Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays
SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike-mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simpl...
Saved in:
Published in | Viruses Vol. 12; no. 5; p. 513 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
06.05.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike-mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simplify such assays is to pseudotype biosafety-level-2 viral particles with Spike. Such pseudotyping has now been described for single-cycle lentiviral, retroviral, and vesicular stomatitis virus (VSV) particles, but the reagents and protocols are not widely available. Here, we detailed how to effectively pseudotype lentiviral particles with SARS-CoV-2 Spike and infect 293T cells engineered to express the SARS-CoV-2 receptor, ACE2. We also made all the key experimental reagents available in the BEI Resources repository of ATCC and the NIH. Furthermore, we demonstrated how these pseudotyped lentiviral particles could be used to measure the neutralizing activity of human sera or plasma against SARS-CoV-2 in convenient luciferase-based assays, thereby providing a valuable complement to ELISA-based methods that measure antibody binding rather than neutralization. |
---|---|
AbstractList | SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike- mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simplify such assays is to pseudotype biosafety-level-2 viral particles with Spike. Such pseudotyping has now been described for single-cycle lentiviral, retroviral, and vesicular stomatitis virus (VSV) particles, but the reagents and protocols are not widely available. Here, we detailed how to effectively pseudotype lentiviral particles with SARS-CoV-2 Spike and infect 293T cells engineered to express the SARS-CoV-2 receptor, ACE2. We also made all the key experimental reagents available in the BEI Resources repository of ATCC and the NIH. Furthermore, we demonstrated how these pseudotyped lentiviral particles could be used to measure the neutralizing activity of human sera or plasma against SARS-CoV-2 in convenient luciferase-based assays, thereby providing a valuable complement to ELISA-based methods that measure antibody binding rather than neutralization. SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike-mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simplify such assays is to pseudotype biosafety-level-2 viral particles with Spike. Such pseudotyping has now been described for single-cycle lentiviral, retroviral, and vesicular stomatitis virus (VSV) particles, but the reagents and protocols are not widely available. Here, we detailed how to effectively pseudotype lentiviral particles with SARS-CoV-2 Spike and infect 293T cells engineered to express the SARS-CoV-2 receptor, ACE2. We also made all the key experimental reagents available in the BEI Resources repository of ATCC and the NIH. Furthermore, we demonstrated how these pseudotyped lentiviral particles could be used to measure the neutralizing activity of human sera or plasma against SARS-CoV-2 in convenient luciferase-based assays, thereby providing a valuable complement to ELISA-based methods that measure antibody binding rather than neutralization.SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike-mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simplify such assays is to pseudotype biosafety-level-2 viral particles with Spike. Such pseudotyping has now been described for single-cycle lentiviral, retroviral, and vesicular stomatitis virus (VSV) particles, but the reagents and protocols are not widely available. Here, we detailed how to effectively pseudotype lentiviral particles with SARS-CoV-2 Spike and infect 293T cells engineered to express the SARS-CoV-2 receptor, ACE2. We also made all the key experimental reagents available in the BEI Resources repository of ATCC and the NIH. Furthermore, we demonstrated how these pseudotyped lentiviral particles could be used to measure the neutralizing activity of human sera or plasma against SARS-CoV-2 in convenient luciferase-based assays, thereby providing a valuable complement to ELISA-based methods that measure antibody binding rather than neutralization. |
Audience | Academic |
Author | Pettie, Deleah Chu, Helen Y. Balazs, Alejandro B. Veesler, David Bloom, Jesse D. Dingens, Adam S. King, Neil P. Crawford, Katharine H. D. Wolf, Caitlin R. Tortorici, M. Alejandra Eguia, Rachel Malone, Keara D. Murphy, Michael Loes, Andrea N. |
AuthorAffiliation | 4 Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA; crwolf@uw.edu (C.R.W.); helenchu@uw.edu (H.Y.C.) 2 Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA 8 The Ragon Institute of Massachusetts General Hospital, the Massachusetts Institute Technology, and Harvard University, Cambridge, MA 02139, USA; abalazs@mgh.harvard.edu 1 Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; kdusenbu@fredhutch.org (K.H.D.C.); reguia@fredhutch.org (R.E.); adingens@fredhutch.org (A.S.D.); aloes@fredhutch.org (A.N.L.); kmalone2@fredhutch.org (K.D.M.) 3 Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA 6 Institute Pasteur & CNRS UMR 3569, Unité de Virologie Structurale, Paris 75015, France 5 Department of Biochemistry, University of Washington, Seattle, WA 98109, USA; tortorici@uw.edu (M.A.T.); dveesler@uw.edu (D.V.); neil@ipd.uw.e |
AuthorAffiliation_xml | – name: 4 Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA; crwolf@uw.edu (C.R.W.); helenchu@uw.edu (H.Y.C.) – name: 1 Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; kdusenbu@fredhutch.org (K.H.D.C.); reguia@fredhutch.org (R.E.); adingens@fredhutch.org (A.S.D.); aloes@fredhutch.org (A.N.L.); kmalone2@fredhutch.org (K.D.M.) – name: 5 Department of Biochemistry, University of Washington, Seattle, WA 98109, USA; tortorici@uw.edu (M.A.T.); dveesler@uw.edu (D.V.); neil@ipd.uw.edu (N.P.K.) – name: 6 Institute Pasteur & CNRS UMR 3569, Unité de Virologie Structurale, Paris 75015, France – name: 8 The Ragon Institute of Massachusetts General Hospital, the Massachusetts Institute Technology, and Harvard University, Cambridge, MA 02139, USA; abalazs@mgh.harvard.edu – name: 3 Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA – name: 2 Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA – name: 9 Howard Hughes Medical Institute, Seattle, WA 98103, USA – name: 7 Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; murphymp@uw.edu (M.M.); ddpettie@gmail.com (D.P.) |
Author_xml | – sequence: 1 givenname: Katharine H. D. orcidid: 0000-0002-6223-4019 surname: Crawford fullname: Crawford, Katharine H. D. – sequence: 2 givenname: Rachel surname: Eguia fullname: Eguia, Rachel – sequence: 3 givenname: Adam S. orcidid: 0000-0001-9603-9409 surname: Dingens fullname: Dingens, Adam S. – sequence: 4 givenname: Andrea N. surname: Loes fullname: Loes, Andrea N. – sequence: 5 givenname: Keara D. surname: Malone fullname: Malone, Keara D. – sequence: 6 givenname: Caitlin R. surname: Wolf fullname: Wolf, Caitlin R. – sequence: 7 givenname: Helen Y. surname: Chu fullname: Chu, Helen Y. – sequence: 8 givenname: M. Alejandra surname: Tortorici fullname: Tortorici, M. Alejandra – sequence: 9 givenname: David surname: Veesler fullname: Veesler, David – sequence: 10 givenname: Michael orcidid: 0000-0002-8438-2653 surname: Murphy fullname: Murphy, Michael – sequence: 11 givenname: Deleah orcidid: 0000-0002-5477-7195 surname: Pettie fullname: Pettie, Deleah – sequence: 12 givenname: Neil P. orcidid: 0000-0002-2978-4692 surname: King fullname: King, Neil P. – sequence: 13 givenname: Alejandro B. orcidid: 0000-0002-1767-3944 surname: Balazs fullname: Balazs, Alejandro B. – sequence: 14 givenname: Jesse D. orcidid: 0000-0003-1267-3408 surname: Bloom fullname: Bloom, Jesse D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32384820$$D View this record in MEDLINE/PubMed https://pasteur.hal.science/pasteur-02623342$$DView record in HAL |
BookMark | eNptkktv1DAUhSNURB-w4A8gS2zoItSPJI43SKMR0EojGHWAreVXMi6ZOLWdQdNfj-fBqK1Y2bK_e8499j3PTnrXmyx7i-BHQhi8WiMMS1gi8iI7Q4yxvGCoPHm0P83OQ7iDsKoYpK-yU4JJXdQYnmVh7l10ynVA9BrcGtGaPgbQOA_mwYzaxc1g-xbM0rFdWy86MBc-WtWZAP7YuASLye0in7pfOQaLwf42YKtobL_T-GbGmGrsg4jW9WASgtiE19nLRnTBvDmsF9nPL59_TK_z2fevN9PJLFclpDGnlUYVJrrUkDGsoawYq-pGUiMLqahgxmhKG0EwFFAiLRUzUhkikK4FkpBcZDd7Xe3EHR-8XQm_4U5YvjtwvuWHKLyuBdZKSlFiWEhp6mRY4kpoDVWyw0nr015rGOXKaJWeI-V6Ivr0prdL3ro1p5ghWKAkkO8Fls_KriczPogQzeg5xCkwKfB6y384GHp3P5oQ-coGZbpO9MaNgeMCwpLUmJQJfb9HW5Gi2L5xqQO1xfmkIhhhyihN1LvHCY49_JuFBFzuAeVdCN40RwRBvp0zfpyzxF49Y5WNuz9O1rb7T8VfevTVGQ |
CitedBy_id | crossref_primary_10_1038_s41587_022_01280_8 crossref_primary_10_1038_s41598_023_31592_x crossref_primary_10_1002_pro_5109 crossref_primary_10_1038_s41598_024_83024_z crossref_primary_10_3389_fimmu_2022_942897 crossref_primary_10_1172_JCI149633 crossref_primary_10_1007_s11596_021_2470_7 crossref_primary_10_1126_sciimmunol_abe0240 crossref_primary_10_1016_j_bios_2021_113924 crossref_primary_10_1038_s41587_020_0659_0 crossref_primary_10_1128_JCM_00989_21 crossref_primary_10_1016_j_heliyon_2023_e17701 crossref_primary_10_1016_j_ccell_2021_06_015 crossref_primary_10_1186_s12951_021_01148_0 crossref_primary_10_2139_ssrn_3859298 crossref_primary_10_3389_fimmu_2022_960094 crossref_primary_10_1002_anbr_202400077 crossref_primary_10_1038_s41467_021_26809_4 crossref_primary_10_1038_s41541_022_00472_2 crossref_primary_10_1136_jitc_2021_002550 crossref_primary_10_1093_pnasnexus_pgae500 crossref_primary_10_1128_mBio_00696_21 crossref_primary_10_1016_j_chembiol_2023_09_015 crossref_primary_10_1016_j_bmc_2025_118124 crossref_primary_10_1073_pnas_2316960121 crossref_primary_10_1016_j_ymthe_2024_03_002 crossref_primary_10_1038_s41598_023_31722_5 crossref_primary_10_1038_s41598_023_40370_8 crossref_primary_10_1089_bfm_2020_0381 crossref_primary_10_1038_s41467_021_25855_2 crossref_primary_10_1126_science_abe3255 crossref_primary_10_1073_pnas_2101497118 crossref_primary_10_1016_j_cell_2022_01_011 crossref_primary_10_1016_j_cell_2020_12_015 crossref_primary_10_1038_s41586_021_03925_1 crossref_primary_10_1038_s42003_021_02766_y crossref_primary_10_1080_14760584_2023_2299380 crossref_primary_10_1371_journal_ppat_1009453 crossref_primary_10_1038_s41467_023_37290_6 crossref_primary_10_1016_j_cell_2021_06_029 crossref_primary_10_1073_pnas_2220948120 crossref_primary_10_1016_j_heliyon_2024_e31392 crossref_primary_10_1126_science_abq0203 crossref_primary_10_1126_sciimmunol_abi8635 crossref_primary_10_1021_acsinfecdis_0c00274 crossref_primary_10_1093_infdis_jiaa797 crossref_primary_10_1016_j_isci_2022_104745 crossref_primary_10_1016_j_virusres_2021_198305 crossref_primary_10_1128_mbio_02928_23 crossref_primary_10_1002_ange_202110819 crossref_primary_10_1021_acs_biochem_2c00241 crossref_primary_10_1126_scitranslmed_abi9915 crossref_primary_10_1128_aac_00083_22 crossref_primary_10_1016_j_jbc_2022_102624 crossref_primary_10_1016_j_cell_2023_02_001 crossref_primary_10_1172_jci_insight_168663 crossref_primary_10_1038_s41541_023_00635_9 crossref_primary_10_1016_j_apsb_2021_09_004 crossref_primary_10_1111_jvp_13429 crossref_primary_10_1038_s41590_021_01088_9 crossref_primary_10_1016_j_jtcme_2021_09_002 crossref_primary_10_1016_j_celrep_2022_110561 crossref_primary_10_1016_j_celrep_2023_112621 crossref_primary_10_1126_sciadv_abi6110 crossref_primary_10_1038_s41598_021_95756_3 crossref_primary_10_1038_s41598_021_91746_7 crossref_primary_10_1021_acs_jcim_4c01511 crossref_primary_10_1038_s41586_021_03530_2 crossref_primary_10_1172_jci_insight_143213 crossref_primary_10_1172_jci_insight_142362 crossref_primary_10_7554_eLife_73027 crossref_primary_10_1016_j_snb_2023_133746 crossref_primary_10_1038_s41586_021_03817_4 crossref_primary_10_1371_journal_pmed_1004397 crossref_primary_10_1038_s41598_023_46025_y crossref_primary_10_7554_eLife_89423_3 crossref_primary_10_1016_j_heliyon_2024_e34492 crossref_primary_10_1016_j_celrep_2021_109164 crossref_primary_10_1126_science_abq2679 crossref_primary_10_7717_peerj_16234 crossref_primary_10_1002_anie_202110819 crossref_primary_10_1093_oxfimm_iqab005 crossref_primary_10_1126_sciimmunol_abp8328 crossref_primary_10_1084_jem_20232192 crossref_primary_10_1016_j_heliyon_2023_e16750 crossref_primary_10_1080_21505594_2021_1911477 crossref_primary_10_21769_BioProtoc_4236 crossref_primary_10_1016_j_isci_2022_104549 crossref_primary_10_1126_sciadv_abm6909 crossref_primary_10_1128_aac_01201_22 crossref_primary_10_1021_jacsau_2c00220 crossref_primary_10_1016_j_cell_2023_04_024 crossref_primary_10_1016_j_bsheal_2021_12_006 crossref_primary_10_1126_science_abl8506 crossref_primary_10_1016_j_celrep_2022_110348 crossref_primary_10_1016_j_gene_2022_147144 crossref_primary_10_1038_s41467_020_19819_1 crossref_primary_10_1016_j_chom_2021_08_002 crossref_primary_10_1016_j_ijid_2023_11_014 crossref_primary_10_3389_fimmu_2023_1182556 crossref_primary_10_1021_acs_analchem_2c01988 crossref_primary_10_3389_fviro_2021_793320 crossref_primary_10_1016_j_jcvp_2021_100044 crossref_primary_10_1016_j_isci_2022_104798 crossref_primary_10_1016_j_jbc_2022_101856 crossref_primary_10_1021_acs_analchem_2c01993 crossref_primary_10_1080_14737159_2021_1913123 crossref_primary_10_1038_s41589_023_01529_6 crossref_primary_10_1016_j_virs_2022_10_006 crossref_primary_10_1016_j_celrep_2022_111299 crossref_primary_10_1038_s41541_022_00549_y crossref_primary_10_1126_science_abf6840 crossref_primary_10_1371_journal_ppat_1010981 crossref_primary_10_1016_j_jve_2022_100307 crossref_primary_10_1172_jci_insight_155889 crossref_primary_10_1016_j_jviromet_2022_114569 crossref_primary_10_1038_s41589_022_01140_1 crossref_primary_10_1128_aac_00439_22 crossref_primary_10_1016_j_isci_2022_103951 crossref_primary_10_1016_j_jiph_2025_102744 crossref_primary_10_1016_j_celrep_2021_109814 crossref_primary_10_1016_j_immuni_2020_06_001 crossref_primary_10_1038_s41467_022_31097_7 crossref_primary_10_1021_acscentsci_4c00722 crossref_primary_10_1016_j_chom_2022_07_002 crossref_primary_10_1016_j_vaccine_2023_09_033 crossref_primary_10_2139_ssrn_3879085 crossref_primary_10_4049_jimmunol_2100155 crossref_primary_10_1007_s10439_024_03478_0 crossref_primary_10_1126_science_abf6950 crossref_primary_10_1128_JCM_02107_20 crossref_primary_10_1111_bjh_18088 crossref_primary_10_1002_cti2_1411 crossref_primary_10_1016_j_chom_2020_11_007 crossref_primary_10_1038_s41576_021_00408_x crossref_primary_10_1093_infdis_jiae301 crossref_primary_10_1128_jvi_00109_25 crossref_primary_10_1017_S0950268823001024 crossref_primary_10_1016_j_immuni_2024_06_013 crossref_primary_10_1016_j_isci_2022_103960 crossref_primary_10_1021_acsomega_3c02921 crossref_primary_10_1038_s41467_023_40933_3 crossref_primary_10_1038_s41586_021_03677_y crossref_primary_10_1016_j_cell_2020_06_025 crossref_primary_10_1038_s41589_020_00679_1 crossref_primary_10_1016_j_isci_2023_106256 crossref_primary_10_1021_jacs_1c09579 crossref_primary_10_1371_journal_pone_0266250 crossref_primary_10_1126_scitranslmed_abn1252 crossref_primary_10_7554_eLife_89423 crossref_primary_10_1002_jmv_29579 crossref_primary_10_1371_journal_ppat_1010832 crossref_primary_10_1016_j_xpro_2023_102127 crossref_primary_10_1002_advs_202101166 crossref_primary_10_1016_j_heliyon_2022_e10280 crossref_primary_10_1080_15476286_2023_2241755 crossref_primary_10_1136_rmdopen_2022_002639 crossref_primary_10_1128_JCM_00527_21 crossref_primary_10_1016_j_celrep_2021_108737 crossref_primary_10_1128_jvi_01992_22 crossref_primary_10_1038_s41586_021_03807_6 crossref_primary_10_1016_j_jviromet_2021_114261 crossref_primary_10_1016_j_xcrm_2023_101127 crossref_primary_10_1016_j_jvacx_2024_100475 crossref_primary_10_1093_nar_gkab574 crossref_primary_10_1038_s41564_024_01765_z crossref_primary_10_1016_j_vaccine_2023_10_073 crossref_primary_10_1038_s41467_021_25168_4 crossref_primary_10_1016_j_chempr_2022_07_012 crossref_primary_10_1128_mbio_00540_23 crossref_primary_10_1371_journal_ppat_1009958 crossref_primary_10_1002_adhm_202301495 crossref_primary_10_1016_j_celrep_2020_108528 crossref_primary_10_1128_spectrum_01333_24 crossref_primary_10_1093_infdis_jiac270 crossref_primary_10_1038_s41467_020_18178_1 crossref_primary_10_1002_pro_4044 crossref_primary_10_1126_science_abm8143 crossref_primary_10_1021_acsbiomaterials_3c01108 crossref_primary_10_1038_s41596_020_0394_5 crossref_primary_10_1038_s41598_020_80908_8 crossref_primary_10_1021_acsptsci_3c00306 crossref_primary_10_1016_j_isci_2021_103467 crossref_primary_10_1128_spectrum_02564_22 crossref_primary_10_1002_anse_202300001 crossref_primary_10_1016_j_cej_2024_153522 crossref_primary_10_1016_j_chom_2021_12_010 crossref_primary_10_1016_j_heliyon_2023_e13797 crossref_primary_10_1038_s41598_023_41885_w crossref_primary_10_1038_s42003_024_06500_2 crossref_primary_10_1016_j_xcrm_2023_101267 crossref_primary_10_1126_science_adk8946 crossref_primary_10_1128_mSphere_00571_21 crossref_primary_10_1016_j_nmni_2024_101525 crossref_primary_10_1038_s12276_024_01197_z crossref_primary_10_1021_jacs_2c06192 crossref_primary_10_1172_jci_insight_150012 crossref_primary_10_1084_jem_20201181 crossref_primary_10_1016_j_isci_2022_103856 crossref_primary_10_1089_hum_2024_105 crossref_primary_10_1126_scitranslmed_abn6859 crossref_primary_10_1016_j_jcvp_2023_100137 crossref_primary_10_1021_acs_jafc_2c07811 crossref_primary_10_1126_scitranslmed_adf4549 crossref_primary_10_1016_j_meegid_2021_105011 crossref_primary_10_1016_j_jconrel_2021_05_049 crossref_primary_10_1038_s41594_021_00596_4 crossref_primary_10_1172_jci_insight_166711 crossref_primary_10_1016_j_chembiol_2021_05_019 crossref_primary_10_1016_j_nbt_2023_04_003 crossref_primary_10_1038_s41467_021_23825_2 crossref_primary_10_1016_j_isci_2022_104716 crossref_primary_10_1126_sciadv_adk4920 crossref_primary_10_1038_s41541_024_00982_1 crossref_primary_10_1039_D2LC00289B crossref_primary_10_1111_trf_16283 crossref_primary_10_1126_sciimmunol_adk5845 crossref_primary_10_1021_acs_jnatprod_1c00946 crossref_primary_10_1007_s11030_021_10272_w crossref_primary_10_1016_j_celrep_2023_112310 crossref_primary_10_3390_v15091897 crossref_primary_10_1016_j_molcel_2021_11_024 crossref_primary_10_1021_acsinfecdis_2c00297 crossref_primary_10_1038_s41467_023_35949_8 crossref_primary_10_1128_aem_02303_21 crossref_primary_10_1016_j_cell_2020_08_012 crossref_primary_10_1016_j_stem_2020_09_013 crossref_primary_10_1152_ajplung_00300_2022 crossref_primary_10_1016_j_xpro_2022_101977 crossref_primary_10_1134_S0003683824700194 crossref_primary_10_3389_fimmu_2022_910136 crossref_primary_10_1016_j_jcvp_2023_100158 crossref_primary_10_1126_science_abl6184 crossref_primary_10_1038_s41577_020_00471_1 crossref_primary_10_1016_j_bios_2021_113122 crossref_primary_10_1038_s41467_023_37417_9 crossref_primary_10_1128_spectrum_02808_24 crossref_primary_10_1016_j_jbc_2025_108319 crossref_primary_10_3389_fimmu_2024_1501200 crossref_primary_10_3138_jammi_2021_0026 crossref_primary_10_1038_s41467_023_36279_5 crossref_primary_10_1128_jvi_01186_24 crossref_primary_10_1016_j_celrep_2021_109760 crossref_primary_10_1016_j_chom_2021_03_008 crossref_primary_10_7554_eLife_83710 crossref_primary_10_1016_j_crmeth_2022_100273 crossref_primary_10_1016_j_cell_2021_03_028 crossref_primary_10_1126_science_abi7994 crossref_primary_10_1126_sciadv_abn4188 crossref_primary_10_1128_jvi_01140_22 crossref_primary_10_1002_adtp_202100099 crossref_primary_10_1002_cti2_1264 crossref_primary_10_1093_infdis_jiad054 crossref_primary_10_1038_s41467_023_40554_w crossref_primary_10_1016_j_cell_2021_03_013 crossref_primary_10_3389_fmicb_2023_1258975 crossref_primary_10_1016_j_antiviral_2022_105370 crossref_primary_10_1084_jem_20220849 crossref_primary_10_1080_22221751_2021_1932607 crossref_primary_10_1016_j_crmeth_2022_100252 crossref_primary_10_1016_j_chom_2021_11_004 crossref_primary_10_1080_22221751_2023_2195020 crossref_primary_10_1016_j_cell_2021_04_045 crossref_primary_10_1039_D2SC06967A crossref_primary_10_1093_infdis_jiae249 crossref_primary_10_1126_science_abg9175 crossref_primary_10_3389_fimmu_2024_1476294 crossref_primary_10_1080_22221751_2023_2275598 crossref_primary_10_1021_acs_analchem_2c00062 crossref_primary_10_1038_s41467_020_19231_9 crossref_primary_10_1128_JVI_00044_21 crossref_primary_10_1093_ofid_ofab220 crossref_primary_10_1021_acsnano_3c07767 crossref_primary_10_1128_JVI_01437_21 crossref_primary_10_1073_pnas_2217199120 crossref_primary_10_1021_acscentsci_0c01405 crossref_primary_10_1038_s41467_021_23779_5 crossref_primary_10_1038_s41587_023_01763_2 crossref_primary_10_1093_pnasnexus_pgac198 crossref_primary_10_1016_j_csbj_2022_04_030 crossref_primary_10_1002_cpz1_759 crossref_primary_10_1016_j_cell_2021_04_032 crossref_primary_10_1126_sciadv_abe6855 crossref_primary_10_1186_s12985_021_01490_7 crossref_primary_10_1073_pnas_2200592119 crossref_primary_10_1002_jmv_28543 crossref_primary_10_1016_j_cell_2024_09_026 crossref_primary_10_1038_s41467_022_28324_6 crossref_primary_10_1038_s41598_021_99401_x crossref_primary_10_1038_s41565_024_01655_9 crossref_primary_10_1126_science_abd9994 crossref_primary_10_1128_jvi_01837_21 crossref_primary_10_1016_j_omtm_2021_03_003 crossref_primary_10_3389_fmicb_2021_752739 crossref_primary_10_1016_j_metabol_2022_155181 crossref_primary_10_1080_19420862_2021_1893426 crossref_primary_10_1126_science_abj8430 crossref_primary_10_1002_smtd_202401600 crossref_primary_10_1038_s41598_022_06393_3 crossref_primary_10_1016_j_immuni_2021_05_006 crossref_primary_10_1016_j_cell_2021_04_025 crossref_primary_10_1016_j_ejpb_2024_114538 crossref_primary_10_1002_rmv_2170 crossref_primary_10_1002_rmv_2294 crossref_primary_10_1016_j_immuni_2022_10_019 crossref_primary_10_2174_1389201024666230227115329 crossref_primary_10_2174_1574887118666230413092826 crossref_primary_10_1002_cti2_1182 crossref_primary_10_1111_trf_16101 crossref_primary_10_1038_s41586_023_06487_6 crossref_primary_10_1126_sciimmunol_abf8891 crossref_primary_10_1126_sciadv_adp5539 crossref_primary_10_1126_sciadv_abj3107 crossref_primary_10_1080_22221751_2021_1925163 crossref_primary_10_1371_journal_pone_0261045 crossref_primary_10_1128_Spectrum_00886_21 crossref_primary_10_1016_j_vaccine_2021_12_063 crossref_primary_10_1016_j_immuni_2023_11_004 crossref_primary_10_3389_fimmu_2022_1014309 crossref_primary_10_1038_s41586_022_04464_z crossref_primary_10_1128_spectrum_00959_24 crossref_primary_10_1021_acsabm_2c00143 crossref_primary_10_1016_j_celrep_2023_112167 crossref_primary_10_1038_s41541_022_00436_6 crossref_primary_10_1016_j_fitote_2023_105695 crossref_primary_10_1371_journal_pcbi_1012812 crossref_primary_10_1007_s42399_020_00533_4 crossref_primary_10_1016_j_ebiom_2023_104784 crossref_primary_10_1038_s41372_021_01001_0 crossref_primary_10_1128_spectrum_02364_21 crossref_primary_10_1016_j_isci_2023_106345 crossref_primary_10_1128_spectrum_01837_22 crossref_primary_10_1089_vim_2022_0117 crossref_primary_10_1128_aac_00956_23 crossref_primary_10_1038_s41467_023_38020_8 crossref_primary_10_1128_spectrum_02463_23 crossref_primary_10_1128_JVI_01062_20 crossref_primary_10_1016_j_cell_2020_10_051 crossref_primary_10_1038_s41598_022_17088_0 crossref_primary_10_1038_s41541_021_00404_6 crossref_primary_10_1002_jssc_202100937 crossref_primary_10_1016_j_jim_2021_113160 crossref_primary_10_1016_j_chom_2021_04_015 crossref_primary_10_1016_j_cell_2021_09_015 crossref_primary_10_1016_j_ymthe_2021_02_007 crossref_primary_10_1111_imm_13661 crossref_primary_10_1371_journal_ppat_1012365 crossref_primary_10_1016_j_pathol_2020_09_012 crossref_primary_10_1186_s12884_022_04500_w crossref_primary_10_1093_infdis_jiaa618 crossref_primary_10_1182_bloodadvances_2022009164 crossref_primary_10_3389_fimmu_2021_813240 crossref_primary_10_1038_s41591_021_01676_0 crossref_primary_10_1073_pnas_2016093117 crossref_primary_10_1038_s41541_022_00540_7 crossref_primary_10_1126_sciimmunol_adf1421 crossref_primary_10_1126_science_abo7896 crossref_primary_10_1016_j_matt_2025_102006 crossref_primary_10_1021_jacs_0c10810 crossref_primary_10_1016_j_cell_2024_07_052 crossref_primary_10_1126_science_adc9127 crossref_primary_10_1016_j_vaccine_2022_04_041 crossref_primary_10_1016_j_xcrm_2024_101850 crossref_primary_10_1038_s41590_022_01163_9 crossref_primary_10_1038_s41598_021_94653_z crossref_primary_10_1126_scitranslmed_adq5720 crossref_primary_10_1038_s41467_023_38127_y crossref_primary_10_1093_infdis_jiaa508 crossref_primary_10_1126_science_abf9302 crossref_primary_10_1126_sciimmunol_adg0033 crossref_primary_10_3389_fphar_2022_840727 crossref_primary_10_1038_s42003_022_03262_7 crossref_primary_10_1021_acssensors_3c00239 crossref_primary_10_1038_s41467_021_24013_y crossref_primary_10_1016_j_xcrm_2021_100253 crossref_primary_10_1016_j_xcrm_2021_100252 crossref_primary_10_1016_j_jqsrt_2023_108567 crossref_primary_10_1128_mbio_02543_22 crossref_primary_10_1016_j_cell_2022_03_018 crossref_primary_10_1016_j_stem_2020_11_012 crossref_primary_10_2174_0929867329666220627121416 crossref_primary_10_1016_j_xcrm_2021_100228 crossref_primary_10_1038_s42003_022_03789_9 crossref_primary_10_1016_j_chom_2023_10_018 crossref_primary_10_1038_s41598_021_84913_3 crossref_primary_10_1128_spectrum_03789_22 crossref_primary_10_1371_journal_pbio_3002916 crossref_primary_10_1016_j_xcrm_2022_100780 crossref_primary_10_1126_science_abq0839 crossref_primary_10_1016_j_bmc_2021_116119 crossref_primary_10_1073_pnas_2301518120 crossref_primary_10_1007_s11033_021_07020_6 crossref_primary_10_1016_j_antiviral_2024_105869 crossref_primary_10_1016_j_cell_2021_02_042 crossref_primary_10_1126_sciadv_adn7187 crossref_primary_10_1016_j_micres_2022_126993 crossref_primary_10_1016_j_bbrc_2024_150746 crossref_primary_10_1097_AOG_0000000000004440 crossref_primary_10_1016_j_isci_2022_105202 crossref_primary_10_1016_j_jvacx_2021_100098 crossref_primary_10_1016_j_jbc_2021_100306 crossref_primary_10_1016_j_xcrm_2022_100651 crossref_primary_10_1002_adhm_202200283 crossref_primary_10_3389_fimmu_2021_729189 crossref_primary_10_1016_j_freeradbiomed_2023_08_011 crossref_primary_10_1146_annurev_virology_111821_104408 crossref_primary_10_1073_pnas_2414583121 crossref_primary_10_1016_j_clim_2024_109902 crossref_primary_10_1016_j_jaci_2021_11_019 crossref_primary_10_1128_mBio_02492_20 crossref_primary_10_1002_cpz1_70025 crossref_primary_10_1007_s00253_021_11515_4 crossref_primary_10_1016_j_isci_2022_105016 crossref_primary_10_1128_JCM_02438_20 crossref_primary_10_1128_CMR_00228_20 crossref_primary_10_1007_s10311_020_01160_0 crossref_primary_10_1021_acscentsci_1c00361 crossref_primary_10_1080_22221751_2021_1888660 crossref_primary_10_1016_j_virusres_2023_199295 crossref_primary_10_1016_j_chom_2021_02_003 crossref_primary_10_1038_s41586_024_07636_1 crossref_primary_10_1016_j_it_2023_03_006 crossref_primary_10_1038_s42003_021_01649_6 crossref_primary_10_1002_jmv_27616 crossref_primary_10_1038_s41541_021_00324_5 crossref_primary_10_1073_pnas_2321579121 crossref_primary_10_1016_j_isci_2023_107739 crossref_primary_10_1021_acs_analchem_2c00835 crossref_primary_10_1002_jmv_28953 crossref_primary_10_1126_sciadv_abf1591 crossref_primary_10_1128_mSphere_00170_21 crossref_primary_10_1016_j_xcrm_2023_100971 crossref_primary_10_1038_s41586_022_04532_4 crossref_primary_10_1099_acmi_0_000839_v3 crossref_primary_10_1016_j_celrep_2021_109353 crossref_primary_10_1186_s12575_021_00153_9 crossref_primary_10_1016_j_omtn_2024_102318 crossref_primary_10_1016_j_chom_2023_05_025 crossref_primary_10_1002_advs_202202556 crossref_primary_10_3389_fmicb_2021_817200 crossref_primary_10_3389_fcimb_2021_663688 crossref_primary_10_1128_mbio_01672_23 crossref_primary_10_1128_jvi_01301_22 crossref_primary_10_1208_s12248_025_01043_8 crossref_primary_10_1021_acsinfecdis_0c00761 crossref_primary_10_1038_s41467_022_32262_8 crossref_primary_10_1038_s42003_022_03163_9 crossref_primary_10_1021_acschembio_2c00140 crossref_primary_10_1039_D2BM00819J |
Cites_doi | 10.1007/s12038-017-9676-7 10.1172/JCI138745 10.1101/2020.03.13.991570 10.3201/eid2607.200841 10.2139/ssrn.3546052 10.1128/JVI.02377-07 10.1016/j.cell.2020.02.058 10.1128/JVI.78.17.9007-9015.2004 10.1017/S0022172400062410 10.3201/eid1103.040906 10.1128/JVI.02146-06 10.1101/2020.03.15.992883 10.1128/JVI.78.19.10628-10635.2004 10.1038/s41586-020-2008-3 10.1016/j.tmrv.2020.02.004 10.1016/S0264-410X(03)00355-4 10.1101/2020.04.08.026948 10.1099/vir.0.009704-0 10.1126/science.abb2507 10.1038/s41564-020-0688-y 10.1371/journal.ppat.1006601 10.1038/s41591-020-0913-5 10.1101/2020.03.15.993097 10.1073/pnas.1510199112 10.1017/S0950268800048019 10.1080/22221751.2020.1729069 10.1101/2020.02.01.929976 10.1186/1472-6750-13-98 10.21769/BioProtoc.2514 10.1038/nrmicro1819 10.1128/CVI.00081-12 10.1038/s41467-020-15562-9 10.1001/jama.2020.3786 10.1073/pnas.1517719113 10.1128/JVI.78.7.3572-3577.2004 10.1073/pnas.2004168117 10.2210/pdb6ws6/pdb 10.1080/22221751.2020.1743767 10.1099/vir.0.80955-0 10.1007/s12033-012-9528-5 10.1101/2020.04.10.036418 10.1038/s41591-020-0897-1 10.1002/jmv.1890130208 10.1016/j.cell.2020.02.052 10.1111/j.1469-0691.2004.00956.x 10.1101/2020.04.06.20055475 10.1101/2020.03.30.20047365 10.1007/s10096-004-1271-9 10.1101/2020.03.21.990770 10.21769/BioProtoc.2035 10.1016/j.chom.2018.07.009 10.1038/srep13875 10.1089/vim.2014.0061 10.1016/j.mex.2015.09.003 10.1016/j.virol.2005.06.016 10.1099/acmi.0.000057 10.1101/2020.03.24.006544 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 MDPI AG Attribution 2020 by the authors. 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG – notice: Attribution – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM DOA |
DOI | 10.3390/v12050513 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1999-4915 |
ExternalDocumentID | oai_doaj_org_article_88a2dcbba5204bbe892d526add0ceb42 PMC7291041 oai_HAL_pasteur_02623342v1 A632127977 32384820 10_3390_v12050513 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: F30 AI149928 – fundername: National Institute of Allergy and Infectious Diseases grantid: F30AI149928 – fundername: NIDA NIH HHS grantid: DP2DA040254 – fundername: Pew Charitable Trusts grantid: Pew Biomedical Scholars Award – fundername: Burroughs Wellcome Fund grantid: Investigators in the Pathogenesis of Infectious Disease Award – fundername: Howard Hughes Medical Institute grantid: Investigator Research Budget – fundername: NIDA NIH HHS grantid: DP2 DA040254 – fundername: NIGMS NIH HHS grantid: R01GM120553 – fundername: NIAID NIH HHS grantid: HHSN272201700059C – fundername: NIAID NIH HHS grantid: R01 AI141707 |
GroupedDBID | --- 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACUHS AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK E3Z EBD ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR KQ8 LK8 M1P M48 M7P MODMG M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM TR2 TUS UKHRP 3V. CGR CUY CVF ECM EIF ISR NPM 7X8 PJZUB PPXIY PQGLB 1XC VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c507t-76d1623d5d0992d0b69968fb7eb4bc7a9eed77fa320a0b1dbc9ebce3a1d8a1b03 |
IEDL.DBID | M48 |
ISSN | 1999-4915 |
IngestDate | Wed Aug 27 01:25:58 EDT 2025 Thu Aug 21 18:43:08 EDT 2025 Fri May 09 12:12:01 EDT 2025 Tue Aug 05 11:15:23 EDT 2025 Tue Jun 17 21:33:26 EDT 2025 Wed Feb 19 02:29:06 EST 2025 Tue Jul 01 02:48:10 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | COVID-19 Spike ACE2 SARS-CoV-2 cytoplasmic tail ALAYT lentiviral pseudotype luciferase coronavirus neutralization assay 293T-ACE2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-76d1623d5d0992d0b69968fb7eb4bc7a9eed77fa320a0b1dbc9ebce3a1d8a1b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9603-9409 0000-0002-6223-4019 0000-0003-1267-3408 0000-0002-2978-4692 0000-0002-1767-3944 0000-0002-8438-2653 0000-0002-5477-7195 0000-0002-2260-2577 0000-0003-1115-9618 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/v12050513 |
PMID | 32384820 |
PQID | 2400538235 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_88a2dcbba5204bbe892d526add0ceb42 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7291041 hal_primary_oai_HAL_pasteur_02623342v1 proquest_miscellaneous_2400538235 gale_infotracmisc_A632127977 pubmed_primary_32384820 crossref_primary_10_3390_v12050513 crossref_citationtrail_10_3390_v12050513 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200506 |
PublicationDateYYYYMMDD | 2020-05-06 |
PublicationDate_xml | – month: 5 year: 2020 text: 20200506 day: 6 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Viruses |
PublicationTitleAlternate | Viruses |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Hoffmann (ref_41) 2020; 181 Cheng (ref_24) 2005; 24 Grehan (ref_34) 2015; 2 ref_58 Yan (ref_33) 2007; 23 ref_12 ref_11 ref_55 ref_54 ref_53 ref_52 To (ref_13) 2012; 19 Gunn (ref_10) 2018; 24 Subbarao (ref_19) 2004; 78 Wu (ref_46) 2020; 579 ref_59 Tian (ref_43) 2020; 9 Kapadia (ref_20) 2005; 340 Rockx (ref_18) 2008; 82 ref_25 Menachery (ref_17) 2016; 113 Walls (ref_28) 2020; 181 ref_27 ref_26 McBride (ref_47) 2007; 81 Chin (ref_57) 2020; 5247 Callow (ref_21) 1990; 105 ref_36 ref_35 Denning (ref_56) 2013; 53 ref_32 Corti (ref_16) 2015; 112 Letko (ref_29) 2020; 5 ref_31 Wrapp (ref_42) 2020; 367 Giroglou (ref_49) 2004; 78 ref_39 ref_38 ref_37 Moore (ref_51) 2004; 78 Glende (ref_50) 2009; 90 Co (ref_14) 2014; 27 Soo (ref_23) 2004; 10 Sadasivan (ref_48) 2017; 42 Piedra (ref_8) 2003; 21 Fouchier (ref_9) 2008; 6 ref_45 ref_44 Nie (ref_40) 2020; 9 ref_1 ref_3 ref_2 Callow (ref_15) 1985; 95 Fukushi (ref_30) 2005; 86 Reed (ref_22) 1984; 13 ref_5 ref_4 ref_7 ref_6 |
References_xml | – volume: 42 start-page: 231 year: 2017 ident: ref_48 article-title: Das Cytoplasmic tail of coronavirus spike protein has intracellular targeting signals publication-title: J. Biosci. doi: 10.1007/s12038-017-9676-7 – ident: ref_55 doi: 10.1172/JCI138745 – ident: ref_44 doi: 10.1101/2020.03.13.991570 – ident: ref_6 doi: 10.3201/eid2607.200841 – ident: ref_3 doi: 10.2139/ssrn.3546052 – volume: 82 start-page: 3220 year: 2008 ident: ref_18 article-title: Structural Basis for Potent Cross-Neutralizing Human Monoclonal Antibody Protection against Lethal Human and Zoonotic Severe Acute Respiratory Syndrome Coronavirus Challenge publication-title: J. Virol. doi: 10.1128/JVI.02377-07 – volume: 181 start-page: 281 year: 2020 ident: ref_28 article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 78 start-page: 9007 year: 2004 ident: ref_49 article-title: Retroviral Vectors Pseudotyped with Severe Acute Respiratory Syndrome Coronavirus S Protein publication-title: J. Virol. doi: 10.1128/JVI.78.17.9007-9015.2004 – volume: 95 start-page: 173 year: 1985 ident: ref_15 article-title: Effect of specific humoral immunity and some non-specific factors on resistance of volunteers to respiratory coronavirus infection publication-title: J. Hyg. (Lond.) doi: 10.1017/S0022172400062410 – ident: ref_31 doi: 10.3201/eid1103.040906 – volume: 81 start-page: 2418 year: 2007 ident: ref_47 article-title: The Cytoplasmic Tail of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Contains a Novel Endoplasmic Reticulum Retrieval Signal That Binds COPI and Promotes Interaction with Membrane Protein publication-title: J. Virol. doi: 10.1128/JVI.02146-06 – ident: ref_45 doi: 10.1101/2020.03.15.992883 – volume: 78 start-page: 10628 year: 2004 ident: ref_51 article-title: Retroviruses Pseudotyped with the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Efficiently Infect Cells Expressing Angiotensin-Converting Enzyme 2 publication-title: J. Virol. doi: 10.1128/JVI.78.19.10628-10635.2004 – volume: 579 start-page: 265 year: 2020 ident: ref_46 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature doi: 10.1038/s41586-020-2008-3 – ident: ref_59 doi: 10.1016/j.tmrv.2020.02.004 – volume: 21 start-page: 3479 year: 2003 ident: ref_8 article-title: Correlates of immunity to respiratory syncytial virus (RSV) associated-hospitalization: Establishment of minimum protective threshold levels of serum neutralizing antibodies publication-title: Vaccine doi: 10.1016/S0264-410X(03)00355-4 – ident: ref_39 doi: 10.1101/2020.04.08.026948 – volume: 90 start-page: 1724 year: 2009 ident: ref_50 article-title: Comparison of vesicular stomatitis virus pseudotyped with the S proteins from a porcine and a human coronavirus publication-title: J. Gen. Virol. doi: 10.1099/vir.0.009704-0 – volume: 367 start-page: 1260 year: 2020 ident: ref_42 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science (80-) doi: 10.1126/science.abb2507 – volume: 5 start-page: 562 year: 2020 ident: ref_29 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0688-y – ident: ref_7 doi: 10.1371/journal.ppat.1006601 – ident: ref_26 doi: 10.1038/s41591-020-0913-5 – ident: ref_11 doi: 10.1101/2020.03.15.993097 – volume: 112 start-page: 10473 year: 2015 ident: ref_16 article-title: Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1510199112 – volume: 105 start-page: 435 year: 1990 ident: ref_21 article-title: The time course of the immune response to experimental coronavirus infection of man publication-title: Epidemiol. Infect. doi: 10.1017/S0950268800048019 – volume: 9 start-page: 382 year: 2020 ident: ref_43 article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1729069 – ident: ref_54 doi: 10.1101/2020.02.01.929976 – ident: ref_53 doi: 10.1186/1472-6750-13-98 – ident: ref_32 doi: 10.21769/BioProtoc.2514 – volume: 6 start-page: 143 year: 2008 ident: ref_9 article-title: The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1819 – volume: 19 start-page: 1012 year: 2012 ident: ref_13 article-title: High titer and avidity of nonneutralizing antibodies against influenza vaccine antigen are associated with severe influenza publication-title: Clin. Vaccine Immunol. doi: 10.1128/CVI.00081-12 – ident: ref_37 doi: 10.1038/s41467-020-15562-9 – ident: ref_58 doi: 10.1001/jama.2020.3786 – volume: 23 start-page: 440 year: 2007 ident: ref_33 article-title: Development and application of a safe SARS-CoV neutralization assay based on lentiviral vectors pseudotyped with SARS-CoV spike protein publication-title: Bing Du Xue Bao – volume: 113 start-page: 3048 year: 2016 ident: ref_17 article-title: SARS-like WIV1-CoV poised for human emergence publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1517719113 – volume: 78 start-page: 3572 year: 2004 ident: ref_19 article-title: Prior Infection and Passive Transfer of Neutralizing Antibody Prevent Replication of Severe Acute Respiratory Syndrome Coronavirus in the Respiratory Tract of Mice publication-title: J. Virol. doi: 10.1128/JVI.78.7.3572-3577.2004 – ident: ref_25 doi: 10.1073/pnas.2004168117 – ident: ref_12 doi: 10.2210/pdb6ws6/pdb – volume: 9 start-page: 680 year: 2020 ident: ref_40 article-title: Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2 publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1743767 – volume: 86 start-page: 2269 year: 2005 ident: ref_30 article-title: Vesicular stomatitis virus pseudotyped with severe acute respiratory syndrome coronavirus spike protein publication-title: J. Gen. Virol. doi: 10.1099/vir.0.80955-0 – volume: 53 start-page: 308 year: 2013 ident: ref_56 article-title: Optimization of the transductional efficiency of lentiviral vectors: Effect of sera and polycations publication-title: Mol. Biotechnol. doi: 10.1007/s12033-012-9528-5 – ident: ref_38 doi: 10.1101/2020.04.10.036418 – ident: ref_5 doi: 10.1038/s41591-020-0897-1 – volume: 13 start-page: 179 year: 1984 ident: ref_22 article-title: The behaviour of recent isolates of human respiratory coronavirus in vitro and in volunteers: Evidence of heterogeneity among 229E-related strains publication-title: J. Med. Virol. doi: 10.1002/jmv.1890130208 – volume: 181 start-page: 271 year: 2020 ident: ref_41 article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 10 start-page: 676 year: 2004 ident: ref_23 article-title: Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients publication-title: Clin. Microbiol. Infect. doi: 10.1111/j.1469-0691.2004.00956.x – ident: ref_27 doi: 10.1101/2020.04.06.20055475 – ident: ref_4 doi: 10.1101/2020.03.30.20047365 – volume: 24 start-page: 44 year: 2005 ident: ref_24 article-title: Use of convalescent plasma therapy in SARS patients in Hong Kong publication-title: Eur. J. Clin. Microbiol. Infect. Dis. doi: 10.1007/s10096-004-1271-9 – ident: ref_1 doi: 10.1101/2020.03.21.990770 – ident: ref_36 doi: 10.21769/BioProtoc.2035 – volume: 24 start-page: 221 year: 2018 ident: ref_10 article-title: A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.07.009 – ident: ref_52 doi: 10.1038/srep13875 – volume: 27 start-page: 375 year: 2014 ident: ref_14 article-title: Relationship of preexisting influenza hemagglutination inhibition, complement-dependent lytic, and antibody-dependent cellular cytotoxicity antibodies to the development of clinical illness in a prospective study of A(H1N1)pdm09 influenza in children publication-title: Viral Immunol. doi: 10.1089/vim.2014.0061 – volume: 2 start-page: 379 year: 2015 ident: ref_34 article-title: An optimised method for the production of MERS-CoV spike expressing viral pseudotypes publication-title: MethodsX doi: 10.1016/j.mex.2015.09.003 – volume: 340 start-page: 174 year: 2005 ident: ref_20 article-title: Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine publication-title: Virology doi: 10.1016/j.virol.2005.06.016 – volume: 5247 start-page: 30003 year: 2020 ident: ref_57 article-title: Stability of SARS-CoV-2 in different environmental conditions publication-title: Lancet Microbe – ident: ref_35 doi: 10.1099/acmi.0.000057 – ident: ref_2 doi: 10.1101/2020.03.24.006544 |
SSID | ssj0066907 |
Score | 2.6654313 |
Snippet | SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera... |
SourceID | doaj pubmedcentral hal proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 513 |
SubjectTerms | Angiotensin-Converting Enzyme 2 Antibodies, Neutralizing Antibodies, Neutralizing - immunology Antibodies, Viral Antibodies, Viral - blood Antibodies, Viral - immunology Biochemical assays Containment of Biohazards coronavirus Coronaviruses COVID-19 Diagnosis Health aspects HEK293 Cells Humans lentiviral pseudotype Lentivirus Life Sciences Methods Microbiology and Parasitology neutralization assay Neutralization Tests Neutralization Tests - methods Peptidyl-Dipeptidase A Peptidyl-Dipeptidase A - metabolism Plasma Plasma - immunology Protocol SARS-CoV-2 Spike Spike Glycoprotein, Coronavirus Spike Glycoprotein, Coronavirus - analysis Virology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9swFBVbYbCXse7TWze0McZeTG1JtuzHrKyEUUpo1tE3oSvJNKzYIY4L-fe9105CvQ32stdEyOZ-SOfIR_cy9qkE0CmUBa5-iY-VLrLYiiBiOvEHkJVV0Kt8z_Pppfp-lV3da_VFmrChPPBguOOisMI7AJuJRAGEohQ-EzmmZeICqH71xT1vR6aGNTgnzjfUEZJI6o9vU0Ed21I52n36Iv37pfjhNSkh_4SZv6sl720_p0_Zky1u5JPhfQ_Zg1A_Y4-GTpKb56ydrZp1g07ltvb8Ili6MdVyRKR81oYOqeeGLkbxMxIHka73hs92mjhOZ7F8PrmYxyfNz1jw-XLxK3CaMSzqfo7z0PUnIsOdTY4-tZv2Bbs8_fbjZBpv-ynEDlHfOta5TxHt-MwjLBQ-gRzJTlGBRjuC07bE_VLrykqR2ARSD64M4IK0qS9sCol8yQ7qpg6vGUdQo3wZlBMKVGLRHVq7qpCVzitknHnEvuzsbNy22Dj1vLgxSDrIJWbvkoh93A9dDhU2_jboKzlrP4CKYvc_YKiYrbnMv0IlYkfkakOpiy_jMJGcmeSSitwjDI7YZwyB0SOmkzOztJhu3cogWRVSKnGbRuzDLkoMzUEytTo0XWtIkJvRl9UsYq-GqNnPJxEcKcRbEdOjeBo9cPxPvbjuC34jAULWnL75H0Z4yx4LOjIgzWZ-xA7Wqy68Q1y1hvd9Ct0B2PAjXA priority: 102 providerName: Directory of Open Access Journals |
Title | Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32384820 https://www.proquest.com/docview/2400538235 https://pasteur.hal.science/pasteur-02623342 https://pubmed.ncbi.nlm.nih.gov/PMC7291041 https://doaj.org/article/88a2dcbba5204bbe892d526add0ceb42 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2ISQuiPcGlsoghLgEEseJkwNC3dUuFVqqqqWoN8uvsBVVUpp2Rf89M0kbEdgDlxwSx3Y84_j7xuMZQl5nWotQZyn8_QLrc5HGvmKO-Wjx1zrKFde1l-8wGUz551k8OyD7HJu7AaxupXaYT2q6Wrz79XP7ESb8B2ScQNnf34QM87Fh7tpjWJAEJjL4wtvNhAQJYL25nGFCtTBuAgx1X-0sS3X0_vYffXiNLpL_4s-_3Sj_WJcu75N7O0BJ-40GPCAHrnhI7jQpJrePSDValesSpE1VYenYKTxKVVGAqnRUuQ1w0i2emKJX6DWEDr8LOto7y1E00tJJfzzxz8tvPqOT5fyHo1ijmxd1HUO3qU0lzWFOCsJW2-oxmV5efD0f-LtEC74BOLj2RWJDgEE2toAXmQ10AiwozbVwmmsjVAYLqRC5iligAh1abTKnjYtUaFMV6iB6Qo6KsnAnhALa4TZz3DCueaASBS-aPI1ykeRARROPvN2PszS7KOSYDGMhgY2gSGQrEo-8aosum9AbtxU6Q2G1BTBadn2jXH2Xu-GSaaqYNVqrmAVca5fCR8YM-mYDA5_IPHKKopaoZdAZAzPMyH4SYfR7wMceeQMq0Gli0L-SSwXzcLOSwGJZFHF2E3rk5V5LJNaB_muFKzeVRE_dGLdcY488bbSmrS8C1MQBiHlEdPSp02D3STG_riOBAzMCOh0--492n5O7DE0F6KuZnJKj9WrjXgCeWuseORQz0SPHZxfD0bhXWyXg-mkW9up59BtFPiMc |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protocol+and+Reagents+for+Pseudotyping+Lentiviral+Particles+with+SARS-CoV-2+Spike+Protein+for+Neutralization+Assays&rft.jtitle=Viruses&rft.au=Crawford%2C+Katharine+H+D&rft.au=Eguia%2C+Rachel&rft.au=Dingens%2C+Adam+S&rft.au=Loes%2C+Andrea+N&rft.date=2020-05-06&rft.issn=1999-4915&rft.eissn=1999-4915&rft.volume=12&rft.issue=5&rft_id=info:doi/10.3390%2Fv12050513&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon |