Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil
Maize genotypes with greater lateral root branching density have superior phosphorus uptake, growth, and yield in low phosphorus soil. Abstract The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing envi...
Saved in:
Published in | Journal of experimental botany Vol. 69; no. 20; pp. 4961 - 4970 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
UK
Oxford University Press
14.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Maize genotypes with greater lateral root branching density have superior phosphorus uptake, growth, and yield in low phosphorus soil.
Abstract
The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing environmental pollution in developed countries. We tested the hypothesis that maize (Zea mays) phenotypes with greater lateral root branching density have greater phosphorus acquisition from low phosphorus soils. Recombinant inbred lines with either 'many short' (MS) or 'few long' (FL) lateral root phenotypes were grown under high and low phosphorus conditions in greenhouse mesocosms and in the field. Under low phosphorus in mesocosms, lines with the MS phenotype had 89% greater phosphorus acquisition and 48% more shoot biomass than FL lines. Under low phosphorus in the field, MS lines had 16% shallower rooting depth (D95), 81% greater root length density in the top 20 cm of the soil, 49% greater shoot phosphorus content, 12% greater leaf photosynthesis, 19% greater shoot biomass, and 14% greater grain yield than FL lines. These results are consistent with the hypothesis that the phenotype of many, shorter lateral roots improves phosphorus acquisition under low phosphorus availability and merits consideration for genetic improvement of phosphorus efficiency in maize and other crops. |
---|---|
AbstractList | Maize genotypes with greater lateral root branching density have superior phosphorus uptake, growth, and yield in low phosphorus soil.
The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing environmental pollution in developed countries. We tested the hypothesis that maize (
Zea mays
) phenotypes with greater lateral root branching density have greater phosphorus acquisition from low phosphorus soils. Recombinant inbred lines with either ‘many short’ (MS) or ‘few long’ (FL) lateral root phenotypes were grown under high and low phosphorus conditions in greenhouse mesocosms and in the field. Under low phosphorus in mesocosms, lines with the MS phenotype had 89% greater phosphorus acquisition and 48% more shoot biomass than FL lines. Under low phosphorus in the field, MS lines had 16% shallower rooting depth (D
95
), 81% greater root length density in the top 20 cm of the soil, 49% greater shoot phosphorus content, 12% greater leaf photosynthesis, 19% greater shoot biomass, and 14% greater grain yield than FL lines. These results are consistent with the hypothesis that the phenotype of many, shorter lateral roots improves phosphorus acquisition under low phosphorus availability and merits consideration for genetic improvement of phosphorus efficiency in maize and other crops. The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing environmental pollution in developed countries. We tested the hypothesis that maize (Zea mays) phenotypes with greater lateral root branching density have greater phosphorus acquisition from low phosphorus soils. Recombinant inbred lines with either 'many short' (MS) or 'few long' (FL) lateral root phenotypes were grown under high and low phosphorus conditions in greenhouse mesocosms and in the field. Under low phosphorus in mesocosms, lines with the MS phenotype had 89% greater phosphorus acquisition and 48% more shoot biomass than FL lines. Under low phosphorus in the field, MS lines had 16% shallower rooting depth (D95), 81% greater root length density in the top 20 cm of the soil, 49% greater shoot phosphorus content, 12% greater leaf photosynthesis, 19% greater shoot biomass, and 14% greater grain yield than FL lines. These results are consistent with the hypothesis that the phenotype of many, shorter lateral roots improves phosphorus acquisition under low phosphorus availability and merits consideration for genetic improvement of phosphorus efficiency in maize and other crops. The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing environmental pollution in developed countries. We tested the hypothesis that maize (Zea mays) phenotypes with greater lateral root branching density have greater phosphorus acquisition from low phosphorus soils. Recombinant inbred lines with either ‘many short’ (MS) or ‘few long’ (FL) lateral root phenotypes were grown under high and low phosphorus conditions in greenhouse mesocosms and in the field. Under low phosphorus in mesocosms, lines with the MS phenotype had 89% greater phosphorus acquisition and 48% more shoot biomass than FL lines. Under low phosphorus in the field, MS lines had 16% shallower rooting depth (D₉₅), 81% greater root length density in the top 20 cm of the soil, 49% greater shoot phosphorus content, 12% greater leaf photosynthesis, 19% greater shoot biomass, and 14% greater grain yield than FL lines. These results are consistent with the hypothesis that the phenotype of many, shorter lateral roots improves phosphorus acquisition under low phosphorus availability and merits consideration for genetic improvement of phosphorus efficiency in maize and other crops. The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing environmental pollution in developed countries. We tested the hypothesis that maize (Zea mays) phenotypes with greater lateral root branching density have greater phosphorus acquisition from low phosphorus soils. Recombinant inbred lines with either 'many short' (MS) or 'few long' (FL) lateral root phenotypes were grown under high and low phosphorus conditions in greenhouse mesocosms and in the field. Under low phosphorus in mesocosms, lines with the MS phenotype had 89% greater phosphorus acquisition and 48% more shoot biomass than FL lines. Under low phosphorus in the field, MS lines had 16% shallower rooting depth (D95), 81% greater root length density in the top 20 cm of the soil, 49% greater shoot phosphorus content, 12% greater leaf photosynthesis, 19% greater shoot biomass, and 14% greater grain yield than FL lines. These results are consistent with the hypothesis that the phenotype of many, shorter lateral roots improves phosphorus acquisition under low phosphorus availability and merits consideration for genetic improvement of phosphorus efficiency in maize and other crops.The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing environmental pollution in developed countries. We tested the hypothesis that maize (Zea mays) phenotypes with greater lateral root branching density have greater phosphorus acquisition from low phosphorus soils. Recombinant inbred lines with either 'many short' (MS) or 'few long' (FL) lateral root phenotypes were grown under high and low phosphorus conditions in greenhouse mesocosms and in the field. Under low phosphorus in mesocosms, lines with the MS phenotype had 89% greater phosphorus acquisition and 48% more shoot biomass than FL lines. Under low phosphorus in the field, MS lines had 16% shallower rooting depth (D95), 81% greater root length density in the top 20 cm of the soil, 49% greater shoot phosphorus content, 12% greater leaf photosynthesis, 19% greater shoot biomass, and 14% greater grain yield than FL lines. These results are consistent with the hypothesis that the phenotype of many, shorter lateral roots improves phosphorus acquisition under low phosphorus availability and merits consideration for genetic improvement of phosphorus efficiency in maize and other crops. Maize genotypes with greater lateral root branching density have superior phosphorus uptake, growth, and yield in low phosphorus soil. Abstract The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing environmental pollution in developed countries. We tested the hypothesis that maize (Zea mays) phenotypes with greater lateral root branching density have greater phosphorus acquisition from low phosphorus soils. Recombinant inbred lines with either 'many short' (MS) or 'few long' (FL) lateral root phenotypes were grown under high and low phosphorus conditions in greenhouse mesocosms and in the field. Under low phosphorus in mesocosms, lines with the MS phenotype had 89% greater phosphorus acquisition and 48% more shoot biomass than FL lines. Under low phosphorus in the field, MS lines had 16% shallower rooting depth (D95), 81% greater root length density in the top 20 cm of the soil, 49% greater shoot phosphorus content, 12% greater leaf photosynthesis, 19% greater shoot biomass, and 14% greater grain yield than FL lines. These results are consistent with the hypothesis that the phenotype of many, shorter lateral roots improves phosphorus acquisition under low phosphorus availability and merits consideration for genetic improvement of phosphorus efficiency in maize and other crops. |
Author | Lynch, Jonathan P Liu, Peng Jia, Xucun |
AuthorAffiliation | 2 Department of Plant Science, The Pennsylvania State University, University Park, PA, USA 1 College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an, Shandong Province, China |
AuthorAffiliation_xml | – name: 1 College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an, Shandong Province, China – name: 2 Department of Plant Science, The Pennsylvania State University, University Park, PA, USA |
Author_xml | – sequence: 1 givenname: Xucun surname: Jia fullname: Jia, Xucun organization: College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai'an, Shandong Province, China – sequence: 2 givenname: Peng surname: Liu fullname: Liu, Peng organization: College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai'an, Shandong Province, China – sequence: 3 givenname: Jonathan P orcidid: 0000-0002-7265-9790 surname: Lynch fullname: Lynch, Jonathan P email: JPL4@psu.edu organization: Department of Plant Science, The Pennsylvania State University, University Park, PA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30295904$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVFrFTEQhYO02Nvqiz9A8iKIsO0k2WxuXgQpWoVCX_oestnZ3pTdZJvsVq-_3lxuLVXEPiRhmG8OZ3KOyUGIAQl5w-CUgRZntz_aM0xbLvkLsmJ1AxWvBTsgKwDOK9BSHZHjnG8BQIKUL8mRAK6lhnpFNhcJ7YyJDrvbDjTFONM22eA2PtzQDkP285b6QEfrfyL145TiPWY6bWIuJy2ZWne3-IL5GGif4kiH-P1pP0c_vCKHvR0yvn54T8j1l8_X51-ry6uLb-efLisnQc2VlLb4kr1uG1mDaJxUvNS17XqlUHdCyU712jq5broO25531gqNrbOyb2pxQj7uZaelHbFzGOaylZmSH23ammi9-bMT_MbcxHvTMKG0VkXg_YNAincL5tmMPjscBhswLtnwGqBWcs358yhjiknFxLqgb5_aevTzO4gCfNgDLsWcE_aPCAOzS9mUlM0-5QLDX7Dzs919f1nJD_8eebcficv0P-lflD-8QA |
CitedBy_id | crossref_primary_10_1093_jxb_erad421 crossref_primary_10_3389_fpls_2021_716691 crossref_primary_10_17221_140_2023_AGRICECON crossref_primary_10_1016_j_heliyon_2025_e42340 crossref_primary_10_3389_fpls_2023_1223532 crossref_primary_10_1007_s11104_023_05966_z crossref_primary_10_1038_s41598_021_89129_z crossref_primary_10_1111_ppl_14207 crossref_primary_10_1111_pbr_13049 crossref_primary_10_1016_j_still_2023_105915 crossref_primary_10_3389_fpls_2024_1366173 crossref_primary_10_1016_j_eja_2024_127475 crossref_primary_10_1007_s00122_024_04681_2 crossref_primary_10_1016_j_envexpbot_2022_105087 crossref_primary_10_1016_j_jgg_2024_09_018 crossref_primary_10_3390_agriculture11060481 crossref_primary_10_1111_pce_14270 crossref_primary_10_3390_agronomy11030574 crossref_primary_10_1016_j_ijbiomac_2023_123760 crossref_primary_10_1186_s40538_022_00342_y crossref_primary_10_1111_tpj_15560 crossref_primary_10_1111_nph_17572 crossref_primary_10_1007_s10725_020_00640_1 crossref_primary_10_1093_jxb_eraa027 crossref_primary_10_3390_plants12030544 crossref_primary_10_1111_jipb_13090 crossref_primary_10_3389_fpls_2021_700651 crossref_primary_10_1007_s11105_024_01512_y crossref_primary_10_3390_agronomy11112230 crossref_primary_10_1111_pce_13875 crossref_primary_10_1016_S2095_3119_20_63599_7 crossref_primary_10_1016_j_agee_2024_109181 crossref_primary_10_36783_18069657rbcs20230059 crossref_primary_10_1016_j_plantsci_2022_111323 crossref_primary_10_1016_j_soilbio_2023_109074 crossref_primary_10_1186_s12870_025_06319_x crossref_primary_10_1186_s42397_022_00126_7 crossref_primary_10_3390_agronomy11050930 crossref_primary_10_1007_s11104_024_06931_0 crossref_primary_10_3389_fpls_2024_1429901 crossref_primary_10_3724_SP_J_1249_2023_04415 crossref_primary_10_1016_j_fcr_2020_107872 crossref_primary_10_1007_s11104_024_07188_3 crossref_primary_10_3389_fpls_2019_01714 crossref_primary_10_3389_fpls_2023_1329556 crossref_primary_10_1155_2020_8420151 crossref_primary_10_1093_jxb_erac117 crossref_primary_10_3390_plants12132520 crossref_primary_10_1016_j_tplants_2019_05_011 crossref_primary_10_1093_plcell_koad326 crossref_primary_10_3389_fpls_2019_00363 crossref_primary_10_1186_s13007_021_00825_3 crossref_primary_10_1007_s10705_020_10060_2 crossref_primary_10_1093_jxb_erac192 crossref_primary_10_3390_plants13050674 crossref_primary_10_3389_fpls_2021_679916 crossref_primary_10_1007_s11104_022_05784_9 crossref_primary_10_1186_s40168_024_01839_4 crossref_primary_10_1093_plphys_kiad214 crossref_primary_10_1111_pce_15462 crossref_primary_10_1002_jpln_202200196 crossref_primary_10_3389_fpls_2020_00546 crossref_primary_10_1016_j_fcr_2020_107960 crossref_primary_10_1016_j_fcr_2021_108378 crossref_primary_10_1007_s11104_023_06355_2 crossref_primary_10_1093_plphys_kiac405 crossref_primary_10_1016_j_fcr_2020_108013 crossref_primary_10_1016_j_plaphy_2024_108386 crossref_primary_10_1080_10643389_2022_2120317 crossref_primary_10_1093_aob_mcab145 crossref_primary_10_1093_jxb_eraa324 crossref_primary_10_1016_j_scienta_2024_113163 crossref_primary_10_1093_jxb_erad390 crossref_primary_10_1093_jxb_eraa084 crossref_primary_10_1016_j_soilbio_2022_108904 crossref_primary_10_1038_s41598_021_88588_8 crossref_primary_10_1016_j_fcr_2025_109737 crossref_primary_10_3390_genes10020139 crossref_primary_10_1007_s11356_019_05284_x crossref_primary_10_1016_j_fcr_2022_108547 crossref_primary_10_3117_plantroot_16_21 crossref_primary_10_1093_aob_mcab074 crossref_primary_10_1007_s11104_020_04626_w crossref_primary_10_1016_j_envexpbot_2023_105431 crossref_primary_10_21273_HORTSCI15358_20 crossref_primary_10_1111_nph_15738 crossref_primary_10_1007_s11104_023_06301_2 crossref_primary_10_3390_microorganisms7020038 |
Cites_doi | 10.1093/jxb/eru508 10.1111/j.1469-8137.2011.03996.x 10.1093/aob/mch056 10.1111/pce.12933 10.1104/pp.010331 10.1104/pp.15.00187 10.1046/j.1469-8137.2003.00695.x 10.1007/s12571-015-0442-0 10.1071/BT06118 10.1046/j.1365-313x.1998.00280.x 10.1021/es501670j 10.1126/science.1185383 10.1104/pp.111.175414 10.1007/978-1-4020-8435-5_5 10.1093/jxb/erv007 10.1016/S0304-3770(03)00003-2 10.1104/pp.15.00145 10.1046/j.1365-3040.1999.00405.x 10.1105/tpc.106.047761 10.1071/FP05005 10.3732/ajb.1200474 10.1023/A:1013324727040 10.1016/j.gloenvcha.2008.10.009 10.1104/pp.125.3.1529 10.1007/s11104-012-1138-2 10.1104/pp.17.00648 10.1007/s00122-014-2353-4 10.1093/aob/mcs293 10.1007/s004250050572 10.1111/pce.13197 10.1242/dev.071928 10.1111/j.1469-8137.1996.tb01847.x 10.1046/j.1365-3040.2001.00695.x 10.1111/j.1469-8137.2008.02472.x 10.1016/j.fcr.2012.09.010 10.1111/pce.12467 10.1007/s11104-010-0623-8 10.1111/nph.12231 10.1071/FP04046 10.1104/pp.24.1.1 10.2135/cropsci1996.0011183X003600060043x 10.1111/j.1365-313X.2011.04495.x 10.1111/j.1365-3040.1996.tb00386.x 10.2135/cropsci2000.402358x 10.1104/pp.112.1.31 10.1038/srep18192 10.1007/s11104-011-0950-4 10.1016/S0003-2670(00)88444-5 10.1093/jxb/eru249 10.1104/pp.111.175489 10.1093/aob/mcq199 10.1023/A:1004727201568 10.1104/pp.113.233916 10.1071/FP03078 10.1007/s11104-011-0939-z |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2018 |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2018 |
DBID | TOX AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1093/jxb/ery252 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1460-2431 |
EndPage | 4970 |
ExternalDocumentID | PMC6137997 30295904 10_1093_jxb_ery252 10.1093/jxb/ery252 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Institute of Food and Agriculture grantid: 2014-67013-2157 funderid: 10.13039/100005825 – fundername: National Natural Science Foundation of China grantid: 31771713 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2016YFD0300106 – fundername: ; ; grantid: 31771713 – fundername: ; ; grantid: 2014-67013-2157 – fundername: ; grantid: 2016YFD0300106 |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29K 2WC 4.4 482 48X 5GY 5VS 5WA 5WD 70D AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAVLN AAXTN ABEUO ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPTD ABQLI ABWST ABXSQ ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ACUFI ACUTJ ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CDBKE CS3 CZ4 D-I DAKXR DIK DILTD DU5 D~K E3Z EBS ECGQY EE~ EJD ESX F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JLS JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z M49 ML0 N9A NGC NLBLG NOMLY NU- O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG ROL ROX ROZ RUSNO RW1 RXO TEORI TLC TN5 TOX TR2 UHB UPT W8F WH7 WOQ X7H YAYTL YKOAZ YQT YSK YXANX YZZ ZKX ~02 ~91 ~KM 2~F AAYXX ABBHK ABDFA ABEJV ABGNP ABPQP ABVGC ABXZS ADNBA AEUPB AFYAG AGORE AJBYB AJNCP ALXQX CITATION DATOO IPSME JENOY JPM SA0 NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c507t-55a9045f9b654036c5720454adf77e9d375d7f9ac586ddebf2daa39ebca5f643 |
IEDL.DBID | TOX |
ISSN | 0022-0957 1460-2431 |
IngestDate | Thu Aug 21 18:16:53 EDT 2025 Fri Jul 11 12:43:37 EDT 2025 Fri Jul 11 16:23:46 EDT 2025 Mon Jul 21 06:00:05 EDT 2025 Thu Apr 24 22:51:08 EDT 2025 Tue Jul 01 03:05:39 EDT 2025 Wed Sep 11 04:52:40 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | root architecture Branching density topsoil foraging ) lateral root maize phosphorus |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-55a9045f9b654036c5720454adf77e9d375d7f9ac586ddebf2daa39ebca5f643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-7265-9790 |
OpenAccessLink | https://dx.doi.org/10.1093/jxb/ery252 |
PMID | 30295904 |
PQID | 2117157138 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6137997 proquest_miscellaneous_2400475822 proquest_miscellaneous_2117157138 pubmed_primary_30295904 crossref_primary_10_1093_jxb_ery252 crossref_citationtrail_10_1093_jxb_ery252 oup_primary_10_1093_jxb_ery252 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-14 |
PublicationDateYYYYMMDD | 2018-09-14 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | UK |
PublicationPlace_xml | – name: UK – name: England |
PublicationTitle | Journal of experimental botany |
PublicationTitleAlternate | J Exp Bot |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Hochholdinger ( key 20180914094413_CIT0016) 1998; 16 Manske ( key 20180914094413_CIT0029) 2000; 221 Postma ( key 20180914094413_CIT0038) 2011; 107 Miguel ( key 20180914094413_CIT0030) 2015; 167 Nibau ( key 20180914094413_CIT0034) 2008; 179 Burton ( key 20180914094413_CIT0005) 2014; 127 Zhu ( key 20180914094413_CIT0054) 2005; 32 Johnson ( key 20180914094413_CIT0019) 1996; 112 Hochholdinger ( key 20180914094413_CIT0017) 2001; 125 Ma ( key 20180914094413_CIT0028) 2001; 24 Chen ( key 20180914094413_CIT0007) 2011; 348 Lambers ( key 20180914094413_CIT0021) 2013; 100 Cordell ( key 20180914094413_CIT0010) 2015; 7 Trachsel ( key 20180914094413_CIT0044) 2013; 140 Huang ( key 20180914094413_CIT0018) 2015; 5 Kaeppler ( key 20180914094413_CIT0020) 2000; 40 Postma ( key 20180914094413_CIT0037) 2011; 156 Hochholdinger ( key 20180914094413_CIT0015) 2004; 93 Vance ( key 20180914094413_CIT0045) 2001; 127 Miller ( key 20180914094413_CIT0031) 2003; 30 Bonser ( key 20180914094413_CIT0003) 1996; 132 Lynch ( key 20180914094413_CIT0024) 2013; 112 Richardson ( key 20180914094413_CIT0039) 2011; 349 Lynch ( key 20180914094413_CIT0026) 2008 Bates ( key 20180914094413_CIT0002) 1996; 19 Godfray ( key 20180914094413_CIT0012) 2010; 327 Schneider ( key 20180914094413_CIT0040) 2017; 174 Xie ( key 20180914094413_CIT0049) 2003; 75 Arnon ( key 20180914094413_CIT0001) 1949; 24 Zhang ( key 20180914094413_CIT0052) 2014; 65 Vance ( key 20180914094413_CIT0046) 2003; 157 Trachsel ( key 20180914094413_CIT0043) 2011; 314 Borch ( key 20180914094413_CIT0004) 1999; 22 Galindo-Castañeda ( key 20180914094413_CIT0011a) 2018 Schneider ( key 20180914094413_CIT0041) 2017; 40 Hanlon ( key 20180914094413_CIT0014) 2017 Senior ( key 20180914094413_CIT0042) 1996; 36 Zhan ( key 20180914094413_CIT0050) 2015; 66 Lynch ( key 20180914094413_CIT0022) 2007; 55 Burton ( key 20180914094413_CIT0006) 2012; 357 Cho ( key 20180914094413_CIT0008) 2013; 198 De Smet ( key 20180914094413_CIT0011) 2012; 193 Goh ( key 20180914094413_CIT0013) 2012; 139 Okushima ( key 20180914094413_CIT0035) 2007; 19 Postma ( key 20180914094413_CIT0036) 2014; 166 Neumann ( key 20180914094413_CIT0033) 1999; 208 Lynch ( key 20180914094413_CIT0023) 2011; 156 Lynch ( key 20180914094413_CIT0025) 2001; 237 Von Behrens ( key 20180914094413_CIT0047) 2011; 66 Zhu ( key 20180914094413_CIT0055) 2004; 31 Zhan ( key 20180914094413_CIT0051) 2015; 168 Cordell ( key 20180914094413_CIT0009) 2009; 19 Lynch ( key 20180914094413_CIT0027) 2015; 66 Zhao ( key 20180914094413_CIT0053) 2015; 38 Withers ( key 20180914094413_CIT0048) 2014; 48 Murphy ( key 20180914094413_CIT0032) 1962; 27 |
References_xml | – volume: 66 start-page: 2199 year: 2015 ident: key 20180914094413_CIT0027 article-title: Opportunities and challenges in the subsoil: pathways to deeper rooted crops publication-title: Journal of Experimental Botany doi: 10.1093/jxb/eru508 – volume: 193 start-page: 867 year: 2012 ident: key 20180914094413_CIT0011 article-title: Lateral root initiation: one step at a time publication-title: New Phytologist doi: 10.1111/j.1469-8137.2011.03996.x – volume: 93 start-page: 359 year: 2004 ident: key 20180914094413_CIT0015 article-title: Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes publication-title: Annals of Botany doi: 10.1093/aob/mch056 – volume: 40 start-page: 1392 year: 2017 ident: key 20180914094413_CIT0041 article-title: Root cortical senescence decreases root respiration, nutrient content and radial water and nutrient transport in barley publication-title: Plant, Cell & Environment doi: 10.1111/pce.12933 – volume: 127 start-page: 390 year: 2001 ident: key 20180914094413_CIT0045 article-title: Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources publication-title: Plant Physiology doi: 10.1104/pp.010331 – volume-title: New perspectives on conventional ideas about root system architecture and morphology year: 2017 ident: key 20180914094413_CIT0014 – volume: 168 start-page: 1603 year: 2015 ident: key 20180914094413_CIT0051 article-title: Reduced lateral root branching density improves drought tolerance in maize publication-title: Plant Physiology doi: 10.1104/pp.15.00187 – volume: 157 start-page: 423 year: 2003 ident: key 20180914094413_CIT0046 article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource publication-title: New Phytologist doi: 10.1046/j.1469-8137.2003.00695.x – volume: 7 start-page: 337 year: 2015 ident: key 20180914094413_CIT0010 article-title: Tracking phosphorus security: indicators of phosphorus vulnerability in the global food system publication-title: Food Security doi: 10.1007/s12571-015-0442-0 – volume: 55 start-page: 493 year: 2007 ident: key 20180914094413_CIT0022 article-title: Roots of the second green revolution publication-title: Australian Journal of Botany doi: 10.1071/BT06118 – volume: 16 start-page: 247 year: 1998 ident: key 20180914094413_CIT0016 article-title: Early post-embryonic root formation is specifically affected in the maize mutant lrt1 publication-title: The Plant Journal doi: 10.1046/j.1365-313x.1998.00280.x – volume: 48 start-page: 6523 year: 2014 ident: key 20180914094413_CIT0048 article-title: Feed the crop not the soil: rethinking phosphorus management in the food chain publication-title: Environmental Science & Technology doi: 10.1021/es501670j – volume: 327 start-page: 812 year: 2010 ident: key 20180914094413_CIT0012 article-title: Food security: the challenge of feeding 9 billion people publication-title: Science doi: 10.1126/science.1185383 – volume: 156 start-page: 1041 year: 2011 ident: key 20180914094413_CIT0023 article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops publication-title: Plant Physiology doi: 10.1104/pp.111.175414 – start-page: 83 volume-title: The ecophysiology of plant–phosphorus interactions year: 2008 ident: key 20180914094413_CIT0026 article-title: Root strategies for phosphorus acquisition doi: 10.1007/978-1-4020-8435-5_5 – volume: 66 start-page: 2055 year: 2015 ident: key 20180914094413_CIT0050 article-title: Reduced frequency of lateral root branching improves N capture from low-N soils in maize publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erv007 – volume: 75 start-page: 311 year: 2003 ident: key 20180914094413_CIT0049 article-title: The significance of lateral roots in phosphorus (P) acquisition of water hyacinth (Eichhornia crassipes) publication-title: Aquatic Botany doi: 10.1016/S0304-3770(03)00003-2 – volume: 167 start-page: 1430 year: 2015 ident: key 20180914094413_CIT0030 article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition publication-title: Plant Physiology doi: 10.1104/pp.15.00145 – volume: 22 start-page: 425 year: 1999 ident: key 20180914094413_CIT0004 article-title: Ethylene: a regulator of root architectural responses to soil phosphorus availability publication-title: Plant, Cell & Environment doi: 10.1046/j.1365-3040.1999.00405.x – volume: 19 start-page: 118 year: 2007 ident: key 20180914094413_CIT0035 article-title: ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis publication-title: The Plant Cell doi: 10.1105/tpc.106.047761 – volume: 32 start-page: 749 year: 2005 ident: key 20180914094413_CIT0054 article-title: Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays) publication-title: Functional Plant Biology doi: 10.1071/FP05005 – volume: 100 start-page: 263 year: 2013 ident: key 20180914094413_CIT0021 article-title: How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae) publication-title: American Journal of Botany doi: 10.3732/ajb.1200474 – volume: 237 start-page: 225 year: 2001 ident: key 20180914094413_CIT0025 article-title: Topsoil foraging—an architectural adaptation of plants to low phosphorus publication-title: Plant and Soil doi: 10.1023/A:1013324727040 – volume: 19 start-page: 292 year: 2009 ident: key 20180914094413_CIT0009 article-title: The story of phosphorus: global food security and food for thought publication-title: Global Environmental Change doi: 10.1016/j.gloenvcha.2008.10.009 – volume: 125 start-page: 1529 year: 2001 ident: key 20180914094413_CIT0017 article-title: Cooperative action of SLR1 and SLR2 is required for lateral root-specific cell elongation in maize publication-title: Plant Physiology doi: 10.1104/pp.125.3.1529 – volume: 357 start-page: 189 year: 2012 ident: key 20180914094413_CIT0006 article-title: RootScan: software for high-throughput analysis of root anatomical traits publication-title: Plant and Soil doi: 10.1007/s11104-012-1138-2 – volume: 174 start-page: 2333 year: 2017 ident: key 20180914094413_CIT0040 article-title: Root cortical senescence improves growth under suboptimal availability of N, P, and K publication-title: Plant Physiology doi: 10.1104/pp.17.00648 – volume: 127 start-page: 2293 year: 2014 ident: key 20180914094413_CIT0005 article-title: QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.) publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-014-2353-4 – volume: 112 start-page: 347 year: 2013 ident: key 20180914094413_CIT0024 article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems publication-title: Annals of Botany doi: 10.1093/aob/mcs293 – volume: 208 start-page: 373 year: 1999 ident: key 20180914094413_CIT0033 article-title: Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin publication-title: Planta doi: 10.1007/s004250050572 – year: 2018 ident: key 20180914094413_CIT0011a article-title: Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize publication-title: Plant, Cell, & Environment doi: 10.1111/pce.13197 – volume: 139 start-page: 883 year: 2012 ident: key 20180914094413_CIT0013 article-title: The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins publication-title: Development doi: 10.1242/dev.071928 – volume: 132 start-page: 281 year: 1996 ident: key 20180914094413_CIT0003 article-title: Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris publication-title: New Phytologist doi: 10.1111/j.1469-8137.1996.tb01847.x – volume: 24 start-page: 459 year: 2001 ident: key 20180914094413_CIT0028 article-title: Regulation of root hair density by phosphorus availability in Arabidopsis thaliana publication-title: Plant, Cell & Environment doi: 10.1046/j.1365-3040.2001.00695.x – volume: 179 start-page: 595 year: 2008 ident: key 20180914094413_CIT0034 article-title: Branching out in new directions: the control of root architecture by lateral root formation publication-title: New Phytologist doi: 10.1111/j.1469-8137.2008.02472.x – volume: 140 start-page: 18 year: 2013 ident: key 20180914094413_CIT0044 article-title: Maize root growth angles become steeper under low N conditions publication-title: Field Crops Research doi: 10.1016/j.fcr.2012.09.010 – volume: 38 start-page: 2208 year: 2015 ident: key 20180914094413_CIT0053 article-title: OsAUX1 controls lateral root initiation in rice (Oryza sativa L.) publication-title: Plant, Cell & Environment doi: 10.1111/pce.12467 – volume: 314 start-page: 75 year: 2011 ident: key 20180914094413_CIT0043 article-title: Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field publication-title: Plant and Soil doi: 10.1007/s11104-010-0623-8 – volume: 198 start-page: 1071 year: 2013 ident: key 20180914094413_CIT0008 article-title: The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development publication-title: New Phytologist doi: 10.1111/nph.12231 – volume: 31 start-page: 949 year: 2004 ident: key 20180914094413_CIT0055 article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays L.) seedlings publication-title: Functional Plant Biology doi: 10.1071/FP04046 – volume: 24 start-page: 1 year: 1949 ident: key 20180914094413_CIT0001 article-title: Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris publication-title: Plant Physiology doi: 10.1104/pp.24.1.1 – volume: 36 start-page: 1676 year: 1996 ident: key 20180914094413_CIT0042 article-title: Simple sequence repeat markers developed from maize sequences found in GENBANK database: map construction publication-title: Crop Science doi: 10.2135/cropsci1996.0011183X003600060043x – volume: 66 start-page: 341 year: 2011 ident: key 20180914094413_CIT0047 article-title: Rootless with undetectable meristem 1 encodes a monocot-specific AUX/IAA protein that controls embryonic seminal and post-embryonic lateral root initiation in maize publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2011.04495.x – volume: 19 start-page: 529 year: 1996 ident: key 20180914094413_CIT0002 article-title: Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability publication-title: Plant, Cell & Environment doi: 10.1111/j.1365-3040.1996.tb00386.x – volume: 40 start-page: 358 year: 2000 ident: key 20180914094413_CIT0020 article-title: Variation among maize inbred lines and detection of quantitative trait loci for growth at low P and responsiveness to arbuscular mycorrhizal fungi publication-title: Crop Science doi: 10.2135/cropsci2000.402358x – volume: 112 start-page: 31 year: 1996 ident: key 20180914094413_CIT0019 article-title: Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase publication-title: Plant Physiology doi: 10.1104/pp.112.1.31 – volume: 5 start-page: 18192 year: 2015 ident: key 20180914094413_CIT0018 article-title: Knockdown of the partner protein OsNAR2.1 for high-affinity nitrate transport represses lateral root formation in a nitrate-dependent manner publication-title: Scientific Reports doi: 10.1038/srep18192 – volume: 349 start-page: 121 year: 2011 ident: key 20180914094413_CIT0039 article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture publication-title: Plant and Soil doi: 10.1007/s11104-011-0950-4 – volume: 27 start-page: 31 year: 1962 ident: key 20180914094413_CIT0032 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Analytica Chimica Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 65 start-page: 4919 year: 2014 ident: key 20180914094413_CIT0052 article-title: The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots publication-title: Journal of Experimental Botany doi: 10.1093/jxb/eru249 – volume: 156 start-page: 1190 year: 2011 ident: key 20180914094413_CIT0037 article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium publication-title: Plant Physiology doi: 10.1104/pp.111.175489 – volume: 107 start-page: 829 year: 2011 ident: key 20180914094413_CIT0038 article-title: Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability publication-title: Annals of Botany doi: 10.1093/aob/mcq199 – volume: 221 start-page: 189 year: 2000 ident: key 20180914094413_CIT0029 article-title: Traits associated with improved P-uptake efficiency in CIMMYT’s semidwarf spring bread wheat grown on acid Andisols in Mexico publication-title: Plant and Soil doi: 10.1023/A:1004727201568 – volume: 166 start-page: 590 year: 2014 ident: key 20180914094413_CIT0036 article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability publication-title: Plant Physiology doi: 10.1104/pp.113.233916 – volume: 30 start-page: 973 year: 2003 ident: key 20180914094413_CIT0031 article-title: Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils publication-title: Functional Plant Biology doi: 10.1071/FP03078 – volume: 348 start-page: 345 year: 2011 ident: key 20180914094413_CIT0007 article-title: Phenotypic variability and modelling of root structure of wild Lupinus angustifolius genotypes publication-title: Plant and Soil doi: 10.1007/s11104-011-0939-z |
SSID | ssj0005055 |
Score | 2.5467362 |
Snippet | Maize genotypes with greater lateral root branching density have superior phosphorus uptake, growth, and yield in low phosphorus soil.
Abstract
The development... The development of crops with better growth under suboptimal phosphorus availability would improve food security in developing countries while reducing... Maize genotypes with greater lateral root branching density have superior phosphorus uptake, growth, and yield in low phosphorus soil. The development of crops... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4961 |
SubjectTerms | biomass branching corn crops developed countries developing countries food security genetic improvement grain yield greenhouses inbred lines lateral roots leaves phenotype phosphorus phosphorus content photosynthesis pollution pollution control Research Papers rooting soil Zea mays |
Title | Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30295904 https://www.proquest.com/docview/2117157138 https://www.proquest.com/docview/2400475822 https://pubmed.ncbi.nlm.nih.gov/PMC6137997 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELYQYmBBvCmPyggWhqh52Y5HQFQFBCxF6hY5sa0GlaQ0qaD8es5JWxpUlSFZfHnoLvF95zt_h9AleDnNnFhaFMCq5RNbWBG4XcujTDKfxsIuq92fnmnn1X_okd60iCZfksLnXuvtK2qp0cQlZqYF72sY8rsvvd9CDpuQGSc4AAY2IyGtXVpzO7WtbAuI8m9h5IKnaW-jrSlExNeVTXfQmkp30cZNBjBusof6ZVCvRnhgziAH0LfAkemPYRaTsDQV6cUEJyl-F8m3wkm5bKByPOxnORyjcY5F_DFOqmotbDaY4EH2uTieZ8lgH3Xbd93bjjVtl2DFAOoKixDBAaBpHlGAYR6NiWlAQ3whNWOKS48RyTQXMQkoTGqRdqUQHjfVUEQDMDlA62mWqiOEBZORCGxNuasNgRp3dGQSeEHgSe0I2kBXM2WG8ZRK3HS0GIRVStsLQfFhpfgGupjLDisCjaVSTbDJSoHzmblC-AFMVkOkKhvnIUSwzCEQawcrZMxMBZGRC_c5rEw8f5Znu5yA4hqI1Yw_FzAE3PWRNOmXRNwAhRjn7Pi_lz9Bm4CzyjITxz9F68VorM4AyxRRE1D8_WOz_KB_ABoF92M |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greater+lateral+root+branching+density+in+maize+improves+phosphorus+acquisition+from+low+phosphorus+soil&rft.jtitle=Journal+of+experimental+botany&rft.au=Jia%2C+Xucun&rft.au=Liu%2C+Peng&rft.au=Lynch%2C+Jonathan+P&rft.date=2018-09-14&rft.eissn=1460-2431&rft.volume=69&rft.issue=20&rft.spage=4961&rft_id=info:doi/10.1093%2Fjxb%2Fery252&rft_id=info%3Apmid%2F30295904&rft.externalDocID=30295904 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon |