Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil

Maize genotypes with greater lateral root branching density have superior phosphorus uptake, growth, and yield in low phosphorus soil. Abstract The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing envi...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 69; no. 20; pp. 4961 - 4970
Main Authors Jia, Xucun, Liu, Peng, Lynch, Jonathan P
Format Journal Article
LanguageEnglish
Published UK Oxford University Press 14.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Maize genotypes with greater lateral root branching density have superior phosphorus uptake, growth, and yield in low phosphorus soil. Abstract The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing environmental pollution in developed countries. We tested the hypothesis that maize (Zea mays) phenotypes with greater lateral root branching density have greater phosphorus acquisition from low phosphorus soils. Recombinant inbred lines with either 'many short' (MS) or 'few long' (FL) lateral root phenotypes were grown under high and low phosphorus conditions in greenhouse mesocosms and in the field. Under low phosphorus in mesocosms, lines with the MS phenotype had 89% greater phosphorus acquisition and 48% more shoot biomass than FL lines. Under low phosphorus in the field, MS lines had 16% shallower rooting depth (D95), 81% greater root length density in the top 20 cm of the soil, 49% greater shoot phosphorus content, 12% greater leaf photosynthesis, 19% greater shoot biomass, and 14% greater grain yield than FL lines. These results are consistent with the hypothesis that the phenotype of many, shorter lateral roots improves phosphorus acquisition under low phosphorus availability and merits consideration for genetic improvement of phosphorus efficiency in maize and other crops.
AbstractList Maize genotypes with greater lateral root branching density have superior phosphorus uptake, growth, and yield in low phosphorus soil. The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing environmental pollution in developed countries. We tested the hypothesis that maize ( Zea mays ) phenotypes with greater lateral root branching density have greater phosphorus acquisition from low phosphorus soils. Recombinant inbred lines with either ‘many short’ (MS) or ‘few long’ (FL) lateral root phenotypes were grown under high and low phosphorus conditions in greenhouse mesocosms and in the field. Under low phosphorus in mesocosms, lines with the MS phenotype had 89% greater phosphorus acquisition and 48% more shoot biomass than FL lines. Under low phosphorus in the field, MS lines had 16% shallower rooting depth (D 95 ), 81% greater root length density in the top 20 cm of the soil, 49% greater shoot phosphorus content, 12% greater leaf photosynthesis, 19% greater shoot biomass, and 14% greater grain yield than FL lines. These results are consistent with the hypothesis that the phenotype of many, shorter lateral roots improves phosphorus acquisition under low phosphorus availability and merits consideration for genetic improvement of phosphorus efficiency in maize and other crops.
The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing environmental pollution in developed countries. We tested the hypothesis that maize (Zea mays) phenotypes with greater lateral root branching density have greater phosphorus acquisition from low phosphorus soils. Recombinant inbred lines with either 'many short' (MS) or 'few long' (FL) lateral root phenotypes were grown under high and low phosphorus conditions in greenhouse mesocosms and in the field. Under low phosphorus in mesocosms, lines with the MS phenotype had 89% greater phosphorus acquisition and 48% more shoot biomass than FL lines. Under low phosphorus in the field, MS lines had 16% shallower rooting depth (D95), 81% greater root length density in the top 20 cm of the soil, 49% greater shoot phosphorus content, 12% greater leaf photosynthesis, 19% greater shoot biomass, and 14% greater grain yield than FL lines. These results are consistent with the hypothesis that the phenotype of many, shorter lateral roots improves phosphorus acquisition under low phosphorus availability and merits consideration for genetic improvement of phosphorus efficiency in maize and other crops.
The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing environmental pollution in developed countries. We tested the hypothesis that maize (Zea mays) phenotypes with greater lateral root branching density have greater phosphorus acquisition from low phosphorus soils. Recombinant inbred lines with either ‘many short’ (MS) or ‘few long’ (FL) lateral root phenotypes were grown under high and low phosphorus conditions in greenhouse mesocosms and in the field. Under low phosphorus in mesocosms, lines with the MS phenotype had 89% greater phosphorus acquisition and 48% more shoot biomass than FL lines. Under low phosphorus in the field, MS lines had 16% shallower rooting depth (D₉₅), 81% greater root length density in the top 20 cm of the soil, 49% greater shoot phosphorus content, 12% greater leaf photosynthesis, 19% greater shoot biomass, and 14% greater grain yield than FL lines. These results are consistent with the hypothesis that the phenotype of many, shorter lateral roots improves phosphorus acquisition under low phosphorus availability and merits consideration for genetic improvement of phosphorus efficiency in maize and other crops.
The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing environmental pollution in developed countries. We tested the hypothesis that maize (Zea mays) phenotypes with greater lateral root branching density have greater phosphorus acquisition from low phosphorus soils. Recombinant inbred lines with either 'many short' (MS) or 'few long' (FL) lateral root phenotypes were grown under high and low phosphorus conditions in greenhouse mesocosms and in the field. Under low phosphorus in mesocosms, lines with the MS phenotype had 89% greater phosphorus acquisition and 48% more shoot biomass than FL lines. Under low phosphorus in the field, MS lines had 16% shallower rooting depth (D95), 81% greater root length density in the top 20 cm of the soil, 49% greater shoot phosphorus content, 12% greater leaf photosynthesis, 19% greater shoot biomass, and 14% greater grain yield than FL lines. These results are consistent with the hypothesis that the phenotype of many, shorter lateral roots improves phosphorus acquisition under low phosphorus availability and merits consideration for genetic improvement of phosphorus efficiency in maize and other crops.The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing environmental pollution in developed countries. We tested the hypothesis that maize (Zea mays) phenotypes with greater lateral root branching density have greater phosphorus acquisition from low phosphorus soils. Recombinant inbred lines with either 'many short' (MS) or 'few long' (FL) lateral root phenotypes were grown under high and low phosphorus conditions in greenhouse mesocosms and in the field. Under low phosphorus in mesocosms, lines with the MS phenotype had 89% greater phosphorus acquisition and 48% more shoot biomass than FL lines. Under low phosphorus in the field, MS lines had 16% shallower rooting depth (D95), 81% greater root length density in the top 20 cm of the soil, 49% greater shoot phosphorus content, 12% greater leaf photosynthesis, 19% greater shoot biomass, and 14% greater grain yield than FL lines. These results are consistent with the hypothesis that the phenotype of many, shorter lateral roots improves phosphorus acquisition under low phosphorus availability and merits consideration for genetic improvement of phosphorus efficiency in maize and other crops.
Maize genotypes with greater lateral root branching density have superior phosphorus uptake, growth, and yield in low phosphorus soil. Abstract The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing environmental pollution in developed countries. We tested the hypothesis that maize (Zea mays) phenotypes with greater lateral root branching density have greater phosphorus acquisition from low phosphorus soils. Recombinant inbred lines with either 'many short' (MS) or 'few long' (FL) lateral root phenotypes were grown under high and low phosphorus conditions in greenhouse mesocosms and in the field. Under low phosphorus in mesocosms, lines with the MS phenotype had 89% greater phosphorus acquisition and 48% more shoot biomass than FL lines. Under low phosphorus in the field, MS lines had 16% shallower rooting depth (D95), 81% greater root length density in the top 20 cm of the soil, 49% greater shoot phosphorus content, 12% greater leaf photosynthesis, 19% greater shoot biomass, and 14% greater grain yield than FL lines. These results are consistent with the hypothesis that the phenotype of many, shorter lateral roots improves phosphorus acquisition under low phosphorus availability and merits consideration for genetic improvement of phosphorus efficiency in maize and other crops.
Author Lynch, Jonathan P
Liu, Peng
Jia, Xucun
AuthorAffiliation 2 Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
1 College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an, Shandong Province, China
AuthorAffiliation_xml – name: 1 College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an, Shandong Province, China
– name: 2 Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
Author_xml – sequence: 1
  givenname: Xucun
  surname: Jia
  fullname: Jia, Xucun
  organization: College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai'an, Shandong Province, China
– sequence: 2
  givenname: Peng
  surname: Liu
  fullname: Liu, Peng
  organization: College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai'an, Shandong Province, China
– sequence: 3
  givenname: Jonathan P
  orcidid: 0000-0002-7265-9790
  surname: Lynch
  fullname: Lynch, Jonathan P
  email: JPL4@psu.edu
  organization: Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30295904$$D View this record in MEDLINE/PubMed
BookMark eNqFkVFrFTEQhYO02Nvqiz9A8iKIsO0k2WxuXgQpWoVCX_oestnZ3pTdZJvsVq-_3lxuLVXEPiRhmG8OZ3KOyUGIAQl5w-CUgRZntz_aM0xbLvkLsmJ1AxWvBTsgKwDOK9BSHZHjnG8BQIKUL8mRAK6lhnpFNhcJ7YyJDrvbDjTFONM22eA2PtzQDkP285b6QEfrfyL145TiPWY6bWIuJy2ZWne3-IL5GGif4kiH-P1pP0c_vCKHvR0yvn54T8j1l8_X51-ry6uLb-efLisnQc2VlLb4kr1uG1mDaJxUvNS17XqlUHdCyU712jq5broO25531gqNrbOyb2pxQj7uZaelHbFzGOaylZmSH23ammi9-bMT_MbcxHvTMKG0VkXg_YNAincL5tmMPjscBhswLtnwGqBWcs358yhjiknFxLqgb5_aevTzO4gCfNgDLsWcE_aPCAOzS9mUlM0-5QLDX7Dzs919f1nJD_8eebcficv0P-lflD-8QA
CitedBy_id crossref_primary_10_1093_jxb_erad421
crossref_primary_10_3389_fpls_2021_716691
crossref_primary_10_17221_140_2023_AGRICECON
crossref_primary_10_1016_j_heliyon_2025_e42340
crossref_primary_10_3389_fpls_2023_1223532
crossref_primary_10_1007_s11104_023_05966_z
crossref_primary_10_1038_s41598_021_89129_z
crossref_primary_10_1111_ppl_14207
crossref_primary_10_1111_pbr_13049
crossref_primary_10_1016_j_still_2023_105915
crossref_primary_10_3389_fpls_2024_1366173
crossref_primary_10_1016_j_eja_2024_127475
crossref_primary_10_1007_s00122_024_04681_2
crossref_primary_10_1016_j_envexpbot_2022_105087
crossref_primary_10_1016_j_jgg_2024_09_018
crossref_primary_10_3390_agriculture11060481
crossref_primary_10_1111_pce_14270
crossref_primary_10_3390_agronomy11030574
crossref_primary_10_1016_j_ijbiomac_2023_123760
crossref_primary_10_1186_s40538_022_00342_y
crossref_primary_10_1111_tpj_15560
crossref_primary_10_1111_nph_17572
crossref_primary_10_1007_s10725_020_00640_1
crossref_primary_10_1093_jxb_eraa027
crossref_primary_10_3390_plants12030544
crossref_primary_10_1111_jipb_13090
crossref_primary_10_3389_fpls_2021_700651
crossref_primary_10_1007_s11105_024_01512_y
crossref_primary_10_3390_agronomy11112230
crossref_primary_10_1111_pce_13875
crossref_primary_10_1016_S2095_3119_20_63599_7
crossref_primary_10_1016_j_agee_2024_109181
crossref_primary_10_36783_18069657rbcs20230059
crossref_primary_10_1016_j_plantsci_2022_111323
crossref_primary_10_1016_j_soilbio_2023_109074
crossref_primary_10_1186_s12870_025_06319_x
crossref_primary_10_1186_s42397_022_00126_7
crossref_primary_10_3390_agronomy11050930
crossref_primary_10_1007_s11104_024_06931_0
crossref_primary_10_3389_fpls_2024_1429901
crossref_primary_10_3724_SP_J_1249_2023_04415
crossref_primary_10_1016_j_fcr_2020_107872
crossref_primary_10_1007_s11104_024_07188_3
crossref_primary_10_3389_fpls_2019_01714
crossref_primary_10_3389_fpls_2023_1329556
crossref_primary_10_1155_2020_8420151
crossref_primary_10_1093_jxb_erac117
crossref_primary_10_3390_plants12132520
crossref_primary_10_1016_j_tplants_2019_05_011
crossref_primary_10_1093_plcell_koad326
crossref_primary_10_3389_fpls_2019_00363
crossref_primary_10_1186_s13007_021_00825_3
crossref_primary_10_1007_s10705_020_10060_2
crossref_primary_10_1093_jxb_erac192
crossref_primary_10_3390_plants13050674
crossref_primary_10_3389_fpls_2021_679916
crossref_primary_10_1007_s11104_022_05784_9
crossref_primary_10_1186_s40168_024_01839_4
crossref_primary_10_1093_plphys_kiad214
crossref_primary_10_1111_pce_15462
crossref_primary_10_1002_jpln_202200196
crossref_primary_10_3389_fpls_2020_00546
crossref_primary_10_1016_j_fcr_2020_107960
crossref_primary_10_1016_j_fcr_2021_108378
crossref_primary_10_1007_s11104_023_06355_2
crossref_primary_10_1093_plphys_kiac405
crossref_primary_10_1016_j_fcr_2020_108013
crossref_primary_10_1016_j_plaphy_2024_108386
crossref_primary_10_1080_10643389_2022_2120317
crossref_primary_10_1093_aob_mcab145
crossref_primary_10_1093_jxb_eraa324
crossref_primary_10_1016_j_scienta_2024_113163
crossref_primary_10_1093_jxb_erad390
crossref_primary_10_1093_jxb_eraa084
crossref_primary_10_1016_j_soilbio_2022_108904
crossref_primary_10_1038_s41598_021_88588_8
crossref_primary_10_1016_j_fcr_2025_109737
crossref_primary_10_3390_genes10020139
crossref_primary_10_1007_s11356_019_05284_x
crossref_primary_10_1016_j_fcr_2022_108547
crossref_primary_10_3117_plantroot_16_21
crossref_primary_10_1093_aob_mcab074
crossref_primary_10_1007_s11104_020_04626_w
crossref_primary_10_1016_j_envexpbot_2023_105431
crossref_primary_10_21273_HORTSCI15358_20
crossref_primary_10_1111_nph_15738
crossref_primary_10_1007_s11104_023_06301_2
crossref_primary_10_3390_microorganisms7020038
Cites_doi 10.1093/jxb/eru508
10.1111/j.1469-8137.2011.03996.x
10.1093/aob/mch056
10.1111/pce.12933
10.1104/pp.010331
10.1104/pp.15.00187
10.1046/j.1469-8137.2003.00695.x
10.1007/s12571-015-0442-0
10.1071/BT06118
10.1046/j.1365-313x.1998.00280.x
10.1021/es501670j
10.1126/science.1185383
10.1104/pp.111.175414
10.1007/978-1-4020-8435-5_5
10.1093/jxb/erv007
10.1016/S0304-3770(03)00003-2
10.1104/pp.15.00145
10.1046/j.1365-3040.1999.00405.x
10.1105/tpc.106.047761
10.1071/FP05005
10.3732/ajb.1200474
10.1023/A:1013324727040
10.1016/j.gloenvcha.2008.10.009
10.1104/pp.125.3.1529
10.1007/s11104-012-1138-2
10.1104/pp.17.00648
10.1007/s00122-014-2353-4
10.1093/aob/mcs293
10.1007/s004250050572
10.1111/pce.13197
10.1242/dev.071928
10.1111/j.1469-8137.1996.tb01847.x
10.1046/j.1365-3040.2001.00695.x
10.1111/j.1469-8137.2008.02472.x
10.1016/j.fcr.2012.09.010
10.1111/pce.12467
10.1007/s11104-010-0623-8
10.1111/nph.12231
10.1071/FP04046
10.1104/pp.24.1.1
10.2135/cropsci1996.0011183X003600060043x
10.1111/j.1365-313X.2011.04495.x
10.1111/j.1365-3040.1996.tb00386.x
10.2135/cropsci2000.402358x
10.1104/pp.112.1.31
10.1038/srep18192
10.1007/s11104-011-0950-4
10.1016/S0003-2670(00)88444-5
10.1093/jxb/eru249
10.1104/pp.111.175489
10.1093/aob/mcq199
10.1023/A:1004727201568
10.1104/pp.113.233916
10.1071/FP03078
10.1007/s11104-011-0939-z
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2018
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2018
DBID TOX
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1093/jxb/ery252
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1460-2431
EndPage 4970
ExternalDocumentID PMC6137997
30295904
10_1093_jxb_ery252
10.1093/jxb/ery252
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Institute of Food and Agriculture
  grantid: 2014-67013-2157
  funderid: 10.13039/100005825
– fundername: National Natural Science Foundation of China
  grantid: 31771713
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2016YFD0300106
– fundername: ; ;
  grantid: 31771713
– fundername: ; ;
  grantid: 2014-67013-2157
– fundername: ;
  grantid: 2016YFD0300106
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
4.4
482
48X
5GY
5VS
5WA
5WD
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
AAXTN
ABEUO
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPTD
ABQLI
ABWST
ABXSQ
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
CS3
CZ4
D-I
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
ECGQY
EE~
EJD
ESX
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JLS
JST
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
ML0
N9A
NGC
NLBLG
NOMLY
NU-
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
ROL
ROX
ROZ
RUSNO
RW1
RXO
TEORI
TLC
TN5
TOX
TR2
UHB
UPT
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZKX
~02
~91
~KM
2~F
AAYXX
ABBHK
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABXZS
ADNBA
AEUPB
AFYAG
AGORE
AJBYB
AJNCP
ALXQX
CITATION
DATOO
IPSME
JENOY
JPM
SA0
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c507t-55a9045f9b654036c5720454adf77e9d375d7f9ac586ddebf2daa39ebca5f643
IEDL.DBID TOX
ISSN 0022-0957
1460-2431
IngestDate Thu Aug 21 18:16:53 EDT 2025
Fri Jul 11 12:43:37 EDT 2025
Fri Jul 11 16:23:46 EDT 2025
Mon Jul 21 06:00:05 EDT 2025
Thu Apr 24 22:51:08 EDT 2025
Tue Jul 01 03:05:39 EDT 2025
Wed Sep 11 04:52:40 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords root architecture
Branching density
topsoil foraging
)
lateral root
maize
phosphorus
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-55a9045f9b654036c5720454adf77e9d375d7f9ac586ddebf2daa39ebca5f643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-7265-9790
OpenAccessLink https://dx.doi.org/10.1093/jxb/ery252
PMID 30295904
PQID 2117157138
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6137997
proquest_miscellaneous_2400475822
proquest_miscellaneous_2117157138
pubmed_primary_30295904
crossref_primary_10_1093_jxb_ery252
crossref_citationtrail_10_1093_jxb_ery252
oup_primary_10_1093_jxb_ery252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-14
PublicationDateYYYYMMDD 2018-09-14
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-14
  day: 14
PublicationDecade 2010
PublicationPlace UK
PublicationPlace_xml – name: UK
– name: England
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hochholdinger ( key 20180914094413_CIT0016) 1998; 16
Manske ( key 20180914094413_CIT0029) 2000; 221
Postma ( key 20180914094413_CIT0038) 2011; 107
Miguel ( key 20180914094413_CIT0030) 2015; 167
Nibau ( key 20180914094413_CIT0034) 2008; 179
Burton ( key 20180914094413_CIT0005) 2014; 127
Zhu ( key 20180914094413_CIT0054) 2005; 32
Johnson ( key 20180914094413_CIT0019) 1996; 112
Hochholdinger ( key 20180914094413_CIT0017) 2001; 125
Ma ( key 20180914094413_CIT0028) 2001; 24
Chen ( key 20180914094413_CIT0007) 2011; 348
Lambers ( key 20180914094413_CIT0021) 2013; 100
Cordell ( key 20180914094413_CIT0010) 2015; 7
Trachsel ( key 20180914094413_CIT0044) 2013; 140
Huang ( key 20180914094413_CIT0018) 2015; 5
Kaeppler ( key 20180914094413_CIT0020) 2000; 40
Postma ( key 20180914094413_CIT0037) 2011; 156
Hochholdinger ( key 20180914094413_CIT0015) 2004; 93
Vance ( key 20180914094413_CIT0045) 2001; 127
Miller ( key 20180914094413_CIT0031) 2003; 30
Bonser ( key 20180914094413_CIT0003) 1996; 132
Lynch ( key 20180914094413_CIT0024) 2013; 112
Richardson ( key 20180914094413_CIT0039) 2011; 349
Lynch ( key 20180914094413_CIT0026) 2008
Bates ( key 20180914094413_CIT0002) 1996; 19
Godfray ( key 20180914094413_CIT0012) 2010; 327
Schneider ( key 20180914094413_CIT0040) 2017; 174
Xie ( key 20180914094413_CIT0049) 2003; 75
Arnon ( key 20180914094413_CIT0001) 1949; 24
Zhang ( key 20180914094413_CIT0052) 2014; 65
Vance ( key 20180914094413_CIT0046) 2003; 157
Trachsel ( key 20180914094413_CIT0043) 2011; 314
Borch ( key 20180914094413_CIT0004) 1999; 22
Galindo-Castañeda ( key 20180914094413_CIT0011a) 2018
Schneider ( key 20180914094413_CIT0041) 2017; 40
Hanlon ( key 20180914094413_CIT0014) 2017
Senior ( key 20180914094413_CIT0042) 1996; 36
Zhan ( key 20180914094413_CIT0050) 2015; 66
Lynch ( key 20180914094413_CIT0022) 2007; 55
Burton ( key 20180914094413_CIT0006) 2012; 357
Cho ( key 20180914094413_CIT0008) 2013; 198
De Smet ( key 20180914094413_CIT0011) 2012; 193
Goh ( key 20180914094413_CIT0013) 2012; 139
Okushima ( key 20180914094413_CIT0035) 2007; 19
Postma ( key 20180914094413_CIT0036) 2014; 166
Neumann ( key 20180914094413_CIT0033) 1999; 208
Lynch ( key 20180914094413_CIT0023) 2011; 156
Lynch ( key 20180914094413_CIT0025) 2001; 237
Von Behrens ( key 20180914094413_CIT0047) 2011; 66
Zhu ( key 20180914094413_CIT0055) 2004; 31
Zhan ( key 20180914094413_CIT0051) 2015; 168
Cordell ( key 20180914094413_CIT0009) 2009; 19
Lynch ( key 20180914094413_CIT0027) 2015; 66
Zhao ( key 20180914094413_CIT0053) 2015; 38
Withers ( key 20180914094413_CIT0048) 2014; 48
Murphy ( key 20180914094413_CIT0032) 1962; 27
References_xml – volume: 66
  start-page: 2199
  year: 2015
  ident: key 20180914094413_CIT0027
  article-title: Opportunities and challenges in the subsoil: pathways to deeper rooted crops
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eru508
– volume: 193
  start-page: 867
  year: 2012
  ident: key 20180914094413_CIT0011
  article-title: Lateral root initiation: one step at a time
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2011.03996.x
– volume: 93
  start-page: 359
  year: 2004
  ident: key 20180914094413_CIT0015
  article-title: Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes
  publication-title: Annals of Botany
  doi: 10.1093/aob/mch056
– volume: 40
  start-page: 1392
  year: 2017
  ident: key 20180914094413_CIT0041
  article-title: Root cortical senescence decreases root respiration, nutrient content and radial water and nutrient transport in barley
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.12933
– volume: 127
  start-page: 390
  year: 2001
  ident: key 20180914094413_CIT0045
  article-title: Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources
  publication-title: Plant Physiology
  doi: 10.1104/pp.010331
– volume-title: New perspectives on conventional ideas about root system architecture and morphology
  year: 2017
  ident: key 20180914094413_CIT0014
– volume: 168
  start-page: 1603
  year: 2015
  ident: key 20180914094413_CIT0051
  article-title: Reduced lateral root branching density improves drought tolerance in maize
  publication-title: Plant Physiology
  doi: 10.1104/pp.15.00187
– volume: 157
  start-page: 423
  year: 2003
  ident: key 20180914094413_CIT0046
  article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.2003.00695.x
– volume: 7
  start-page: 337
  year: 2015
  ident: key 20180914094413_CIT0010
  article-title: Tracking phosphorus security: indicators of phosphorus vulnerability in the global food system
  publication-title: Food Security
  doi: 10.1007/s12571-015-0442-0
– volume: 55
  start-page: 493
  year: 2007
  ident: key 20180914094413_CIT0022
  article-title: Roots of the second green revolution
  publication-title: Australian Journal of Botany
  doi: 10.1071/BT06118
– volume: 16
  start-page: 247
  year: 1998
  ident: key 20180914094413_CIT0016
  article-title: Early post-embryonic root formation is specifically affected in the maize mutant lrt1
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313x.1998.00280.x
– volume: 48
  start-page: 6523
  year: 2014
  ident: key 20180914094413_CIT0048
  article-title: Feed the crop not the soil: rethinking phosphorus management in the food chain
  publication-title: Environmental Science & Technology
  doi: 10.1021/es501670j
– volume: 327
  start-page: 812
  year: 2010
  ident: key 20180914094413_CIT0012
  article-title: Food security: the challenge of feeding 9 billion people
  publication-title: Science
  doi: 10.1126/science.1185383
– volume: 156
  start-page: 1041
  year: 2011
  ident: key 20180914094413_CIT0023
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.175414
– start-page: 83
  volume-title: The ecophysiology of plant–phosphorus interactions
  year: 2008
  ident: key 20180914094413_CIT0026
  article-title: Root strategies for phosphorus acquisition
  doi: 10.1007/978-1-4020-8435-5_5
– volume: 66
  start-page: 2055
  year: 2015
  ident: key 20180914094413_CIT0050
  article-title: Reduced frequency of lateral root branching improves N capture from low-N soils in maize
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erv007
– volume: 75
  start-page: 311
  year: 2003
  ident: key 20180914094413_CIT0049
  article-title: The significance of lateral roots in phosphorus (P) acquisition of water hyacinth (Eichhornia crassipes)
  publication-title: Aquatic Botany
  doi: 10.1016/S0304-3770(03)00003-2
– volume: 167
  start-page: 1430
  year: 2015
  ident: key 20180914094413_CIT0030
  article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition
  publication-title: Plant Physiology
  doi: 10.1104/pp.15.00145
– volume: 22
  start-page: 425
  year: 1999
  ident: key 20180914094413_CIT0004
  article-title: Ethylene: a regulator of root architectural responses to soil phosphorus availability
  publication-title: Plant, Cell & Environment
  doi: 10.1046/j.1365-3040.1999.00405.x
– volume: 19
  start-page: 118
  year: 2007
  ident: key 20180914094413_CIT0035
  article-title: ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis
  publication-title: The Plant Cell
  doi: 10.1105/tpc.106.047761
– volume: 32
  start-page: 749
  year: 2005
  ident: key 20180914094413_CIT0054
  article-title: Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays)
  publication-title: Functional Plant Biology
  doi: 10.1071/FP05005
– volume: 100
  start-page: 263
  year: 2013
  ident: key 20180914094413_CIT0021
  article-title: How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae)
  publication-title: American Journal of Botany
  doi: 10.3732/ajb.1200474
– volume: 237
  start-page: 225
  year: 2001
  ident: key 20180914094413_CIT0025
  article-title: Topsoil foraging—an architectural adaptation of plants to low phosphorus
  publication-title: Plant and Soil
  doi: 10.1023/A:1013324727040
– volume: 19
  start-page: 292
  year: 2009
  ident: key 20180914094413_CIT0009
  article-title: The story of phosphorus: global food security and food for thought
  publication-title: Global Environmental Change
  doi: 10.1016/j.gloenvcha.2008.10.009
– volume: 125
  start-page: 1529
  year: 2001
  ident: key 20180914094413_CIT0017
  article-title: Cooperative action of SLR1 and SLR2 is required for lateral root-specific cell elongation in maize
  publication-title: Plant Physiology
  doi: 10.1104/pp.125.3.1529
– volume: 357
  start-page: 189
  year: 2012
  ident: key 20180914094413_CIT0006
  article-title: RootScan: software for high-throughput analysis of root anatomical traits
  publication-title: Plant and Soil
  doi: 10.1007/s11104-012-1138-2
– volume: 174
  start-page: 2333
  year: 2017
  ident: key 20180914094413_CIT0040
  article-title: Root cortical senescence improves growth under suboptimal availability of N, P, and K
  publication-title: Plant Physiology
  doi: 10.1104/pp.17.00648
– volume: 127
  start-page: 2293
  year: 2014
  ident: key 20180914094413_CIT0005
  article-title: QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.)
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-014-2353-4
– volume: 112
  start-page: 347
  year: 2013
  ident: key 20180914094413_CIT0024
  article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcs293
– volume: 208
  start-page: 373
  year: 1999
  ident: key 20180914094413_CIT0033
  article-title: Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin
  publication-title: Planta
  doi: 10.1007/s004250050572
– year: 2018
  ident: key 20180914094413_CIT0011a
  article-title: Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize
  publication-title: Plant, Cell, & Environment
  doi: 10.1111/pce.13197
– volume: 139
  start-page: 883
  year: 2012
  ident: key 20180914094413_CIT0013
  article-title: The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins
  publication-title: Development
  doi: 10.1242/dev.071928
– volume: 132
  start-page: 281
  year: 1996
  ident: key 20180914094413_CIT0003
  article-title: Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1996.tb01847.x
– volume: 24
  start-page: 459
  year: 2001
  ident: key 20180914094413_CIT0028
  article-title: Regulation of root hair density by phosphorus availability in Arabidopsis thaliana
  publication-title: Plant, Cell & Environment
  doi: 10.1046/j.1365-3040.2001.00695.x
– volume: 179
  start-page: 595
  year: 2008
  ident: key 20180914094413_CIT0034
  article-title: Branching out in new directions: the control of root architecture by lateral root formation
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2008.02472.x
– volume: 140
  start-page: 18
  year: 2013
  ident: key 20180914094413_CIT0044
  article-title: Maize root growth angles become steeper under low N conditions
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2012.09.010
– volume: 38
  start-page: 2208
  year: 2015
  ident: key 20180914094413_CIT0053
  article-title: OsAUX1 controls lateral root initiation in rice (Oryza sativa L.)
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.12467
– volume: 314
  start-page: 75
  year: 2011
  ident: key 20180914094413_CIT0043
  article-title: Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field
  publication-title: Plant and Soil
  doi: 10.1007/s11104-010-0623-8
– volume: 198
  start-page: 1071
  year: 2013
  ident: key 20180914094413_CIT0008
  article-title: The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development
  publication-title: New Phytologist
  doi: 10.1111/nph.12231
– volume: 31
  start-page: 949
  year: 2004
  ident: key 20180914094413_CIT0055
  article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays L.) seedlings
  publication-title: Functional Plant Biology
  doi: 10.1071/FP04046
– volume: 24
  start-page: 1
  year: 1949
  ident: key 20180914094413_CIT0001
  article-title: Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris
  publication-title: Plant Physiology
  doi: 10.1104/pp.24.1.1
– volume: 36
  start-page: 1676
  year: 1996
  ident: key 20180914094413_CIT0042
  article-title: Simple sequence repeat markers developed from maize sequences found in GENBANK database: map construction
  publication-title: Crop Science
  doi: 10.2135/cropsci1996.0011183X003600060043x
– volume: 66
  start-page: 341
  year: 2011
  ident: key 20180914094413_CIT0047
  article-title: Rootless with undetectable meristem 1 encodes a monocot-specific AUX/IAA protein that controls embryonic seminal and post-embryonic lateral root initiation in maize
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2011.04495.x
– volume: 19
  start-page: 529
  year: 1996
  ident: key 20180914094413_CIT0002
  article-title: Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability
  publication-title: Plant, Cell & Environment
  doi: 10.1111/j.1365-3040.1996.tb00386.x
– volume: 40
  start-page: 358
  year: 2000
  ident: key 20180914094413_CIT0020
  article-title: Variation among maize inbred lines and detection of quantitative trait loci for growth at low P and responsiveness to arbuscular mycorrhizal fungi
  publication-title: Crop Science
  doi: 10.2135/cropsci2000.402358x
– volume: 112
  start-page: 31
  year: 1996
  ident: key 20180914094413_CIT0019
  article-title: Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase
  publication-title: Plant Physiology
  doi: 10.1104/pp.112.1.31
– volume: 5
  start-page: 18192
  year: 2015
  ident: key 20180914094413_CIT0018
  article-title: Knockdown of the partner protein OsNAR2.1 for high-affinity nitrate transport represses lateral root formation in a nitrate-dependent manner
  publication-title: Scientific Reports
  doi: 10.1038/srep18192
– volume: 349
  start-page: 121
  year: 2011
  ident: key 20180914094413_CIT0039
  article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture
  publication-title: Plant and Soil
  doi: 10.1007/s11104-011-0950-4
– volume: 27
  start-page: 31
  year: 1962
  ident: key 20180914094413_CIT0032
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Analytica Chimica Acta
  doi: 10.1016/S0003-2670(00)88444-5
– volume: 65
  start-page: 4919
  year: 2014
  ident: key 20180914094413_CIT0052
  article-title: The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eru249
– volume: 156
  start-page: 1190
  year: 2011
  ident: key 20180914094413_CIT0037
  article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.175489
– volume: 107
  start-page: 829
  year: 2011
  ident: key 20180914094413_CIT0038
  article-title: Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcq199
– volume: 221
  start-page: 189
  year: 2000
  ident: key 20180914094413_CIT0029
  article-title: Traits associated with improved P-uptake efficiency in CIMMYT’s semidwarf spring bread wheat grown on acid Andisols in Mexico
  publication-title: Plant and Soil
  doi: 10.1023/A:1004727201568
– volume: 166
  start-page: 590
  year: 2014
  ident: key 20180914094413_CIT0036
  article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability
  publication-title: Plant Physiology
  doi: 10.1104/pp.113.233916
– volume: 30
  start-page: 973
  year: 2003
  ident: key 20180914094413_CIT0031
  article-title: Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils
  publication-title: Functional Plant Biology
  doi: 10.1071/FP03078
– volume: 348
  start-page: 345
  year: 2011
  ident: key 20180914094413_CIT0007
  article-title: Phenotypic variability and modelling of root structure of wild Lupinus angustifolius genotypes
  publication-title: Plant and Soil
  doi: 10.1007/s11104-011-0939-z
SSID ssj0005055
Score 2.5467362
Snippet Maize genotypes with greater lateral root branching density have superior phosphorus uptake, growth, and yield in low phosphorus soil. Abstract The development...
The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing...
Maize genotypes with greater lateral root branching density have superior phosphorus uptake, growth, and yield in low phosphorus soil. The development of crops...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4961
SubjectTerms biomass
branching
corn
crops
developed countries
developing countries
food security
genetic improvement
grain yield
greenhouses
inbred lines
lateral roots
leaves
phenotype
phosphorus
phosphorus content
photosynthesis
pollution
pollution control
Research Papers
rooting
soil
Zea mays
Title Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil
URI https://www.ncbi.nlm.nih.gov/pubmed/30295904
https://www.proquest.com/docview/2117157138
https://www.proquest.com/docview/2400475822
https://pubmed.ncbi.nlm.nih.gov/PMC6137997
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELYQYmBBvCmPyggWhqh52Y5HQFQFBCxF6hY5sa0GlaQ0qaD8es5JWxpUlSFZfHnoLvF95zt_h9AleDnNnFhaFMCq5RNbWBG4XcujTDKfxsIuq92fnmnn1X_okd60iCZfksLnXuvtK2qp0cQlZqYF72sY8rsvvd9CDpuQGSc4AAY2IyGtXVpzO7WtbAuI8m9h5IKnaW-jrSlExNeVTXfQmkp30cZNBjBusof6ZVCvRnhgziAH0LfAkemPYRaTsDQV6cUEJyl-F8m3wkm5bKByPOxnORyjcY5F_DFOqmotbDaY4EH2uTieZ8lgH3Xbd93bjjVtl2DFAOoKixDBAaBpHlGAYR6NiWlAQ3whNWOKS48RyTQXMQkoTGqRdqUQHjfVUEQDMDlA62mWqiOEBZORCGxNuasNgRp3dGQSeEHgSe0I2kBXM2WG8ZRK3HS0GIRVStsLQfFhpfgGupjLDisCjaVSTbDJSoHzmblC-AFMVkOkKhvnIUSwzCEQawcrZMxMBZGRC_c5rEw8f5Znu5yA4hqI1Yw_FzAE3PWRNOmXRNwAhRjn7Pi_lz9Bm4CzyjITxz9F68VorM4AyxRRE1D8_WOz_KB_ABoF92M
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greater+lateral+root+branching+density+in+maize+improves+phosphorus+acquisition+from+low+phosphorus+soil&rft.jtitle=Journal+of+experimental+botany&rft.au=Jia%2C+Xucun&rft.au=Liu%2C+Peng&rft.au=Lynch%2C+Jonathan+P&rft.date=2018-09-14&rft.eissn=1460-2431&rft.volume=69&rft.issue=20&rft.spage=4961&rft_id=info:doi/10.1093%2Fjxb%2Fery252&rft_id=info%3Apmid%2F30295904&rft.externalDocID=30295904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon