Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays

SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike-mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simpl...

Full description

Saved in:
Bibliographic Details
Published inViruses Vol. 12; no. 5; p. 513
Main Authors Crawford, Katharine H. D., Eguia, Rachel, Dingens, Adam S., Loes, Andrea N., Malone, Keara D., Wolf, Caitlin R., Chu, Helen Y., Tortorici, M. Alejandra, Veesler, David, Murphy, Michael, Pettie, Deleah, King, Neil P., Balazs, Alejandro B., Bloom, Jesse D.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 06.05.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike-mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simplify such assays is to pseudotype biosafety-level-2 viral particles with Spike. Such pseudotyping has now been described for single-cycle lentiviral, retroviral, and vesicular stomatitis virus (VSV) particles, but the reagents and protocols are not widely available. Here, we detailed how to effectively pseudotype lentiviral particles with SARS-CoV-2 Spike and infect 293T cells engineered to express the SARS-CoV-2 receptor, ACE2. We also made all the key experimental reagents available in the BEI Resources repository of ATCC and the NIH. Furthermore, we demonstrated how these pseudotyped lentiviral particles could be used to measure the neutralizing activity of human sera or plasma against SARS-CoV-2 in convenient luciferase-based assays, thereby providing a valuable complement to ELISA-based methods that measure antibody binding rather than neutralization.
AbstractList SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike- mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simplify such assays is to pseudotype biosafety-level-2 viral particles with Spike. Such pseudotyping has now been described for single-cycle lentiviral, retroviral, and vesicular stomatitis virus (VSV) particles, but the reagents and protocols are not widely available. Here, we detailed how to effectively pseudotype lentiviral particles with SARS-CoV-2 Spike and infect 293T cells engineered to express the SARS-CoV-2 receptor, ACE2. We also made all the key experimental reagents available in the BEI Resources repository of ATCC and the NIH. Furthermore, we demonstrated how these pseudotyped lentiviral particles could be used to measure the neutralizing activity of human sera or plasma against SARS-CoV-2 in convenient luciferase-based assays, thereby providing a valuable complement to ELISA-based methods that measure antibody binding rather than neutralization.
SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike-mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simplify such assays is to pseudotype biosafety-level-2 viral particles with Spike. Such pseudotyping has now been described for single-cycle lentiviral, retroviral, and vesicular stomatitis virus (VSV) particles, but the reagents and protocols are not widely available. Here, we detailed how to effectively pseudotype lentiviral particles with SARS-CoV-2 Spike and infect 293T cells engineered to express the SARS-CoV-2 receptor, ACE2. We also made all the key experimental reagents available in the BEI Resources repository of ATCC and the NIH. Furthermore, we demonstrated how these pseudotyped lentiviral particles could be used to measure the neutralizing activity of human sera or plasma against SARS-CoV-2 in convenient luciferase-based assays, thereby providing a valuable complement to ELISA-based methods that measure antibody binding rather than neutralization.SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike-mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simplify such assays is to pseudotype biosafety-level-2 viral particles with Spike. Such pseudotyping has now been described for single-cycle lentiviral, retroviral, and vesicular stomatitis virus (VSV) particles, but the reagents and protocols are not widely available. Here, we detailed how to effectively pseudotype lentiviral particles with SARS-CoV-2 Spike and infect 293T cells engineered to express the SARS-CoV-2 receptor, ACE2. We also made all the key experimental reagents available in the BEI Resources repository of ATCC and the NIH. Furthermore, we demonstrated how these pseudotyped lentiviral particles could be used to measure the neutralizing activity of human sera or plasma against SARS-CoV-2 in convenient luciferase-based assays, thereby providing a valuable complement to ELISA-based methods that measure antibody binding rather than neutralization.
Audience Academic
Author Pettie, Deleah
Chu, Helen Y.
Balazs, Alejandro B.
Veesler, David
Bloom, Jesse D.
Dingens, Adam S.
King, Neil P.
Crawford, Katharine H. D.
Wolf, Caitlin R.
Tortorici, M. Alejandra
Eguia, Rachel
Malone, Keara D.
Murphy, Michael
Loes, Andrea N.
AuthorAffiliation 4 Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA; crwolf@uw.edu (C.R.W.); helenchu@uw.edu (H.Y.C.)
2 Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
8 The Ragon Institute of Massachusetts General Hospital, the Massachusetts Institute Technology, and Harvard University, Cambridge, MA 02139, USA; abalazs@mgh.harvard.edu
1 Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; kdusenbu@fredhutch.org (K.H.D.C.); reguia@fredhutch.org (R.E.); adingens@fredhutch.org (A.S.D.); aloes@fredhutch.org (A.N.L.); kmalone2@fredhutch.org (K.D.M.)
3 Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
6 Institute Pasteur & CNRS UMR 3569, Unité de Virologie Structurale, Paris 75015, France
5 Department of Biochemistry, University of Washington, Seattle, WA 98109, USA; tortorici@uw.edu (M.A.T.); dveesler@uw.edu (D.V.); neil@ipd.uw.e
AuthorAffiliation_xml – name: 4 Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA; crwolf@uw.edu (C.R.W.); helenchu@uw.edu (H.Y.C.)
– name: 1 Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; kdusenbu@fredhutch.org (K.H.D.C.); reguia@fredhutch.org (R.E.); adingens@fredhutch.org (A.S.D.); aloes@fredhutch.org (A.N.L.); kmalone2@fredhutch.org (K.D.M.)
– name: 5 Department of Biochemistry, University of Washington, Seattle, WA 98109, USA; tortorici@uw.edu (M.A.T.); dveesler@uw.edu (D.V.); neil@ipd.uw.edu (N.P.K.)
– name: 6 Institute Pasteur & CNRS UMR 3569, Unité de Virologie Structurale, Paris 75015, France
– name: 8 The Ragon Institute of Massachusetts General Hospital, the Massachusetts Institute Technology, and Harvard University, Cambridge, MA 02139, USA; abalazs@mgh.harvard.edu
– name: 3 Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
– name: 2 Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
– name: 9 Howard Hughes Medical Institute, Seattle, WA 98103, USA
– name: 7 Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; murphymp@uw.edu (M.M.); ddpettie@gmail.com (D.P.)
Author_xml – sequence: 1
  givenname: Katharine H. D.
  orcidid: 0000-0002-6223-4019
  surname: Crawford
  fullname: Crawford, Katharine H. D.
– sequence: 2
  givenname: Rachel
  surname: Eguia
  fullname: Eguia, Rachel
– sequence: 3
  givenname: Adam S.
  orcidid: 0000-0001-9603-9409
  surname: Dingens
  fullname: Dingens, Adam S.
– sequence: 4
  givenname: Andrea N.
  surname: Loes
  fullname: Loes, Andrea N.
– sequence: 5
  givenname: Keara D.
  surname: Malone
  fullname: Malone, Keara D.
– sequence: 6
  givenname: Caitlin R.
  surname: Wolf
  fullname: Wolf, Caitlin R.
– sequence: 7
  givenname: Helen Y.
  surname: Chu
  fullname: Chu, Helen Y.
– sequence: 8
  givenname: M. Alejandra
  surname: Tortorici
  fullname: Tortorici, M. Alejandra
– sequence: 9
  givenname: David
  surname: Veesler
  fullname: Veesler, David
– sequence: 10
  givenname: Michael
  orcidid: 0000-0002-8438-2653
  surname: Murphy
  fullname: Murphy, Michael
– sequence: 11
  givenname: Deleah
  orcidid: 0000-0002-5477-7195
  surname: Pettie
  fullname: Pettie, Deleah
– sequence: 12
  givenname: Neil P.
  orcidid: 0000-0002-2978-4692
  surname: King
  fullname: King, Neil P.
– sequence: 13
  givenname: Alejandro B.
  orcidid: 0000-0002-1767-3944
  surname: Balazs
  fullname: Balazs, Alejandro B.
– sequence: 14
  givenname: Jesse D.
  orcidid: 0000-0003-1267-3408
  surname: Bloom
  fullname: Bloom, Jesse D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32384820$$D View this record in MEDLINE/PubMed
https://pasteur.hal.science/pasteur-02623342$$DView record in HAL
BookMark eNptkktv1DAUhSNURB-w4A8gS2zoItSPJI43SKMR0EojGHWAreVXMi6ZOLWdQdNfj-fBqK1Y2bK_e8499j3PTnrXmyx7i-BHQhi8WiMMS1gi8iI7Q4yxvGCoPHm0P83OQ7iDsKoYpK-yU4JJXdQYnmVh7l10ynVA9BrcGtGaPgbQOA_mwYzaxc1g-xbM0rFdWy86MBc-WtWZAP7YuASLye0in7pfOQaLwf42YKtobL_T-GbGmGrsg4jW9WASgtiE19nLRnTBvDmsF9nPL59_TK_z2fevN9PJLFclpDGnlUYVJrrUkDGsoawYq-pGUiMLqahgxmhKG0EwFFAiLRUzUhkikK4FkpBcZDd7Xe3EHR-8XQm_4U5YvjtwvuWHKLyuBdZKSlFiWEhp6mRY4kpoDVWyw0nr015rGOXKaJWeI-V6Ivr0prdL3ro1p5ghWKAkkO8Fls_KriczPogQzeg5xCkwKfB6y384GHp3P5oQ-coGZbpO9MaNgeMCwpLUmJQJfb9HW5Gi2L5xqQO1xfmkIhhhyihN1LvHCY49_JuFBFzuAeVdCN40RwRBvp0zfpyzxF49Y5WNuz9O1rb7T8VfevTVGQ
CitedBy_id crossref_primary_10_1038_s41587_022_01280_8
crossref_primary_10_1038_s41598_023_31592_x
crossref_primary_10_1002_pro_5109
crossref_primary_10_1038_s41598_024_83024_z
crossref_primary_10_3389_fimmu_2022_942897
crossref_primary_10_1172_JCI149633
crossref_primary_10_1007_s11596_021_2470_7
crossref_primary_10_1126_sciimmunol_abe0240
crossref_primary_10_1016_j_bios_2021_113924
crossref_primary_10_1038_s41587_020_0659_0
crossref_primary_10_1128_JCM_00989_21
crossref_primary_10_1016_j_heliyon_2023_e17701
crossref_primary_10_1016_j_ccell_2021_06_015
crossref_primary_10_1186_s12951_021_01148_0
crossref_primary_10_2139_ssrn_3859298
crossref_primary_10_3389_fimmu_2022_960094
crossref_primary_10_1002_anbr_202400077
crossref_primary_10_1038_s41467_021_26809_4
crossref_primary_10_1038_s41541_022_00472_2
crossref_primary_10_1136_jitc_2021_002550
crossref_primary_10_1093_pnasnexus_pgae500
crossref_primary_10_1128_mBio_00696_21
crossref_primary_10_1016_j_chembiol_2023_09_015
crossref_primary_10_1016_j_bmc_2025_118124
crossref_primary_10_1073_pnas_2316960121
crossref_primary_10_1016_j_ymthe_2024_03_002
crossref_primary_10_1038_s41598_023_31722_5
crossref_primary_10_1038_s41598_023_40370_8
crossref_primary_10_1089_bfm_2020_0381
crossref_primary_10_1038_s41467_021_25855_2
crossref_primary_10_1126_science_abe3255
crossref_primary_10_1073_pnas_2101497118
crossref_primary_10_1016_j_cell_2022_01_011
crossref_primary_10_1016_j_cell_2020_12_015
crossref_primary_10_1038_s41586_021_03925_1
crossref_primary_10_1038_s42003_021_02766_y
crossref_primary_10_1080_14760584_2023_2299380
crossref_primary_10_1371_journal_ppat_1009453
crossref_primary_10_1038_s41467_023_37290_6
crossref_primary_10_1016_j_cell_2021_06_029
crossref_primary_10_1073_pnas_2220948120
crossref_primary_10_1016_j_heliyon_2024_e31392
crossref_primary_10_1126_science_abq0203
crossref_primary_10_1126_sciimmunol_abi8635
crossref_primary_10_1021_acsinfecdis_0c00274
crossref_primary_10_1093_infdis_jiaa797
crossref_primary_10_1016_j_isci_2022_104745
crossref_primary_10_1016_j_virusres_2021_198305
crossref_primary_10_1128_mbio_02928_23
crossref_primary_10_1002_ange_202110819
crossref_primary_10_1021_acs_biochem_2c00241
crossref_primary_10_1126_scitranslmed_abi9915
crossref_primary_10_1128_aac_00083_22
crossref_primary_10_1016_j_jbc_2022_102624
crossref_primary_10_1016_j_cell_2023_02_001
crossref_primary_10_1172_jci_insight_168663
crossref_primary_10_1038_s41541_023_00635_9
crossref_primary_10_1016_j_apsb_2021_09_004
crossref_primary_10_1111_jvp_13429
crossref_primary_10_1038_s41590_021_01088_9
crossref_primary_10_1016_j_jtcme_2021_09_002
crossref_primary_10_1016_j_celrep_2022_110561
crossref_primary_10_1016_j_celrep_2023_112621
crossref_primary_10_1126_sciadv_abi6110
crossref_primary_10_1038_s41598_021_95756_3
crossref_primary_10_1038_s41598_021_91746_7
crossref_primary_10_1021_acs_jcim_4c01511
crossref_primary_10_1038_s41586_021_03530_2
crossref_primary_10_1172_jci_insight_143213
crossref_primary_10_1172_jci_insight_142362
crossref_primary_10_7554_eLife_73027
crossref_primary_10_1016_j_snb_2023_133746
crossref_primary_10_1038_s41586_021_03817_4
crossref_primary_10_1371_journal_pmed_1004397
crossref_primary_10_1038_s41598_023_46025_y
crossref_primary_10_7554_eLife_89423_3
crossref_primary_10_1016_j_heliyon_2024_e34492
crossref_primary_10_1016_j_celrep_2021_109164
crossref_primary_10_1126_science_abq2679
crossref_primary_10_7717_peerj_16234
crossref_primary_10_1002_anie_202110819
crossref_primary_10_1093_oxfimm_iqab005
crossref_primary_10_1126_sciimmunol_abp8328
crossref_primary_10_1084_jem_20232192
crossref_primary_10_1016_j_heliyon_2023_e16750
crossref_primary_10_1080_21505594_2021_1911477
crossref_primary_10_21769_BioProtoc_4236
crossref_primary_10_1016_j_isci_2022_104549
crossref_primary_10_1126_sciadv_abm6909
crossref_primary_10_1128_aac_01201_22
crossref_primary_10_1021_jacsau_2c00220
crossref_primary_10_1016_j_cell_2023_04_024
crossref_primary_10_1016_j_bsheal_2021_12_006
crossref_primary_10_1126_science_abl8506
crossref_primary_10_1016_j_celrep_2022_110348
crossref_primary_10_1016_j_gene_2022_147144
crossref_primary_10_1038_s41467_020_19819_1
crossref_primary_10_1016_j_chom_2021_08_002
crossref_primary_10_1016_j_ijid_2023_11_014
crossref_primary_10_3389_fimmu_2023_1182556
crossref_primary_10_1021_acs_analchem_2c01988
crossref_primary_10_3389_fviro_2021_793320
crossref_primary_10_1016_j_jcvp_2021_100044
crossref_primary_10_1016_j_isci_2022_104798
crossref_primary_10_1016_j_jbc_2022_101856
crossref_primary_10_1021_acs_analchem_2c01993
crossref_primary_10_1080_14737159_2021_1913123
crossref_primary_10_1038_s41589_023_01529_6
crossref_primary_10_1016_j_virs_2022_10_006
crossref_primary_10_1016_j_celrep_2022_111299
crossref_primary_10_1038_s41541_022_00549_y
crossref_primary_10_1126_science_abf6840
crossref_primary_10_1371_journal_ppat_1010981
crossref_primary_10_1016_j_jve_2022_100307
crossref_primary_10_1172_jci_insight_155889
crossref_primary_10_1016_j_jviromet_2022_114569
crossref_primary_10_1038_s41589_022_01140_1
crossref_primary_10_1128_aac_00439_22
crossref_primary_10_1016_j_isci_2022_103951
crossref_primary_10_1016_j_jiph_2025_102744
crossref_primary_10_1016_j_celrep_2021_109814
crossref_primary_10_1016_j_immuni_2020_06_001
crossref_primary_10_1038_s41467_022_31097_7
crossref_primary_10_1021_acscentsci_4c00722
crossref_primary_10_1016_j_chom_2022_07_002
crossref_primary_10_1016_j_vaccine_2023_09_033
crossref_primary_10_2139_ssrn_3879085
crossref_primary_10_4049_jimmunol_2100155
crossref_primary_10_1007_s10439_024_03478_0
crossref_primary_10_1126_science_abf6950
crossref_primary_10_1128_JCM_02107_20
crossref_primary_10_1111_bjh_18088
crossref_primary_10_1002_cti2_1411
crossref_primary_10_1016_j_chom_2020_11_007
crossref_primary_10_1038_s41576_021_00408_x
crossref_primary_10_1093_infdis_jiae301
crossref_primary_10_1128_jvi_00109_25
crossref_primary_10_1017_S0950268823001024
crossref_primary_10_1016_j_immuni_2024_06_013
crossref_primary_10_1016_j_isci_2022_103960
crossref_primary_10_1021_acsomega_3c02921
crossref_primary_10_1038_s41467_023_40933_3
crossref_primary_10_1038_s41586_021_03677_y
crossref_primary_10_1016_j_cell_2020_06_025
crossref_primary_10_1038_s41589_020_00679_1
crossref_primary_10_1016_j_isci_2023_106256
crossref_primary_10_1021_jacs_1c09579
crossref_primary_10_1371_journal_pone_0266250
crossref_primary_10_1126_scitranslmed_abn1252
crossref_primary_10_7554_eLife_89423
crossref_primary_10_1002_jmv_29579
crossref_primary_10_1371_journal_ppat_1010832
crossref_primary_10_1016_j_xpro_2023_102127
crossref_primary_10_1002_advs_202101166
crossref_primary_10_1016_j_heliyon_2022_e10280
crossref_primary_10_1080_15476286_2023_2241755
crossref_primary_10_1136_rmdopen_2022_002639
crossref_primary_10_1128_JCM_00527_21
crossref_primary_10_1016_j_celrep_2021_108737
crossref_primary_10_1128_jvi_01992_22
crossref_primary_10_1038_s41586_021_03807_6
crossref_primary_10_1016_j_jviromet_2021_114261
crossref_primary_10_1016_j_xcrm_2023_101127
crossref_primary_10_1016_j_jvacx_2024_100475
crossref_primary_10_1093_nar_gkab574
crossref_primary_10_1038_s41564_024_01765_z
crossref_primary_10_1016_j_vaccine_2023_10_073
crossref_primary_10_1038_s41467_021_25168_4
crossref_primary_10_1016_j_chempr_2022_07_012
crossref_primary_10_1128_mbio_00540_23
crossref_primary_10_1371_journal_ppat_1009958
crossref_primary_10_1002_adhm_202301495
crossref_primary_10_1016_j_celrep_2020_108528
crossref_primary_10_1128_spectrum_01333_24
crossref_primary_10_1093_infdis_jiac270
crossref_primary_10_1038_s41467_020_18178_1
crossref_primary_10_1002_pro_4044
crossref_primary_10_1126_science_abm8143
crossref_primary_10_1021_acsbiomaterials_3c01108
crossref_primary_10_1038_s41596_020_0394_5
crossref_primary_10_1038_s41598_020_80908_8
crossref_primary_10_1021_acsptsci_3c00306
crossref_primary_10_1016_j_isci_2021_103467
crossref_primary_10_1128_spectrum_02564_22
crossref_primary_10_1002_anse_202300001
crossref_primary_10_1016_j_cej_2024_153522
crossref_primary_10_1016_j_chom_2021_12_010
crossref_primary_10_1016_j_heliyon_2023_e13797
crossref_primary_10_1038_s41598_023_41885_w
crossref_primary_10_1038_s42003_024_06500_2
crossref_primary_10_1016_j_xcrm_2023_101267
crossref_primary_10_1126_science_adk8946
crossref_primary_10_1128_mSphere_00571_21
crossref_primary_10_1016_j_nmni_2024_101525
crossref_primary_10_1038_s12276_024_01197_z
crossref_primary_10_1021_jacs_2c06192
crossref_primary_10_1172_jci_insight_150012
crossref_primary_10_1084_jem_20201181
crossref_primary_10_1016_j_isci_2022_103856
crossref_primary_10_1089_hum_2024_105
crossref_primary_10_1126_scitranslmed_abn6859
crossref_primary_10_1016_j_jcvp_2023_100137
crossref_primary_10_1021_acs_jafc_2c07811
crossref_primary_10_1126_scitranslmed_adf4549
crossref_primary_10_1016_j_meegid_2021_105011
crossref_primary_10_1016_j_jconrel_2021_05_049
crossref_primary_10_1038_s41594_021_00596_4
crossref_primary_10_1172_jci_insight_166711
crossref_primary_10_1016_j_chembiol_2021_05_019
crossref_primary_10_1016_j_nbt_2023_04_003
crossref_primary_10_1038_s41467_021_23825_2
crossref_primary_10_1016_j_isci_2022_104716
crossref_primary_10_1126_sciadv_adk4920
crossref_primary_10_1038_s41541_024_00982_1
crossref_primary_10_1039_D2LC00289B
crossref_primary_10_1111_trf_16283
crossref_primary_10_1126_sciimmunol_adk5845
crossref_primary_10_1021_acs_jnatprod_1c00946
crossref_primary_10_1007_s11030_021_10272_w
crossref_primary_10_1016_j_celrep_2023_112310
crossref_primary_10_3390_v15091897
crossref_primary_10_1016_j_molcel_2021_11_024
crossref_primary_10_1021_acsinfecdis_2c00297
crossref_primary_10_1038_s41467_023_35949_8
crossref_primary_10_1128_aem_02303_21
crossref_primary_10_1016_j_cell_2020_08_012
crossref_primary_10_1016_j_stem_2020_09_013
crossref_primary_10_1152_ajplung_00300_2022
crossref_primary_10_1016_j_xpro_2022_101977
crossref_primary_10_1134_S0003683824700194
crossref_primary_10_3389_fimmu_2022_910136
crossref_primary_10_1016_j_jcvp_2023_100158
crossref_primary_10_1126_science_abl6184
crossref_primary_10_1038_s41577_020_00471_1
crossref_primary_10_1016_j_bios_2021_113122
crossref_primary_10_1038_s41467_023_37417_9
crossref_primary_10_1128_spectrum_02808_24
crossref_primary_10_1016_j_jbc_2025_108319
crossref_primary_10_3389_fimmu_2024_1501200
crossref_primary_10_3138_jammi_2021_0026
crossref_primary_10_1038_s41467_023_36279_5
crossref_primary_10_1128_jvi_01186_24
crossref_primary_10_1016_j_celrep_2021_109760
crossref_primary_10_1016_j_chom_2021_03_008
crossref_primary_10_7554_eLife_83710
crossref_primary_10_1016_j_crmeth_2022_100273
crossref_primary_10_1016_j_cell_2021_03_028
crossref_primary_10_1126_science_abi7994
crossref_primary_10_1126_sciadv_abn4188
crossref_primary_10_1128_jvi_01140_22
crossref_primary_10_1002_adtp_202100099
crossref_primary_10_1002_cti2_1264
crossref_primary_10_1093_infdis_jiad054
crossref_primary_10_1038_s41467_023_40554_w
crossref_primary_10_1016_j_cell_2021_03_013
crossref_primary_10_3389_fmicb_2023_1258975
crossref_primary_10_1016_j_antiviral_2022_105370
crossref_primary_10_1084_jem_20220849
crossref_primary_10_1080_22221751_2021_1932607
crossref_primary_10_1016_j_crmeth_2022_100252
crossref_primary_10_1016_j_chom_2021_11_004
crossref_primary_10_1080_22221751_2023_2195020
crossref_primary_10_1016_j_cell_2021_04_045
crossref_primary_10_1039_D2SC06967A
crossref_primary_10_1093_infdis_jiae249
crossref_primary_10_1126_science_abg9175
crossref_primary_10_3389_fimmu_2024_1476294
crossref_primary_10_1080_22221751_2023_2275598
crossref_primary_10_1021_acs_analchem_2c00062
crossref_primary_10_1038_s41467_020_19231_9
crossref_primary_10_1128_JVI_00044_21
crossref_primary_10_1093_ofid_ofab220
crossref_primary_10_1021_acsnano_3c07767
crossref_primary_10_1128_JVI_01437_21
crossref_primary_10_1073_pnas_2217199120
crossref_primary_10_1021_acscentsci_0c01405
crossref_primary_10_1038_s41467_021_23779_5
crossref_primary_10_1038_s41587_023_01763_2
crossref_primary_10_1093_pnasnexus_pgac198
crossref_primary_10_1016_j_csbj_2022_04_030
crossref_primary_10_1002_cpz1_759
crossref_primary_10_1016_j_cell_2021_04_032
crossref_primary_10_1126_sciadv_abe6855
crossref_primary_10_1186_s12985_021_01490_7
crossref_primary_10_1073_pnas_2200592119
crossref_primary_10_1002_jmv_28543
crossref_primary_10_1016_j_cell_2024_09_026
crossref_primary_10_1038_s41467_022_28324_6
crossref_primary_10_1038_s41598_021_99401_x
crossref_primary_10_1038_s41565_024_01655_9
crossref_primary_10_1126_science_abd9994
crossref_primary_10_1128_jvi_01837_21
crossref_primary_10_1016_j_omtm_2021_03_003
crossref_primary_10_3389_fmicb_2021_752739
crossref_primary_10_1016_j_metabol_2022_155181
crossref_primary_10_1080_19420862_2021_1893426
crossref_primary_10_1126_science_abj8430
crossref_primary_10_1002_smtd_202401600
crossref_primary_10_1038_s41598_022_06393_3
crossref_primary_10_1016_j_immuni_2021_05_006
crossref_primary_10_1016_j_cell_2021_04_025
crossref_primary_10_1016_j_ejpb_2024_114538
crossref_primary_10_1002_rmv_2170
crossref_primary_10_1002_rmv_2294
crossref_primary_10_1016_j_immuni_2022_10_019
crossref_primary_10_2174_1389201024666230227115329
crossref_primary_10_2174_1574887118666230413092826
crossref_primary_10_1002_cti2_1182
crossref_primary_10_1111_trf_16101
crossref_primary_10_1038_s41586_023_06487_6
crossref_primary_10_1126_sciimmunol_abf8891
crossref_primary_10_1126_sciadv_adp5539
crossref_primary_10_1126_sciadv_abj3107
crossref_primary_10_1080_22221751_2021_1925163
crossref_primary_10_1371_journal_pone_0261045
crossref_primary_10_1128_Spectrum_00886_21
crossref_primary_10_1016_j_vaccine_2021_12_063
crossref_primary_10_1016_j_immuni_2023_11_004
crossref_primary_10_3389_fimmu_2022_1014309
crossref_primary_10_1038_s41586_022_04464_z
crossref_primary_10_1128_spectrum_00959_24
crossref_primary_10_1021_acsabm_2c00143
crossref_primary_10_1016_j_celrep_2023_112167
crossref_primary_10_1038_s41541_022_00436_6
crossref_primary_10_1016_j_fitote_2023_105695
crossref_primary_10_1371_journal_pcbi_1012812
crossref_primary_10_1007_s42399_020_00533_4
crossref_primary_10_1016_j_ebiom_2023_104784
crossref_primary_10_1038_s41372_021_01001_0
crossref_primary_10_1128_spectrum_02364_21
crossref_primary_10_1016_j_isci_2023_106345
crossref_primary_10_1128_spectrum_01837_22
crossref_primary_10_1089_vim_2022_0117
crossref_primary_10_1128_aac_00956_23
crossref_primary_10_1038_s41467_023_38020_8
crossref_primary_10_1128_spectrum_02463_23
crossref_primary_10_1128_JVI_01062_20
crossref_primary_10_1016_j_cell_2020_10_051
crossref_primary_10_1038_s41598_022_17088_0
crossref_primary_10_1038_s41541_021_00404_6
crossref_primary_10_1002_jssc_202100937
crossref_primary_10_1016_j_jim_2021_113160
crossref_primary_10_1016_j_chom_2021_04_015
crossref_primary_10_1016_j_cell_2021_09_015
crossref_primary_10_1016_j_ymthe_2021_02_007
crossref_primary_10_1111_imm_13661
crossref_primary_10_1371_journal_ppat_1012365
crossref_primary_10_1016_j_pathol_2020_09_012
crossref_primary_10_1186_s12884_022_04500_w
crossref_primary_10_1093_infdis_jiaa618
crossref_primary_10_1182_bloodadvances_2022009164
crossref_primary_10_3389_fimmu_2021_813240
crossref_primary_10_1038_s41591_021_01676_0
crossref_primary_10_1073_pnas_2016093117
crossref_primary_10_1038_s41541_022_00540_7
crossref_primary_10_1126_sciimmunol_adf1421
crossref_primary_10_1126_science_abo7896
crossref_primary_10_1016_j_matt_2025_102006
crossref_primary_10_1021_jacs_0c10810
crossref_primary_10_1016_j_cell_2024_07_052
crossref_primary_10_1126_science_adc9127
crossref_primary_10_1016_j_vaccine_2022_04_041
crossref_primary_10_1016_j_xcrm_2024_101850
crossref_primary_10_1038_s41590_022_01163_9
crossref_primary_10_1038_s41598_021_94653_z
crossref_primary_10_1126_scitranslmed_adq5720
crossref_primary_10_1038_s41467_023_38127_y
crossref_primary_10_1093_infdis_jiaa508
crossref_primary_10_1126_science_abf9302
crossref_primary_10_1126_sciimmunol_adg0033
crossref_primary_10_3389_fphar_2022_840727
crossref_primary_10_1038_s42003_022_03262_7
crossref_primary_10_1021_acssensors_3c00239
crossref_primary_10_1038_s41467_021_24013_y
crossref_primary_10_1016_j_xcrm_2021_100253
crossref_primary_10_1016_j_xcrm_2021_100252
crossref_primary_10_1016_j_jqsrt_2023_108567
crossref_primary_10_1128_mbio_02543_22
crossref_primary_10_1016_j_cell_2022_03_018
crossref_primary_10_1016_j_stem_2020_11_012
crossref_primary_10_2174_0929867329666220627121416
crossref_primary_10_1016_j_xcrm_2021_100228
crossref_primary_10_1038_s42003_022_03789_9
crossref_primary_10_1016_j_chom_2023_10_018
crossref_primary_10_1038_s41598_021_84913_3
crossref_primary_10_1128_spectrum_03789_22
crossref_primary_10_1371_journal_pbio_3002916
crossref_primary_10_1016_j_xcrm_2022_100780
crossref_primary_10_1126_science_abq0839
crossref_primary_10_1016_j_bmc_2021_116119
crossref_primary_10_1073_pnas_2301518120
crossref_primary_10_1007_s11033_021_07020_6
crossref_primary_10_1016_j_antiviral_2024_105869
crossref_primary_10_1016_j_cell_2021_02_042
crossref_primary_10_1126_sciadv_adn7187
crossref_primary_10_1016_j_micres_2022_126993
crossref_primary_10_1016_j_bbrc_2024_150746
crossref_primary_10_1097_AOG_0000000000004440
crossref_primary_10_1016_j_isci_2022_105202
crossref_primary_10_1016_j_jvacx_2021_100098
crossref_primary_10_1016_j_jbc_2021_100306
crossref_primary_10_1016_j_xcrm_2022_100651
crossref_primary_10_1002_adhm_202200283
crossref_primary_10_3389_fimmu_2021_729189
crossref_primary_10_1016_j_freeradbiomed_2023_08_011
crossref_primary_10_1146_annurev_virology_111821_104408
crossref_primary_10_1073_pnas_2414583121
crossref_primary_10_1016_j_clim_2024_109902
crossref_primary_10_1016_j_jaci_2021_11_019
crossref_primary_10_1128_mBio_02492_20
crossref_primary_10_1002_cpz1_70025
crossref_primary_10_1007_s00253_021_11515_4
crossref_primary_10_1016_j_isci_2022_105016
crossref_primary_10_1128_JCM_02438_20
crossref_primary_10_1128_CMR_00228_20
crossref_primary_10_1007_s10311_020_01160_0
crossref_primary_10_1021_acscentsci_1c00361
crossref_primary_10_1080_22221751_2021_1888660
crossref_primary_10_1016_j_virusres_2023_199295
crossref_primary_10_1016_j_chom_2021_02_003
crossref_primary_10_1038_s41586_024_07636_1
crossref_primary_10_1016_j_it_2023_03_006
crossref_primary_10_1038_s42003_021_01649_6
crossref_primary_10_1002_jmv_27616
crossref_primary_10_1038_s41541_021_00324_5
crossref_primary_10_1073_pnas_2321579121
crossref_primary_10_1016_j_isci_2023_107739
crossref_primary_10_1021_acs_analchem_2c00835
crossref_primary_10_1002_jmv_28953
crossref_primary_10_1126_sciadv_abf1591
crossref_primary_10_1128_mSphere_00170_21
crossref_primary_10_1016_j_xcrm_2023_100971
crossref_primary_10_1038_s41586_022_04532_4
crossref_primary_10_1099_acmi_0_000839_v3
crossref_primary_10_1016_j_celrep_2021_109353
crossref_primary_10_1186_s12575_021_00153_9
crossref_primary_10_1016_j_omtn_2024_102318
crossref_primary_10_1016_j_chom_2023_05_025
crossref_primary_10_1002_advs_202202556
crossref_primary_10_3389_fmicb_2021_817200
crossref_primary_10_3389_fcimb_2021_663688
crossref_primary_10_1128_mbio_01672_23
crossref_primary_10_1128_jvi_01301_22
crossref_primary_10_1208_s12248_025_01043_8
crossref_primary_10_1021_acsinfecdis_0c00761
crossref_primary_10_1038_s41467_022_32262_8
crossref_primary_10_1038_s42003_022_03163_9
crossref_primary_10_1021_acschembio_2c00140
crossref_primary_10_1039_D2BM00819J
Cites_doi 10.1007/s12038-017-9676-7
10.1172/JCI138745
10.1101/2020.03.13.991570
10.3201/eid2607.200841
10.2139/ssrn.3546052
10.1128/JVI.02377-07
10.1016/j.cell.2020.02.058
10.1128/JVI.78.17.9007-9015.2004
10.1017/S0022172400062410
10.3201/eid1103.040906
10.1128/JVI.02146-06
10.1101/2020.03.15.992883
10.1128/JVI.78.19.10628-10635.2004
10.1038/s41586-020-2008-3
10.1016/j.tmrv.2020.02.004
10.1016/S0264-410X(03)00355-4
10.1101/2020.04.08.026948
10.1099/vir.0.009704-0
10.1126/science.abb2507
10.1038/s41564-020-0688-y
10.1371/journal.ppat.1006601
10.1038/s41591-020-0913-5
10.1101/2020.03.15.993097
10.1073/pnas.1510199112
10.1017/S0950268800048019
10.1080/22221751.2020.1729069
10.1101/2020.02.01.929976
10.1186/1472-6750-13-98
10.21769/BioProtoc.2514
10.1038/nrmicro1819
10.1128/CVI.00081-12
10.1038/s41467-020-15562-9
10.1001/jama.2020.3786
10.1073/pnas.1517719113
10.1128/JVI.78.7.3572-3577.2004
10.1073/pnas.2004168117
10.2210/pdb6ws6/pdb
10.1080/22221751.2020.1743767
10.1099/vir.0.80955-0
10.1007/s12033-012-9528-5
10.1101/2020.04.10.036418
10.1038/s41591-020-0897-1
10.1002/jmv.1890130208
10.1016/j.cell.2020.02.052
10.1111/j.1469-0691.2004.00956.x
10.1101/2020.04.06.20055475
10.1101/2020.03.30.20047365
10.1007/s10096-004-1271-9
10.1101/2020.03.21.990770
10.21769/BioProtoc.2035
10.1016/j.chom.2018.07.009
10.1038/srep13875
10.1089/vim.2014.0061
10.1016/j.mex.2015.09.003
10.1016/j.virol.2005.06.016
10.1099/acmi.0.000057
10.1101/2020.03.24.006544
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
Attribution
2020 by the authors. 2020
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: Attribution
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.3390/v12050513
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic



MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1999-4915
ExternalDocumentID oai_doaj_org_article_88a2dcbba5204bbe892d526add0ceb42
PMC7291041
oai_HAL_pasteur_02623342v1
A632127977
32384820
10_3390_v12050513
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: F30 AI149928
– fundername: National Institute of Allergy and Infectious Diseases
  grantid: F30AI149928
– fundername: NIDA NIH HHS
  grantid: DP2DA040254
– fundername: Pew Charitable Trusts
  grantid: Pew Biomedical Scholars Award
– fundername: Burroughs Wellcome Fund
  grantid: Investigators in the Pathogenesis of Infectious Disease Award
– fundername: Howard Hughes Medical Institute
  grantid: Investigator Research Budget
– fundername: NIDA NIH HHS
  grantid: DP2 DA040254
– fundername: NIGMS NIH HHS
  grantid: R01GM120553
– fundername: NIAID NIH HHS
  grantid: HHSN272201700059C
– fundername: NIAID NIH HHS
  grantid: R01 AI141707
GroupedDBID ---
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
E3Z
EBD
ESX
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
TR2
TUS
UKHRP
3V.
CGR
CUY
CVF
ECM
EIF
ISR
NPM
7X8
PJZUB
PPXIY
PQGLB
1XC
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c507t-76d1623d5d0992d0b69968fb7eb4bc7a9eed77fa320a0b1dbc9ebce3a1d8a1b03
IEDL.DBID M48
ISSN 1999-4915
IngestDate Wed Aug 27 01:25:58 EDT 2025
Thu Aug 21 18:43:08 EDT 2025
Fri May 09 12:12:01 EDT 2025
Tue Aug 05 11:15:23 EDT 2025
Tue Jun 17 21:33:26 EDT 2025
Wed Feb 19 02:29:06 EST 2025
Tue Jul 01 02:48:10 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords COVID-19
Spike
ACE2
SARS-CoV-2
cytoplasmic tail
ALAYT
lentiviral pseudotype
luciferase
coronavirus
neutralization assay
293T-ACE2
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-76d1623d5d0992d0b69968fb7eb4bc7a9eed77fa320a0b1dbc9ebce3a1d8a1b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9603-9409
0000-0002-6223-4019
0000-0003-1267-3408
0000-0002-2978-4692
0000-0002-1767-3944
0000-0002-8438-2653
0000-0002-5477-7195
0000-0002-2260-2577
0000-0003-1115-9618
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/v12050513
PMID 32384820
PQID 2400538235
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_88a2dcbba5204bbe892d526add0ceb42
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7291041
hal_primary_oai_HAL_pasteur_02623342v1
proquest_miscellaneous_2400538235
gale_infotracmisc_A632127977
pubmed_primary_32384820
crossref_primary_10_3390_v12050513
crossref_citationtrail_10_3390_v12050513
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200506
PublicationDateYYYYMMDD 2020-05-06
PublicationDate_xml – month: 5
  year: 2020
  text: 20200506
  day: 6
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Viruses
PublicationTitleAlternate Viruses
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hoffmann (ref_41) 2020; 181
Cheng (ref_24) 2005; 24
Grehan (ref_34) 2015; 2
ref_58
Yan (ref_33) 2007; 23
ref_12
ref_11
ref_55
ref_54
ref_53
ref_52
To (ref_13) 2012; 19
Gunn (ref_10) 2018; 24
Subbarao (ref_19) 2004; 78
Wu (ref_46) 2020; 579
ref_59
Tian (ref_43) 2020; 9
Kapadia (ref_20) 2005; 340
Rockx (ref_18) 2008; 82
ref_25
Menachery (ref_17) 2016; 113
Walls (ref_28) 2020; 181
ref_27
ref_26
McBride (ref_47) 2007; 81
Chin (ref_57) 2020; 5247
Callow (ref_21) 1990; 105
ref_36
ref_35
Denning (ref_56) 2013; 53
ref_32
Corti (ref_16) 2015; 112
Letko (ref_29) 2020; 5
ref_31
Wrapp (ref_42) 2020; 367
Giroglou (ref_49) 2004; 78
ref_39
ref_38
ref_37
Moore (ref_51) 2004; 78
Glende (ref_50) 2009; 90
Co (ref_14) 2014; 27
Soo (ref_23) 2004; 10
Sadasivan (ref_48) 2017; 42
Piedra (ref_8) 2003; 21
Fouchier (ref_9) 2008; 6
ref_45
ref_44
Nie (ref_40) 2020; 9
ref_1
ref_3
ref_2
Callow (ref_15) 1985; 95
Fukushi (ref_30) 2005; 86
Reed (ref_22) 1984; 13
ref_5
ref_4
ref_7
ref_6
References_xml – volume: 42
  start-page: 231
  year: 2017
  ident: ref_48
  article-title: Das Cytoplasmic tail of coronavirus spike protein has intracellular targeting signals
  publication-title: J. Biosci.
  doi: 10.1007/s12038-017-9676-7
– ident: ref_55
  doi: 10.1172/JCI138745
– ident: ref_44
  doi: 10.1101/2020.03.13.991570
– ident: ref_6
  doi: 10.3201/eid2607.200841
– ident: ref_3
  doi: 10.2139/ssrn.3546052
– volume: 82
  start-page: 3220
  year: 2008
  ident: ref_18
  article-title: Structural Basis for Potent Cross-Neutralizing Human Monoclonal Antibody Protection against Lethal Human and Zoonotic Severe Acute Respiratory Syndrome Coronavirus Challenge
  publication-title: J. Virol.
  doi: 10.1128/JVI.02377-07
– volume: 181
  start-page: 281
  year: 2020
  ident: ref_28
  article-title: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– volume: 78
  start-page: 9007
  year: 2004
  ident: ref_49
  article-title: Retroviral Vectors Pseudotyped with Severe Acute Respiratory Syndrome Coronavirus S Protein
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.17.9007-9015.2004
– volume: 95
  start-page: 173
  year: 1985
  ident: ref_15
  article-title: Effect of specific humoral immunity and some non-specific factors on resistance of volunteers to respiratory coronavirus infection
  publication-title: J. Hyg. (Lond.)
  doi: 10.1017/S0022172400062410
– ident: ref_31
  doi: 10.3201/eid1103.040906
– volume: 81
  start-page: 2418
  year: 2007
  ident: ref_47
  article-title: The Cytoplasmic Tail of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Contains a Novel Endoplasmic Reticulum Retrieval Signal That Binds COPI and Promotes Interaction with Membrane Protein
  publication-title: J. Virol.
  doi: 10.1128/JVI.02146-06
– ident: ref_45
  doi: 10.1101/2020.03.15.992883
– volume: 78
  start-page: 10628
  year: 2004
  ident: ref_51
  article-title: Retroviruses Pseudotyped with the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Efficiently Infect Cells Expressing Angiotensin-Converting Enzyme 2
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.19.10628-10635.2004
– volume: 579
  start-page: 265
  year: 2020
  ident: ref_46
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– ident: ref_59
  doi: 10.1016/j.tmrv.2020.02.004
– volume: 21
  start-page: 3479
  year: 2003
  ident: ref_8
  article-title: Correlates of immunity to respiratory syncytial virus (RSV) associated-hospitalization: Establishment of minimum protective threshold levels of serum neutralizing antibodies
  publication-title: Vaccine
  doi: 10.1016/S0264-410X(03)00355-4
– ident: ref_39
  doi: 10.1101/2020.04.08.026948
– volume: 90
  start-page: 1724
  year: 2009
  ident: ref_50
  article-title: Comparison of vesicular stomatitis virus pseudotyped with the S proteins from a porcine and a human coronavirus
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.009704-0
– volume: 367
  start-page: 1260
  year: 2020
  ident: ref_42
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science (80-)
  doi: 10.1126/science.abb2507
– volume: 5
  start-page: 562
  year: 2020
  ident: ref_29
  article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0688-y
– ident: ref_7
  doi: 10.1371/journal.ppat.1006601
– ident: ref_26
  doi: 10.1038/s41591-020-0913-5
– ident: ref_11
  doi: 10.1101/2020.03.15.993097
– volume: 112
  start-page: 10473
  year: 2015
  ident: ref_16
  article-title: Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1510199112
– volume: 105
  start-page: 435
  year: 1990
  ident: ref_21
  article-title: The time course of the immune response to experimental coronavirus infection of man
  publication-title: Epidemiol. Infect.
  doi: 10.1017/S0950268800048019
– volume: 9
  start-page: 382
  year: 2020
  ident: ref_43
  article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1729069
– ident: ref_54
  doi: 10.1101/2020.02.01.929976
– ident: ref_53
  doi: 10.1186/1472-6750-13-98
– ident: ref_32
  doi: 10.21769/BioProtoc.2514
– volume: 6
  start-page: 143
  year: 2008
  ident: ref_9
  article-title: The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1819
– volume: 19
  start-page: 1012
  year: 2012
  ident: ref_13
  article-title: High titer and avidity of nonneutralizing antibodies against influenza vaccine antigen are associated with severe influenza
  publication-title: Clin. Vaccine Immunol.
  doi: 10.1128/CVI.00081-12
– ident: ref_37
  doi: 10.1038/s41467-020-15562-9
– ident: ref_58
  doi: 10.1001/jama.2020.3786
– volume: 23
  start-page: 440
  year: 2007
  ident: ref_33
  article-title: Development and application of a safe SARS-CoV neutralization assay based on lentiviral vectors pseudotyped with SARS-CoV spike protein
  publication-title: Bing Du Xue Bao
– volume: 113
  start-page: 3048
  year: 2016
  ident: ref_17
  article-title: SARS-like WIV1-CoV poised for human emergence
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1517719113
– volume: 78
  start-page: 3572
  year: 2004
  ident: ref_19
  article-title: Prior Infection and Passive Transfer of Neutralizing Antibody Prevent Replication of Severe Acute Respiratory Syndrome Coronavirus in the Respiratory Tract of Mice
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.7.3572-3577.2004
– ident: ref_25
  doi: 10.1073/pnas.2004168117
– ident: ref_12
  doi: 10.2210/pdb6ws6/pdb
– volume: 9
  start-page: 680
  year: 2020
  ident: ref_40
  article-title: Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1743767
– volume: 86
  start-page: 2269
  year: 2005
  ident: ref_30
  article-title: Vesicular stomatitis virus pseudotyped with severe acute respiratory syndrome coronavirus spike protein
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.80955-0
– volume: 53
  start-page: 308
  year: 2013
  ident: ref_56
  article-title: Optimization of the transductional efficiency of lentiviral vectors: Effect of sera and polycations
  publication-title: Mol. Biotechnol.
  doi: 10.1007/s12033-012-9528-5
– ident: ref_38
  doi: 10.1101/2020.04.10.036418
– ident: ref_5
  doi: 10.1038/s41591-020-0897-1
– volume: 13
  start-page: 179
  year: 1984
  ident: ref_22
  article-title: The behaviour of recent isolates of human respiratory coronavirus in vitro and in volunteers: Evidence of heterogeneity among 229E-related strains
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.1890130208
– volume: 181
  start-page: 271
  year: 2020
  ident: ref_41
  article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 10
  start-page: 676
  year: 2004
  ident: ref_23
  article-title: Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1111/j.1469-0691.2004.00956.x
– ident: ref_27
  doi: 10.1101/2020.04.06.20055475
– ident: ref_4
  doi: 10.1101/2020.03.30.20047365
– volume: 24
  start-page: 44
  year: 2005
  ident: ref_24
  article-title: Use of convalescent plasma therapy in SARS patients in Hong Kong
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
  doi: 10.1007/s10096-004-1271-9
– ident: ref_1
  doi: 10.1101/2020.03.21.990770
– ident: ref_36
  doi: 10.21769/BioProtoc.2035
– volume: 24
  start-page: 221
  year: 2018
  ident: ref_10
  article-title: A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.07.009
– ident: ref_52
  doi: 10.1038/srep13875
– volume: 27
  start-page: 375
  year: 2014
  ident: ref_14
  article-title: Relationship of preexisting influenza hemagglutination inhibition, complement-dependent lytic, and antibody-dependent cellular cytotoxicity antibodies to the development of clinical illness in a prospective study of A(H1N1)pdm09 influenza in children
  publication-title: Viral Immunol.
  doi: 10.1089/vim.2014.0061
– volume: 2
  start-page: 379
  year: 2015
  ident: ref_34
  article-title: An optimised method for the production of MERS-CoV spike expressing viral pseudotypes
  publication-title: MethodsX
  doi: 10.1016/j.mex.2015.09.003
– volume: 340
  start-page: 174
  year: 2005
  ident: ref_20
  article-title: Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine
  publication-title: Virology
  doi: 10.1016/j.virol.2005.06.016
– volume: 5247
  start-page: 30003
  year: 2020
  ident: ref_57
  article-title: Stability of SARS-CoV-2 in different environmental conditions
  publication-title: Lancet Microbe
– ident: ref_35
  doi: 10.1099/acmi.0.000057
– ident: ref_2
  doi: 10.1101/2020.03.24.006544
SSID ssj0066907
Score 2.6654313
Snippet SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera...
SourceID doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 513
SubjectTerms Angiotensin-Converting Enzyme 2
Antibodies, Neutralizing
Antibodies, Neutralizing - immunology
Antibodies, Viral
Antibodies, Viral - blood
Antibodies, Viral - immunology
Biochemical assays
Containment of Biohazards
coronavirus
Coronaviruses
COVID-19
Diagnosis
Health aspects
HEK293 Cells
Humans
lentiviral pseudotype
Lentivirus
Life Sciences
Methods
Microbiology and Parasitology
neutralization assay
Neutralization Tests
Neutralization Tests - methods
Peptidyl-Dipeptidase A
Peptidyl-Dipeptidase A - metabolism
Plasma
Plasma - immunology
Protocol
SARS-CoV-2
Spike
Spike Glycoprotein, Coronavirus
Spike Glycoprotein, Coronavirus - analysis
Virology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9swFBVbYbCXse7TWze0McZeTG1JtuzHrKyEUUpo1tE3oSvJNKzYIY4L-fe9105CvQ32stdEyOZ-SOfIR_cy9qkE0CmUBa5-iY-VLrLYiiBiOvEHkJVV0Kt8z_Pppfp-lV3da_VFmrChPPBguOOisMI7AJuJRAGEohQ-EzmmZeICqH71xT1vR6aGNTgnzjfUEZJI6o9vU0Ed21I52n36Iv37pfjhNSkh_4SZv6sl720_p0_Zky1u5JPhfQ_Zg1A_Y4-GTpKb56ydrZp1g07ltvb8Ili6MdVyRKR81oYOqeeGLkbxMxIHka73hs92mjhOZ7F8PrmYxyfNz1jw-XLxK3CaMSzqfo7z0PUnIsOdTY4-tZv2Bbs8_fbjZBpv-ynEDlHfOta5TxHt-MwjLBQ-gRzJTlGBRjuC07bE_VLrykqR2ARSD64M4IK0qS9sCol8yQ7qpg6vGUdQo3wZlBMKVGLRHVq7qpCVzitknHnEvuzsbNy22Dj1vLgxSDrIJWbvkoh93A9dDhU2_jboKzlrP4CKYvc_YKiYrbnMv0IlYkfkakOpiy_jMJGcmeSSitwjDI7YZwyB0SOmkzOztJhu3cogWRVSKnGbRuzDLkoMzUEytTo0XWtIkJvRl9UsYq-GqNnPJxEcKcRbEdOjeBo9cPxPvbjuC34jAULWnL75H0Z4yx4LOjIgzWZ-xA7Wqy68Q1y1hvd9Ct0B2PAjXA
  priority: 102
  providerName: Directory of Open Access Journals
Title Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays
URI https://www.ncbi.nlm.nih.gov/pubmed/32384820
https://www.proquest.com/docview/2400538235
https://pasteur.hal.science/pasteur-02623342
https://pubmed.ncbi.nlm.nih.gov/PMC7291041
https://doaj.org/article/88a2dcbba5204bbe892d526add0ceb42
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2ISQuiPcGlsoghLgEEseJkwNC3dUuFVqqqqWoN8uvsBVVUpp2Rf89M0kbEdgDlxwSx3Y84_j7xuMZQl5nWotQZyn8_QLrc5HGvmKO-Wjx1zrKFde1l-8wGUz551k8OyD7HJu7AaxupXaYT2q6Wrz79XP7ESb8B2ScQNnf34QM87Fh7tpjWJAEJjL4wtvNhAQJYL25nGFCtTBuAgx1X-0sS3X0_vYffXiNLpL_4s-_3Sj_WJcu75N7O0BJ-40GPCAHrnhI7jQpJrePSDValesSpE1VYenYKTxKVVGAqnRUuQ1w0i2emKJX6DWEDr8LOto7y1E00tJJfzzxz8tvPqOT5fyHo1ijmxd1HUO3qU0lzWFOCsJW2-oxmV5efD0f-LtEC74BOLj2RWJDgEE2toAXmQ10AiwozbVwmmsjVAYLqRC5iligAh1abTKnjYtUaFMV6iB6Qo6KsnAnhALa4TZz3DCueaASBS-aPI1ykeRARROPvN2PszS7KOSYDGMhgY2gSGQrEo-8aosum9AbtxU6Q2G1BTBadn2jXH2Xu-GSaaqYNVqrmAVca5fCR8YM-mYDA5_IPHKKopaoZdAZAzPMyH4SYfR7wMceeQMq0Gli0L-SSwXzcLOSwGJZFHF2E3rk5V5LJNaB_muFKzeVRE_dGLdcY488bbSmrS8C1MQBiHlEdPSp02D3STG_riOBAzMCOh0--492n5O7DE0F6KuZnJKj9WrjXgCeWuseORQz0SPHZxfD0bhXWyXg-mkW9up59BtFPiMc
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protocol+and+Reagents+for+Pseudotyping+Lentiviral+Particles+with+SARS-CoV-2+Spike+Protein+for+Neutralization+Assays&rft.jtitle=Viruses&rft.au=Crawford%2C+Katharine+H+D&rft.au=Eguia%2C+Rachel&rft.au=Dingens%2C+Adam+S&rft.au=Loes%2C+Andrea+N&rft.date=2020-05-06&rft.issn=1999-4915&rft.eissn=1999-4915&rft.volume=12&rft.issue=5&rft_id=info:doi/10.3390%2Fv12050513&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon