Lossy State Communication over Fading Multiple Access Channels

Joint communications and sensing functionalities integrated into the same communication network have become increasingly relevant due to the large bandwidth requirements of next-generation wireless communication systems and the impending spectral shortage. While there exist system-level guidelines a...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 25; no. 4; p. 588
Main Author Ramachandran, Viswanathan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.03.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Joint communications and sensing functionalities integrated into the same communication network have become increasingly relevant due to the large bandwidth requirements of next-generation wireless communication systems and the impending spectral shortage. While there exist system-level guidelines and waveform design specifications for such systems, an information-theoretic analysis of the absolute performance capabilities of joint sensing and communication systems that take into account practical limitations such as fading has not been addressed in the literature. Motivated by this, we undertake a network information-theoretic analysis of a typical joint communications and sensing system in this paper. Towards this end, we consider a state-dependent fading Gaussian multiple access channel (GMAC) setup with an additive state. The state process is assumed to be independent and identically distributed (i.i.d.) Gaussian, and non-causally available to all the transmitting nodes. The fading gains on the respective links are assumed to be stationary and ergodic and available only at the receiver. In this setting, with no knowledge of fading gains at the transmitters, we are interested in joint message communication and estimation of the state at the receiver to meet a target distortion in the mean-squared error sense. Our main contribution here is a complete characterization of the distortion-rate trade-off region between the communication rates and the state estimation distortion for a two-sender GMAC. Our results show that the optimal strategy is based on static power allocation and involves uncoded transmissions to amplify the state, along with the superposition of the digital message streams using appropriate Gaussian codebooks and dirty paper coding (DPC). This acts as a design directive for realistic systems using joint sensing and transmission in next-generation wireless standards and points to the relative benefits of uncoded communications and joint source-channel coding in such systems.
AbstractList Joint communications and sensing functionalities integrated into the same communication network have become increasingly relevant due to the large bandwidth requirements of next-generation wireless communication systems and the impending spectral shortage. While there exist system-level guidelines and waveform design specifications for such systems, an information-theoretic analysis of the absolute performance capabilities of joint sensing and communication systems that take into account practical limitations such as fading has not been addressed in the literature. Motivated by this, we undertake a network information-theoretic analysis of a typical joint communications and sensing system in this paper. Towards this end, we consider a state-dependent fading Gaussian multiple access channel (GMAC) setup with an additive state. The state process is assumed to be independent and identically distributed (i.i.d.) Gaussian, and non-causally available to all the transmitting nodes. The fading gains on the respective links are assumed to be stationary and ergodic and available only at the receiver. In this setting, with no knowledge of fading gains at the transmitters, we are interested in joint message communication and estimation of the state at the receiver to meet a target distortion in the mean-squared error sense. Our main contribution here is a complete characterization of the distortion-rate trade-off region between the communication rates and the state estimation distortion for a two-sender GMAC. Our results show that the optimal strategy is based on static power allocation and involves uncoded transmissions to amplify the state, along with the superposition of the digital message streams using appropriate Gaussian codebooks and dirty paper coding (DPC). This acts as a design directive for realistic systems using joint sensing and transmission in next-generation wireless standards and points to the relative benefits of uncoded communications and joint source-channel coding in such systems.
Joint communications and sensing functionalities integrated into the same communication network have become increasingly relevant due to the large bandwidth requirements of next-generation wireless communication systems and the impending spectral shortage. While there exist system-level guidelines and waveform design specifications for such systems, an information-theoretic analysis of the absolute performance capabilities of joint sensing and communication systems that take into account practical limitations such as fading has not been addressed in the literature. Motivated by this, we undertake a network information-theoretic analysis of a typical joint communications and sensing system in this paper. Towards this end, we consider a state-dependent fading Gaussian multiple access channel (GMAC) setup with an additive state. The state process is assumed to be independent and identically distributed (i.i.d.) Gaussian, and non-causally available to all the transmitting nodes. The fading gains on the respective links are assumed to be stationary and ergodic and available only at the receiver. In this setting, with no knowledge of fading gains at the transmitters, we are interested in joint message communication and estimation of the state at the receiver to meet a target distortion in the mean-squared error sense. Our main contribution here is a complete characterization of the distortion-rate trade-off region between the communication rates and the state estimation distortion for a two-sender GMAC. Our results show that the optimal strategy is based on static power allocation and involves uncoded transmissions to amplify the state, along with the superposition of the digital message streams using appropriate Gaussian codebooks and dirty paper coding (DPC). This acts as a design directive for realistic systems using joint sensing and transmission in next-generation wireless standards and points to the relative benefits of uncoded communications and joint source-channel coding in such systems.Joint communications and sensing functionalities integrated into the same communication network have become increasingly relevant due to the large bandwidth requirements of next-generation wireless communication systems and the impending spectral shortage. While there exist system-level guidelines and waveform design specifications for such systems, an information-theoretic analysis of the absolute performance capabilities of joint sensing and communication systems that take into account practical limitations such as fading has not been addressed in the literature. Motivated by this, we undertake a network information-theoretic analysis of a typical joint communications and sensing system in this paper. Towards this end, we consider a state-dependent fading Gaussian multiple access channel (GMAC) setup with an additive state. The state process is assumed to be independent and identically distributed (i.i.d.) Gaussian, and non-causally available to all the transmitting nodes. The fading gains on the respective links are assumed to be stationary and ergodic and available only at the receiver. In this setting, with no knowledge of fading gains at the transmitters, we are interested in joint message communication and estimation of the state at the receiver to meet a target distortion in the mean-squared error sense. Our main contribution here is a complete characterization of the distortion-rate trade-off region between the communication rates and the state estimation distortion for a two-sender GMAC. Our results show that the optimal strategy is based on static power allocation and involves uncoded transmissions to amplify the state, along with the superposition of the digital message streams using appropriate Gaussian codebooks and dirty paper coding (DPC). This acts as a design directive for realistic systems using joint sensing and transmission in next-generation wireless standards and points to the relative benefits of uncoded communications and joint source-channel coding in such systems.
Audience Academic
Author Ramachandran, Viswanathan
AuthorAffiliation KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; visra@kth.se
AuthorAffiliation_xml – name: KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; visra@kth.se
Author_xml – sequence: 1
  givenname: Viswanathan
  orcidid: 0000-0003-4237-6949
  surname: Ramachandran
  fullname: Ramachandran, Viswanathan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37190376$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325112$$DView record from Swedish Publication Index
BookMark eNpdkk1v1DAQhi3UirYLB_4AisQFDinj2ImTC2i1UKi0iAMfV8uxx7teEnsbJ0X993i7ZdWtfLA188w7ntF7QU588EjIKwqXjDXwHosSOJR1_YycU2ianDOAk0fvM3IR4wagYAWtnpMzJmgDTFTn5MMyxHiX_RjViNki9P3knVajCz4LtzhkV8o4v8q-Td3oth1mc60xxmyxVt5jF1-QU6u6iC8f7hn5dfX55-Jrvvz-5XoxX-a6BDHmlQVWlQIbZZg1CgrBm9YKA7bVpmq5KC2zbdsYak2hG1rXWmEDnFpWIqbkjFzvdU1QG7kdXK-GOxmUk_eBMKykGkanO5QF1VAoZHWlLOdM1A23WAnDjWJGpBXMSL7Xin9xO7VHap_c7_m92p9xLVlRUrrjP-75BPdoNPpxUN1R2XHGu7VchVtJgab2wJLC2weFIdxMGEfZu6ix65THMEVZ1JSXhaDVDn3zBN2EafBpt4mCqqRpjWWiLvfUSqWJnbchNdbpGOydTuawLsXnggvOkzEgFbx-PMPh8_-NkIB3e0APyRAD2gNCQe5MJg8mY_8A7S_CBQ
Cites_doi 10.1109/TIT.1983.1056659
10.1109/TIT.2015.2463271
10.1109/TIT.2015.2454519
10.1109/ISIT.2014.6875241
10.1109/TIT.2005.844108
10.1109/TIT.2006.880064
10.1109/TIT.2011.2158488
10.1109/JSAC.2022.3229447
10.1109/TCOMM.2019.2914384
10.1109/18.737513
10.1109/TWC.2020.2998583
10.3390/e20040267
10.1109/TIT.2016.2605120
10.1109/JSAC.2022.3155522
10.1109/TSP.2021.3135692
10.1109/ACSSC.2008.5074421
10.1109/LWC.2021.3128619
10.1109/TIT.2008.929967
10.1109/18.641562
10.1109/TCOMM.2019.2932069
10.1109/ITW46852.2021.9457571
10.1109/ISIT.2014.6875265
10.1109/18.971736
10.1109/ISIT.2019.8849242
10.1109/ISIT.2018.8437621
10.1109/TIT.2019.2957084
10.1109/TCOMM.2020.2973976
10.1109/18.923724
10.1109/TCOMM.2022.3190363
10.3390/e20030197
10.1109/TIT.2020.2983157
10.1109/TIT.2007.896860
10.1109/TSP.2015.2483485
10.1109/ISIT50566.2022.9834554
10.1109/TVT.2017.2774762
10.1109/TIT.2005.851727
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the author. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the author. 2023
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOA
DOI 10.3390/e25040588
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef


MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_21c02ae386af4437894fe67d4da3d702
oai_DiVA_org_kth_325112
PMC10137803
A747444050
37190376
10_3390_e25040588
Genre Journal Article
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTPV
AFDQA
AOWAS
C1A
CH8
D8T
D8V
IPNFZ
RIG
ZZAVC
PUEGO
ID FETCH-LOGICAL-c507t-6f03657e9ad3fda02749bf7d0fbcd6b475f3fbb9d1fd2c9188cae9041f35ee5f3
IEDL.DBID DOA
ISSN 1099-4300
IngestDate Wed Aug 27 01:30:51 EDT 2025
Thu Aug 21 06:18:09 EDT 2025
Thu Aug 21 18:37:53 EDT 2025
Fri Jul 11 06:05:52 EDT 2025
Fri Jul 25 12:03:59 EDT 2025
Tue Jul 01 05:45:16 EDT 2025
Thu Jan 02 22:50:55 EST 2025
Tue Jul 01 01:58:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords multiple access channels
joint compression and error correction
joint source-channel coding
distortion-rate trade-off region
fading channels
dirty paper coding
MMSE
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-6f03657e9ad3fda02749bf7d0fbcd6b475f3fbb9d1fd2c9188cae9041f35ee5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4237-6949
OpenAccessLink https://doaj.org/article/21c02ae386af4437894fe67d4da3d702
PMID 37190376
PQID 2806516575
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_21c02ae386af4437894fe67d4da3d702
swepub_primary_oai_DiVA_org_kth_325112
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10137803
proquest_miscellaneous_2814527163
proquest_journals_2806516575
gale_infotracacademiconefile_A747444050
pubmed_primary_37190376
crossref_primary_10_3390_e25040588
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230329
PublicationDateYYYYMMDD 2023-03-29
PublicationDate_xml – month: 3
  year: 2023
  text: 20230329
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Liu (ref_2) 2021; 70
Ramachandran (ref_25) 2019; 67
Bross (ref_28) 2020; 66
Chiriyath (ref_1) 2015; 64
Tian (ref_22) 2015; 61
ref_14
ref_13
ref_12
ref_33
Gaudio (ref_7) 2020; 19
Wang (ref_11) 2023; 41
ref_32
Steinberg (ref_36) 2005; 51
Costa (ref_17) 1983; 29
Bross (ref_23) 2019; 67
Goldsmith (ref_34) 1997; 43
Qi (ref_10) 2022; 70
ref_15
ref_37
Liu (ref_6) 2020; 68
Weingarten (ref_19) 2006; 52
Ahmadipour (ref_16) 2023; 2023
Gelfand (ref_39) 1980; 9
Koyluoglu (ref_26) 2016; 62
Tse (ref_29) 1998; 44
Pucci (ref_9) 2022; 40
ref_24
Ramachandran (ref_35) 2022; 11
Merhav (ref_27) 2007; 53
Zhang (ref_21) 2011; 57
Das (ref_30) 2002; 48
ref_40
Sutivong (ref_20) 2005; 51
ref_3
Xu (ref_8) 2020; 66
Sreekumar (ref_31) 2015; 61
Kumari (ref_5) 2017; 67
Steinberg (ref_18) 2001; 47
ref_4
Gastpar (ref_38) 2008; 54
References_xml – volume: 29
  start-page: 439
  year: 1983
  ident: ref_17
  article-title: Writing on dirty paper (corresp.)
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1983.1056659
– volume: 61
  start-page: 5504
  year: 2015
  ident: ref_31
  article-title: Distributed rate adaptation and power control in fading multiple access channels
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2015.2463271
– volume: 2023
  start-page: 3176139
  year: 2023
  ident: ref_16
  article-title: An information-theoretic approach to joint sensing and communication
  publication-title: IEEE Trans. Inf. Theory
– volume: 61
  start-page: 4587
  year: 2015
  ident: ref_22
  article-title: Gaussian State Amplification with Noisy Observations
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2015.2454519
– ident: ref_33
  doi: 10.1109/ISIT.2014.6875241
– volume: 51
  start-page: 1486
  year: 2005
  ident: ref_20
  article-title: Channel capacity and state estimation for state-dependent Gaussian channels
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.844108
– volume: 52
  start-page: 3936
  year: 2006
  ident: ref_19
  article-title: The capacity region of the Gaussian multiple-input multiple-output broadcast channel
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.880064
– volume: 57
  start-page: 7084
  year: 2011
  ident: ref_21
  article-title: Joint transmission and state estimation: A constrained channel coding approach
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2158488
– volume: 41
  start-page: 574
  year: 2023
  ident: ref_11
  article-title: NOMA-aided joint communication, sensing, and multi-tier computing systems
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2022.3229447
– volume: 67
  start-page: 5618
  year: 2019
  ident: ref_23
  article-title: The Gaussian Source-and-Data-Streams Problem
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2019.2914384
– volume: 44
  start-page: 2796
  year: 1998
  ident: ref_29
  article-title: Multiaccess fading channels. I. Polymatroid structure, optimal resource allocation and throughput capacities
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.737513
– volume: 19
  start-page: 5951
  year: 2020
  ident: ref_7
  article-title: On the effectiveness of OTFS for joint radar parameter estimation and communication
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.2998583
– ident: ref_40
– ident: ref_4
  doi: 10.3390/e20040267
– volume: 62
  start-page: 6233
  year: 2016
  ident: ref_26
  article-title: State Amplification Subject to Masking Constraints
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2016.2605120
– ident: ref_37
– volume: 40
  start-page: 2043
  year: 2022
  ident: ref_9
  article-title: System-level analysis of joint sensing and communication based on 5G new radio
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2022.3155522
– volume: 70
  start-page: 240
  year: 2021
  ident: ref_2
  article-title: Cramér-Rao Bound Optimization for Joint Radar-Communication Beamforming
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2021.3135692
– ident: ref_32
  doi: 10.1109/ACSSC.2008.5074421
– volume: 11
  start-page: 367
  year: 2022
  ident: ref_35
  article-title: Joint Communication and State Estimation over a State-Dependent Fading Gaussian Channel
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2021.3128619
– volume: 54
  start-page: 5247
  year: 2008
  ident: ref_38
  article-title: Uncoded transmission is exactly optimal for a simple Gaussian sensor network
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2008.929967
– volume: 43
  start-page: 1986
  year: 1997
  ident: ref_34
  article-title: Capacity of fading channels with channel side information
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.641562
– volume: 9
  start-page: 19
  year: 1980
  ident: ref_39
  article-title: Coding for channels with random parameters
  publication-title: Probl. Control. Inf. Theory
– volume: 67
  start-page: 6743
  year: 2019
  ident: ref_25
  article-title: Joint state estimation and communication over a state-dependent Gaussian multiple access channel
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2019.2932069
– ident: ref_14
  doi: 10.1109/ITW46852.2021.9457571
– ident: ref_24
  doi: 10.1109/ISIT.2014.6875265
– volume: 48
  start-page: 4
  year: 2002
  ident: ref_30
  article-title: Capacities of time-varying multiple-access channels with side information
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.971736
– ident: ref_13
  doi: 10.1109/ISIT.2019.8849242
– ident: ref_12
  doi: 10.1109/ISIT.2018.8437621
– volume: 66
  start-page: 1822
  year: 2020
  ident: ref_8
  article-title: Optimal joint channel estimation and data detection for massive SIMO wireless systems: A polynomial complexity solution
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2019.2957084
– volume: 68
  start-page: 3834
  year: 2020
  ident: ref_6
  article-title: Joint radar and communication design: Applications, state-of-the-art, and the road ahead
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2020.2973976
– volume: 47
  start-page: 1410
  year: 2001
  ident: ref_18
  article-title: Identification in the presence of side information with application to watermarking
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.923724
– volume: 70
  start-page: 6212
  year: 2022
  ident: ref_10
  article-title: Integrating Sensing, Computing, and Communication in 6G Wireless Networks: Design and Optimization
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2022.3190363
– ident: ref_3
  doi: 10.3390/e20030197
– volume: 66
  start-page: 3342
  year: 2020
  ident: ref_28
  article-title: Message and Causal Asymmetric State Transmission Over the State-Dependent Degraded Broadcast Channel
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2020.2983157
– volume: 53
  start-page: 2254
  year: 2007
  ident: ref_27
  article-title: Information rates subject to state masking
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2007.896860
– volume: 64
  start-page: 464
  year: 2015
  ident: ref_1
  article-title: Inner bounds on performance of radar and communications co-existence
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2483485
– ident: ref_15
  doi: 10.1109/ISIT50566.2022.9834554
– volume: 67
  start-page: 3012
  year: 2017
  ident: ref_5
  article-title: IEEE 802.11 ad-based radar: An approach to joint vehicular communication-radar system
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2774762
– volume: 51
  start-page: 2867
  year: 2005
  ident: ref_36
  article-title: Coding for the degraded broadcast channel with random parameters, with causal and noncausal side information
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.851727
SSID ssj0023216
Score 2.3047876
Snippet Joint communications and sensing functionalities integrated into the same communication network have become increasingly relevant due to the large bandwidth...
SourceID doaj
swepub
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 588
SubjectTerms Analysis
Coding
Communication
dirty paper coding
Distortion
distortion-rate trade-off region
Electrical Engineering
Elektro- och systemteknik
Error-correcting codes
Fading
fading channels
Information theory
joint compression and error correction
joint source-channel coding
Messages
MMSE
Multiple access
multiple access channels
Sensors
Signal processing
State estimation
Transmitters
Waveforms
Wireless communication systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBIF6BggxCcIrqVxz7AtpCVxWiFUIU9WY5sd1WSNnSbg_8e2Ycb0pA4honcTJjz8xnj78h5LX1LNjoZd0ybmrVMVn7xHmtmRTRm8bbDoHi4ZE-OFafTpqTsuB2VdIqNzYxG-qw6nGNfDfvAHLcJnh_8bPGqlG4u1pKaNwm22CCDYCv7b39oy9fJ8glBdcjn5AEcL8bkbCLNbnMyo0XymT9_5rkP3zS3_mSM1bR7ImW98jdEkLSxajz--RWHB6Qd5-hn180x450duqDYpImXeZceXpY8gfpIhdKpHi4YAD3-JAcL_e_fTioS22EuocIbl3rBK6naaP1QabgEVzaLrWBpa4PulNtk2TqOht4CqK33JjeR8sUT7KJERofka1hNcQnhIqgojRw1XRCRas9qBWkbaNIjbFaVOTVRlbuYqTAcAAdUKBuEmhF9lCK0w3IWp0vrC5PXZkETvCeCQ-daZ-Ukq2xKkXdBhW8DC2Dnt6iDhzOLRB078sRAfhOZKlyC8A-SkF_rCI7GzW5Mumu3M0QqcjLqRmmC-6B-CGurvEerhoBIFFW5PGo1embZQvRERjcipiZvmc_NW8Zzs8yJTdH5kbD4KVvxqExe-bj-fdFFsSP9ZmTCOrE0___wDNyB-vaY7KbsDtka315HZ9D9LPuXpQh_htHWAZw
  priority: 102
  providerName: ProQuest
Title Lossy State Communication over Fading Multiple Access Channels
URI https://www.ncbi.nlm.nih.gov/pubmed/37190376
https://www.proquest.com/docview/2806516575
https://www.proquest.com/docview/2814527163
https://pubmed.ncbi.nlm.nih.gov/PMC10137803
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325112
https://doaj.org/article/21c02ae386af4437894fe67d4da3d702
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB3RcuFSFfGVtqwCQnCK6q849gVpC91WiFYIUbQ3y4lttaqUItge-PfMONmlgQMXLjnETuK8iTPz5PEbgFfWs2Cjl1XDuKlUy2TlE-eVZlJEb2pvWyKKZ-f69EJ9WNbLO6W-KCdskAcegDsUvGPCR2m0T0rJxliVom6CCl6GZpCRRJ-3JlMj1ZKC60FHSCKpP4wk1MXqXF7lt_fJIv1__4rv-KI_8yQnaqLZAy12YWcMHcv5MOSHcC_2j-DtR3zOzzLHjOVkt0dJyZnlIufIl2dj3mA5zwUSS9pU0KNbfAwXi-Mv706rsSZC1WHktqp0QpdTN9H6IFPwRCptm5rAUtsF3aqmTjK1rQ08BdFZbkzno2WKJ1nHiI1PYLu_6eMzKEVQCCueNa1Q0WqP5hSG2ShSbawWBbxcY-W-DdIXDikDAeo2gBZwRChuOpBadT6BNnSjDd2_bFjAG7KBozmFQHd-3BqA4yR1KjdHzqMUPo8VcLA2kxsn2w-XF4c5rSAV8GLTjNOE1j58H29uqQ9XtUByKAt4Olh1M2bZYFSEP9oCzMTek5eatvRXl1mKm5Nio2F409fDpzG55v3V13kG4np16SSRObH3P_DahwdU9Z5S4YQ9gO3V99v4HGOjVTuDLbM4mcH9o-PzT59neVLg8WTJfwE6ahCu
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlABcE4hUoEBCPU1S_ktgHQAtl2dLdnlrUm-vENq2QsqXdCvWn-EZmnEcJSNx69Th-zMMzE49nCHmpLXXaW5GVlKlMVlRkNjCWFVRwb1VudYWO4mK3mO3LLwf5wRr51b-FwbDK_kyMB7Vb1viPfDPeADK8Jnh_8iPDqlF4u9qX0GjZYsdf_ASX7ezt9hbQ9xXn0097H2dZV1Ugq8H2WWVFgEM7L722TgRn0S3TVSgdDVXtikqWeRChqrRjwfFaM6Vq6zWVLIjcewDCuNfIdSmERolS08-Dgyc4K9rsRQCkmx7Tg9E8FnW51HmxNMC_CuAPDfh3dOYoh2nUe9Pb5FZnsKaTlsPukDXf3CXv5jDPRRot1XT0xiTFkNB0GiPz00UXrZhOYlnGFJ8yNKCM75H9K8HZfbLeLBv_kKTcSS8UtKqKS68LC0wEtNWeh1zpgifkRY8rc9Im3DDgqCBCzYDQhHxALA4dMEd2bFiefjOdyBnOasotTFbYIKUolZbBF6WTzgpXUpjpDdLAoCQDomvbPUiAdWJOLDMBT0tKmI8mZKMnk-lE_MxcMmRCng9gEE68cbGNX55jHyZzDi6pSMiDlqrDmkUJthgc7wlRI3qPNjWGNMdHMQE4wzyRisKgr1vWGH2zdfx1EhHxfXVkBLqQ_NH_N_CM3JjtLeZmvr2785jc5MDJGGbH9QZZX52e-ydgd62qp5HZU3J41dL1GwGeRBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrYR4QSCu0AIBcTxF6yuHHwBt2a5a2q4qRFHfXCe2aYWU7bEV6l_j1zF2jhKQeOtr7MT2HJ754vEMwGupiZFW8yQntEhESXiiHaVJRjizuki1LD1Q3JtnWwfi82F6uAK_urswPqyy2xPDRm0Wlf9HPg4ngNQfE4xdGxaxP519PD1LfAUpf9LaldNoRGTHXv1E-HbxfnuKvH7D2Gzz66etpK0wkFToBy2TzOEGnuZWasOd0R6iydLlhriyMlkp8tRxV5bSUGdYJWlRVNpKIqjjqbXYiN-9Bas5oiIygtWNzfn-lx7ucUazJpcR55KMrU8WRtJQ4uXaAoZCAf-agz_s4d-xmoOMpsEKzu7B3dZ9jSeNvN2HFVs_gA-7OM5VHPzWeHDjJPYBovEsxOnHe23sYjwJRRpjf7GhRtP8EA5uhGqPYFQvavsEYmaE5QU-LUomrMw0ihRyWlrm0kJmLIJXHa3UaZN-QyFs8QRVPUEj2PBU7Dv4jNnhweL8u2oVUDFaEaZxsEw7IXheSOFslhthNDc5wZHeeR4or9dI6Eq31xNwnj5Dlpog7hICxyMRrHdsUq3CX6hr8YzgZd-MqurPX3RtF5e-DxUpQ4DKI3jccLWfM8_RM8PNPoJiwO_BooYt9clxSAdOfdbIguBH3zaiMXhnevJtEgjxY3msuAeU7On_F_ACbqNmqd3t-c4a3GEoyD7mjsl1GC3PL-0zdMKW5fNW2mM4umkF-w0ypEmq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lossy+State+Communication+over+Fading+Multiple+Access+Channels&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Ramachandran%2C+Viswanathan&rft.date=2023-03-29&rft.eissn=1099-4300&rft.volume=25&rft.issue=4&rft_id=info:doi/10.3390%2Fe25040588&rft_id=info%3Apmid%2F37190376&rft.externalDocID=37190376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon