanism research.Purpose of ReviewIn the context of COVID-19 sweeping the world, the development of microbial disinfection methods in gas, liquid, and solid media has received widespread attention from researchers. As a disinfection technology that can adapt to different environmental media, microwave-assisted disinfection has the advantages of strong permeability, no secondary pollution, etc. The purpose of this review is to put forward new development requirements for future microwave disinfection strategies by summarizing current microwave disinfection methods and effects. From the perspective of the interaction mechanism of microwave and microorganisms, this review provides a development direction for more accurate and microscopic disinfection mechanism research.Compared to other traditional environmental disinfection techniques, microwave-assisted disinfection means have the advantages of being more destructive, free of secondary contamination, and thorough. Currently, researchers generally agree that the efficiency of microwave disinfection is the result of a combination of thermal and non-thermal effects. However, the performance of microwave disinfection shows the differences in the face of different environmental media as well as different types of microorganisms.Recent FindingsCompared to other traditional environmental disinfection techniques, microwave-assisted disinfection means have the advantages of being more destructive, free of secondary contamination, and thorough. Currently, researchers generally agree that the efficiency of microwave disinfection is the result of a combination of thermal and non-thermal effects. However, the performance of microwave disinfection shows the differences in the face of different environmental media as well as different types of microorganisms.This review highlights the inactivation mechanism of microwave-assisted disinfection techniques used in different scenarios. Suggestions for promoting the efficiency and overcoming the limitations of low energy utilization, complex reactor design, and inaccurate monitoring methods are proposed.SummaryThis review highlights the inactivation mechanism of microwave-assisted disinfection techniques used in different scenarios. Suggestions for promoting the efficiency and overcoming the limitations of low energy utilization, complex reactor design, and inaccurate monitoring methods are proposed. Purpose of ReviewIn the context of COVID-19 sweeping the world, the development of microbial disinfection methods in gas, liquid, and solid media has received widespread attention from researchers. As a disinfection technology that can adapt to different environmental media, microwave-assisted disinfection has the advantages of strong permeability, no secondary pollution, etc. The purpose of this review is to put forward new development requirements for future microwave disinfection strategies by summarizing current microwave disinfection methods and effects. From the perspective of the interaction mechanism of microwave and microorganisms, this review provides a development direction for more accurate and microscopic disinfection mechanism research.Recent FindingsCompared to other traditional environmental disinfection techniques, microwave-assisted disinfection means have the advantages of being more destructive, free of secondary contamination, and thorough. Currently, researchers generally agree that the efficiency of microwave disinfection is the result of a combination of thermal and non-thermal effects. However, the performance of microwave disinfection shows the differences in the face of different environmental media as well as different types of microorganisms.SummaryThis review highlights the inactivation mechanism of microwave-assisted disinfection techniques used in different scenarios. Suggestions for promoting the efficiency and overcoming the limitations of low energy utilization, complex reactor design, and inaccurate monitoring methods are proposed. |
Author | Gao, Xin Li, Hong Wang, Can Zhao, Zhenyu Laghari, Azhar Ali Wang, Na Liu, Liming Zeng, Qiang |
Author_xml | – sequence: 1 givenname: Liming surname: Liu fullname: Liu, Liming organization: School of Environmental Science and Engineering, Tianjin University – sequence: 2 givenname: Na surname: Wang fullname: Wang, Na organization: School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University – sequence: 3 givenname: Azhar Ali surname: Laghari fullname: Laghari, Azhar Ali organization: School of Environmental Science and Engineering, Tianjin University – sequence: 4 givenname: Hong surname: Li fullname: Li, Hong organization: School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University – sequence: 5 givenname: Can surname: Wang fullname: Wang, Can email: wangcan@tju.edu.cn organization: School of Environmental Science and Engineering, Tianjin University – sequence: 6 givenname: Zhenyu surname: Zhao fullname: Zhao, Zhenyu email: 1017207054@tju.edu.cn organization: School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University – sequence: 7 givenname: Xin surname: Gao fullname: Gao, Xin email: gaoxin@tju.edu.cn organization: School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University – sequence: 8 givenname: Qiang surname: Zeng fullname: Zeng, Qiang organization: Tianjin Centers for Disease Control and Prevention |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36743476$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9PFTEUxRuDEUS-gAsziRs3o-1tZ9rZmCCikmA0Bte107l9lMxrH-28R_j2dnigyAJX_XN_5-T09j4nOyEGJOQlo28ZpfJdFlRCW1OAmlIQsoYnZA9Yp-q26WDn3n6XHOR8QQtFRTnLZ2SXt1JwIds98uuw-oEbj1eVCUP1HVNeoZ38BqvoquOw8SmGJYbJjNVHn31wczWG6gzteYhjXFxXH0zGoSp3X71N8coU7UlKZvBmJl-Qp86MGQ9u133y89Px2dGX-vTb55Ojw9PaNlROtTTQC-BSKeSDaZTjpqW9a1A0MAhOAaXjg7Cqc66nUtIW24FR21NuQRRin7zf-q7W_RIHWzInM-pV8kuTrnU0Xv9bCf5cL-JGd0qVBLPBm1uDFC_XmCe99NniOJqAcZ01Zw2XtFGM_RcFKblkqoEZff0AvYjrFEonNHQAVDHJm0K9uh_-T-q7fyqA2gKlwzkndNr66aa_5S1-1IzqeSr0dip0mQp9MxUaihQeSO_cHxXxrSgXOCww_Y39iOo33tfJdA |
CitedBy_id | crossref_primary_10_12677_ojfr_2024_111005 crossref_primary_10_1007_s42729_023_01315_2 crossref_primary_10_1016_j_ceramint_2023_12_247 |
Cites_doi | 10.1007/BF02828943 10.1016/j.cej.2009.05.008 10.1016/j.energy.2015.11.034 10.1039/c6tc05057c 10.1016/j.jfoodeng.2013.01.031 10.1016/j.ijheatmasstransfer.2022.122667 10.1016/j.jaerosci.2011.07.002 10.1515/htmp-2013-0008 10.1128/AEM.60.2.482-488.1994 10.1016/j.anaerobe.2015.10.015 10.4014/jmb.1702.02009 10.1016/j.jaerosci.2010.06.001 10.1109/ACCESS.2019.2944210 10.1007/s00253-012-4339-y 10.1002/btpr.2392 10.1080/08327823.2007.11688578 10.1007/s11434-014-0171-3 10.1016/j.lwt.2014.05.058 10.1111/1541-4337.12409 10.1016/j.cej.2015.07.030 10.1080/09205071.2016.1249802 10.1111/j.1365-2672.2004.02406.x 10.1111/j.1365-2672.2008.04056.x 10.1007/s11947-009-0187-x 10.1021/jf500278a 10.1007/s11947-008-0136-0 10.1080/07373937.2012.761635 10.1109/22.989978 10.1177/1420326X13490180 10.1007/s12274-016-1290-8 10.1111/j.1472-765X.2008.02384.x 10.1177/1082013220907434 10.1061/(ASCE)EE.1943-7870.0000747 10.1016/j.scitotenv.2016.01.013 10.1016/j.ifset.2015.02.009 10.1016/j.carbon.2017.01.077 10.1016/j.surfcoat.2006.07.039 10.1016/j.foodres.2013.02.033 10.1128/AEM.53.9.2133-2137.1987 10.1016/j.psep.2020.03.015 10.1016/j.mrfmmm.2011.07.009 10.1016/j.fuel.2014.01.102 10.1021/es8021107 10.1016/j.jcis.2018.10.084 10.1007/s10973-012-2739-y 10.1016/j.fm.2015.08.008 10.1016/j.ifset.2005.06.002 10.1007/s10068-019-00652-2 10.1016/j.fbp.2020.01.015 10.1002/jctb.5077 10.1007/s11947-011-0639-y 10.1016/j.ifset.2017.05.001 10.1021/jo7022697 10.1016/j.carbon.2017.09.007 10.1016/j.jfoodeng.2009.01.009 10.1039/c7en00702g 10.1070/PU1974v016n04ABEH005308 10.1016/j.renene.2018.09.008 10.1108/HFF-07-2019-0601 10.1111/jfpp.14207 10.1080/08327823.2017.1421407 10.1016/j.carbon.2019.01.082 10.1016/j.ces.2021.116681 10.1016/j.jhazmat.2018.11.088 10.1016/j.tifs.2022.01.032 10.1016/j.msec.2006.10.010 10.1016/j.rser.2013.08.008 10.1109/LMWC.2018.2882302 10.1039/c3ra40973b 10.1080/08327823.2022.2029117 10.1111/ijfs.13895 10.4209/aaqr.2011.11.0193 10.1166/jbt.2018.1781 10.2202/1556-3758.1360 10.3389/fmicb.2018.01870 10.1002/anie.202114340 10.1016/j.jaerosci.2019.105437 10.1016/j.jhazmat.2020.122535 10.1016/j.jaerosci.2010.04.004 10.1016/j.lwt.2021.112280 10.1111/jfpe.12815 10.1049/pbpo004e 10.1016/B978-0-08-100596-5.21843-X 10.1016/j.lwt.2020.109861 10.1016/j.chemosphere.2021.132558 10.1016/j.applthermaleng.2021.117346 10.1016/j.pdpdt.2022.102867 10.1016/j.jallcom.2021.160367 10.3390/s17061309. 10.1371/journal.pone.0018585. 10.1088/0957-0233/21/4/045108. 10.1016/j.watres.2020.116102 10.3390/ijerph19074332 10.1080/08327823.2007.11688587 10.1016/j.buildenv.2019.106220. 10.1016/j.fpsl.2019.100324. 10.15666/aeer/1704_86558666 10.27264/d.cnki.gqdhc.2022.000278. 10.2202/1556-3758.1878 10.1111/jfpe.13722 10.3390/foods10122972 10.1038/s41598-021-93274-w. |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Mar 2023 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Mar 2023 |
DBID | AAYXX CITATION NPM 8FE 8FH AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM |
DOI | 10.1007/s40726-022-00247-2 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central Environmental Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2198-6592 |
EndPage | 59 |
ExternalDocumentID | PMC9885074 36743476 10_1007_s40726_022_00247_2 |
Genre | Journal Article Review |
GeographicLocations | United States--US Tennessee |
GeographicLocations_xml | – name: Tennessee – name: United States--US |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2022TQ0232 – fundername: National Natural Science Founding of China grantid: Nos. 22222809, 21878219 – fundername: Key Technologies R&D Program of Tianjin grantid: 21JCZDJC00580 – fundername: Major Science and Technology Project on Public Health of Tianjin grantid: 21ZXGWSY00010 – fundername: ; grantid: Nos. 22222809, 21878219 – fundername: ; grantid: 2022TQ0232 – fundername: ; grantid: 21JCZDJC00580 – fundername: ; grantid: 21ZXGWSY00010 |
GroupedDBID | 0R~ 203 406 AAAVM AACDK AAHBH AAHNG AAIAL AAJBT AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFDZB AFKRA AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATCPS AUKKA AVXWI AXYYD AYFIA BBNVY BENPR BGNMA BHPHI CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD HCIFZ HG6 HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y M7P NPVJJ NQJWS NU0 O9J PATMY PHGZT PT4 PYCSY RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABFSG ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM -EM ADINQ NPM Z5O Z7Y 8FE 8FH ABRTQ AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c507t-7a2b423788e3da58f3a60bf5e452d4302e7f3d4c89ffb07706e6d10cb03c24d43 |
IEDL.DBID | BENPR |
ISSN | 2198-6592 |
IngestDate | Thu Aug 21 18:38:30 EDT 2025 Fri Jul 11 01:25:16 EDT 2025 Fri Jul 11 05:48:16 EDT 2025 Sat Aug 23 13:47:32 EDT 2025 Wed Feb 19 02:25:09 EST 2025 Tue Jul 01 05:05:19 EDT 2025 Thu Apr 24 23:06:10 EDT 2025 Thu Apr 10 07:50:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Microwave Microwave-absorbing materials Disinfection Microorganisms Environmental media |
Language | English |
License | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-7a2b423788e3da58f3a60bf5e452d4302e7f3d4c89ffb07706e6d10cb03c24d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9885074 |
PMID | 36743476 |
PQID | 2922081735 |
PQPubID | 2044259 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9885074 proquest_miscellaneous_3153705811 proquest_miscellaneous_2773718521 proquest_journals_2922081735 pubmed_primary_36743476 crossref_citationtrail_10_1007_s40726_022_00247_2 crossref_primary_10_1007_s40726_022_00247_2 springer_journals_10_1007_s40726_022_00247_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland – name: Heidelberg |
PublicationTitle | Current pollution reports |
PublicationTitleAbbrev | Curr Pollution Rep |
PublicationTitleAlternate | Curr Pollut Rep |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Xu, Zhou, Miao (CR19) 2013; 117 Wu, Yao (CR28) 2014; 59 Roohi, Hashemi (CR7) 2020; 121 CR39 CR38 Singh, Singh, Husain (CR71) 2020; 26 Mawioo, Rweyemamu, Garcia (CR6) 2016; 548 CR33 Ballardin, Tusa, Fontana (CR37) 2011; 716 Balasubramanian, Ortego, Rusch, Boldor (CR66) 2008; 42 CR32 Awuah, Ramaswamy, Economides, Mallikarjunan (CR9) 2005; 6 Chandrasekaran, Ramanathan, Basak (CR18) 2013; 52 Zheng, Wang, Liu (CR69) 2013; 31 Nakouti, Hobbs, Teethaisong, Phipps (CR43) 2017; 33 Takashima, Miyakawa, Kanno (CR52) 2007; 27 Karlsson, Carlsson, Idebro, Eek (CR5) 2019; 7 Zeng, Li, Li (CR76) 2022; 121 Motasemi, Afzal (CR104) 2013; 28 CR48 Lespinard, Arballo, Badin, Mascheroni (CR94) 2019; 43 CR42 Ozturk, Kong, Singh (CR70) 2017; 44 Wu, Zhang, Luo (CR87) 2019; 536 Wang, Zhang, Liu (CR21) 2019; 366 CR41 Xie, Wu, Jiang (CR84) 2017; 5 Salazar-Gonzalez, Fernanda San Martin-Gonzalez, Lopez-Malo, Sosa-Morales (CR59) 2012; 5 Wu, Yao (CR45) 2011; 42 Liu, Guo, He, Zhu (CR57) 2018; 53 Kim, Shin, Song (CR27) 2009; 106 Shen, Li, Zhao, Li, Liu, Gao (CR90) 2022; 189 Park, Takatori, Lee (CR51) 2007; 201 CR54 Park, Yang, Choi, Kim (CR26) 2017; 27 Herrero, Kremsner, Kappe (CR36) 2008; 73 Adair, Petersen (CR29) 2002; 50 Kim, Jo, Kim (CR31) 2008; 47 Kang, Kato (CR46) 2014; 23 Kotecha, Massie, Szabo, Shanov (CR16) 2013; 139 Garnage, Sanguansri, Swiergon (CR96) 2015; 29 Magee, McMinn, Farrell (CR77) 2013; 111 Celandroni, Longo, Tosoratti (CR50) 2004; 97 CR67 Plazas-Tuttle, Das, Sabaraya, Saleh (CR1) 2018; 5 CR65 Zhang, Han, Kang (CR83) 2013; 3 Shamis, Croft, Taube (CR40) 2012; 96 CR62 Bhattacharya, Basak (CR81) 2016; 97 Zhang, Zhao, Li, Li, Gao (CR91) 2021; 240 Devyatkov (CR3) 1974; 16 Navarkhele, Agrawal, Kurtadikar (CR60) 1998; 51 Wang, Wang, Han (CR85) 2019; 145 Cho, Chung (CR30) 2020; 29 Rasooly, Hernlem, He, Friedman (CR22) 2014; 62 CR73 CR72 Song, Kang (CR24) 2016; 53 Jeng, Kaczmarek, Woodworth, Balasky (CR34) 1987; 53 Zhang, Damit, Welch (CR44) 2010; 41 Cha-um, Rattanadecho, Pakdee (CR64) 2011; 4 Chen, Huang, Huang (CR55) 2017 CR2 CR4 Liu, Zhang, Peng (CR78) 2013; 32 CR8 CR89 CR88 CR82 Basak (CR92) 2020; 30 Benleulmi, Boubekeur, Massicotte (CR49) 2019; 29 Onumaegbu, Alaswad, Rodriguez, Olabi (CR75) 2019; 132 Song, Yin, Han (CR56) 2017 Woo, Grippin, Wu, Wander (CR47) 2012; 12 Vadivambal, Jayas (CR68) 2008 Satpathy, Tabil, Meda (CR102) 2014; 124 Fu, Zhang, Guan, Li, Yan (CR17) 2022; 56 Ellison, McKeown, Trabelsi (CR80) 2018; 52 Salvi, Ortego, Arauz (CR61) 2009; 93 Ojha, Chankhamhaengdecha, Singhakaew (CR25) 2016; 38 CR14 CR12 Buttress, Binner, Yi (CR95) 2016; 283 CR11 Spanu, Fanti, Lodi (CR79) 2016; 30 CR10 CR98 Cheng, Li, Sun (CR15) 2020; 138 CR93 Welt, Tong, Rossen, Lund (CR35) 1994; 60 Martins, Cavalcanti, Couto (CR58) 2019; 18 Gerbo, Boldor, Sabliov (CR63) 2008; 42 Pan, Wang, Liu (CR86) 2017; 10 CR23 CR105 CR20 CR103 CR100 CR101 Ji, Gao (CR99) 1996; 4 Sung, Kang (CR53) 2014; 59 Lu, Wu, Zhu, Wang (CR74) 2018; 8 Robinson, Kingman, Snape (CR97) 2009; 152 Zhang, Zhang, Wang, Wang (CR13) 2017; 92 S Chandrasekaran (247_CR18) 2013; 52 247_CR42 247_CR41 MH Woo (247_CR47) 2012; 12 PM Mawioo (247_CR6) 2016; 548 247_CR48 R Roohi (247_CR7) 2020; 121 C Song (247_CR56) 2017 I Nakouti (247_CR43) 2017; 33 Y-F Pan (247_CR86) 2017; 10 247_CR105 WI Cho (247_CR30) 2020; 29 AR Lespinard (247_CR94) 2019; 43 247_CR100 247_CR101 P Zhang (247_CR83) 2013; 3 247_CR103 C Onumaegbu (247_CR75) 2019; 132 G Wu (247_CR87) 2019; 536 247_CR33 247_CR32 247_CR39 247_CR38 M Bhattacharya (247_CR81) 2016; 97 Y Zhang (247_CR91) 2021; 240 H Chen (247_CR55) 2017 R Kotecha (247_CR16) 2013; 139 W-J Song (247_CR24) 2016; 53 247_CR20 247_CR23 A Xie (247_CR84) 2017; 5 BA Welt (247_CR35) 1994; 60 Q Zhang (247_CR44) 2010; 41 C Wang (247_CR21) 2019; 366 247_CR93 S Balasubramanian (247_CR66) 2008; 42 W Fu (247_CR17) 2022; 56 247_CR12 247_CR11 247_CR10 247_CR98 D Singh (247_CR71) 2020; 26 247_CR14 SY Kim (247_CR27) 2009; 106 J Plazas-Tuttle (247_CR1) 2018; 5 R Rasooly (247_CR22) 2014; 62 SK Satpathy (247_CR102) 2014; 124 G Cheng (247_CR15) 2020; 138 S Ozturk (247_CR70) 2017; 44 W Cha-um (247_CR64) 2011; 4 R Vadivambal (247_CR68) 2008 247_CR8 YG Ji (247_CR99) 1996; 4 F Celandroni (247_CR50) 2004; 97 247_CR4 247_CR2 F Motasemi (247_CR104) 2013; 28 247_CR82 F Wang (247_CR85) 2019; 145 TRA Magee (247_CR77) 2013; 111 247_CR89 247_CR88 DK Jeng (247_CR34) 1987; 53 S Zeng (247_CR76) 2022; 121 JP Robinson (247_CR97) 2009; 152 Y Wu (247_CR45) 2011; 42 DN Devyatkov (247_CR3) 1974; 16 C Salazar-Gonzalez (247_CR59) 2012; 5 X Zheng (247_CR69) 2013; 31 Y Lu (247_CR74) 2018; 8 HS Park (247_CR26) 2017; 27 ER Adair (247_CR29) 2002; 50 247_CR73 X Shen (247_CR90) 2022; 189 247_CR72 H Takashima (247_CR52) 2007; 27 M Ballardin (247_CR37) 2011; 716 Y Wu (247_CR28) 2014; 59 SY Kim (247_CR31) 2008; 47 C Ellison (247_CR80) 2018; 52 HJ Sung (247_CR53) 2014; 59 VV Navarkhele (247_CR60) 1998; 51 247_CR62 247_CR67 247_CR65 Y Kang (247_CR46) 2014; 23 B Xu (247_CR19) 2013; 117 TV Garnage (247_CR96) 2015; 29 M Karlsson (247_CR5) 2019; 7 M Spanu (247_CR79) 2016; 30 A Benleulmi (247_CR49) 2019; 29 MA Herrero (247_CR36) 2008; 73 AJ Buttress (247_CR95) 2016; 283 Y Zhang (247_CR13) 2017; 92 Y Shamis (247_CR40) 2012; 96 247_CR54 NM Gerbo (247_CR63) 2008; 42 GB Awuah (247_CR9) 2005; 6 Q Liu (247_CR57) 2018; 53 D Salvi (247_CR61) 2009; 93 T Basak (247_CR92) 2020; 30 SC Ojha (247_CR25) 2016; 38 CPC Martins (247_CR58) 2019; 18 BJ Park (247_CR51) 2007; 201 C Liu (247_CR78) 2013; 32 |
References_xml | – volume: 51 start-page: 511 year: 1998 end-page: 518 ident: CR60 article-title: Dielectric properties of electrolytic solutions publication-title: Pramana J Phys doi: 10.1007/BF02828943 – volume: 152 start-page: 458 year: 2009 end-page: 463 ident: CR97 article-title: Remediation of oil-contaminated drill cuttings using continuous microwave heating publication-title: Chem Eng J doi: 10.1016/j.cej.2009.05.008 – ident: CR39 – ident: CR54 – ident: CR8 – volume: 97 start-page: 306 year: 2016 end-page: 338 ident: CR81 article-title: A review on the susceptor assisted microwave processing of materials publication-title: Energy doi: 10.1016/j.energy.2015.11.034 – volume: 5 start-page: 2175 year: 2017 end-page: 2181 ident: CR84 article-title: Chiral induced synthesis of helical polypyrrole (PPy) nano-structures: a lightweight and high-performance material against electromagnetic pollution publication-title: J Mater Chem C doi: 10.1039/c6tc05057c – ident: CR42 – volume: 117 start-page: 1 year: 2013 end-page: 7 ident: CR19 article-title: Study on the stabilization effect of continuous microwave on wheat germ publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2013.01.031 – ident: CR101 – volume: 189 year: 2022 ident: CR90 article-title: Imaging of liquid temperature distribution during microwave heating via thermochromic metal organic frameworks publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2022.122667 – ident: CR88 – volume: 42 start-page: 800 year: 2011 end-page: 810 ident: CR45 article-title: Effects of microwave irradiation on concentration, diversity and gene mutation of culturable airborne microorganisms of inhalable sizes in different environments publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2011.07.002 – volume: 32 start-page: 587 year: 2013 end-page: 596 ident: CR78 article-title: Dielectric properties and microwave heating characteristics of sodium chloride at 2.45 GHz publication-title: High Temp Mater Processes. doi: 10.1515/htmp-2013-0008 – volume: 60 start-page: 482 year: 1994 end-page: 488 ident: CR35 article-title: Effect of microwave radiation on inactivation of Clostridium sporogenes (PA 3679) spores publication-title: Appl Environ Microbiol doi: 10.1128/AEM.60.2.482-488.1994 – volume: 38 start-page: 14 year: 2016 end-page: 20 ident: CR25 article-title: Inactivation of Clostridium difficile spores by microwave irradiation publication-title: Anaerobe doi: 10.1016/j.anaerobe.2015.10.015 – volume: 27 start-page: 1209 year: 2017 end-page: 1215 ident: CR26 article-title: Effective Thermal inactivation of the spores of Bacillus cereus biofilms using microwave publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.1702.02009 – ident: CR11 – volume: 41 start-page: 880 year: 2010 end-page: 888 ident: CR44 article-title: Microwave assisted nanofibrous air filtration for disinfection of bioaerosols publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2010.06.001 – volume: 7 start-page: 142308 year: 2019 end-page: 142316 ident: CR5 article-title: Microwave heating as a method to improve sanitation of sewage sludge in wastewater plants publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944210 – volume: 96 start-page: 319 year: 2012 end-page: 325 ident: CR40 article-title: Review of the specific effects of microwave radiation on bacterial cells publication-title: APPLIED MICROBIOLOGY AND BIOTECHNOLOGY doi: 10.1007/s00253-012-4339-y – volume: 33 start-page: 37 year: 2017 end-page: 44 ident: CR43 article-title: A demonstration of athermal effects of continuous microwave irradiation on the growth and antibiotic sensitivity of Pseudomonas aeruginosa PAO1 publication-title: Biotechnol Prog doi: 10.1002/btpr.2392 – ident: CR100 – volume: 42 start-page: 55 year: 2008 end-page: 65 ident: CR63 article-title: Design of a measurement system for temperature distribution in continuous-flow microwave heating of pumpable fluids using infrared imaging and fiber optic technology publication-title: J Microwave Power Electromagn Energy doi: 10.1080/08327823.2007.11688578 – ident: CR72 – volume: 59 start-page: 1438 year: 2014 end-page: 1445 ident: CR28 article-title: In situ airborne virus inactivation by microwave irradiation publication-title: Chin Sci Bull doi: 10.1007/s11434-014-0171-3 – volume: 59 start-page: 754 year: 2014 end-page: 759 ident: CR53 article-title: Effect of a 915 MHz microwave system on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in salsa publication-title: LWT-Food Sci Technol doi: 10.1016/j.lwt.2014.05.058 – volume: 18 start-page: 67 year: 2019 end-page: 83 ident: CR58 article-title: Microwave processing: current background and effects on the physicochemical and microbiological aspects of dairy products publication-title: Comprehens Rev Food Sci Food Safety doi: 10.1111/1541-4337.12409 – ident: CR89 – volume: 283 start-page: 215 year: 2016 end-page: 222 ident: CR95 article-title: Development and evaluation of a continuous microwave processing system for hydrocarbon removal from solids publication-title: Chem Eng J doi: 10.1016/j.cej.2015.07.030 – volume: 4 start-page: 21 year: 1996 end-page: 24 ident: CR99 article-title: Research on microwave continuous sterilizer publication-title: Western Grain Oil Technol – ident: CR10 – ident: CR33 – volume: 30 start-page: 2165 year: 2016 end-page: 2173 ident: CR79 article-title: Microwaves disinfection of farmland publication-title: J Electromagnetic Waves Appl doi: 10.1080/09205071.2016.1249802 – volume: 97 start-page: 1220 year: 2004 end-page: 1227 ident: CR50 article-title: Effect of microwave radiation on Bacillus subtilis spores publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2004.02406.x – volume: 106 start-page: 877 year: 2009 end-page: 885 ident: CR27 article-title: Destruction of Bacillus licheniformis spores by microwave irradiation publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2008.04056.x – volume: 4 start-page: 544 year: 2011 end-page: 558 ident: CR64 article-title: Experimental and numerical analysis of microwave heating of water and oil using a rectangular wave guide: influence of sample sizes, positions, and microwave power publication-title: Food Bioprocess Technol doi: 10.1007/s11947-009-0187-x – volume: 62 start-page: 3301 year: 2014 end-page: 3305 ident: CR22 article-title: Microwave heating inactivates Shiga toxin (Stx2) in reconstituted fat-free milk and adversely affects the nutritional value of cell culture medium publication-title: J Agric Food Chem doi: 10.1021/jf500278a – year: 2008 ident: CR68 article-title: Non-uniform temperature distribution during microwave heating of food materials—a review publication-title: Food Bioprocess Technol doi: 10.1007/s11947-008-0136-0 – volume: 31 start-page: 785 year: 2013 end-page: 794 ident: CR69 article-title: Microwave energy absorption behavior of foamed berry puree under microwave drying conditions publication-title: Drying Technol doi: 10.1080/07373937.2012.761635 – ident: CR103 – volume: 50 start-page: 953 year: 2002 end-page: 962 ident: CR29 article-title: Biological effects of radio-frequency/microwave radiation publication-title: IEEE Transact Microwave Theory Techniques. doi: 10.1109/22.989978 – volume: 23 start-page: 1080 year: 2014 end-page: 1091 ident: CR46 article-title: Thermal and non-thermal germicidal effects of microwave radiation on microbial agents publication-title: INDOOR AND BUILT ENVIRONMENT doi: 10.1177/1420326X13490180 – volume: 10 start-page: 284 year: 2017 end-page: 294 ident: CR86 article-title: Binary synergistic enhancement of dielectric and microwave absorption properties: a composite of arm symmetrical PbS dendrites and polyvinylidene fluoride publication-title: Nano Res doi: 10.1007/s12274-016-1290-8 – ident: CR38 – volume: 47 start-page: 35 year: 2008 end-page: 40 ident: CR31 article-title: The effects of high-power microwaves on the ultrastructure of Bacillus subtilis publication-title: Lett Appl Microbiol doi: 10.1111/j.1472-765X.2008.02384.x – volume: 26 start-page: 465 year: 2020 end-page: 4741082013220907434 ident: CR71 article-title: Computational analysis of temperature distribution in microwave-heated potatoes publication-title: Food Sci Technol Int doi: 10.1177/1082013220907434 – volume: 139 start-page: 1409 issue: 11 year: 2013 end-page: 1412 ident: CR16 article-title: Disinfection of Bacillus globigii spores using an atmospheric pressure microwave plasma system publication-title: J Environ Eng doi: 10.1061/(ASCE)EE.1943-7870.0000747 – volume: 548 start-page: 72 year: 2016 end-page: 81 ident: CR6 article-title: Evaluation of a microwave based reactor for the treatment of blackwater sludge publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.01.013 – ident: CR41 – volume: 29 start-page: 261 year: 2015 end-page: 270 ident: CR96 article-title: Continuous combined microwave and hot air treatment of apples for fruit fly (Bactrocera tryoni and B. jarvisi) disinfestation publication-title: Innovative Food Sci Emerg Technol. doi: 10.1016/j.ifset.2015.02.009 – year: 2017 ident: CR56 article-title: Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties publication-title: Carbon doi: 10.1016/j.carbon.2017.01.077 – ident: CR93 – ident: CR4 – ident: CR12 – volume: 201 start-page: 5738 year: 2007 end-page: 5741 ident: CR51 article-title: Escherichia coli sterilization and lipopolysaccharide inactivation using microwave-induced argon plasma at atmospheric pressure publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2006.07.039 – volume: 52 start-page: 243 year: 2013 end-page: 261 ident: CR18 article-title: Microwave food processing-a review publication-title: Food Res Int doi: 10.1016/j.foodres.2013.02.033 – volume: 53 start-page: 2133 year: 1987 end-page: 2137 ident: CR34 article-title: Mechanism of microwave sterilization in the dry state publication-title: Appl Environ Microbiol doi: 10.1128/AEM.53.9.2133-2137.1987 – volume: 138 start-page: 148 year: 2020 end-page: 156 ident: CR15 article-title: Application of microwave/electrodeless discharge ultraviolet/ozone sterilization technology in water reclamation publication-title: Process Saf Environ Protect doi: 10.1016/j.psep.2020.03.015 – volume: 716 start-page: 1 year: 2011 end-page: 9 ident: CR37 article-title: Non-thermal effects of 2.45 GHz microwaves on spindle assembly, mitotic cells and viability of Chinese hamster V-79 cells publication-title: Mutation Res-Fundam Molec Mech Mutagen. doi: 10.1016/j.mrfmmm.2011.07.009 – volume: 124 start-page: 269 year: 2014 end-page: 278 ident: CR102 article-title: Torrefaction of wheat and barley straw after microwave heating publication-title: Fuel doi: 10.1016/j.fuel.2014.01.102 – volume: 42 start-page: 9363 year: 2008 end-page: 9369 ident: CR66 article-title: Efficiency of artemia cysts removal as a model invasive spore using a continuous microwave system with heat recovery publication-title: Environ Sci Technol doi: 10.1021/es8021107 – volume: 536 start-page: 548 year: 2019 end-page: 555 ident: CR87 article-title: Investigation and optimization of Fe/ZnFe2O4 as a Wide-band electromagnetic absorber publication-title: J Colloid Interf Sci doi: 10.1016/j.jcis.2018.10.084 – volume: 111 start-page: 2157 year: 2013 end-page: 2164 ident: CR77 article-title: Moisture and temperature dependence of the dielectric properties of pharmaceutical powders publication-title: J Thermal Anal Calorimetry doi: 10.1007/s10973-012-2739-y – volume: 53 start-page: 48 year: 2016 end-page: 52 ident: CR24 article-title: Inactivation of Salmonella Senftenberg, Salmonella Typhimurium and Salmonella Tennessee in peanut butter by 915 MHz microwave heating publication-title: Food Microbiol doi: 10.1016/j.fm.2015.08.008 – volume: 6 start-page: 396 year: 2005 end-page: 402 ident: CR9 article-title: Inactivation of Escherichia coli K-12 and Listeria innocua in milk using radio frequency (RF) heating publication-title: Innov Food Sci Emerg Technol doi: 10.1016/j.ifset.2005.06.002 – ident: CR67 – volume: 29 start-page: 85 year: 2020 end-page: 91 ident: CR30 article-title: Improving the quality of vegetable foodstuffs by microwave inactivation publication-title: Food Sci Biotechnol doi: 10.1007/s10068-019-00652-2 – volume: 121 start-page: 113 year: 2020 end-page: 122 ident: CR7 article-title: Experimental, heat transfer and microbial inactivation modeling of microwave pasteurization of carrot slices as an efficient and clean process publication-title: Food Bioproducts Process doi: 10.1016/j.fbp.2020.01.015 – volume: 92 start-page: 1017 year: 2017 end-page: 1025 ident: CR13 article-title: Disinfection of municipal secondary effluents with microwave-induced electrodeless ultraviolet irradiation for water reuse publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.5077 – ident: CR32 – volume: 5 start-page: 31 year: 2012 end-page: 46 ident: CR59 article-title: Recent studies related to microwave processing of fluid foods publication-title: Food Bioprocess Technology. doi: 10.1007/s11947-011-0639-y – volume: 44 start-page: 191 year: 2017 end-page: 201 ident: CR70 article-title: Radio frequency heating of corn flour: heating rate and uniformity publication-title: Innov Food Sci Emerg Technol doi: 10.1016/j.ifset.2017.05.001 – volume: 73 start-page: 36 year: 2008 end-page: 47 ident: CR36 article-title: Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry publication-title: J Org Chem doi: 10.1021/jo7022697 – year: 2017 ident: CR55 article-title: Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands publication-title: Carbon doi: 10.1016/j.carbon.2017.09.007 – volume: 93 start-page: 149 year: 2009 end-page: 157 ident: CR61 article-title: Experimental study of the effect of dielectric and physical properties on temperature distribution in fluids during continuous flow microwave heating publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2009.01.009 – volume: 5 start-page: 72 year: 2018 end-page: 82 ident: CR1 article-title: Harnessing the power of microwaves for inactivating Pseudomonas aeruginosa with nanohybrids publication-title: Environ Sci-Nano doi: 10.1039/c7en00702g – ident: CR105 – volume: 16 start-page: 568 year: 1974 end-page: 569 ident: CR3 article-title: Influence of millimeter-band electromagnetic radiation on biological objects publication-title: Soviet Physics Uspekhi doi: 10.1070/PU1974v016n04ABEH005308 – ident: CR14 – ident: CR2 – volume: 132 start-page: 1323 year: 2019 end-page: 1331 ident: CR75 article-title: Modelling and optimization of wet microalgae Scenedesmus quadricauda lipid extraction using microwave pre-treatment method and response surface methodology publication-title: Renew Energy doi: 10.1016/j.renene.2018.09.008 – volume: 30 start-page: 4661 year: 2020 end-page: 4696 ident: CR92 article-title: Finite element (GFEM) simulations on the effect of microwave heating for lossy dielectric samples with various shapes (circle, square and triangle) publication-title: Int J Numer Meth Heat Fluid Flow doi: 10.1108/HFF-07-2019-0601 – volume: 43 year: 2019 ident: CR94 article-title: Comparative study between conventional and microwave-assisted pasteurization of packaged milk by finite element modeling publication-title: J Food Process Preserv doi: 10.1111/jfpp.14207 – ident: CR82 – volume: 52 start-page: 3 year: 2018 end-page: 15 ident: CR80 article-title: Dielectric characterization of bentonite clay at various moisture contents and with mixtures of biomass in the microwave spectrum publication-title: J Microwave Power Electromagn Energy doi: 10.1080/08327823.2017.1421407 – volume: 145 start-page: 701 year: 2019 end-page: 711 ident: CR85 article-title: Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2019.01.082 – volume: 240 year: 2021 ident: CR91 article-title: Numerical modeling and optimal design of microwave-heating falling film evaporation publication-title: Chem Eng Sci doi: 10.1016/j.ces.2021.116681 – ident: CR98 – volume: 366 start-page: 27 year: 2019 end-page: 33 ident: CR21 article-title: Microwave-induced release and degradation of airborne endotoxins from Escherichia coli bioaerosol publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2018.11.088 – volume: 121 start-page: 76 year: 2022 end-page: 92 ident: CR76 article-title: Innovative applications, limitations and prospects of energy-carrying infrared radiation, microwave and radio frequency in agricultural products processing publication-title: Trends Food Sci Technol doi: 10.1016/j.tifs.2022.01.032 – ident: CR23 – volume: 27 start-page: 898 year: 2007 end-page: 903 ident: CR52 article-title: Microwave sterilization with metal thin film coated catalyst in liquid phase publication-title: Mater Sci Eng C-Biomimetic Supramolec Syst doi: 10.1016/j.msec.2006.10.010 – ident: CR48 – ident: CR73 – volume: 28 start-page: 317 year: 2013 end-page: 330 ident: CR104 article-title: A review on the microwave-assisted pyrolysis technique publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.08.008 – ident: CR65 – volume: 29 start-page: 68 year: 2019 end-page: 70 ident: CR49 article-title: A highly sensitive substrate integrated waveguide interferometer applied to humidity sensing publication-title: IEEE Microwave Wireless Components Lett doi: 10.1109/LMWC.2018.2882302 – volume: 3 start-page: 12694 year: 2013 end-page: 12701 ident: CR83 article-title: Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption publication-title: RSC Adv doi: 10.1039/c3ra40973b – volume: 56 start-page: 58 issue: 1 year: 2022 end-page: 67 ident: CR17 article-title: Investigation of sterilization by a microwave-generated low-temperature atmospheric pressure plasma jet publication-title: J Microw Power Electromagn Energy doi: 10.1080/08327823.2022.2029117 – volume: 53 start-page: 2560 year: 2018 end-page: 2566 ident: CR57 article-title: Effect of solids-not-fat content on dielectric properties of skim milk publication-title: Int J Food Sci Technol doi: 10.1111/ijfs.13895 – ident: CR62 – volume: 12 start-page: 295 year: 2012 end-page: 303 ident: CR47 article-title: Microwave-irradiation-assisted HVAC filtration for inactivation of viral aerosols publication-title: AEROSOL AND AIR QUALITY RESEARCH doi: 10.4209/aaqr.2011.11.0193 – ident: CR20 – volume: 8 start-page: 603 year: 2018 end-page: 606 ident: CR74 article-title: Compared efficacy of microwave irradiation with chemical compound in dental gypsum casts publication-title: J Biomater Tissue Eng doi: 10.1166/jbt.2018.1781 – volume: 59 start-page: 1438 year: 2014 ident: 247_CR28 publication-title: Chin Sci Bull doi: 10.1007/s11434-014-0171-3 – volume: 31 start-page: 785 year: 2013 ident: 247_CR69 publication-title: Drying Technol doi: 10.1080/07373937.2012.761635 – ident: 247_CR100 – volume: 29 start-page: 68 year: 2019 ident: 247_CR49 publication-title: IEEE Microwave Wireless Components Lett doi: 10.1109/LMWC.2018.2882302 – volume: 42 start-page: 9363 year: 2008 ident: 247_CR66 publication-title: Environ Sci Technol doi: 10.1021/es8021107 – volume: 10 start-page: 284 year: 2017 ident: 247_CR86 publication-title: Nano Res doi: 10.1007/s12274-016-1290-8 – year: 2017 ident: 247_CR56 publication-title: Carbon doi: 10.1016/j.carbon.2017.01.077 – volume: 145 start-page: 701 year: 2019 ident: 247_CR85 publication-title: Carbon doi: 10.1016/j.carbon.2019.01.082 – volume: 27 start-page: 898 year: 2007 ident: 247_CR52 publication-title: Mater Sci Eng C-Biomimetic Supramolec Syst doi: 10.1016/j.msec.2006.10.010 – volume: 47 start-page: 35 year: 2008 ident: 247_CR31 publication-title: Lett Appl Microbiol doi: 10.1111/j.1472-765X.2008.02384.x – volume: 7 start-page: 142308 year: 2019 ident: 247_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944210 – volume: 44 start-page: 191 year: 2017 ident: 247_CR70 publication-title: Innov Food Sci Emerg Technol doi: 10.1016/j.ifset.2017.05.001 – ident: 247_CR54 doi: 10.2202/1556-3758.1360 – volume: 548 start-page: 72 year: 2016 ident: 247_CR6 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.01.013 – volume: 97 start-page: 1220 year: 2004 ident: 247_CR50 publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2004.02406.x – volume: 23 start-page: 1080 year: 2014 ident: 247_CR46 publication-title: INDOOR AND BUILT ENVIRONMENT doi: 10.1177/1420326X13490180 – volume: 121 start-page: 113 year: 2020 ident: 247_CR7 publication-title: Food Bioproducts Process doi: 10.1016/j.fbp.2020.01.015 – volume: 96 start-page: 319 year: 2012 ident: 247_CR40 publication-title: APPLIED MICROBIOLOGY AND BIOTECHNOLOGY doi: 10.1007/s00253-012-4339-y – ident: 247_CR41 doi: 10.3389/fmicb.2018.01870 – volume: 366 start-page: 27 year: 2019 ident: 247_CR21 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2018.11.088 – volume: 38 start-page: 14 year: 2016 ident: 247_CR25 publication-title: Anaerobe doi: 10.1016/j.anaerobe.2015.10.015 – volume: 51 start-page: 511 year: 1998 ident: 247_CR60 publication-title: Pramana J Phys doi: 10.1007/BF02828943 – volume: 53 start-page: 2560 year: 2018 ident: 247_CR57 publication-title: Int J Food Sci Technol doi: 10.1111/ijfs.13895 – volume: 97 start-page: 306 year: 2016 ident: 247_CR81 publication-title: Energy doi: 10.1016/j.energy.2015.11.034 – volume: 5 start-page: 2175 year: 2017 ident: 247_CR84 publication-title: J Mater Chem C doi: 10.1039/c6tc05057c – volume: 283 start-page: 215 year: 2016 ident: 247_CR95 publication-title: Chem Eng J doi: 10.1016/j.cej.2015.07.030 – volume: 60 start-page: 482 year: 1994 ident: 247_CR35 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.60.2.482-488.1994 – volume: 111 start-page: 2157 year: 2013 ident: 247_CR77 publication-title: J Thermal Anal Calorimetry doi: 10.1007/s10973-012-2739-y – ident: 247_CR105 doi: 10.1002/anie.202114340 – ident: 247_CR12 doi: 10.1016/j.jaerosci.2019.105437 – volume: 139 start-page: 1409 issue: 11 year: 2013 ident: 247_CR16 publication-title: J Environ Eng doi: 10.1061/(ASCE)EE.1943-7870.0000747 – volume: 52 start-page: 3 year: 2018 ident: 247_CR80 publication-title: J Microwave Power Electromagn Energy doi: 10.1080/08327823.2017.1421407 – ident: 247_CR10 doi: 10.1016/j.jhazmat.2020.122535 – volume: 92 start-page: 1017 year: 2017 ident: 247_CR13 publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.5077 – volume: 6 start-page: 396 year: 2005 ident: 247_CR9 publication-title: Innov Food Sci Emerg Technol doi: 10.1016/j.ifset.2005.06.002 – ident: 247_CR23 doi: 10.1016/j.jaerosci.2010.04.004 – volume: 53 start-page: 2133 year: 1987 ident: 247_CR34 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.53.9.2133-2137.1987 – volume: 124 start-page: 269 year: 2014 ident: 247_CR102 publication-title: Fuel doi: 10.1016/j.fuel.2014.01.102 – volume: 117 start-page: 1 year: 2013 ident: 247_CR19 publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2013.01.031 – ident: 247_CR33 doi: 10.1016/j.lwt.2021.112280 – volume: 3 start-page: 12694 year: 2013 ident: 247_CR83 publication-title: RSC Adv doi: 10.1039/c3ra40973b – volume: 4 start-page: 21 year: 1996 ident: 247_CR99 publication-title: Western Grain Oil Technol – volume: 30 start-page: 2165 year: 2016 ident: 247_CR79 publication-title: J Electromagnetic Waves Appl doi: 10.1080/09205071.2016.1249802 – ident: 247_CR62 doi: 10.1111/jfpe.12815 – ident: 247_CR89 doi: 10.1049/pbpo004e – volume: 152 start-page: 458 year: 2009 ident: 247_CR97 publication-title: Chem Eng J doi: 10.1016/j.cej.2009.05.008 – volume: 29 start-page: 85 year: 2020 ident: 247_CR30 publication-title: Food Sci Biotechnol doi: 10.1007/s10068-019-00652-2 – ident: 247_CR93 doi: 10.1016/B978-0-08-100596-5.21843-X – year: 2008 ident: 247_CR68 publication-title: Food Bioprocess Technol doi: 10.1007/s11947-008-0136-0 – volume: 32 start-page: 587 year: 2013 ident: 247_CR78 publication-title: High Temp Mater Processes. doi: 10.1515/htmp-2013-0008 – volume: 33 start-page: 37 year: 2017 ident: 247_CR43 publication-title: Biotechnol Prog doi: 10.1002/btpr.2392 – ident: 247_CR38 doi: 10.1016/j.lwt.2020.109861 – volume: 50 start-page: 953 year: 2002 ident: 247_CR29 publication-title: IEEE Transact Microwave Theory Techniques. doi: 10.1109/22.989978 – volume: 132 start-page: 1323 year: 2019 ident: 247_CR75 publication-title: Renew Energy doi: 10.1016/j.renene.2018.09.008 – volume: 27 start-page: 1209 year: 2017 ident: 247_CR26 publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.1702.02009 – ident: 247_CR4 doi: 10.1016/j.chemosphere.2021.132558 – volume: 121 start-page: 76 year: 2022 ident: 247_CR76 publication-title: Trends Food Sci Technol doi: 10.1016/j.tifs.2022.01.032 – volume: 240 year: 2021 ident: 247_CR91 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2021.116681 – ident: 247_CR88 doi: 10.1016/j.applthermaleng.2021.117346 – volume: 16 start-page: 568 year: 1974 ident: 247_CR3 publication-title: Soviet Physics Uspekhi doi: 10.1070/PU1974v016n04ABEH005308 – volume: 41 start-page: 880 year: 2010 ident: 247_CR44 publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2010.06.001 – ident: 247_CR14 doi: 10.1016/j.pdpdt.2022.102867 – ident: 247_CR82 doi: 10.1016/j.jallcom.2021.160367 – ident: 247_CR98 doi: 10.3390/s17061309. – volume: 62 start-page: 3301 year: 2014 ident: 247_CR22 publication-title: J Agric Food Chem doi: 10.1021/jf500278a – ident: 247_CR48 doi: 10.1371/journal.pone.0018585. – volume: 8 start-page: 603 year: 2018 ident: 247_CR74 publication-title: J Biomater Tissue Eng doi: 10.1166/jbt.2018.1781 – volume: 201 start-page: 5738 year: 2007 ident: 247_CR51 publication-title: Surf Coat Technol doi: 10.1016/j.surfcoat.2006.07.039 – ident: 247_CR103 doi: 10.1088/0957-0233/21/4/045108. – ident: 247_CR32 doi: 10.1016/j.watres.2020.116102 – volume: 93 start-page: 149 year: 2009 ident: 247_CR61 publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2009.01.009 – volume: 138 start-page: 148 year: 2020 ident: 247_CR15 publication-title: Process Saf Environ Protect doi: 10.1016/j.psep.2020.03.015 – ident: 247_CR11 doi: 10.3390/ijerph19074332 – volume: 26 start-page: 465 year: 2020 ident: 247_CR71 publication-title: Food Sci Technol Int doi: 10.1177/1082013220907434 – volume: 5 start-page: 72 year: 2018 ident: 247_CR1 publication-title: Environ Sci-Nano doi: 10.1039/c7en00702g – volume: 28 start-page: 317 year: 2013 ident: 247_CR104 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.08.008 – ident: 247_CR67 doi: 10.1080/08327823.2007.11688587 – volume: 18 start-page: 67 year: 2019 ident: 247_CR58 publication-title: Comprehens Rev Food Sci Food Safety doi: 10.1111/1541-4337.12409 – ident: 247_CR73 doi: 10.1016/j.buildenv.2019.106220. – ident: 247_CR8 doi: 10.1016/j.fpsl.2019.100324. – volume: 73 start-page: 36 year: 2008 ident: 247_CR36 publication-title: J Org Chem doi: 10.1021/jo7022697 – volume: 716 start-page: 1 year: 2011 ident: 247_CR37 publication-title: Mutation Res-Fundam Molec Mech Mutagen. doi: 10.1016/j.mrfmmm.2011.07.009 – volume: 536 start-page: 548 year: 2019 ident: 247_CR87 publication-title: J Colloid Interf Sci doi: 10.1016/j.jcis.2018.10.084 – volume: 106 start-page: 877 year: 2009 ident: 247_CR27 publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2008.04056.x – volume: 43 year: 2019 ident: 247_CR94 publication-title: J Food Process Preserv doi: 10.1111/jfpp.14207 – ident: 247_CR42 doi: 10.15666/aeer/1704_86558666 – ident: 247_CR2 – volume: 42 start-page: 800 year: 2011 ident: 247_CR45 publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2011.07.002 – volume: 42 start-page: 55 year: 2008 ident: 247_CR63 publication-title: J Microwave Power Electromagn Energy doi: 10.1080/08327823.2007.11688578 – year: 2017 ident: 247_CR55 publication-title: Carbon doi: 10.1016/j.carbon.2017.09.007 – volume: 4 start-page: 544 year: 2011 ident: 247_CR64 publication-title: Food Bioprocess Technol doi: 10.1007/s11947-009-0187-x – ident: 247_CR101 doi: 10.27264/d.cnki.gqdhc.2022.000278. – volume: 56 start-page: 58 issue: 1 year: 2022 ident: 247_CR17 publication-title: J Microw Power Electromagn Energy doi: 10.1080/08327823.2022.2029117 – volume: 189 year: 2022 ident: 247_CR90 publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2022.122667 – ident: 247_CR65 doi: 10.2202/1556-3758.1878 – volume: 52 start-page: 243 year: 2013 ident: 247_CR18 publication-title: Food Res Int doi: 10.1016/j.foodres.2013.02.033 – volume: 30 start-page: 4661 year: 2020 ident: 247_CR92 publication-title: Int J Numer Meth Heat Fluid Flow doi: 10.1108/HFF-07-2019-0601 – volume: 29 start-page: 261 year: 2015 ident: 247_CR96 publication-title: Innovative Food Sci Emerg Technol. doi: 10.1016/j.ifset.2015.02.009 – volume: 53 start-page: 48 year: 2016 ident: 247_CR24 publication-title: Food Microbiol doi: 10.1016/j.fm.2015.08.008 – ident: 247_CR72 doi: 10.1111/jfpe.13722 – ident: 247_CR20 doi: 10.3390/foods10122972 – ident: 247_CR39 doi: 10.1038/s41598-021-93274-w. – volume: 12 start-page: 295 year: 2012 ident: 247_CR47 publication-title: AEROSOL AND AIR QUALITY RESEARCH doi: 10.4209/aaqr.2011.11.0193 – volume: 5 start-page: 31 year: 2012 ident: 247_CR59 publication-title: Food Bioprocess Technology. doi: 10.1007/s11947-011-0639-y – volume: 59 start-page: 754 year: 2014 ident: 247_CR53 publication-title: LWT-Food Sci Technol doi: 10.1016/j.lwt.2014.05.058 |
SSID | ssj0002046597 |
Score | 2.2893898 |
SecondaryResourceType | review_article |
Snippet | Purpose of Review
In the context of COVID-19 sweeping the world, the development of microbial disinfection methods in gas, liquid, and solid media has received... In the context of COVID-19 sweeping the world, the development of microbial disinfection methods in gas, liquid, and solid media has received widespread... Purpose of ReviewIn the context of COVID-19 sweeping the world, the development of microbial disinfection methods in gas, liquid, and solid media has received... PURPOSE OF REVIEW: In the context of COVID-19 sweeping the world, the development of microbial disinfection methods in gas, liquid, and solid media has... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 46 |
SubjectTerms | Antibiotics Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Bacteria COVID-19 COVID-19 infection Disinfection Drug resistance E coli Earth and Environmental Science Efficiency Electromagnetism Energy Energy utilization Environment Environmental Law/Policy/Ecojustice Food Gram-negative bacteria Gram-positive bacteria Inactivation Industrial Pollution Prevention Irradiation liquids Listeria Metabolism Microorganisms Microwave heating Microwave radiation microwave treatment Monitoring methods Monitoring/Environmental Analysis Nonthermal effects Pathogens Permeability Pollution Radiation Reactor design Salmonella Sludge Temperature effects Topical Collection on Biology and Pollution Waste Water Technology Water Management Water Pollution Control |
Title | A Review and Perspective of Environmental Disinfection Technology Based on Microwave Irradiation |
URI | https://link.springer.com/article/10.1007/s40726-022-00247-2 https://www.ncbi.nlm.nih.gov/pubmed/36743476 https://www.proquest.com/docview/2922081735 https://www.proquest.com/docview/2773718521 https://www.proquest.com/docview/3153705811 https://pubmed.ncbi.nlm.nih.gov/PMC9885074 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dTxQxEG8UXvDBgKCegKkJb9q4_dp2nwzIETSBECIJb2s_I4nZw7sj_vtOd7u7HgRet9NNd6edr_5mBqEDK5l0IPiJrRwnwgZPjNUlkaqwVETKy9CifM_L0yvx_Vpe54DbIsMqe5nYCmo_cylG_plVjIH6Ulx-uf1DUteodLuaW2g8R-sggjU4X-tH0_OLyyHKwsD9A5M5Z8u0OXOpIljC3TKS9JMibFUjPTAzH6Il712ZtproZBO9zCYkPux4voWeheYVevFfYcFt9PMQd0F_bBqPL8aESjyLeDrmtsFrjm8WPSCrwWOgHR-BevMYnp0lyN5fA3O_zeepkkGi3EFXJ9MfX09J7qVAHFh8S6IMswkBo3Xg3kgduSkLG2UQknnBCxZU5F44XcVoC6WKMpSeFs4W3DEBFK_RWjNrwluEHa0MM5FaRR04k9xa8EF9Rbl1PgrKJoj2_7N2udB46nfxux5KJLc8qIEHdcuDGuZ8HObcdmU2nqTe69lU5yO3qMcNMkEfhmE4LOkGxDRhdgc0SnGV0sXp4zQcdIAqpKZA86bj_LAknlI2hConSK3siYEgFeteHWlufrVFuyutgRFigj71u2dc-uNf-u7pL91FGwyMrg4Tt4fWlvO7sA9G0tK-zyfhH4gOD_A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2B-CAeLNQwEhwAqvxI3FyQKilW-3SdlWhVuotjV-iEsqW3a0qfopvZJwnS9Xeeo3HluOZ8cx4XgDvdcxjgxc_1ZkRVGpnaaHThMYq0kx6JhJXRflOk_Gx_HYSn6zBnzYXJoRVtndidVHbmQlv5Js84xzFlxLxl_NfNHSNCt7VtoVGTRZ77vclmmyLz5MdxO8HzndHR1_HtOkqQA3qPkuqCq5DLEiaOmGLOPWiSCLtYydjbqWIuFNeWGnSzHsdKRUlLrEsMjoShkuEwHXvwLoUaMoMYH17ND383r3qcDQ3UUVvsnOqHL1QgSzE-XIa5KGifFUCXlFrr0Zn_ueirSTf7kN40KisZKumsUew5srHcP-fQoZP4HSL1E4GUpSWHPYJnGTmyajPpcNlds4WbQBYSfqHfbKN4tQS_HYQQgQvC5w7mc9D5YQA-RSOb-WUn8GgnJXuBRDDsoIXnmnFDBqvQmu0eW3GhDbWS8aHwNrzzE1T2Dz01_iZdyWZKxzkiIO8wkGOcz52c87rsh43Qm-0aMobFl_kPUEO4V03jMwZPC5F6WYXCKOUUCE9nV0PI1DmqChOGcI8rzHfbUmEFBGpkiGoFZroAEJx8NWR8uxHVSQ8S1NEhBzCp5Z6-q1f_6cvb_7Tt3B3fHSwn-9Ppnuv4B5Hha-Ox9uAwXJ-4V6jgrbUbxquIHB624z4FzQpTIE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+and+Perspective+of+Environmental+Disinfection+Technology+Based+on+Microwave+Irradiation&rft.jtitle=Current+pollution+reports&rft.au=Liu%2C+Liming&rft.au=Wang%2C+Na&rft.au=Laghari%2C+Azhar+Ali&rft.au=Li%2C+Hong&rft.date=2023-03-01&rft.issn=2198-6592&rft.eissn=2198-6592&rft.volume=9&rft.issue=1&rft.spage=46&rft_id=info:doi/10.1007%2Fs40726-022-00247-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6592&client=summon |