Targeting solutions in Bayesian multi-objective optimization: sequential and batch versions

Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer a certa...

Full description

Saved in:
Bibliographic Details
Published inAnnals of mathematics and artificial intelligence Vol. 88; no. 1-3; pp. 187 - 212
Main Authors Gaudrie, David, Le Riche, Rodolphe, Picheny, Victor, Enaux, Benoît, Herbert, Vincent
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2020
Springer
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN1012-2443
1573-7470
DOI10.1007/s10472-019-09644-8

Cover

Loading…
Abstract Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer a certain part of the objective space, we modify the Bayesian multi-objective optimization algorithm which uses Gaussian Processes and works by maximizing the Expected Hypervolume Improvement, to focus the search in the preferred region. The cumulated effects of the Gaussian Processes and the targeting strategy lead to a particularly efficient convergence to the desired part of the Pareto set. To take advantage of parallel computing, a multi-point extension of the targeting criterion is proposed and analyzed.
AbstractList Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer a certain part of the objective space, we modify the Bayesian multi-objective optimization algorithm which uses Gaussian Processes and works by maximizing the Expected Hypervolume Improvement, to focus the search in the preferred region. The cumulated effects of the Gaussian Processes and the targeting strategy lead to a particularly efficient convergence to the desired part of the Pareto set. To take advantage of parallel computing, a multi-point extension of the targeting criterion is proposed and analyzed.
Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer a certain part of the objective space, we modify the Bayesian multi-objective optimization algorithm which uses Gaussian Processes and works by maximizing the Expected Hypervolume Improvement, to focus the search in the preferred region. The cumulated effects of the Gaussian Processes and the targeting strategy lead to a particularly efficient convergence to the desired part of the Pareto set. To take advantage of parallel computing, a multi-point extension of the targeting criterion is proposed and analyzed. Keywords Gaussian processes * Bayesian optimization * Computer experiments * Preference-based optimization * Parallel optimization Mathematics Subject Classification (2010) 65Kxx
Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer a certain part of the objective space, we modify the Bayesian multi-objective optimization algorithm which uses Gaussian Processes to maximize the Expected Hypervolume Improvement, to focus the search in the preferred region. The cumulated effects of the Gaussian Processes and the targeting strategy lead to a particularly efficient convergence to the desired part of the Pareto set. To take advantage of parallel computing, a multi-point extension of the targeting criterion is proposed and analyzed.
Audience Academic
Author Enaux, Benoît
Le Riche, Rodolphe
Picheny, Victor
Herbert, Vincent
Gaudrie, David
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0003-4609-1457
  surname: Gaudrie
  fullname: Gaudrie, David
  email: david.gaudrie@mpsa.com
  organization: Groupe PSA, CNRS LIMOS, École Nationale Supérieure des Mines de Saint-Étienne
– sequence: 2
  givenname: Rodolphe
  surname: Le Riche
  fullname: Le Riche, Rodolphe
  organization: CNRS LIMOS, École Nationale Supérieure des Mines de Saint-Étienne
– sequence: 3
  givenname: Victor
  surname: Picheny
  fullname: Picheny, Victor
  organization: Prowler.io
– sequence: 4
  givenname: Benoît
  surname: Enaux
  fullname: Enaux, Benoît
  organization: Groupe PSA
– sequence: 5
  givenname: Vincent
  surname: Herbert
  fullname: Herbert, Vincent
  organization: Groupe PSA
BackLink https://hal-emse.ccsd.cnrs.fr/emse-01957614$$DView record in HAL
BookMark eNp9kU9rVDEUxYNUsK1-AVcBd0Lqzb-XjLuxqC0MuKkrFyEvL2-a4b1kTDID7ac30ycKXZQsEi7nd-_JuRfoLKboEXpP4YoCqE-FglCMAF0RWHVCEP0KnVOpOFFCwVl7A2WECcHfoItSdgBNprtz9OvO5q2vIW5xSdOhhhQLDhF_sQ--BBvxfJhqIKnfeVfD0eO0r2EOj_ak_IyL_33wsQY7YRsH3Nvq7vHR53Lq8xa9Hu1U_Lu_9yX6-e3r3fUN2fz4fnu93hAnQVUilZQwKOUll9KJnlHBQNJeaGuVhYFrGDqlewlWjayVVadX3AnFOzqCHvgl-rj0vbeT2ecw2_xgkg3mZr0xfi7etFyk6qg40ib-sIj3OTXvpZpdOuTY_Bm2opoppoE31dWi2trJmxDHVLN17Qx-Dq5lP4ZWXyuqKUgBogFsAVxOpWQ__jNCwZxWZJYVnayYpxUZ3SD9DHKhPiXbpoXpZZQvaGlz4tbn_994gfoDswimbA
CitedBy_id crossref_primary_10_1115_1_4064244
crossref_primary_10_1103_PhysRevMaterials_7_093804
crossref_primary_10_1016_j_ast_2024_109235
crossref_primary_10_1016_j_swevo_2022_101183
crossref_primary_10_1016_j_ast_2023_108725
crossref_primary_10_1007_s10898_021_01119_7
crossref_primary_10_1007_s10898_024_01387_z
crossref_primary_10_1007_s13347_025_00861_0
crossref_primary_10_1016_j_energy_2020_117739
crossref_primary_10_2478_popets_2020_0060
crossref_primary_10_1007_s10898_024_01436_7
crossref_primary_10_1109_TEVC_2023_3265347
crossref_primary_10_1007_s00158_019_02458_6
crossref_primary_10_1007_s10898_020_00929_5
crossref_primary_10_1007_s00158_022_03457_w
Cites_doi 10.1007/978-1-4615-5025-9_9
10.1007/978-3-540-87700-4_78
10.1007/s10898-013-0118-2
10.1007/978-1-4615-5025-9
10.1016/S0377-2217(02)00487-3
10.1007/978-1-4757-3157-6_2
10.1109/FSKD.2016.7603186
10.1007/978-3-642-45486-8_8
10.1007/978-3-030-13709-0_45
10.1109/TEVC.2010.2077298
10.1007/978-3-642-15871-1_10
10.1016/j.swevo.2018.10.007
10.1016/j.tcs.2011.03.012
10.1007/978-1-4615-5563-6
10.1109/TEVC.2005.851274
10.1007/978-3-540-30217-9_73
10.1007/978-3-319-29975-4_12
10.1145/1143997.1144112
10.1162/106365600568202
10.1016/j.ejor.2006.08.008
10.1007/978-3-642-10701-6_6
10.1007/s11222-014-9477-x
10.1007/978-3-319-27926-8_4
10.1016/j.ejor.2014.07.032
10.1109/4235.996017
10.2514/1.16875
10.1007/978-3-540-88908-3
10.1007/978-3-642-44973-4_7
10.2307/1914280
10.1007/978-3-319-61007-8
10.1007/978-3-7908-2410-0_12
10.1007/978-3-642-34413-8_37
10.1016/bs.adcom.2015.03.001
10.1023/A:1008306431147
10.1007/978-3-642-48782-8_32
10.1145/1527125.1527138
10.1007/978-3-319-54157-0_46
10.1007/978-3-319-15934-8_5
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2019
COPYRIGHT 2020 Springer
Springer Nature Switzerland AG 2019.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Nature Switzerland AG 2019
– notice: COPYRIGHT 2020 Springer
– notice: Springer Nature Switzerland AG 2019.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
1XC
DOI 10.1007/s10472-019-09644-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
Statistics
EISSN 1573-7470
EndPage 212
ExternalDocumentID oai_HAL_emse_01957614v1
A718105404
10_1007_s10472_019_09644_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
1XC
ID FETCH-LOGICAL-c507t-57550d77e5355c4b2142051b48aa7a0d380d678b50a7f2b4876893c47361f08d3
IEDL.DBID BENPR
ISSN 1012-2443
IngestDate Fri May 09 12:24:53 EDT 2025
Fri Jul 25 10:59:59 EDT 2025
Tue Jun 10 20:33:26 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
Tue Jul 01 03:19:43 EDT 2025
Fri Feb 21 02:26:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-3
Keywords Preference-based optimization
Computer experiments
Bayesian optimization
Parallel optimization
65Kxx
Gaussian processes
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-57550d77e5355c4b2142051b48aa7a0d380d678b50a7f2b4876893c47361f08d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4609-1457
0000-0002-3518-2110
PQID 2918272803
PQPubID 2043872
PageCount 26
ParticipantIDs hal_primary_oai_HAL_emse_01957614v1
proquest_journals_2918272803
gale_infotracacademiconefile_A718105404
crossref_primary_10_1007_s10472_019_09644_8
crossref_citationtrail_10_1007_s10472_019_09644_8
springer_journals_10_1007_s10472_019_09644_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Annals of mathematics and artificial intelligence
PublicationTitleAbbrev Ann Math Artif Intell
PublicationYear 2020
Publisher Springer International Publishing
Springer
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
– name: Springer Verlag
References YangKEmmerichMDeutzABäckTMulti-objective Bayesian global optimization using expected hypervolume improvement gradientSwarm Evol. Comput.20194494595610.1016/j.swevo.2018.10.007
BechikhSKessentiniMSaidLBGhédiraKChap. 4: preference incorporation in evolutionary multiobjective optimization: a survey of the state-of-the-artAdv. Comput.20159814120710.1016/bs.adcom.2015.03.001
Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: International Conference on Parallel Problem Solving from Nature, pp 722–731. Springer (2004)
Ginsbourger, D., Janusevskis, J., Le Riche, R.: Dealing with asynchronicity in parallel gaussian process based global optimization. In: 4th International Conference of the ERCIM WG on computing and statistics (ERCIM’11) (2011)
Yang, K., Li, L., Deutz, A., Bäck, T., Emmerich, M.: Preference-based multiobjective optimization using truncated expected hypervolume improvement. In: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp 276–281. IEEE (2016)
AugerABaderJBrockhoffDZitzlerEHypervolume-based multiobjective optimization: theoretical foundations and practical implicationsTheor. Comput. Sci.201242575103289156410.1016/j.tcs.2011.03.012
BinoisMGinsbourgerDRoustantOQuantifying uncertainty on Pareto fronts with Gaussian process conditional simulationsEur. J. Oper. Res.20152432386394331554910.1016/j.ejor.2014.07.032
Janusevskis, J., Le Riche, R., Ginsbourger, D., Girdziusas, R.: Expected improvements for the asynchronous parallel global optimization of expensive functions: potentials and challenges. In: Learning and Intelligent Optimization, pp 413–418. Springer (2012)
DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans. Evol. Comput.20026218219710.1109/4235.996017
Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Many-objective test problems to visually examine the behavior of multiobjective evolution in a decision space. In: International Conference on Parallel Problem Solving from Nature, pp 91–100. Springer (2010)
MiettinenKNonlinear Multiobjective Optimization, vol. 121998BerlinSpringer10.1007/978-1-4615-5563-6
MolchanovITheory of Random Sets, vol. 192005BerlinSpringer
Wierzbicki, A.: Reference point approaches. In: Gal, T., Stewart, T., Hanne, T. (eds.) Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, pp 237–275. Springer (1999)
Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. Citeseer (1999)
Gaudrie, D., Le Riche, R., Enaux, B., Herbert, V.: Budgeted multi-objective optimization with a focus on the central part of the pareto front-extended version. arXiv:1809.10482 (2018)
BeumeNNaujoksBEmmerichMSms-emoa: multiobjective selection based on dominated hypervolumeEur. J. Oper. Res.200718131653166910.1016/j.ejor.2006.08.008
Emmerich, M., Deutz, A., Klinkenberg, J.W.: Hypervolume-based expected improvement: monotonicity properties and exact computation. In: IEEE Congress on Evolutionary Computation (CEC), 2011, pp 2147–2154. IEEE (2011)
Horn, D., Wagner, T., Biermann, D., Weihs, C., Bischl, B.: Model-based multi-objective optimization: taxonomy, multi-point proposal, toolbox and benchmark. In: International Conference on Evolutionary Multi-Criterion Optimization, pp 64–78. Springer (2015)
Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point. In: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, pp 87–102. ACM (2009)
Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp 635–642. ACM (2006)
Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited budget of evaluations using model-assisted S-metric selection. In: International Conf. on Parallel Problem Solving from Nature, pp 784–794. Springer (2008)
Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize optimization. In: Computational Intelligence in Expensive Optimization Problems, pp 131–162. Springer (2010)
Yang, K., Emmerich, M., Deutz, A., Fonseca, C.M.: Computing 3-D expected hypervolume improvement and related integrals in asymptotically optimal time. In: International Conference on Evolutionary Multi-Criterion Optimization, pp 685–700. Springer (2017)
Auger, A., Hansen, N.: Performance evaluation of an advanced local search evolutionary algorithm. In: IEEE Congress on Evolutionary Computation, vol. 2, p 2005. IEEE (2005)
JonesDRSchonlauMWelchWEfficient Global Optimization of expensive black-box functionsJ. Glob. Optim.1998134455492167346010.1023/A:1008306431147
Emmerich, M., Yang, K., Deutz, A., Wang, H., Fonseca, C.M.: A multicriteria generalization of Bayesian global optimization. In: Advances in Stochastic and Deterministic Global Optimization, pp 229–242. Springer (2016)
Ribaud, M.: Krigeage pour la conception de turbomachines: grande dimension et optimisation robuste. PhD thesis Université de Lyon (2018)
BrankeJDebKMiettinenKSlowińskiRMultiobjective Optimization: Interactive and Evolutionary Approaches, vol. 52522008BerlinSpringer10.1007/978-3-540-88908-3
KalaiEhudSmorodinskyMeirOther Solutions to Nash's Bargaining ProblemEconometrica197543351344138710.2307/1914280
PardalosPMžilinskasAžilinskasJNon-convex Multi-Objective Optimization2017BerlinSpringer10.1007/978-3-319-61007-8
WhileLBradstreetLBaroneLA fast way of calculating exact hypervolumesIEEE Trans. Evol. Comput.2012161869510.1109/TEVC.2010.2077298
Janusevskis, J., Riche, R.L., Ginsbourger, D.: Parallel expected improvements for global optimization: summary, bounds and speed-up. Technical report, Institut Fayol, École des Mines de Saint-Étienne (2011)
BuchananJGardinerLA comparison of two reference point methods in multiple objective mathematical programmingEur. J. Oper. Res.200314911734197889910.1016/S0377-2217(02)00487-3
Svenson, J.: Computer experiments: multiobjective optimization and sensitivity analysis. PhD thesis, The Ohio State University (2011)
Marmin, S., Chevalier, C., Ginsbourger, D.: Differentiating the multipoint expected improvement for optimal batch design. In: International Workshop on Machine Learning, Optimization and Big Data, pp 37–48. Springer (2015)
SawaragiYNakayamaHTaninoTTheory of Multiobjective Optimization, vol. 1761985AmsterdamElsevier0566.90053
SvensonJSantnerTJMultiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement2010OhioThe Ohio State University Columbus3232
Wierzbicki, A.: The use of reference objectives in multiobjective optimization. In: Multiple Criteria Decision Making Theory and Application, pp 468–486. Springer (1980)
Feliot, P.: Une approche Bayesienne pour L’optimisation multi-objectif sous contraintes. PhD thesis, Universite Paris-Saclay (2017)
Frazier, P.I., Clark, S.C.: Parallel global optimization using an improved multi-points expected improvement criterion. In: INFORMS Optimization Society Conference, Miami FL, vol. 26 (2012)
KeaneAJStatistical improvement criteria for use in multiobjective design optimizationAIAA J.200644487989110.2514/1.16875
KnowlesJParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problemsIEEE Trans. Evol. Comput.2006101506610.1109/TEVC.2005.851274
CouckuytIDeschrijverDDhaeneTFast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimizationJ. Glob. Optim.2014603575594326524610.1007/s10898-013-0118-2
FeliotPaulBectJulienVazquezEmmanuelUser Preferences in Bayesian Multi-objective Optimization: The Expected Weighted Hypervolume Improvement CriterionMachine Learning, Optimization, and Data Science2019ChamSpringer International Publishing53354410.1007/978-3-030-13709-0_45
Chevalier, C., Ginsbourger, D.: Fast computation of the multi-points expected improvement with applications in batch selection. In: International Conference on Learning and Intelligent Optimization, pp 59–69. Springer (2013)
Marmin, S., Chevalier, C., Ginsbourger, D.: Efficient batch-sequential bayesian optimization with moments of truncated gaussian vectors. arXiv:1609.02700 (2016)
PichenyVMultiobjective optimization using Gaussian process emulators via stepwise uncertainty reductionStat. Comput.201525612651280340188510.1007/s11222-014-9477-x
Triantaphyllou, E.: Multi-criteria decision making methods. In: Multi-Criteria Decision Making Methods: a Comparative Study, pp 5–21. Springer (2000)
Ginsbourger, D., Riche, R.L.: Towards GP-based optimization with finite time horizon. Technical report, Centre d’Hydrogéologie et de Géothermie de Neuchâtel (2009)
Zeleny, M.: The theory of the displaced ideal. In: Multiple Criteria Decision Making Kyoto 1975, pp 153–206. Springer (1976)
GalTStewartTHanneTMulticriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, vol. 211999BerlinSpringer10.1007/978-1-4615-5025-9
Parr, J.: Improvement criteria for constraint handling and multiobjective optimization. PhD thesis, University of Southampton (2013)
Schonlau, M.: Computer experiments and global optimization. PhD thesis, University of Waterloo (1997)
ZitzlerEDebKThieleLComparison of multiobjective evolutionary algorithms empirical resultsEvol. Comput.20008217319510.1162/106365600568202
9644_CR27
DR Jones (9644_CR28) 1998; 13
9644_CR25
9644_CR26
9644_CR23
J Svenson (9644_CR44) 2010
9644_CR24
9644_CR21
I Couckuyt (9644_CR11) 2014; 60
9644_CR22
M Binois (9644_CR6) 2015; 243
N Beume (9644_CR5) 2007; 181
J Knowles (9644_CR31) 2006; 10
PM Pardalos (9644_CR36) 2017
K Yang (9644_CR49) 2019; 44
9644_CR20
A Auger (9644_CR2) 2012; 425
S Bechikh (9644_CR4) 2015; 98
J Buchanan (9644_CR9) 2003; 149
9644_CR39
9644_CR37
9644_CR32
9644_CR33
Ehud Kalai (9644_CR29) 1975; 43
I Molchanov (9644_CR35) 2005
K Deb (9644_CR12) 2002; 6
Y Sawaragi (9644_CR41) 1985
9644_CR1
9644_CR3
9644_CR7
9644_CR47
9644_CR48
9644_CR45
9644_CR43
V Picheny (9644_CR38) 2015; 25
9644_CR42
9644_CR40
AJ Keane (9644_CR30) 2006; 44
K Miettinen (9644_CR34) 1998
9644_CR16
9644_CR14
9644_CR15
T Gal (9644_CR19) 1999
9644_CR13
9644_CR10
9644_CR54
E Zitzler (9644_CR53) 2000; 8
J Branke (9644_CR8) 2008
9644_CR18
Paul Feliot (9644_CR17) 2019
9644_CR52
9644_CR50
9644_CR51
L While (9644_CR46) 2012; 16
References_xml – reference: BeumeNNaujoksBEmmerichMSms-emoa: multiobjective selection based on dominated hypervolumeEur. J. Oper. Res.200718131653166910.1016/j.ejor.2006.08.008
– reference: CouckuytIDeschrijverDDhaeneTFast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimizationJ. Glob. Optim.2014603575594326524610.1007/s10898-013-0118-2
– reference: Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point. In: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, pp 87–102. ACM (2009)
– reference: Parr, J.: Improvement criteria for constraint handling and multiobjective optimization. PhD thesis, University of Southampton (2013)
– reference: YangKEmmerichMDeutzABäckTMulti-objective Bayesian global optimization using expected hypervolume improvement gradientSwarm Evol. Comput.20194494595610.1016/j.swevo.2018.10.007
– reference: PichenyVMultiobjective optimization using Gaussian process emulators via stepwise uncertainty reductionStat. Comput.201525612651280340188510.1007/s11222-014-9477-x
– reference: ZitzlerEDebKThieleLComparison of multiobjective evolutionary algorithms empirical resultsEvol. Comput.20008217319510.1162/106365600568202
– reference: Janusevskis, J., Le Riche, R., Ginsbourger, D., Girdziusas, R.: Expected improvements for the asynchronous parallel global optimization of expensive functions: potentials and challenges. In: Learning and Intelligent Optimization, pp 413–418. Springer (2012)
– reference: Chevalier, C., Ginsbourger, D.: Fast computation of the multi-points expected improvement with applications in batch selection. In: International Conference on Learning and Intelligent Optimization, pp 59–69. Springer (2013)
– reference: Janusevskis, J., Riche, R.L., Ginsbourger, D.: Parallel expected improvements for global optimization: summary, bounds and speed-up. Technical report, Institut Fayol, École des Mines de Saint-Étienne (2011)
– reference: BinoisMGinsbourgerDRoustantOQuantifying uncertainty on Pareto fronts with Gaussian process conditional simulationsEur. J. Oper. Res.20152432386394331554910.1016/j.ejor.2014.07.032
– reference: Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: International Conference on Parallel Problem Solving from Nature, pp 722–731. Springer (2004)
– reference: Ginsbourger, D., Janusevskis, J., Le Riche, R.: Dealing with asynchronicity in parallel gaussian process based global optimization. In: 4th International Conference of the ERCIM WG on computing and statistics (ERCIM’11) (2011)
– reference: Wierzbicki, A.: Reference point approaches. In: Gal, T., Stewart, T., Hanne, T. (eds.) Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, pp 237–275. Springer (1999)
– reference: BechikhSKessentiniMSaidLBGhédiraKChap. 4: preference incorporation in evolutionary multiobjective optimization: a survey of the state-of-the-artAdv. Comput.20159814120710.1016/bs.adcom.2015.03.001
– reference: Frazier, P.I., Clark, S.C.: Parallel global optimization using an improved multi-points expected improvement criterion. In: INFORMS Optimization Society Conference, Miami FL, vol. 26 (2012)
– reference: Triantaphyllou, E.: Multi-criteria decision making methods. In: Multi-Criteria Decision Making Methods: a Comparative Study, pp 5–21. Springer (2000)
– reference: Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp 635–642. ACM (2006)
– reference: Ginsbourger, D., Riche, R.L.: Towards GP-based optimization with finite time horizon. Technical report, Centre d’Hydrogéologie et de Géothermie de Neuchâtel (2009)
– reference: Yang, K., Emmerich, M., Deutz, A., Fonseca, C.M.: Computing 3-D expected hypervolume improvement and related integrals in asymptotically optimal time. In: International Conference on Evolutionary Multi-Criterion Optimization, pp 685–700. Springer (2017)
– reference: Marmin, S., Chevalier, C., Ginsbourger, D.: Differentiating the multipoint expected improvement for optimal batch design. In: International Workshop on Machine Learning, Optimization and Big Data, pp 37–48. Springer (2015)
– reference: Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Many-objective test problems to visually examine the behavior of multiobjective evolution in a decision space. In: International Conference on Parallel Problem Solving from Nature, pp 91–100. Springer (2010)
– reference: Auger, A., Hansen, N.: Performance evaluation of an advanced local search evolutionary algorithm. In: IEEE Congress on Evolutionary Computation, vol. 2, p 2005. IEEE (2005)
– reference: Emmerich, M., Deutz, A., Klinkenberg, J.W.: Hypervolume-based expected improvement: monotonicity properties and exact computation. In: IEEE Congress on Evolutionary Computation (CEC), 2011, pp 2147–2154. IEEE (2011)
– reference: Feliot, P.: Une approche Bayesienne pour L’optimisation multi-objectif sous contraintes. PhD thesis, Universite Paris-Saclay (2017)
– reference: Emmerich, M., Yang, K., Deutz, A., Wang, H., Fonseca, C.M.: A multicriteria generalization of Bayesian global optimization. In: Advances in Stochastic and Deterministic Global Optimization, pp 229–242. Springer (2016)
– reference: Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize optimization. In: Computational Intelligence in Expensive Optimization Problems, pp 131–162. Springer (2010)
– reference: Gaudrie, D., Le Riche, R., Enaux, B., Herbert, V.: Budgeted multi-objective optimization with a focus on the central part of the pareto front-extended version. arXiv:1809.10482 (2018)
– reference: Horn, D., Wagner, T., Biermann, D., Weihs, C., Bischl, B.: Model-based multi-objective optimization: taxonomy, multi-point proposal, toolbox and benchmark. In: International Conference on Evolutionary Multi-Criterion Optimization, pp 64–78. Springer (2015)
– reference: KnowlesJParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problemsIEEE Trans. Evol. Comput.2006101506610.1109/TEVC.2005.851274
– reference: Wierzbicki, A.: The use of reference objectives in multiobjective optimization. In: Multiple Criteria Decision Making Theory and Application, pp 468–486. Springer (1980)
– reference: Yang, K., Li, L., Deutz, A., Bäck, T., Emmerich, M.: Preference-based multiobjective optimization using truncated expected hypervolume improvement. In: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp 276–281. IEEE (2016)
– reference: BrankeJDebKMiettinenKSlowińskiRMultiobjective Optimization: Interactive and Evolutionary Approaches, vol. 52522008BerlinSpringer10.1007/978-3-540-88908-3
– reference: GalTStewartTHanneTMulticriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, vol. 211999BerlinSpringer10.1007/978-1-4615-5025-9
– reference: SawaragiYNakayamaHTaninoTTheory of Multiobjective Optimization, vol. 1761985AmsterdamElsevier0566.90053
– reference: Marmin, S., Chevalier, C., Ginsbourger, D.: Efficient batch-sequential bayesian optimization with moments of truncated gaussian vectors. arXiv:1609.02700 (2016)
– reference: WhileLBradstreetLBaroneLA fast way of calculating exact hypervolumesIEEE Trans. Evol. Comput.2012161869510.1109/TEVC.2010.2077298
– reference: Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited budget of evaluations using model-assisted S-metric selection. In: International Conf. on Parallel Problem Solving from Nature, pp 784–794. Springer (2008)
– reference: MolchanovITheory of Random Sets, vol. 192005BerlinSpringer
– reference: SvensonJSantnerTJMultiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement2010OhioThe Ohio State University Columbus3232
– reference: Zeleny, M.: The theory of the displaced ideal. In: Multiple Criteria Decision Making Kyoto 1975, pp 153–206. Springer (1976)
– reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans. Evol. Comput.20026218219710.1109/4235.996017
– reference: KalaiEhudSmorodinskyMeirOther Solutions to Nash's Bargaining ProblemEconometrica197543351344138710.2307/1914280
– reference: MiettinenKNonlinear Multiobjective Optimization, vol. 121998BerlinSpringer10.1007/978-1-4615-5563-6
– reference: FeliotPaulBectJulienVazquezEmmanuelUser Preferences in Bayesian Multi-objective Optimization: The Expected Weighted Hypervolume Improvement CriterionMachine Learning, Optimization, and Data Science2019ChamSpringer International Publishing53354410.1007/978-3-030-13709-0_45
– reference: BuchananJGardinerLA comparison of two reference point methods in multiple objective mathematical programmingEur. J. Oper. Res.200314911734197889910.1016/S0377-2217(02)00487-3
– reference: AugerABaderJBrockhoffDZitzlerEHypervolume-based multiobjective optimization: theoretical foundations and practical implicationsTheor. Comput. Sci.201242575103289156410.1016/j.tcs.2011.03.012
– reference: KeaneAJStatistical improvement criteria for use in multiobjective design optimizationAIAA J.200644487989110.2514/1.16875
– reference: Ribaud, M.: Krigeage pour la conception de turbomachines: grande dimension et optimisation robuste. PhD thesis Université de Lyon (2018)
– reference: PardalosPMžilinskasAžilinskasJNon-convex Multi-Objective Optimization2017BerlinSpringer10.1007/978-3-319-61007-8
– reference: Schonlau, M.: Computer experiments and global optimization. PhD thesis, University of Waterloo (1997)
– reference: JonesDRSchonlauMWelchWEfficient Global Optimization of expensive black-box functionsJ. Glob. Optim.1998134455492167346010.1023/A:1008306431147
– reference: Svenson, J.: Computer experiments: multiobjective optimization and sensitivity analysis. PhD thesis, The Ohio State University (2011)
– reference: Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. Citeseer (1999)
– ident: 9644_CR48
  doi: 10.1007/978-1-4615-5025-9_9
– ident: 9644_CR39
  doi: 10.1007/978-3-540-87700-4_78
– volume: 60
  start-page: 575
  issue: 3
  year: 2014
  ident: 9644_CR11
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-013-0118-2
– ident: 9644_CR42
– ident: 9644_CR16
– volume-title: Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, vol. 21
  year: 1999
  ident: 9644_CR19
  doi: 10.1007/978-1-4615-5025-9
– volume: 149
  start-page: 17
  issue: 1
  year: 2003
  ident: 9644_CR9
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(02)00487-3
– ident: 9644_CR3
– ident: 9644_CR45
  doi: 10.1007/978-1-4757-3157-6_2
– ident: 9644_CR51
  doi: 10.1109/FSKD.2016.7603186
– volume-title: Theory of Random Sets, vol. 19
  year: 2005
  ident: 9644_CR35
– ident: 9644_CR52
  doi: 10.1007/978-3-642-45486-8_8
– start-page: 533
  volume-title: Machine Learning, Optimization, and Data Science
  year: 2019
  ident: 9644_CR17
  doi: 10.1007/978-3-030-13709-0_45
– volume: 16
  start-page: 86
  issue: 1
  year: 2012
  ident: 9644_CR46
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2077298
– ident: 9644_CR25
  doi: 10.1007/978-3-642-15871-1_10
– ident: 9644_CR14
– volume: 44
  start-page: 945
  year: 2019
  ident: 9644_CR49
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.10.007
– volume: 425
  start-page: 75
  year: 2012
  ident: 9644_CR2
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2011.03.012
– ident: 9644_CR20
– volume-title: Theory of Multiobjective Optimization, vol. 176
  year: 1985
  ident: 9644_CR41
– volume-title: Nonlinear Multiobjective Optimization, vol. 12
  year: 1998
  ident: 9644_CR34
  doi: 10.1007/978-1-4615-5563-6
– volume: 10
  start-page: 50
  issue: 1
  year: 2006
  ident: 9644_CR31
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851274
– ident: 9644_CR7
  doi: 10.1007/978-3-540-30217-9_73
– ident: 9644_CR15
  doi: 10.1007/978-3-319-29975-4_12
– ident: 9644_CR13
  doi: 10.1145/1143997.1144112
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 9644_CR53
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568202
– ident: 9644_CR18
– volume: 181
  start-page: 1653
  issue: 3
  year: 2007
  ident: 9644_CR5
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.08.008
– ident: 9644_CR23
  doi: 10.1007/978-3-642-10701-6_6
– volume: 25
  start-page: 1265
  issue: 6
  year: 2015
  ident: 9644_CR38
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-014-9477-x
– ident: 9644_CR32
  doi: 10.1007/978-3-319-27926-8_4
– volume: 243
  start-page: 386
  issue: 2
  year: 2015
  ident: 9644_CR6
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2014.07.032
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 9644_CR12
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 44
  start-page: 879
  issue: 4
  year: 2006
  ident: 9644_CR30
  publication-title: AIAA J.
  doi: 10.2514/1.16875
– ident: 9644_CR40
– start-page: 32
  volume-title: Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement
  year: 2010
  ident: 9644_CR44
– volume-title: Multiobjective Optimization: Interactive and Evolutionary Approaches, vol. 5252
  year: 2008
  ident: 9644_CR8
  doi: 10.1007/978-3-540-88908-3
– ident: 9644_CR21
– ident: 9644_CR10
  doi: 10.1007/978-3-642-44973-4_7
– volume: 43
  start-page: 513
  issue: 3
  year: 1975
  ident: 9644_CR29
  publication-title: Econometrica
  doi: 10.2307/1914280
– ident: 9644_CR33
– volume-title: Non-convex Multi-Objective Optimization
  year: 2017
  ident: 9644_CR36
  doi: 10.1007/978-3-319-61007-8
– ident: 9644_CR54
– ident: 9644_CR37
– ident: 9644_CR22
  doi: 10.1007/978-3-7908-2410-0_12
– ident: 9644_CR27
  doi: 10.1007/978-3-642-34413-8_37
– volume: 98
  start-page: 141
  year: 2015
  ident: 9644_CR4
  publication-title: Adv. Comput.
  doi: 10.1016/bs.adcom.2015.03.001
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 9644_CR28
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– ident: 9644_CR43
– ident: 9644_CR47
  doi: 10.1007/978-3-642-48782-8_32
– ident: 9644_CR1
  doi: 10.1145/1527125.1527138
– ident: 9644_CR50
  doi: 10.1007/978-3-319-54157-0_46
– ident: 9644_CR24
  doi: 10.1007/978-3-319-15934-8_5
– ident: 9644_CR26
SSID ssj0009686
Score 2.3587475
Snippet Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of...
SourceID hal
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 187
SubjectTerms Algorithms
Approximation
Artificial Intelligence
Bayesian analysis
Complex Systems
Computer Science
Design of experiments
Expected values
Gaussian process
Mathematics
Multiple objective analysis
Objectives
Optimization
Optimization and Control
Other Statistics
Pareto optimization
Pareto optimum
Statistics
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPTgW6wvAgoeNJA-0_W2issi6smFBQ8hbRNUdrti1wX_vZM03VVRwWsfQ-hkZr5pZr4BONZpyDRmOVSj-6ORyjWVGIZo2ipCzWItM9s-dnuXdHvRdT_uu6awqql2b44kraf-1OwWcVNGYEp8MIrTdB4WY5O74y7uBe0Z1W5i5zsa4iqKwSt0rTI_y_gSjpxTnn80NZGfAOe3M1IbejprsOIwI2nXSl6HOVVuwGozj4E489yA5dspB2u1CQ_3tsgbJZLp_iJPJbmQ78p0ThJbS0hH2XPt88gIvcfQtWWek7rGGu1_QGRZkAxd9iOZ1H_Xqi3oda7uL7vUjVKgOQK-MUVQFrOCcxUjvsijzBCtoTlmUSoll6wIU1Zg2MpiJrkO8DJmIa0wj3iY-JqlRbgNC-WoVDtAEJIHHIFMojVGwFi2gkAWWZjznHHFE-aB33xRkTuecTPuYiBmDMlGCwK1IKwWROrB6fSdl5pl48-nT4yihDFBlJxL10mA6zNkVqKN8dY3UDTy4Ah1ORVpqLS77RuhhpUyAjHX8qOJ78F-o2vhLLgSQQszLzu7y4OzRv-z27-vbvd_j-_BUmBSeFvWtg8L49c3dYA4Z5wd2m39AeTf8CY
  priority: 102
  providerName: Springer Nature
Title Targeting solutions in Bayesian multi-objective optimization: sequential and batch versions
URI https://link.springer.com/article/10.1007/s10472-019-09644-8
https://www.proquest.com/docview/2918272803
https://hal-emse.ccsd.cnrs.fr/emse-01957614
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxNBEB5M86IPWqvS0xoWFHzQxfu9m77IpSQNaoNIAxUflr27Xaq0l-rFgv99Z_b2EhXsUyCXDMfN7jff7M18A_DSyiS0mOVwi_DHU1NZrjEMcTmuExtmVpeufexkkc-X6fuz7MwfuLW-rLLHRAfU9aqiM_K38RiZsJul9O7qB6epUfR21Y_QGMAQIVhi8jWcTBefPm9ld3M365FErDgGssS3zfjmuVRQWQKVDCEr4PKv0OQBenBO9ZF_kM9_3pe6MDTbhfueP7Kic_hDuGOaPXjQz2Zgfqvuwb2TjR5r-wi-nrqCb7TINmuNfWvYRP821EXJXF0hX5XfO_xjK0SSS9-ieci6emvEggumm5qVCN_n7Lo7aWsfw3I2PT2acz9WgVdI_tYcCVoW1kKYDLlGlZYkuoZbs0yl1kKHdSLDGkNYmYVa2Bi_xoxknFSpSPLIhrJOnsBOs2rMPjCk57FAUpNbi9Ew0-M41nWZVKIKhRF5GEDUP1FVec1xGn1xobZqyeQFhV5QzgtKBvB685-rTnHj1l-_Ikcp2o5oudK-qwDvj4StVIGxNyJamgbwAn25MUmy2vPiozKXrSGDmHdF6XUUwEHva-V3c6u2ay-AN73_t5f_f3dPb7f2DO7GlL67krYD2Fn__GWeI8dZlyMYyNnxCIbFbDJZ0Ofxlw_TkV_eeHUZFzf5ivls
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB215QAcChQQoQUsAeIAFkmcxAkSQsvHsqW7PW2lSj0YJ7FVUJttm6Wof4rfyIzj7AISvfWazY6izPjNszPzBuCZzUVocZfDLcIfT0xlucY0xPOiFjZMrS5d-9hkNxvtJV_20_0V-NX3wlBZZY-JDqjrWUVn5K_jApmwm6X07uSU09Qo-rraj9DowmLHXPzELVv7dvsj-vd5HA8_TT-MuJ8qwCvkPnOO_CQNaylNiqm2SkrSHMPILJNca6nDWuRhjQhepqGWNsbLSMgLUSVSZJEN81qg3VW4lghR0IrKh5-XIr-ZmyxJklkc06bwTTq-VS-RVARBBUrIQXj-VyL06WD1kKox_6C6_3yddUlveBvWPVtlgy687sCKaTbgVj8Jgnlg2ICbk4X6a3sXDqauvBwtskVks28Ne68vDPVsMlfFyGfl9w5t2Qxx69g3hL5hXXU3Is8R003NSkwWh-y8O9dr78Helbzu-7DWzBrzABhuBmKJFCqzFnNvqos41nUpKlmF0sgsDCDq36iqvMI5Ddo4UkttZvKCQi8o5wWVB_By8Z-TTt_j0rtfkKMULX60XGnfw4DPRzJaaoCZPiISnATwFH25MEki3qPBWJnj1pBB3OVFyXkUwFbva-Wxo1XLSA_gVe__5c__f7qHl1t7AtdH08lYjbd3dzbhRkwHB66YbgvW5mc_zCNkV_PysQtpBl-veg39Bg1HLUY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEC58QIgHY0zEUaMNCeRgGnuePettE102vsjBBSGHpmemGxWdFXcV_PdW9fTsbiQJeJ1H0Ux1VX01XfUVwBebx8JilsMtuj-emNJyjWGI550qtiK1unDtY6dnWX-QHF2kFzNd_K7avT2SbHoaiKWpHu_dVXZvpvEtkVRSQOU-GNF5Pg-L6I5D2teDqDul3c3crEciseIYyGLfNvN3GX-EJu-g5y-pPnIGfL44L3VhqLcCyx4_sm6j8PcwZ-pVeNfOZmDeVFdh6XTCxzr6AL_PXcE3SmSTvcauavZdPxnqomSurpAPi-vG_7EhepJb36K5z5p6a_QFN0zXFSvQfV-yx-ZP2-gjDHqH5z_63I9V4CWCvzFHgJaKSkqTItYok4JI19A0iyTXWmpRxbmoMIQVqdDSRngZM5JOXCYyzkIr8ipeg4V6WJt1YAjPI4mgJrMWo2GqO1GkqyIuZSmkkZkIIGy_qCo95ziNvrhRU7Zk0oJCLSinBZUHsDt5565h3Pjv019JUYrMESWX2ncV4PqI2Ep1MfaGBEuTAD6jLiciiVa73z1R5nZkSCDmXWHyGAaw1epaeWseqaiDWZib4xXAt1b_09v_Xt3G6x7fgTe_Dnrq5OfZ8Sa8jSizd9VuW7Awvn8wnxD-jIttt8OfAY-_91U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+solutions+in+Bayesian+multi-objective+optimization%3A+sequential+and+batch+versions&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Gaudrie%2C+David&rft.au=Le+Riche%2C+Rodolphe&rft.au=Picheny%2C+Victor&rft.au=Enaux%2C+Beno%C3%AEt&rft.date=2020-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=88&rft.issue=1-3&rft.spage=187&rft.epage=212&rft_id=info:doi/10.1007%2Fs10472-019-09644-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon