Lossy State Communication over Fading Multiple Access Channels
Joint communications and sensing functionalities integrated into the same communication network have become increasingly relevant due to the large bandwidth requirements of next-generation wireless communication systems and the impending spectral shortage. While there exist system-level guidelines a...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 25; no. 4; p. 588 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
29.03.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Joint communications and sensing functionalities integrated into the same communication network have become increasingly relevant due to the large bandwidth requirements of next-generation wireless communication systems and the impending spectral shortage. While there exist system-level guidelines and waveform design specifications for such systems, an information-theoretic analysis of the absolute performance capabilities of joint sensing and communication systems that take into account practical limitations such as fading has not been addressed in the literature. Motivated by this, we undertake a network information-theoretic analysis of a typical joint communications and sensing system in this paper. Towards this end, we consider a state-dependent fading Gaussian multiple access channel (GMAC) setup with an additive state. The state process is assumed to be independent and identically distributed (i.i.d.) Gaussian, and non-causally available to all the transmitting nodes. The fading gains on the respective links are assumed to be stationary and ergodic and available only at the receiver. In this setting, with no knowledge of fading gains at the transmitters, we are interested in joint message communication and estimation of the state at the receiver to meet a target distortion in the mean-squared error sense. Our main contribution here is a complete characterization of the distortion-rate trade-off region between the communication rates and the state estimation distortion for a two-sender GMAC. Our results show that the optimal strategy is based on static power allocation and involves uncoded transmissions to amplify the state, along with the superposition of the digital message streams using appropriate Gaussian codebooks and dirty paper coding (DPC). This acts as a design directive for realistic systems using joint sensing and transmission in next-generation wireless standards and points to the relative benefits of uncoded communications and joint source-channel coding in such systems. |
---|---|
AbstractList | Joint communications and sensing functionalities integrated into the same communication network have become increasingly relevant due to the large bandwidth requirements of next-generation wireless communication systems and the impending spectral shortage. While there exist system-level guidelines and waveform design specifications for such systems, an information-theoretic analysis of the absolute performance capabilities of joint sensing and communication systems that take into account practical limitations such as fading has not been addressed in the literature. Motivated by this, we undertake a network information-theoretic analysis of a typical joint communications and sensing system in this paper. Towards this end, we consider a state-dependent fading Gaussian multiple access channel (GMAC) setup with an additive state. The state process is assumed to be independent and identically distributed (i.i.d.) Gaussian, and non-causally available to all the transmitting nodes. The fading gains on the respective links are assumed to be stationary and ergodic and available only at the receiver. In this setting, with no knowledge of fading gains at the transmitters, we are interested in joint message communication and estimation of the state at the receiver to meet a target distortion in the mean-squared error sense. Our main contribution here is a complete characterization of the distortion-rate trade-off region between the communication rates and the state estimation distortion for a two-sender GMAC. Our results show that the optimal strategy is based on static power allocation and involves uncoded transmissions to amplify the state, along with the superposition of the digital message streams using appropriate Gaussian codebooks and dirty paper coding (DPC). This acts as a design directive for realistic systems using joint sensing and transmission in next-generation wireless standards and points to the relative benefits of uncoded communications and joint source-channel coding in such systems. Joint communications and sensing functionalities integrated into the same communication network have become increasingly relevant due to the large bandwidth requirements of next-generation wireless communication systems and the impending spectral shortage. While there exist system-level guidelines and waveform design specifications for such systems, an information-theoretic analysis of the absolute performance capabilities of joint sensing and communication systems that take into account practical limitations such as fading has not been addressed in the literature. Motivated by this, we undertake a network information-theoretic analysis of a typical joint communications and sensing system in this paper. Towards this end, we consider a state-dependent fading Gaussian multiple access channel (GMAC) setup with an additive state. The state process is assumed to be independent and identically distributed (i.i.d.) Gaussian, and non-causally available to all the transmitting nodes. The fading gains on the respective links are assumed to be stationary and ergodic and available only at the receiver. In this setting, with no knowledge of fading gains at the transmitters, we are interested in joint message communication and estimation of the state at the receiver to meet a target distortion in the mean-squared error sense. Our main contribution here is a complete characterization of the distortion-rate trade-off region between the communication rates and the state estimation distortion for a two-sender GMAC. Our results show that the optimal strategy is based on static power allocation and involves uncoded transmissions to amplify the state, along with the superposition of the digital message streams using appropriate Gaussian codebooks and dirty paper coding (DPC). This acts as a design directive for realistic systems using joint sensing and transmission in next-generation wireless standards and points to the relative benefits of uncoded communications and joint source-channel coding in such systems.Joint communications and sensing functionalities integrated into the same communication network have become increasingly relevant due to the large bandwidth requirements of next-generation wireless communication systems and the impending spectral shortage. While there exist system-level guidelines and waveform design specifications for such systems, an information-theoretic analysis of the absolute performance capabilities of joint sensing and communication systems that take into account practical limitations such as fading has not been addressed in the literature. Motivated by this, we undertake a network information-theoretic analysis of a typical joint communications and sensing system in this paper. Towards this end, we consider a state-dependent fading Gaussian multiple access channel (GMAC) setup with an additive state. The state process is assumed to be independent and identically distributed (i.i.d.) Gaussian, and non-causally available to all the transmitting nodes. The fading gains on the respective links are assumed to be stationary and ergodic and available only at the receiver. In this setting, with no knowledge of fading gains at the transmitters, we are interested in joint message communication and estimation of the state at the receiver to meet a target distortion in the mean-squared error sense. Our main contribution here is a complete characterization of the distortion-rate trade-off region between the communication rates and the state estimation distortion for a two-sender GMAC. Our results show that the optimal strategy is based on static power allocation and involves uncoded transmissions to amplify the state, along with the superposition of the digital message streams using appropriate Gaussian codebooks and dirty paper coding (DPC). This acts as a design directive for realistic systems using joint sensing and transmission in next-generation wireless standards and points to the relative benefits of uncoded communications and joint source-channel coding in such systems. |
Audience | Academic |
Author | Ramachandran, Viswanathan |
AuthorAffiliation | KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; visra@kth.se |
AuthorAffiliation_xml | – name: KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; visra@kth.se |
Author_xml | – sequence: 1 givenname: Viswanathan orcidid: 0000-0003-4237-6949 surname: Ramachandran fullname: Ramachandran, Viswanathan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37190376$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325112$$DView record from Swedish Publication Index |
BookMark | eNpdkk1v1DAQhi3UirYLB_4AisQFDinj2ImTC2i1UKi0iAMfV8uxx7teEnsbJ0X993i7ZdWtfLA188w7ntF7QU588EjIKwqXjDXwHosSOJR1_YycU2ianDOAk0fvM3IR4wagYAWtnpMzJmgDTFTn5MMyxHiX_RjViNki9P3knVajCz4LtzhkV8o4v8q-Td3oth1mc60xxmyxVt5jF1-QU6u6iC8f7hn5dfX55-Jrvvz-5XoxX-a6BDHmlQVWlQIbZZg1CgrBm9YKA7bVpmq5KC2zbdsYak2hG1rXWmEDnFpWIqbkjFzvdU1QG7kdXK-GOxmUk_eBMKykGkanO5QF1VAoZHWlLOdM1A23WAnDjWJGpBXMSL7Xin9xO7VHap_c7_m92p9xLVlRUrrjP-75BPdoNPpxUN1R2XHGu7VchVtJgab2wJLC2weFIdxMGEfZu6ix65THMEVZ1JSXhaDVDn3zBN2EafBpt4mCqqRpjWWiLvfUSqWJnbchNdbpGOydTuawLsXnggvOkzEgFbx-PMPh8_-NkIB3e0APyRAD2gNCQe5MJg8mY_8A7S_CBQ |
Cites_doi | 10.1109/TIT.1983.1056659 10.1109/TIT.2015.2463271 10.1109/TIT.2015.2454519 10.1109/ISIT.2014.6875241 10.1109/TIT.2005.844108 10.1109/TIT.2006.880064 10.1109/TIT.2011.2158488 10.1109/JSAC.2022.3229447 10.1109/TCOMM.2019.2914384 10.1109/18.737513 10.1109/TWC.2020.2998583 10.3390/e20040267 10.1109/TIT.2016.2605120 10.1109/JSAC.2022.3155522 10.1109/TSP.2021.3135692 10.1109/ACSSC.2008.5074421 10.1109/LWC.2021.3128619 10.1109/TIT.2008.929967 10.1109/18.641562 10.1109/TCOMM.2019.2932069 10.1109/ITW46852.2021.9457571 10.1109/ISIT.2014.6875265 10.1109/18.971736 10.1109/ISIT.2019.8849242 10.1109/ISIT.2018.8437621 10.1109/TIT.2019.2957084 10.1109/TCOMM.2020.2973976 10.1109/18.923724 10.1109/TCOMM.2022.3190363 10.3390/e20030197 10.1109/TIT.2020.2983157 10.1109/TIT.2007.896860 10.1109/TSP.2015.2483485 10.1109/ISIT50566.2022.9834554 10.1109/TVT.2017.2774762 10.1109/TIT.2005.851727 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the author. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the author. 2023 |
DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTPV AFDQA AOWAS D8T D8V ZZAVC DOA |
DOI | 10.3390/e25040588 |
DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_21c02ae386af4437894fe67d4da3d702 oai_DiVA_org_kth_325112 PMC10137803 A747444050 37190376 10_3390_e25040588 |
Genre | Journal Article |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTPV AFDQA AOWAS C1A CH8 D8T D8V IPNFZ RIG ZZAVC PUEGO |
ID | FETCH-LOGICAL-c507t-6f03657e9ad3fda02749bf7d0fbcd6b475f3fbb9d1fd2c9188cae9041f35ee5f3 |
IEDL.DBID | DOA |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:30:51 EDT 2025 Thu Aug 21 06:18:09 EDT 2025 Thu Aug 21 18:37:53 EDT 2025 Fri Jul 11 06:05:52 EDT 2025 Fri Jul 25 12:03:59 EDT 2025 Tue Jul 01 05:45:16 EDT 2025 Thu Jan 02 22:50:55 EST 2025 Tue Jul 01 01:58:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | multiple access channels joint compression and error correction joint source-channel coding distortion-rate trade-off region fading channels dirty paper coding MMSE |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-6f03657e9ad3fda02749bf7d0fbcd6b475f3fbb9d1fd2c9188cae9041f35ee5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4237-6949 |
OpenAccessLink | https://doaj.org/article/21c02ae386af4437894fe67d4da3d702 |
PMID | 37190376 |
PQID | 2806516575 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_21c02ae386af4437894fe67d4da3d702 swepub_primary_oai_DiVA_org_kth_325112 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10137803 proquest_miscellaneous_2814527163 proquest_journals_2806516575 gale_infotracacademiconefile_A747444050 pubmed_primary_37190376 crossref_primary_10_3390_e25040588 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230329 |
PublicationDateYYYYMMDD | 2023-03-29 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230329 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Liu (ref_2) 2021; 70 Ramachandran (ref_25) 2019; 67 Bross (ref_28) 2020; 66 Chiriyath (ref_1) 2015; 64 Tian (ref_22) 2015; 61 ref_14 ref_13 ref_12 ref_33 Gaudio (ref_7) 2020; 19 Wang (ref_11) 2023; 41 ref_32 Steinberg (ref_36) 2005; 51 Costa (ref_17) 1983; 29 Bross (ref_23) 2019; 67 Goldsmith (ref_34) 1997; 43 Qi (ref_10) 2022; 70 ref_15 ref_37 Liu (ref_6) 2020; 68 Weingarten (ref_19) 2006; 52 Ahmadipour (ref_16) 2023; 2023 Gelfand (ref_39) 1980; 9 Koyluoglu (ref_26) 2016; 62 Tse (ref_29) 1998; 44 Pucci (ref_9) 2022; 40 ref_24 Ramachandran (ref_35) 2022; 11 Merhav (ref_27) 2007; 53 Zhang (ref_21) 2011; 57 Das (ref_30) 2002; 48 ref_40 Sutivong (ref_20) 2005; 51 ref_3 Xu (ref_8) 2020; 66 Sreekumar (ref_31) 2015; 61 Kumari (ref_5) 2017; 67 Steinberg (ref_18) 2001; 47 ref_4 Gastpar (ref_38) 2008; 54 |
References_xml | – volume: 29 start-page: 439 year: 1983 ident: ref_17 article-title: Writing on dirty paper (corresp.) publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1983.1056659 – volume: 61 start-page: 5504 year: 2015 ident: ref_31 article-title: Distributed rate adaptation and power control in fading multiple access channels publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2015.2463271 – volume: 2023 start-page: 3176139 year: 2023 ident: ref_16 article-title: An information-theoretic approach to joint sensing and communication publication-title: IEEE Trans. Inf. Theory – volume: 61 start-page: 4587 year: 2015 ident: ref_22 article-title: Gaussian State Amplification with Noisy Observations publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2015.2454519 – ident: ref_33 doi: 10.1109/ISIT.2014.6875241 – volume: 51 start-page: 1486 year: 2005 ident: ref_20 article-title: Channel capacity and state estimation for state-dependent Gaussian channels publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.844108 – volume: 52 start-page: 3936 year: 2006 ident: ref_19 article-title: The capacity region of the Gaussian multiple-input multiple-output broadcast channel publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.880064 – volume: 57 start-page: 7084 year: 2011 ident: ref_21 article-title: Joint transmission and state estimation: A constrained channel coding approach publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2158488 – volume: 41 start-page: 574 year: 2023 ident: ref_11 article-title: NOMA-aided joint communication, sensing, and multi-tier computing systems publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2022.3229447 – volume: 67 start-page: 5618 year: 2019 ident: ref_23 article-title: The Gaussian Source-and-Data-Streams Problem publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2019.2914384 – volume: 44 start-page: 2796 year: 1998 ident: ref_29 article-title: Multiaccess fading channels. I. Polymatroid structure, optimal resource allocation and throughput capacities publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.737513 – volume: 19 start-page: 5951 year: 2020 ident: ref_7 article-title: On the effectiveness of OTFS for joint radar parameter estimation and communication publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2020.2998583 – ident: ref_40 – ident: ref_4 doi: 10.3390/e20040267 – volume: 62 start-page: 6233 year: 2016 ident: ref_26 article-title: State Amplification Subject to Masking Constraints publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2016.2605120 – ident: ref_37 – volume: 40 start-page: 2043 year: 2022 ident: ref_9 article-title: System-level analysis of joint sensing and communication based on 5G new radio publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2022.3155522 – volume: 70 start-page: 240 year: 2021 ident: ref_2 article-title: Cramér-Rao Bound Optimization for Joint Radar-Communication Beamforming publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2021.3135692 – ident: ref_32 doi: 10.1109/ACSSC.2008.5074421 – volume: 11 start-page: 367 year: 2022 ident: ref_35 article-title: Joint Communication and State Estimation over a State-Dependent Fading Gaussian Channel publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2021.3128619 – volume: 54 start-page: 5247 year: 2008 ident: ref_38 article-title: Uncoded transmission is exactly optimal for a simple Gaussian sensor network publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2008.929967 – volume: 43 start-page: 1986 year: 1997 ident: ref_34 article-title: Capacity of fading channels with channel side information publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.641562 – volume: 9 start-page: 19 year: 1980 ident: ref_39 article-title: Coding for channels with random parameters publication-title: Probl. Control. Inf. Theory – volume: 67 start-page: 6743 year: 2019 ident: ref_25 article-title: Joint state estimation and communication over a state-dependent Gaussian multiple access channel publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2019.2932069 – ident: ref_14 doi: 10.1109/ITW46852.2021.9457571 – ident: ref_24 doi: 10.1109/ISIT.2014.6875265 – volume: 48 start-page: 4 year: 2002 ident: ref_30 article-title: Capacities of time-varying multiple-access channels with side information publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.971736 – ident: ref_13 doi: 10.1109/ISIT.2019.8849242 – ident: ref_12 doi: 10.1109/ISIT.2018.8437621 – volume: 66 start-page: 1822 year: 2020 ident: ref_8 article-title: Optimal joint channel estimation and data detection for massive SIMO wireless systems: A polynomial complexity solution publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2019.2957084 – volume: 68 start-page: 3834 year: 2020 ident: ref_6 article-title: Joint radar and communication design: Applications, state-of-the-art, and the road ahead publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2020.2973976 – volume: 47 start-page: 1410 year: 2001 ident: ref_18 article-title: Identification in the presence of side information with application to watermarking publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.923724 – volume: 70 start-page: 6212 year: 2022 ident: ref_10 article-title: Integrating Sensing, Computing, and Communication in 6G Wireless Networks: Design and Optimization publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2022.3190363 – ident: ref_3 doi: 10.3390/e20030197 – volume: 66 start-page: 3342 year: 2020 ident: ref_28 article-title: Message and Causal Asymmetric State Transmission Over the State-Dependent Degraded Broadcast Channel publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2020.2983157 – volume: 53 start-page: 2254 year: 2007 ident: ref_27 article-title: Information rates subject to state masking publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2007.896860 – volume: 64 start-page: 464 year: 2015 ident: ref_1 article-title: Inner bounds on performance of radar and communications co-existence publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2483485 – ident: ref_15 doi: 10.1109/ISIT50566.2022.9834554 – volume: 67 start-page: 3012 year: 2017 ident: ref_5 article-title: IEEE 802.11 ad-based radar: An approach to joint vehicular communication-radar system publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2774762 – volume: 51 start-page: 2867 year: 2005 ident: ref_36 article-title: Coding for the degraded broadcast channel with random parameters, with causal and noncausal side information publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.851727 |
SSID | ssj0023216 |
Score | 2.3047876 |
Snippet | Joint communications and sensing functionalities integrated into the same communication network have become increasingly relevant due to the large bandwidth... |
SourceID | doaj swepub pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 588 |
SubjectTerms | Analysis Coding Communication dirty paper coding Distortion distortion-rate trade-off region Electrical Engineering Elektro- och systemteknik Error-correcting codes Fading fading channels Information theory joint compression and error correction joint source-channel coding Messages MMSE Multiple access multiple access channels Sensors Signal processing State estimation Transmitters Waveforms Wireless communication systems |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBIF6BggxCcIrqVxz7AtpCVxWiFUIU9WY5sd1WSNnSbg_8e2Ycb0pA4honcTJjz8xnj78h5LX1LNjoZd0ybmrVMVn7xHmtmRTRm8bbDoHi4ZE-OFafTpqTsuB2VdIqNzYxG-qw6nGNfDfvAHLcJnh_8bPGqlG4u1pKaNwm22CCDYCv7b39oy9fJ8glBdcjn5AEcL8bkbCLNbnMyo0XymT9_5rkP3zS3_mSM1bR7ImW98jdEkLSxajz--RWHB6Qd5-hn180x450duqDYpImXeZceXpY8gfpIhdKpHi4YAD3-JAcL_e_fTioS22EuocIbl3rBK6naaP1QabgEVzaLrWBpa4PulNtk2TqOht4CqK33JjeR8sUT7KJERofka1hNcQnhIqgojRw1XRCRas9qBWkbaNIjbFaVOTVRlbuYqTAcAAdUKBuEmhF9lCK0w3IWp0vrC5PXZkETvCeCQ-daZ-Ukq2xKkXdBhW8DC2Dnt6iDhzOLRB078sRAfhOZKlyC8A-SkF_rCI7GzW5Mumu3M0QqcjLqRmmC-6B-CGurvEerhoBIFFW5PGo1embZQvRERjcipiZvmc_NW8Zzs8yJTdH5kbD4KVvxqExe-bj-fdFFsSP9ZmTCOrE0___wDNyB-vaY7KbsDtka315HZ9D9LPuXpQh_htHWAZw priority: 102 providerName: ProQuest |
Title | Lossy State Communication over Fading Multiple Access Channels |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37190376 https://www.proquest.com/docview/2806516575 https://www.proquest.com/docview/2814527163 https://pubmed.ncbi.nlm.nih.gov/PMC10137803 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325112 https://doaj.org/article/21c02ae386af4437894fe67d4da3d702 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB3RcuFSFfGVtqwCQnCK6q849gVpC91WiFYIUbQ3y4lttaqUItge-PfMONmlgQMXLjnETuK8iTPz5PEbgFfWs2Cjl1XDuKlUy2TlE-eVZlJEb2pvWyKKZ-f69EJ9WNbLO6W-KCdskAcegDsUvGPCR2m0T0rJxliVom6CCl6GZpCRRJ-3JlMj1ZKC60FHSCKpP4wk1MXqXF7lt_fJIv1__4rv-KI_8yQnaqLZAy12YWcMHcv5MOSHcC_2j-DtR3zOzzLHjOVkt0dJyZnlIufIl2dj3mA5zwUSS9pU0KNbfAwXi-Mv706rsSZC1WHktqp0QpdTN9H6IFPwRCptm5rAUtsF3aqmTjK1rQ08BdFZbkzno2WKJ1nHiI1PYLu_6eMzKEVQCCueNa1Q0WqP5hSG2ShSbawWBbxcY-W-DdIXDikDAeo2gBZwRChuOpBadT6BNnSjDd2_bFjAG7KBozmFQHd-3BqA4yR1KjdHzqMUPo8VcLA2kxsn2w-XF4c5rSAV8GLTjNOE1j58H29uqQ9XtUByKAt4Olh1M2bZYFSEP9oCzMTek5eatvRXl1mKm5Nio2F409fDpzG55v3V13kG4np16SSRObH3P_DahwdU9Z5S4YQ9gO3V99v4HGOjVTuDLbM4mcH9o-PzT59neVLg8WTJfwE6ahCu |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlABcE4hUoEBCPU1S_ktgHQAtl2dLdnlrUm-vENq2QsqXdCvWn-EZmnEcJSNx69Th-zMMzE49nCHmpLXXaW5GVlKlMVlRkNjCWFVRwb1VudYWO4mK3mO3LLwf5wRr51b-FwbDK_kyMB7Vb1viPfDPeADK8Jnh_8iPDqlF4u9qX0GjZYsdf_ASX7ezt9hbQ9xXn0097H2dZV1Ugq8H2WWVFgEM7L722TgRn0S3TVSgdDVXtikqWeRChqrRjwfFaM6Vq6zWVLIjcewDCuNfIdSmERolS08-Dgyc4K9rsRQCkmx7Tg9E8FnW51HmxNMC_CuAPDfh3dOYoh2nUe9Pb5FZnsKaTlsPukDXf3CXv5jDPRRot1XT0xiTFkNB0GiPz00UXrZhOYlnGFJ8yNKCM75H9K8HZfbLeLBv_kKTcSS8UtKqKS68LC0wEtNWeh1zpgifkRY8rc9Im3DDgqCBCzYDQhHxALA4dMEd2bFiefjOdyBnOasotTFbYIKUolZbBF6WTzgpXUpjpDdLAoCQDomvbPUiAdWJOLDMBT0tKmI8mZKMnk-lE_MxcMmRCng9gEE68cbGNX55jHyZzDi6pSMiDlqrDmkUJthgc7wlRI3qPNjWGNMdHMQE4wzyRisKgr1vWGH2zdfx1EhHxfXVkBLqQ_NH_N_CM3JjtLeZmvr2785jc5MDJGGbH9QZZX52e-ydgd62qp5HZU3J41dL1GwGeRBg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrYR4QSCu0AIBcTxF6yuHHwBt2a5a2q4qRFHfXCe2aYWU7bEV6l_j1zF2jhKQeOtr7MT2HJ754vEMwGupiZFW8yQntEhESXiiHaVJRjizuki1LD1Q3JtnWwfi82F6uAK_urswPqyy2xPDRm0Wlf9HPg4ngNQfE4xdGxaxP519PD1LfAUpf9LaldNoRGTHXv1E-HbxfnuKvH7D2Gzz66etpK0wkFToBy2TzOEGnuZWasOd0R6iydLlhriyMlkp8tRxV5bSUGdYJWlRVNpKIqjjqbXYiN-9Bas5oiIygtWNzfn-lx7ucUazJpcR55KMrU8WRtJQ4uXaAoZCAf-agz_s4d-xmoOMpsEKzu7B3dZ9jSeNvN2HFVs_gA-7OM5VHPzWeHDjJPYBovEsxOnHe23sYjwJRRpjf7GhRtP8EA5uhGqPYFQvavsEYmaE5QU-LUomrMw0ihRyWlrm0kJmLIJXHa3UaZN-QyFs8QRVPUEj2PBU7Dv4jNnhweL8u2oVUDFaEaZxsEw7IXheSOFslhthNDc5wZHeeR4or9dI6Eq31xNwnj5Dlpog7hICxyMRrHdsUq3CX6hr8YzgZd-MqurPX3RtF5e-DxUpQ4DKI3jccLWfM8_RM8PNPoJiwO_BooYt9clxSAdOfdbIguBH3zaiMXhnevJtEgjxY3msuAeU7On_F_ACbqNmqd3t-c4a3GEoyD7mjsl1GC3PL-0zdMKW5fNW2mM4umkF-w0ypEmq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lossy+State+Communication+over+Fading+Multiple+Access+Channels&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Ramachandran%2C+Viswanathan&rft.date=2023-03-29&rft.eissn=1099-4300&rft.volume=25&rft.issue=4&rft_id=info:doi/10.3390%2Fe25040588&rft_id=info%3Apmid%2F37190376&rft.externalDocID=37190376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |