Targeting solutions in Bayesian multi-objective optimization: sequential and batch versions
Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer a certa...
Saved in:
Published in | Annals of mathematics and artificial intelligence Vol. 88; no. 1-3; pp. 187 - 212 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2020
Springer Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 1012-2443 1573-7470 |
DOI | 10.1007/s10472-019-09644-8 |
Cover
Loading…
Abstract | Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer a certain part of the objective space, we modify the Bayesian multi-objective optimization algorithm which uses Gaussian Processes and works by maximizing the Expected Hypervolume Improvement, to focus the search in the preferred region. The cumulated effects of the Gaussian Processes and the targeting strategy lead to a particularly efficient convergence to the desired part of the Pareto set. To take advantage of parallel computing, a multi-point extension of the targeting criterion is proposed and analyzed. |
---|---|
AbstractList | Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer a certain part of the objective space, we modify the Bayesian multi-objective optimization algorithm which uses Gaussian Processes and works by maximizing the Expected Hypervolume Improvement, to focus the search in the preferred region. The cumulated effects of the Gaussian Processes and the targeting strategy lead to a particularly efficient convergence to the desired part of the Pareto set. To take advantage of parallel computing, a multi-point extension of the targeting criterion is proposed and analyzed. Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer a certain part of the objective space, we modify the Bayesian multi-objective optimization algorithm which uses Gaussian Processes and works by maximizing the Expected Hypervolume Improvement, to focus the search in the preferred region. The cumulated effects of the Gaussian Processes and the targeting strategy lead to a particularly efficient convergence to the desired part of the Pareto set. To take advantage of parallel computing, a multi-point extension of the targeting criterion is proposed and analyzed. Keywords Gaussian processes * Bayesian optimization * Computer experiments * Preference-based optimization * Parallel optimization Mathematics Subject Classification (2010) 65Kxx Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of expensive-to-evaluate functions, it is impossible and often non-informative to look for the entire set. As an end-user would typically prefer a certain part of the objective space, we modify the Bayesian multi-objective optimization algorithm which uses Gaussian Processes to maximize the Expected Hypervolume Improvement, to focus the search in the preferred region. The cumulated effects of the Gaussian Processes and the targeting strategy lead to a particularly efficient convergence to the desired part of the Pareto set. To take advantage of parallel computing, a multi-point extension of the targeting criterion is proposed and analyzed. |
Audience | Academic |
Author | Enaux, Benoît Le Riche, Rodolphe Picheny, Victor Herbert, Vincent Gaudrie, David |
Author_xml | – sequence: 1 givenname: David orcidid: 0000-0003-4609-1457 surname: Gaudrie fullname: Gaudrie, David email: david.gaudrie@mpsa.com organization: Groupe PSA, CNRS LIMOS, École Nationale Supérieure des Mines de Saint-Étienne – sequence: 2 givenname: Rodolphe surname: Le Riche fullname: Le Riche, Rodolphe organization: CNRS LIMOS, École Nationale Supérieure des Mines de Saint-Étienne – sequence: 3 givenname: Victor surname: Picheny fullname: Picheny, Victor organization: Prowler.io – sequence: 4 givenname: Benoît surname: Enaux fullname: Enaux, Benoît organization: Groupe PSA – sequence: 5 givenname: Vincent surname: Herbert fullname: Herbert, Vincent organization: Groupe PSA |
BackLink | https://hal-emse.ccsd.cnrs.fr/emse-01957614$$DView record in HAL |
BookMark | eNp9kU9rVDEUxYNUsK1-AVcBd0Lqzb-XjLuxqC0MuKkrFyEvL2-a4b1kTDID7ac30ycKXZQsEi7nd-_JuRfoLKboEXpP4YoCqE-FglCMAF0RWHVCEP0KnVOpOFFCwVl7A2WECcHfoItSdgBNprtz9OvO5q2vIW5xSdOhhhQLDhF_sQ--BBvxfJhqIKnfeVfD0eO0r2EOj_ak_IyL_33wsQY7YRsH3Nvq7vHR53Lq8xa9Hu1U_Lu_9yX6-e3r3fUN2fz4fnu93hAnQVUilZQwKOUll9KJnlHBQNJeaGuVhYFrGDqlewlWjayVVadX3AnFOzqCHvgl-rj0vbeT2ecw2_xgkg3mZr0xfi7etFyk6qg40ib-sIj3OTXvpZpdOuTY_Bm2opoppoE31dWi2trJmxDHVLN17Qx-Dq5lP4ZWXyuqKUgBogFsAVxOpWQ__jNCwZxWZJYVnayYpxUZ3SD9DHKhPiXbpoXpZZQvaGlz4tbn_994gfoDswimbA |
CitedBy_id | crossref_primary_10_1115_1_4064244 crossref_primary_10_1103_PhysRevMaterials_7_093804 crossref_primary_10_1016_j_ast_2024_109235 crossref_primary_10_1016_j_swevo_2022_101183 crossref_primary_10_1016_j_ast_2023_108725 crossref_primary_10_1007_s10898_021_01119_7 crossref_primary_10_1007_s10898_024_01387_z crossref_primary_10_1007_s13347_025_00861_0 crossref_primary_10_1016_j_energy_2020_117739 crossref_primary_10_2478_popets_2020_0060 crossref_primary_10_1007_s10898_024_01436_7 crossref_primary_10_1109_TEVC_2023_3265347 crossref_primary_10_1007_s00158_019_02458_6 crossref_primary_10_1007_s10898_020_00929_5 crossref_primary_10_1007_s00158_022_03457_w |
Cites_doi | 10.1007/978-1-4615-5025-9_9 10.1007/978-3-540-87700-4_78 10.1007/s10898-013-0118-2 10.1007/978-1-4615-5025-9 10.1016/S0377-2217(02)00487-3 10.1007/978-1-4757-3157-6_2 10.1109/FSKD.2016.7603186 10.1007/978-3-642-45486-8_8 10.1007/978-3-030-13709-0_45 10.1109/TEVC.2010.2077298 10.1007/978-3-642-15871-1_10 10.1016/j.swevo.2018.10.007 10.1016/j.tcs.2011.03.012 10.1007/978-1-4615-5563-6 10.1109/TEVC.2005.851274 10.1007/978-3-540-30217-9_73 10.1007/978-3-319-29975-4_12 10.1145/1143997.1144112 10.1162/106365600568202 10.1016/j.ejor.2006.08.008 10.1007/978-3-642-10701-6_6 10.1007/s11222-014-9477-x 10.1007/978-3-319-27926-8_4 10.1016/j.ejor.2014.07.032 10.1109/4235.996017 10.2514/1.16875 10.1007/978-3-540-88908-3 10.1007/978-3-642-44973-4_7 10.2307/1914280 10.1007/978-3-319-61007-8 10.1007/978-3-7908-2410-0_12 10.1007/978-3-642-34413-8_37 10.1016/bs.adcom.2015.03.001 10.1023/A:1008306431147 10.1007/978-3-642-48782-8_32 10.1145/1527125.1527138 10.1007/978-3-319-54157-0_46 10.1007/978-3-319-15934-8_5 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2019 COPYRIGHT 2020 Springer Springer Nature Switzerland AG 2019. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 – notice: COPYRIGHT 2020 Springer – notice: Springer Nature Switzerland AG 2019. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 1XC |
DOI | 10.1007/s10472-019-09644-8 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science Statistics |
EISSN | 1573-7470 |
EndPage | 212 |
ExternalDocumentID | oai_HAL_emse_01957614v1 A718105404 10_1007_s10472_019_09644_8 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI 1XC |
ID | FETCH-LOGICAL-c507t-57550d77e5355c4b2142051b48aa7a0d380d678b50a7f2b4876893c47361f08d3 |
IEDL.DBID | BENPR |
ISSN | 1012-2443 |
IngestDate | Fri May 09 12:24:53 EDT 2025 Fri Jul 25 10:59:59 EDT 2025 Tue Jun 10 20:33:26 EDT 2025 Thu Apr 24 23:11:27 EDT 2025 Tue Jul 01 03:19:43 EDT 2025 Fri Feb 21 02:26:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-3 |
Keywords | Preference-based optimization Computer experiments Bayesian optimization Parallel optimization 65Kxx Gaussian processes |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-57550d77e5355c4b2142051b48aa7a0d380d678b50a7f2b4876893c47361f08d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4609-1457 0000-0002-3518-2110 |
PQID | 2918272803 |
PQPubID | 2043872 |
PageCount | 26 |
ParticipantIDs | hal_primary_oai_HAL_emse_01957614v1 proquest_journals_2918272803 gale_infotracacademiconefile_A718105404 crossref_primary_10_1007_s10472_019_09644_8 crossref_citationtrail_10_1007_s10472_019_09644_8 springer_journals_10_1007_s10472_019_09644_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationTitle | Annals of mathematics and artificial intelligence |
PublicationTitleAbbrev | Ann Math Artif Intell |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V – name: Springer Verlag |
References | YangKEmmerichMDeutzABäckTMulti-objective Bayesian global optimization using expected hypervolume improvement gradientSwarm Evol. Comput.20194494595610.1016/j.swevo.2018.10.007 BechikhSKessentiniMSaidLBGhédiraKChap. 4: preference incorporation in evolutionary multiobjective optimization: a survey of the state-of-the-artAdv. Comput.20159814120710.1016/bs.adcom.2015.03.001 Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: International Conference on Parallel Problem Solving from Nature, pp 722–731. Springer (2004) Ginsbourger, D., Janusevskis, J., Le Riche, R.: Dealing with asynchronicity in parallel gaussian process based global optimization. In: 4th International Conference of the ERCIM WG on computing and statistics (ERCIM’11) (2011) Yang, K., Li, L., Deutz, A., Bäck, T., Emmerich, M.: Preference-based multiobjective optimization using truncated expected hypervolume improvement. In: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp 276–281. IEEE (2016) AugerABaderJBrockhoffDZitzlerEHypervolume-based multiobjective optimization: theoretical foundations and practical implicationsTheor. Comput. Sci.201242575103289156410.1016/j.tcs.2011.03.012 BinoisMGinsbourgerDRoustantOQuantifying uncertainty on Pareto fronts with Gaussian process conditional simulationsEur. J. Oper. Res.20152432386394331554910.1016/j.ejor.2014.07.032 Janusevskis, J., Le Riche, R., Ginsbourger, D., Girdziusas, R.: Expected improvements for the asynchronous parallel global optimization of expensive functions: potentials and challenges. In: Learning and Intelligent Optimization, pp 413–418. Springer (2012) DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans. Evol. Comput.20026218219710.1109/4235.996017 Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Many-objective test problems to visually examine the behavior of multiobjective evolution in a decision space. In: International Conference on Parallel Problem Solving from Nature, pp 91–100. Springer (2010) MiettinenKNonlinear Multiobjective Optimization, vol. 121998BerlinSpringer10.1007/978-1-4615-5563-6 MolchanovITheory of Random Sets, vol. 192005BerlinSpringer Wierzbicki, A.: Reference point approaches. In: Gal, T., Stewart, T., Hanne, T. (eds.) Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, pp 237–275. Springer (1999) Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. Citeseer (1999) Gaudrie, D., Le Riche, R., Enaux, B., Herbert, V.: Budgeted multi-objective optimization with a focus on the central part of the pareto front-extended version. arXiv:1809.10482 (2018) BeumeNNaujoksBEmmerichMSms-emoa: multiobjective selection based on dominated hypervolumeEur. J. Oper. Res.200718131653166910.1016/j.ejor.2006.08.008 Emmerich, M., Deutz, A., Klinkenberg, J.W.: Hypervolume-based expected improvement: monotonicity properties and exact computation. In: IEEE Congress on Evolutionary Computation (CEC), 2011, pp 2147–2154. IEEE (2011) Horn, D., Wagner, T., Biermann, D., Weihs, C., Bischl, B.: Model-based multi-objective optimization: taxonomy, multi-point proposal, toolbox and benchmark. In: International Conference on Evolutionary Multi-Criterion Optimization, pp 64–78. Springer (2015) Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point. In: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, pp 87–102. ACM (2009) Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp 635–642. ACM (2006) Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited budget of evaluations using model-assisted S-metric selection. In: International Conf. on Parallel Problem Solving from Nature, pp 784–794. Springer (2008) Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize optimization. In: Computational Intelligence in Expensive Optimization Problems, pp 131–162. Springer (2010) Yang, K., Emmerich, M., Deutz, A., Fonseca, C.M.: Computing 3-D expected hypervolume improvement and related integrals in asymptotically optimal time. In: International Conference on Evolutionary Multi-Criterion Optimization, pp 685–700. Springer (2017) Auger, A., Hansen, N.: Performance evaluation of an advanced local search evolutionary algorithm. In: IEEE Congress on Evolutionary Computation, vol. 2, p 2005. IEEE (2005) JonesDRSchonlauMWelchWEfficient Global Optimization of expensive black-box functionsJ. Glob. Optim.1998134455492167346010.1023/A:1008306431147 Emmerich, M., Yang, K., Deutz, A., Wang, H., Fonseca, C.M.: A multicriteria generalization of Bayesian global optimization. In: Advances in Stochastic and Deterministic Global Optimization, pp 229–242. Springer (2016) Ribaud, M.: Krigeage pour la conception de turbomachines: grande dimension et optimisation robuste. PhD thesis Université de Lyon (2018) BrankeJDebKMiettinenKSlowińskiRMultiobjective Optimization: Interactive and Evolutionary Approaches, vol. 52522008BerlinSpringer10.1007/978-3-540-88908-3 KalaiEhudSmorodinskyMeirOther Solutions to Nash's Bargaining ProblemEconometrica197543351344138710.2307/1914280 PardalosPMžilinskasAžilinskasJNon-convex Multi-Objective Optimization2017BerlinSpringer10.1007/978-3-319-61007-8 WhileLBradstreetLBaroneLA fast way of calculating exact hypervolumesIEEE Trans. Evol. Comput.2012161869510.1109/TEVC.2010.2077298 Janusevskis, J., Riche, R.L., Ginsbourger, D.: Parallel expected improvements for global optimization: summary, bounds and speed-up. Technical report, Institut Fayol, École des Mines de Saint-Étienne (2011) BuchananJGardinerLA comparison of two reference point methods in multiple objective mathematical programmingEur. J. Oper. Res.200314911734197889910.1016/S0377-2217(02)00487-3 Svenson, J.: Computer experiments: multiobjective optimization and sensitivity analysis. PhD thesis, The Ohio State University (2011) Marmin, S., Chevalier, C., Ginsbourger, D.: Differentiating the multipoint expected improvement for optimal batch design. In: International Workshop on Machine Learning, Optimization and Big Data, pp 37–48. Springer (2015) SawaragiYNakayamaHTaninoTTheory of Multiobjective Optimization, vol. 1761985AmsterdamElsevier0566.90053 SvensonJSantnerTJMultiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement2010OhioThe Ohio State University Columbus3232 Wierzbicki, A.: The use of reference objectives in multiobjective optimization. In: Multiple Criteria Decision Making Theory and Application, pp 468–486. Springer (1980) Feliot, P.: Une approche Bayesienne pour L’optimisation multi-objectif sous contraintes. PhD thesis, Universite Paris-Saclay (2017) Frazier, P.I., Clark, S.C.: Parallel global optimization using an improved multi-points expected improvement criterion. In: INFORMS Optimization Society Conference, Miami FL, vol. 26 (2012) KeaneAJStatistical improvement criteria for use in multiobjective design optimizationAIAA J.200644487989110.2514/1.16875 KnowlesJParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problemsIEEE Trans. Evol. Comput.2006101506610.1109/TEVC.2005.851274 CouckuytIDeschrijverDDhaeneTFast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimizationJ. Glob. Optim.2014603575594326524610.1007/s10898-013-0118-2 FeliotPaulBectJulienVazquezEmmanuelUser Preferences in Bayesian Multi-objective Optimization: The Expected Weighted Hypervolume Improvement CriterionMachine Learning, Optimization, and Data Science2019ChamSpringer International Publishing53354410.1007/978-3-030-13709-0_45 Chevalier, C., Ginsbourger, D.: Fast computation of the multi-points expected improvement with applications in batch selection. In: International Conference on Learning and Intelligent Optimization, pp 59–69. Springer (2013) Marmin, S., Chevalier, C., Ginsbourger, D.: Efficient batch-sequential bayesian optimization with moments of truncated gaussian vectors. arXiv:1609.02700 (2016) PichenyVMultiobjective optimization using Gaussian process emulators via stepwise uncertainty reductionStat. Comput.201525612651280340188510.1007/s11222-014-9477-x Triantaphyllou, E.: Multi-criteria decision making methods. In: Multi-Criteria Decision Making Methods: a Comparative Study, pp 5–21. Springer (2000) Ginsbourger, D., Riche, R.L.: Towards GP-based optimization with finite time horizon. Technical report, Centre d’Hydrogéologie et de Géothermie de Neuchâtel (2009) Zeleny, M.: The theory of the displaced ideal. In: Multiple Criteria Decision Making Kyoto 1975, pp 153–206. Springer (1976) GalTStewartTHanneTMulticriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, vol. 211999BerlinSpringer10.1007/978-1-4615-5025-9 Parr, J.: Improvement criteria for constraint handling and multiobjective optimization. PhD thesis, University of Southampton (2013) Schonlau, M.: Computer experiments and global optimization. PhD thesis, University of Waterloo (1997) ZitzlerEDebKThieleLComparison of multiobjective evolutionary algorithms empirical resultsEvol. Comput.20008217319510.1162/106365600568202 9644_CR27 DR Jones (9644_CR28) 1998; 13 9644_CR25 9644_CR26 9644_CR23 J Svenson (9644_CR44) 2010 9644_CR24 9644_CR21 I Couckuyt (9644_CR11) 2014; 60 9644_CR22 M Binois (9644_CR6) 2015; 243 N Beume (9644_CR5) 2007; 181 J Knowles (9644_CR31) 2006; 10 PM Pardalos (9644_CR36) 2017 K Yang (9644_CR49) 2019; 44 9644_CR20 A Auger (9644_CR2) 2012; 425 S Bechikh (9644_CR4) 2015; 98 J Buchanan (9644_CR9) 2003; 149 9644_CR39 9644_CR37 9644_CR32 9644_CR33 Ehud Kalai (9644_CR29) 1975; 43 I Molchanov (9644_CR35) 2005 K Deb (9644_CR12) 2002; 6 Y Sawaragi (9644_CR41) 1985 9644_CR1 9644_CR3 9644_CR7 9644_CR47 9644_CR48 9644_CR45 9644_CR43 V Picheny (9644_CR38) 2015; 25 9644_CR42 9644_CR40 AJ Keane (9644_CR30) 2006; 44 K Miettinen (9644_CR34) 1998 9644_CR16 9644_CR14 9644_CR15 T Gal (9644_CR19) 1999 9644_CR13 9644_CR10 9644_CR54 E Zitzler (9644_CR53) 2000; 8 J Branke (9644_CR8) 2008 9644_CR18 Paul Feliot (9644_CR17) 2019 9644_CR52 9644_CR50 9644_CR51 L While (9644_CR46) 2012; 16 |
References_xml | – reference: BeumeNNaujoksBEmmerichMSms-emoa: multiobjective selection based on dominated hypervolumeEur. J. Oper. Res.200718131653166910.1016/j.ejor.2006.08.008 – reference: CouckuytIDeschrijverDDhaeneTFast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimizationJ. Glob. Optim.2014603575594326524610.1007/s10898-013-0118-2 – reference: Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point. In: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, pp 87–102. ACM (2009) – reference: Parr, J.: Improvement criteria for constraint handling and multiobjective optimization. PhD thesis, University of Southampton (2013) – reference: YangKEmmerichMDeutzABäckTMulti-objective Bayesian global optimization using expected hypervolume improvement gradientSwarm Evol. Comput.20194494595610.1016/j.swevo.2018.10.007 – reference: PichenyVMultiobjective optimization using Gaussian process emulators via stepwise uncertainty reductionStat. Comput.201525612651280340188510.1007/s11222-014-9477-x – reference: ZitzlerEDebKThieleLComparison of multiobjective evolutionary algorithms empirical resultsEvol. Comput.20008217319510.1162/106365600568202 – reference: Janusevskis, J., Le Riche, R., Ginsbourger, D., Girdziusas, R.: Expected improvements for the asynchronous parallel global optimization of expensive functions: potentials and challenges. In: Learning and Intelligent Optimization, pp 413–418. Springer (2012) – reference: Chevalier, C., Ginsbourger, D.: Fast computation of the multi-points expected improvement with applications in batch selection. In: International Conference on Learning and Intelligent Optimization, pp 59–69. Springer (2013) – reference: Janusevskis, J., Riche, R.L., Ginsbourger, D.: Parallel expected improvements for global optimization: summary, bounds and speed-up. Technical report, Institut Fayol, École des Mines de Saint-Étienne (2011) – reference: BinoisMGinsbourgerDRoustantOQuantifying uncertainty on Pareto fronts with Gaussian process conditional simulationsEur. J. Oper. Res.20152432386394331554910.1016/j.ejor.2014.07.032 – reference: Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: International Conference on Parallel Problem Solving from Nature, pp 722–731. Springer (2004) – reference: Ginsbourger, D., Janusevskis, J., Le Riche, R.: Dealing with asynchronicity in parallel gaussian process based global optimization. In: 4th International Conference of the ERCIM WG on computing and statistics (ERCIM’11) (2011) – reference: Wierzbicki, A.: Reference point approaches. In: Gal, T., Stewart, T., Hanne, T. (eds.) Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, pp 237–275. Springer (1999) – reference: BechikhSKessentiniMSaidLBGhédiraKChap. 4: preference incorporation in evolutionary multiobjective optimization: a survey of the state-of-the-artAdv. Comput.20159814120710.1016/bs.adcom.2015.03.001 – reference: Frazier, P.I., Clark, S.C.: Parallel global optimization using an improved multi-points expected improvement criterion. In: INFORMS Optimization Society Conference, Miami FL, vol. 26 (2012) – reference: Triantaphyllou, E.: Multi-criteria decision making methods. In: Multi-Criteria Decision Making Methods: a Comparative Study, pp 5–21. Springer (2000) – reference: Deb, K., Sundar, J.: Reference point based multi-objective optimization using evolutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp 635–642. ACM (2006) – reference: Ginsbourger, D., Riche, R.L.: Towards GP-based optimization with finite time horizon. Technical report, Centre d’Hydrogéologie et de Géothermie de Neuchâtel (2009) – reference: Yang, K., Emmerich, M., Deutz, A., Fonseca, C.M.: Computing 3-D expected hypervolume improvement and related integrals in asymptotically optimal time. In: International Conference on Evolutionary Multi-Criterion Optimization, pp 685–700. Springer (2017) – reference: Marmin, S., Chevalier, C., Ginsbourger, D.: Differentiating the multipoint expected improvement for optimal batch design. In: International Workshop on Machine Learning, Optimization and Big Data, pp 37–48. Springer (2015) – reference: Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Many-objective test problems to visually examine the behavior of multiobjective evolution in a decision space. In: International Conference on Parallel Problem Solving from Nature, pp 91–100. Springer (2010) – reference: Auger, A., Hansen, N.: Performance evaluation of an advanced local search evolutionary algorithm. In: IEEE Congress on Evolutionary Computation, vol. 2, p 2005. IEEE (2005) – reference: Emmerich, M., Deutz, A., Klinkenberg, J.W.: Hypervolume-based expected improvement: monotonicity properties and exact computation. In: IEEE Congress on Evolutionary Computation (CEC), 2011, pp 2147–2154. IEEE (2011) – reference: Feliot, P.: Une approche Bayesienne pour L’optimisation multi-objectif sous contraintes. PhD thesis, Universite Paris-Saclay (2017) – reference: Emmerich, M., Yang, K., Deutz, A., Wang, H., Fonseca, C.M.: A multicriteria generalization of Bayesian global optimization. In: Advances in Stochastic and Deterministic Global Optimization, pp 229–242. Springer (2016) – reference: Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize optimization. In: Computational Intelligence in Expensive Optimization Problems, pp 131–162. Springer (2010) – reference: Gaudrie, D., Le Riche, R., Enaux, B., Herbert, V.: Budgeted multi-objective optimization with a focus on the central part of the pareto front-extended version. arXiv:1809.10482 (2018) – reference: Horn, D., Wagner, T., Biermann, D., Weihs, C., Bischl, B.: Model-based multi-objective optimization: taxonomy, multi-point proposal, toolbox and benchmark. In: International Conference on Evolutionary Multi-Criterion Optimization, pp 64–78. Springer (2015) – reference: KnowlesJParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problemsIEEE Trans. Evol. Comput.2006101506610.1109/TEVC.2005.851274 – reference: Wierzbicki, A.: The use of reference objectives in multiobjective optimization. In: Multiple Criteria Decision Making Theory and Application, pp 468–486. Springer (1980) – reference: Yang, K., Li, L., Deutz, A., Bäck, T., Emmerich, M.: Preference-based multiobjective optimization using truncated expected hypervolume improvement. In: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp 276–281. IEEE (2016) – reference: BrankeJDebKMiettinenKSlowińskiRMultiobjective Optimization: Interactive and Evolutionary Approaches, vol. 52522008BerlinSpringer10.1007/978-3-540-88908-3 – reference: GalTStewartTHanneTMulticriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, vol. 211999BerlinSpringer10.1007/978-1-4615-5025-9 – reference: SawaragiYNakayamaHTaninoTTheory of Multiobjective Optimization, vol. 1761985AmsterdamElsevier0566.90053 – reference: Marmin, S., Chevalier, C., Ginsbourger, D.: Efficient batch-sequential bayesian optimization with moments of truncated gaussian vectors. arXiv:1609.02700 (2016) – reference: WhileLBradstreetLBaroneLA fast way of calculating exact hypervolumesIEEE Trans. Evol. Comput.2012161869510.1109/TEVC.2010.2077298 – reference: Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited budget of evaluations using model-assisted S-metric selection. In: International Conf. on Parallel Problem Solving from Nature, pp 784–794. Springer (2008) – reference: MolchanovITheory of Random Sets, vol. 192005BerlinSpringer – reference: SvensonJSantnerTJMultiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement2010OhioThe Ohio State University Columbus3232 – reference: Zeleny, M.: The theory of the displaced ideal. In: Multiple Criteria Decision Making Kyoto 1975, pp 153–206. Springer (1976) – reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans. Evol. Comput.20026218219710.1109/4235.996017 – reference: KalaiEhudSmorodinskyMeirOther Solutions to Nash's Bargaining ProblemEconometrica197543351344138710.2307/1914280 – reference: MiettinenKNonlinear Multiobjective Optimization, vol. 121998BerlinSpringer10.1007/978-1-4615-5563-6 – reference: FeliotPaulBectJulienVazquezEmmanuelUser Preferences in Bayesian Multi-objective Optimization: The Expected Weighted Hypervolume Improvement CriterionMachine Learning, Optimization, and Data Science2019ChamSpringer International Publishing53354410.1007/978-3-030-13709-0_45 – reference: BuchananJGardinerLA comparison of two reference point methods in multiple objective mathematical programmingEur. J. Oper. Res.200314911734197889910.1016/S0377-2217(02)00487-3 – reference: AugerABaderJBrockhoffDZitzlerEHypervolume-based multiobjective optimization: theoretical foundations and practical implicationsTheor. Comput. Sci.201242575103289156410.1016/j.tcs.2011.03.012 – reference: KeaneAJStatistical improvement criteria for use in multiobjective design optimizationAIAA J.200644487989110.2514/1.16875 – reference: Ribaud, M.: Krigeage pour la conception de turbomachines: grande dimension et optimisation robuste. PhD thesis Université de Lyon (2018) – reference: PardalosPMžilinskasAžilinskasJNon-convex Multi-Objective Optimization2017BerlinSpringer10.1007/978-3-319-61007-8 – reference: Schonlau, M.: Computer experiments and global optimization. PhD thesis, University of Waterloo (1997) – reference: JonesDRSchonlauMWelchWEfficient Global Optimization of expensive black-box functionsJ. Glob. Optim.1998134455492167346010.1023/A:1008306431147 – reference: Svenson, J.: Computer experiments: multiobjective optimization and sensitivity analysis. PhD thesis, The Ohio State University (2011) – reference: Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. Citeseer (1999) – ident: 9644_CR48 doi: 10.1007/978-1-4615-5025-9_9 – ident: 9644_CR39 doi: 10.1007/978-3-540-87700-4_78 – volume: 60 start-page: 575 issue: 3 year: 2014 ident: 9644_CR11 publication-title: J. Glob. Optim. doi: 10.1007/s10898-013-0118-2 – ident: 9644_CR42 – ident: 9644_CR16 – volume-title: Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, vol. 21 year: 1999 ident: 9644_CR19 doi: 10.1007/978-1-4615-5025-9 – volume: 149 start-page: 17 issue: 1 year: 2003 ident: 9644_CR9 publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(02)00487-3 – ident: 9644_CR3 – ident: 9644_CR45 doi: 10.1007/978-1-4757-3157-6_2 – ident: 9644_CR51 doi: 10.1109/FSKD.2016.7603186 – volume-title: Theory of Random Sets, vol. 19 year: 2005 ident: 9644_CR35 – ident: 9644_CR52 doi: 10.1007/978-3-642-45486-8_8 – start-page: 533 volume-title: Machine Learning, Optimization, and Data Science year: 2019 ident: 9644_CR17 doi: 10.1007/978-3-030-13709-0_45 – volume: 16 start-page: 86 issue: 1 year: 2012 ident: 9644_CR46 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2077298 – ident: 9644_CR25 doi: 10.1007/978-3-642-15871-1_10 – ident: 9644_CR14 – volume: 44 start-page: 945 year: 2019 ident: 9644_CR49 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.10.007 – volume: 425 start-page: 75 year: 2012 ident: 9644_CR2 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2011.03.012 – ident: 9644_CR20 – volume-title: Theory of Multiobjective Optimization, vol. 176 year: 1985 ident: 9644_CR41 – volume-title: Nonlinear Multiobjective Optimization, vol. 12 year: 1998 ident: 9644_CR34 doi: 10.1007/978-1-4615-5563-6 – volume: 10 start-page: 50 issue: 1 year: 2006 ident: 9644_CR31 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.851274 – ident: 9644_CR7 doi: 10.1007/978-3-540-30217-9_73 – ident: 9644_CR15 doi: 10.1007/978-3-319-29975-4_12 – ident: 9644_CR13 doi: 10.1145/1143997.1144112 – volume: 8 start-page: 173 issue: 2 year: 2000 ident: 9644_CR53 publication-title: Evol. Comput. doi: 10.1162/106365600568202 – ident: 9644_CR18 – volume: 181 start-page: 1653 issue: 3 year: 2007 ident: 9644_CR5 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2006.08.008 – ident: 9644_CR23 doi: 10.1007/978-3-642-10701-6_6 – volume: 25 start-page: 1265 issue: 6 year: 2015 ident: 9644_CR38 publication-title: Stat. Comput. doi: 10.1007/s11222-014-9477-x – ident: 9644_CR32 doi: 10.1007/978-3-319-27926-8_4 – volume: 243 start-page: 386 issue: 2 year: 2015 ident: 9644_CR6 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2014.07.032 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 9644_CR12 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 44 start-page: 879 issue: 4 year: 2006 ident: 9644_CR30 publication-title: AIAA J. doi: 10.2514/1.16875 – ident: 9644_CR40 – start-page: 32 volume-title: Multiobjective Optimization of Expensive Black-Box Functions via Expected Maximin Improvement year: 2010 ident: 9644_CR44 – volume-title: Multiobjective Optimization: Interactive and Evolutionary Approaches, vol. 5252 year: 2008 ident: 9644_CR8 doi: 10.1007/978-3-540-88908-3 – ident: 9644_CR21 – ident: 9644_CR10 doi: 10.1007/978-3-642-44973-4_7 – volume: 43 start-page: 513 issue: 3 year: 1975 ident: 9644_CR29 publication-title: Econometrica doi: 10.2307/1914280 – ident: 9644_CR33 – volume-title: Non-convex Multi-Objective Optimization year: 2017 ident: 9644_CR36 doi: 10.1007/978-3-319-61007-8 – ident: 9644_CR54 – ident: 9644_CR37 – ident: 9644_CR22 doi: 10.1007/978-3-7908-2410-0_12 – ident: 9644_CR27 doi: 10.1007/978-3-642-34413-8_37 – volume: 98 start-page: 141 year: 2015 ident: 9644_CR4 publication-title: Adv. Comput. doi: 10.1016/bs.adcom.2015.03.001 – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 9644_CR28 publication-title: J. Glob. Optim. doi: 10.1023/A:1008306431147 – ident: 9644_CR43 – ident: 9644_CR47 doi: 10.1007/978-3-642-48782-8_32 – ident: 9644_CR1 doi: 10.1145/1527125.1527138 – ident: 9644_CR50 doi: 10.1007/978-3-319-54157-0_46 – ident: 9644_CR24 doi: 10.1007/978-3-319-15934-8_5 – ident: 9644_CR26 |
SSID | ssj0009686 |
Score | 2.3587475 |
Snippet | Multi-objective optimization aims at finding trade-off solutions to conflicting objectives. These constitute the Pareto optimal set. In the context of... |
SourceID | hal proquest gale crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 187 |
SubjectTerms | Algorithms Approximation Artificial Intelligence Bayesian analysis Complex Systems Computer Science Design of experiments Expected values Gaussian process Mathematics Multiple objective analysis Objectives Optimization Optimization and Control Other Statistics Pareto optimization Pareto optimum Statistics |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPTgW6wvAgoeNJA-0_W2issi6smFBQ8hbRNUdrti1wX_vZM03VVRwWsfQ-hkZr5pZr4BONZpyDRmOVSj-6ORyjWVGIZo2ipCzWItM9s-dnuXdHvRdT_uu6awqql2b44kraf-1OwWcVNGYEp8MIrTdB4WY5O74y7uBe0Z1W5i5zsa4iqKwSt0rTI_y_gSjpxTnn80NZGfAOe3M1IbejprsOIwI2nXSl6HOVVuwGozj4E489yA5dspB2u1CQ_3tsgbJZLp_iJPJbmQ78p0ThJbS0hH2XPt88gIvcfQtWWek7rGGu1_QGRZkAxd9iOZ1H_Xqi3oda7uL7vUjVKgOQK-MUVQFrOCcxUjvsijzBCtoTlmUSoll6wIU1Zg2MpiJrkO8DJmIa0wj3iY-JqlRbgNC-WoVDtAEJIHHIFMojVGwFi2gkAWWZjznHHFE-aB33xRkTuecTPuYiBmDMlGCwK1IKwWROrB6fSdl5pl48-nT4yihDFBlJxL10mA6zNkVqKN8dY3UDTy4Ah1ORVpqLS77RuhhpUyAjHX8qOJ78F-o2vhLLgSQQszLzu7y4OzRv-z27-vbvd_j-_BUmBSeFvWtg8L49c3dYA4Z5wd2m39AeTf8CY priority: 102 providerName: Springer Nature |
Title | Targeting solutions in Bayesian multi-objective optimization: sequential and batch versions |
URI | https://link.springer.com/article/10.1007/s10472-019-09644-8 https://www.proquest.com/docview/2918272803 https://hal-emse.ccsd.cnrs.fr/emse-01957614 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxNBEB5M86IPWqvS0xoWFHzQxfu9m77IpSQNaoNIAxUflr27Xaq0l-rFgv99Z_b2EhXsUyCXDMfN7jff7M18A_DSyiS0mOVwi_DHU1NZrjEMcTmuExtmVpeufexkkc-X6fuz7MwfuLW-rLLHRAfU9aqiM_K38RiZsJul9O7qB6epUfR21Y_QGMAQIVhi8jWcTBefPm9ld3M365FErDgGssS3zfjmuVRQWQKVDCEr4PKv0OQBenBO9ZF_kM9_3pe6MDTbhfueP7Kic_hDuGOaPXjQz2Zgfqvuwb2TjR5r-wi-nrqCb7TINmuNfWvYRP821EXJXF0hX5XfO_xjK0SSS9-ieci6emvEggumm5qVCN_n7Lo7aWsfw3I2PT2acz9WgVdI_tYcCVoW1kKYDLlGlZYkuoZbs0yl1kKHdSLDGkNYmYVa2Bi_xoxknFSpSPLIhrJOnsBOs2rMPjCk57FAUpNbi9Ew0-M41nWZVKIKhRF5GEDUP1FVec1xGn1xobZqyeQFhV5QzgtKBvB685-rTnHj1l-_Ikcp2o5oudK-qwDvj4StVIGxNyJamgbwAn25MUmy2vPiozKXrSGDmHdF6XUUwEHva-V3c6u2ay-AN73_t5f_f3dPb7f2DO7GlL67krYD2Fn__GWeI8dZlyMYyNnxCIbFbDJZ0Ofxlw_TkV_eeHUZFzf5ivls |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB215QAcChQQoQUsAeIAFkmcxAkSQsvHsqW7PW2lSj0YJ7FVUJttm6Wof4rfyIzj7AISvfWazY6izPjNszPzBuCZzUVocZfDLcIfT0xlucY0xPOiFjZMrS5d-9hkNxvtJV_20_0V-NX3wlBZZY-JDqjrWUVn5K_jApmwm6X07uSU09Qo-rraj9DowmLHXPzELVv7dvsj-vd5HA8_TT-MuJ8qwCvkPnOO_CQNaylNiqm2SkrSHMPILJNca6nDWuRhjQhepqGWNsbLSMgLUSVSZJEN81qg3VW4lghR0IrKh5-XIr-ZmyxJklkc06bwTTq-VS-RVARBBUrIQXj-VyL06WD1kKox_6C6_3yddUlveBvWPVtlgy687sCKaTbgVj8Jgnlg2ICbk4X6a3sXDqauvBwtskVks28Ne68vDPVsMlfFyGfl9w5t2Qxx69g3hL5hXXU3Is8R003NSkwWh-y8O9dr78Helbzu-7DWzBrzABhuBmKJFCqzFnNvqos41nUpKlmF0sgsDCDq36iqvMI5Ddo4UkttZvKCQi8o5wWVB_By8Z-TTt_j0rtfkKMULX60XGnfw4DPRzJaaoCZPiISnATwFH25MEki3qPBWJnj1pBB3OVFyXkUwFbva-Wxo1XLSA_gVe__5c__f7qHl1t7AtdH08lYjbd3dzbhRkwHB66YbgvW5mc_zCNkV_PysQtpBl-veg39Bg1HLUY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEC58QIgHY0zEUaMNCeRgGnuePettE102vsjBBSGHpmemGxWdFXcV_PdW9fTsbiQJeJ1H0Ux1VX01XfUVwBebx8JilsMtuj-emNJyjWGI550qtiK1unDtY6dnWX-QHF2kFzNd_K7avT2SbHoaiKWpHu_dVXZvpvEtkVRSQOU-GNF5Pg-L6I5D2teDqDul3c3crEciseIYyGLfNvN3GX-EJu-g5y-pPnIGfL44L3VhqLcCyx4_sm6j8PcwZ-pVeNfOZmDeVFdh6XTCxzr6AL_PXcE3SmSTvcauavZdPxnqomSurpAPi-vG_7EhepJb36K5z5p6a_QFN0zXFSvQfV-yx-ZP2-gjDHqH5z_63I9V4CWCvzFHgJaKSkqTItYok4JI19A0iyTXWmpRxbmoMIQVqdDSRngZM5JOXCYyzkIr8ipeg4V6WJt1YAjPI4mgJrMWo2GqO1GkqyIuZSmkkZkIIGy_qCo95ziNvrhRU7Zk0oJCLSinBZUHsDt5565h3Pjv019JUYrMESWX2ncV4PqI2Ep1MfaGBEuTAD6jLiciiVa73z1R5nZkSCDmXWHyGAaw1epaeWseqaiDWZib4xXAt1b_09v_Xt3G6x7fgTe_Dnrq5OfZ8Sa8jSizd9VuW7Awvn8wnxD-jIttt8OfAY-_91U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+solutions+in+Bayesian+multi-objective+optimization%3A+sequential+and+batch+versions&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Gaudrie%2C+David&rft.au=Le+Riche%2C+Rodolphe&rft.au=Picheny%2C+Victor&rft.au=Enaux%2C+Beno%C3%AEt&rft.date=2020-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=88&rft.issue=1-3&rft.spage=187&rft.epage=212&rft_id=info:doi/10.1007%2Fs10472-019-09644-8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon |