Microclimatic edge-to-interior gradients of European deciduous forests
•We quantified evaporation and soil and air temperature offsets in forest edges across Europe.•Roughly 10% of European broadleaved forests are affected by altered temperature regimes.•Macroclimate and management affected edge-to-interior temperature offset gradients.•Forest structure and the forest-...
Saved in:
Published in | Agricultural and forest meteorology Vol. 311; p. 108699 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2021
Elsevier Masson |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We quantified evaporation and soil and air temperature offsets in forest edges across Europe.•Roughly 10% of European broadleaved forests are affected by altered temperature regimes.•Macroclimate and management affected edge-to-interior temperature offset gradients.•Forest structure and the forest-floor biomass are important drivers of temperature offsets.•Dense forest edges can help mitigate edge influences and protect forest interior microclimates.
Global forest cover is heavily fragmented. Due to high edge-to-surface ratios in small forest patches, a large proportion of forests is affected by edge influences involving steep microclimatic gradients. Although forest edges are important ecotones and account for 20% of the global forested area, it remains unclear how biotic and abiotic drivers affect forest edge microclimates at the continental scale. Here we report soil and air temperatures measured in 225 deciduous forest plots across Europe for two years. Forest stands were situated along a latitudinal gradient and subject to a varying vegetation structure as quantified by terrestrial laser scanning. In summer, the average offset of air and soil temperatures in forest edges compared to temperatures outside the forest amounted to -2.8 °C and -2.3 °C, respectively. Edge-to-interior summer temperature gradients were affected by the macroclimate and edge structure. From the edge onwards, larger offsets were observed in dense forest edges and in warmer, southern regions. In open forests and northern Europe, altered microclimatic conditions extended deeper into the forest and gradients were steeper. Canopy closure and plant area index were important drivers of summer offsets in edges, whereas in winter also the forest-floor biomass played a key role. Using high-resolution maps, we estimated that approximately 10% of the European broadleaved forests would be affected by altered temperature regimes. Gradual transition zones between forest and adjacent lands are valuable habitat types for edge species. However, if cool and moist forest interiors are desired, then (i) dense and complex forest edges, (ii) an undisturbed forested buffer zone of at least 12.5 m deep and (iii) trees with a high shade casting ability could all contribute to an increased offset. These findings provide important guidelines to mitigate edge influences, to protect typical forest microclimates and to adapt forest management to climate change. |
---|---|
AbstractList | Global forest cover is heavily fragmented. Due to high edge-to-surface ratios in small forest patches, a large proportion of forests is affected by edge influences involving steep microclimatic gradients. Although forest edges are important ecotones and account for 20% of the global forested area, it remains unclear how biotic and abiotic drivers affect forest edge microclimates at the continental scale. Here we report soil and air temperatures measured in 225 deciduous forest plots across Europe for two years. Forest stands were situated along a latitudinal gradient and subject to a varying vegetation structure as quantified by terrestrial laser scanning. In summer, the average offset of air and soil temperatures in forest edges compared to temperatures outside the forest amounted to -2.8 degrees C and -2.3 degrees C, respectively. Edge-to-interior summer temperature gradients were affected by the macroclimate and edge structure. From the edge onwards, larger offsets were observed in dense forest edges and in warmer, southern regions. In open forests and northern Europe, altered microclimatic conditions extended deeper into the forest and gradients were steeper. Canopy closure and plant area index were important drivers of summer offsets in edges, whereas in winter also the forest-floor biomass played a key role. Using high-resolution maps, we estimated that approximately 10% of the European broadleaved forests would be affected by altered temperature regimes. Gradual transition zones between forest and adjacent lands are valuable habitat types for edge species. However, if cool and moist forest interiors are desired, then (i) dense and complex forest edges, (ii) an undisturbed forested buffer zone of at least 12.5 m deep and (iii) trees with a high shade casting ability could all contribute to an increased offset. These findings provide important guidelines to mitigate edge influences, to protect typical forest microclimates and to adapt forest management to climate change. •We quantified evaporation and soil and air temperature offsets in forest edges across Europe.•Roughly 10% of European broadleaved forests are affected by altered temperature regimes.•Macroclimate and management affected edge-to-interior temperature offset gradients.•Forest structure and the forest-floor biomass are important drivers of temperature offsets.•Dense forest edges can help mitigate edge influences and protect forest interior microclimates. Global forest cover is heavily fragmented. Due to high edge-to-surface ratios in small forest patches, a large proportion of forests is affected by edge influences involving steep microclimatic gradients. Although forest edges are important ecotones and account for 20% of the global forested area, it remains unclear how biotic and abiotic drivers affect forest edge microclimates at the continental scale. Here we report soil and air temperatures measured in 225 deciduous forest plots across Europe for two years. Forest stands were situated along a latitudinal gradient and subject to a varying vegetation structure as quantified by terrestrial laser scanning. In summer, the average offset of air and soil temperatures in forest edges compared to temperatures outside the forest amounted to -2.8 °C and -2.3 °C, respectively. Edge-to-interior summer temperature gradients were affected by the macroclimate and edge structure. From the edge onwards, larger offsets were observed in dense forest edges and in warmer, southern regions. In open forests and northern Europe, altered microclimatic conditions extended deeper into the forest and gradients were steeper. Canopy closure and plant area index were important drivers of summer offsets in edges, whereas in winter also the forest-floor biomass played a key role. Using high-resolution maps, we estimated that approximately 10% of the European broadleaved forests would be affected by altered temperature regimes. Gradual transition zones between forest and adjacent lands are valuable habitat types for edge species. However, if cool and moist forest interiors are desired, then (i) dense and complex forest edges, (ii) an undisturbed forested buffer zone of at least 12.5 m deep and (iii) trees with a high shade casting ability could all contribute to an increased offset. These findings provide important guidelines to mitigate edge influences, to protect typical forest microclimates and to adapt forest management to climate change. Global forest cover is heavily fragmented. Due to high edge-to-surface ratios in small forest patches, a large proportion of forests is affected by edge influences involving steep microclimatic gradients. Although forest edges are important ecotones and account for 20% of the global forested area, it remains unclear how biotic and abiotic drivers affect forest edge microclimates at the continental scale. Here we report soil and air temperatures measured in 225 deciduous forest plots across Europe for two years. Forest stands were situated along a latitudinal gradient and subject to a varying vegetation structure as quantified by terrestrial laser scanning. In summer, the average offset of air and soil temperatures in forest edges compared to temperatures outside the forest amounted to -2.8 °C and -2.3 °C, respectively. Edge-to-interior summer temperature gradients were affected by the macroclimate and edge structure. From the edge onwards, larger offsets were observed in dense forest edges and in warmer, southern regions. In open forests and northern Europe, altered microclimatic conditions extended deeper into the forest and gradients were steeper. Canopy closure and plant area index were important drivers of summer offsets in edges, whereas in winter also the forest-floor biomass played a key role. Using high-resolution maps, we estimated that approximately 10% of the European broadleaved forests would be affected by altered temperature regimes. Gradual transition zones between forest and adjacent lands are valuable habitat types for edge species. However, if cool and moist forest interiors are desired, then (i) dense and complex forest edges, (ii) an undisturbed forested buffer zone of at least 12.5 m deep and (iii) trees with a high shade casting ability could all contribute to an increased offset. These findings provide important guidelines to mitigate edge influences, to protect typical forest microclimates and to adapt forest management to climate change. |
ArticleNumber | 108699 |
Author | Diekmann, Martin Gasperini, Cristina Hylander, Kristoffer Verbeeck, Hans Bollmann, Kurt Vangansbeke, Pieter Brunet, Jörg Verheyen, Kris Ponette, Quentin Vanneste, Thomas De Pauw, Karen Hedwall, Per-Ola Meeussen, Camille Lindmo, Sigrid De Frenne, Pieter Iacopetti, Giovanni Orczewska, Anna Govaert, Sanne Zellweger, Florian Spicher, Fabien Calders, Kim Plue, Jan Cousins, Sara A.O. Lenoir, Jonathan Sanczuk, Pieter Selvi, Federico |
Author_xml | – sequence: 1 givenname: Camille surname: Meeussen fullname: Meeussen, Camille email: Camille.meeussen@ugent.be organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium – sequence: 2 givenname: Sanne surname: Govaert fullname: Govaert, Sanne organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium – sequence: 3 givenname: Thomas surname: Vanneste fullname: Vanneste, Thomas organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium – sequence: 4 givenname: Kurt surname: Bollmann fullname: Bollmann, Kurt organization: Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland – sequence: 5 givenname: Jörg surname: Brunet fullname: Brunet, Jörg organization: Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 234 22 Lomma, Sweden – sequence: 6 givenname: Kim surname: Calders fullname: Calders, Kim organization: CAVElab – Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, 9000 Ghent, Belgium – sequence: 7 givenname: Sara A.O. surname: Cousins fullname: Cousins, Sara A.O. organization: Landscape, Environment and Geomatics, Department of Physical Geography, Stockholm University, 10691 Stockholm, Sweden – sequence: 8 givenname: Karen surname: De Pauw fullname: De Pauw, Karen organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium – sequence: 9 givenname: Martin surname: Diekmann fullname: Diekmann, Martin organization: Vegetation Ecology and Conservation Biology, Institute of Ecology, FB2, University of Bremen, 28359 Bremen, Germany – sequence: 10 givenname: Cristina surname: Gasperini fullname: Gasperini, Cristina organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium – sequence: 11 givenname: Per-Ola surname: Hedwall fullname: Hedwall, Per-Ola organization: Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 234 22 Lomma, Sweden – sequence: 12 givenname: Kristoffer surname: Hylander fullname: Hylander, Kristoffer organization: Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden – sequence: 13 givenname: Giovanni surname: Iacopetti fullname: Iacopetti, Giovanni organization: Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Florence, Italy – sequence: 14 givenname: Jonathan surname: Lenoir fullname: Lenoir, Jonathan organization: UMR 7058 CNRS Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN), Université de Picardie Jules Verne, 80000 Amiens, France – sequence: 15 givenname: Sigrid surname: Lindmo fullname: Lindmo, Sigrid organization: Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway – sequence: 16 givenname: Anna surname: Orczewska fullname: Orczewska, Anna organization: Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland – sequence: 17 givenname: Quentin surname: Ponette fullname: Ponette, Quentin organization: Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium – sequence: 18 givenname: Jan surname: Plue fullname: Plue, Jan organization: Landscape, Environment and Geomatics, Department of Physical Geography, Stockholm University, 10691 Stockholm, Sweden – sequence: 19 givenname: Pieter surname: Sanczuk fullname: Sanczuk, Pieter organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium – sequence: 20 givenname: Federico surname: Selvi fullname: Selvi, Federico organization: Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Florence, Italy – sequence: 21 givenname: Fabien surname: Spicher fullname: Spicher, Fabien organization: UMR 7058 CNRS Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN), Université de Picardie Jules Verne, 80000 Amiens, France – sequence: 22 givenname: Hans surname: Verbeeck fullname: Verbeeck, Hans organization: CAVElab – Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, 9000 Ghent, Belgium – sequence: 23 givenname: Florian surname: Zellweger fullname: Zellweger, Florian organization: Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland – sequence: 24 givenname: Kris surname: Verheyen fullname: Verheyen, Kris organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium – sequence: 25 givenname: Pieter surname: Vangansbeke fullname: Vangansbeke, Pieter organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium – sequence: 26 givenname: Pieter surname: De Frenne fullname: De Frenne, Pieter organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium |
BackLink | https://u-picardie.hal.science/hal-03614154$$DView record in HAL https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-199681$$DView record from Swedish Publication Index https://res.slu.se/id/publ/114431$$DView record from Swedish Publication Index |
BookMark | eNqFkUFv1DAQhS1UJLaF30COIJHF42Sd5MBhVVqKtFUvhevIsceLV9l4sZ0i_j2OAkggVT2NNPO9mdF75-xs9CMx9hr4GjjI94e12gfrw5HSWnABudvKrnvGVtA2VSlEzc_YKpNtCZ2oXrDzGA-cg2iabsWub50OXg_uqJLTBZk9lcmXbkwUnA_FPijjaEyx8La4moI_kRoLQ9qZyU-xyIcppviSPbdqiPTqd71gX66v7i9vyt3dp8-X212pN7xJZW0bkMaqnnMjSJKUqiUhQCrQGyDTN9B2jVSG6hqs3FjNK54HwvadVaqrLth62Rt_0Gnq8RTy4-EneuUwDlOvwlwwEgLUdQVZ8O5RwUf3dYs-7DFOCF0n2xl_u-Df1PAPe7Pd4dzjlYQaNvXDzL5Z2FPw36fsAh5d1DQMaqRsDQpZyablUMmMfljQ7HWMgSxql7LhfkxBuQGB45wlHvBvljhniUuWWd_8p__z29PK7aKknMqDo-yPznlqMi6QTmi8e3LHL0TSwb0 |
CitedBy_id | crossref_primary_10_1007_s11252_023_01486_x crossref_primary_10_1111_geb_13676 crossref_primary_10_1016_j_foreco_2022_120709 crossref_primary_10_1016_j_foreco_2024_122416 crossref_primary_10_1111_avsc_12739 crossref_primary_10_1111_gcb_17196 crossref_primary_10_1111_jvs_13236 crossref_primary_10_3832_efor4224_019 crossref_primary_10_1016_j_agrformet_2023_109662 crossref_primary_10_1016_j_ufug_2024_128462 crossref_primary_10_1007_s10342_024_01702_z crossref_primary_10_1016_j_foreco_2022_120465 crossref_primary_10_1016_j_rse_2023_113820 crossref_primary_10_1038_s41558_023_01744_y crossref_primary_10_1038_s41559_024_02335_6 crossref_primary_10_3389_ffgc_2022_828725 crossref_primary_10_3389_ffgc_2023_1233052 crossref_primary_10_1002_rse2_334 crossref_primary_10_1111_geb_13789 crossref_primary_10_1111_1365_2745_14229 crossref_primary_10_1111_1365_2745_14105 crossref_primary_10_1111_1365_2745_14425 crossref_primary_10_1111_1365_2745_14345 crossref_primary_10_1038_s41467_024_53460_6 crossref_primary_10_1111_gcb_17064 crossref_primary_10_1016_j_agrformet_2024_109894 crossref_primary_10_1016_j_foreco_2023_121407 crossref_primary_10_1016_j_gecco_2023_e02601 crossref_primary_10_1016_j_scitotenv_2024_170531 crossref_primary_10_1016_j_scitotenv_2021_149373 crossref_primary_10_1002_fee_2828 crossref_primary_10_1002_eap_2851 crossref_primary_10_1016_j_agrformet_2023_109632 crossref_primary_10_1016_j_foreco_2025_122517 crossref_primary_10_1007_s00484_024_02702_9 crossref_primary_10_1111_oik_09755 crossref_primary_10_1111_plb_13412 crossref_primary_10_1016_j_agrformet_2023_109684 crossref_primary_10_1016_j_scitotenv_2023_165543 crossref_primary_10_1111_nph_18539 crossref_primary_10_1016_j_agrformet_2024_110105 crossref_primary_10_4236_ojf_2024_144021 crossref_primary_10_1016_j_ecolind_2024_111624 crossref_primary_10_1016_j_foreco_2023_121496 crossref_primary_10_1016_j_foreco_2025_122661 crossref_primary_10_1111_geb_13568 crossref_primary_10_1111_ecog_07449 crossref_primary_10_3390_plants11050653 crossref_primary_10_1111_2041_210X_14476 crossref_primary_10_1007_s10980_025_02054_8 |
Cites_doi | 10.1111/1365-2664.13238 10.1038/s41598-018-33186-4 10.1016/0168-1923(96)02337-4 10.1093/treephys/25.6.733 10.1111/j.1654-1103.2012.01435.x 10.1016/j.agrformet.2019.02.015 10.1016/j.agrformet.2016.10.022 10.2307/1942053 10.1126/science.abd3881 10.1016/j.foreco.2014.09.008 10.1016/j.foreco.2019.05.069 10.1016/j.biosystemseng.2017.02.001 10.1016/j.foreco.2016.05.040 10.1111/avsc.12344 10.1111/gcb.14942 10.1016/j.soilbio.2012.02.028 10.1016/bs.aecr.2017.12.005 10.18637/jss.v082.i13 10.1016/j.agrformet.2005.08.008 10.1016/j.foreco.2018.10.008 10.1111/j.1365-2745.2011.01928.x 10.1029/2004JF000224 10.1111/geb.13216 10.1038/nclimate3303 10.1016/j.rse.2020.112102 10.1111/jvs.12844 10.1016/S0169-5347(00)88977-6 10.1016/S0378-1127(01)00490-X 10.1111/ddi.12909 10.1126/sciadv.1500052 10.1038/s41559-019-0842-1 10.1007/s00704-010-0361-0 10.1146/annurev.ecolsys.35.112202.130148 10.18637/jss.v067.i01 10.1038/nature10548 10.1016/j.agrformet.2019.01.001 10.1002/joc.5020 10.1111/j.1365-2664.2005.01033.x 10.1016/S0378-1127(00)00654-X 10.1016/j.agrformet.2016.11.268 10.1016/S0022-1694(01)00515-7 10.1641/B571007 10.1126/sciadv.1501392 10.1007/978-0-387-87458-6_5 10.1111/gcb.15569 10.1016/j.scitotenv.2020.143497 10.1002/bimj.200810425 10.2307/1313612 10.1016/S0378-1127(00)00624-1 10.1088/1748-9326/6/4/045509 10.1017/S0266467404001828 10.1051/forest:2000119 10.1111/geb.12991 10.1016/0006-3207(94)90010-8 10.1007/s10980-015-0270-9 10.1016/S0378-1127(98)00468-X 10.1111/1365-2745.12426 10.1890/03-5093 10.1016/j.agrformet.2003.08.030 10.1038/nplants.2015.110 10.1007/s11104-015-2664-5 10.1126/science.1244693 10.1016/0006-3207(93)90004-K 10.1016/j.agrformet.2017.12.252 10.1111/1365-2745.13671 10.1073/pnas.1311190110 10.1016/j.foreco.2020.117929 10.1111/1365-2435.12428 10.1007/s11284-010-0712-4 10.1038/sdata.2017.122 10.1007/s10661-017-6430-4 10.1111/j.1600-0706.2011.19694.x 10.1016/S0034-4257(99)00056-5 10.1111/j.1523-1739.2005.00045.x 10.1038/nature24457 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | AAYXX CITATION 7S9 L.6 1XC ADTPV AOWAS DG7 |
DOI | 10.1016/j.agrformet.2021.108699 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) SwePub SwePub Articles SWEPUB Stockholms universitet |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Agriculture |
EISSN | 1873-2240 |
ExternalDocumentID | oai_slubar_slu_se_114431 oai_DiVA_org_su_199681 oai_HAL_hal_03614154v1 10_1016_j_agrformet_2021_108699 S0168192321003853 |
GeographicLocations | Northern European region Europe |
GeographicLocations_xml | – name: Europe – name: Northern European region |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABGRD ABJNI ABLJU ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SDP SES SPC SPCBC SSA SSE SSZ T5K WH7 Y6R ZMT ~02 ~G- ~KM AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMA HVGLF HZ~ R2- RIG SEP SEW SSH WUQ 7S9 L.6 1XC ADTPV AOWAS DG7 EFKBS |
ID | FETCH-LOGICAL-c507t-4f716dfab00d2e6e66a8e2216a1c51edb718976ade441f65fc03051e2fb9faa93 |
IEDL.DBID | .~1 |
ISSN | 0168-1923 1873-2240 |
IngestDate | Thu Aug 21 06:40:52 EDT 2025 Thu Aug 21 06:59:09 EDT 2025 Fri May 09 12:13:31 EDT 2025 Thu Jul 10 17:52:15 EDT 2025 Tue Jul 01 04:35:23 EDT 2025 Thu Apr 24 22:54:50 EDT 2025 Fri Feb 23 02:41:28 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Edge influence Climate change Temperature buffering Forest structure Temperate forests Fragmentation |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-4f716dfab00d2e6e66a8e2216a1c51edb718976ade441f65fc03051e2fb9faa93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3820-125X 0000-0003-1265-9147 0000-0002-2067-9108 0000-0002-6999-669X 0000-0002-8939-1305 0000-0001-8369-2679 0000-0003-1490-0168 0000-0002-8613-0943 0000-0001-8482-0679 0000-0003-0638-9582 0000-0002-4690-7121 0000-0002-4562-2538 0000-0002-1215-2648 0000-0002-2726-7392 0000-0002-6356-2858 0000-0002-0120-7420 0000-0001-5296-917X 0000-0003-1107-4905 0000-0002-9999-955X 0000-0002-5869-4936 0000-0002-1472-4435 0000-0002-7924-9794 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0168192321003853 |
PQID | 2636780136 |
PQPubID | 24069 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_114431 swepub_primary_oai_DiVA_org_su_199681 hal_primary_oai_HAL_hal_03614154v1 proquest_miscellaneous_2636780136 crossref_citationtrail_10_1016_j_agrformet_2021_108699 crossref_primary_10_1016_j_agrformet_2021_108699 elsevier_sciencedirect_doi_10_1016_j_agrformet_2021_108699 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-15 |
PublicationDateYYYYMMDD | 2021-12-15 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Agricultural and forest meteorology |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier Masson |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Masson |
References | Chen, Y., Liu, Y., Zhang, J., Yang, W., He, R., Deng, C., 2018. Microclimate exerts greater control over litter decomposition and enzyme activity than litter quality in an alpine forest-tundra ecotone. Sci. Rep. 8, 1–13. De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B.R., Zellweger, F., Aalto, J., Ashcroft, M.B., Christiansen, D.M., Decocq, G., De Pauw, K., Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D.H., Koelemeijer, I.A., Lembrechts, J.J., Marrec, R., Meeussen, C., Ogée, J., Tyystjärvi, V., Vangansbeke, P., Hylander, K., 2021. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Chang. Biol. Gcb. 15569. Bertrand, Lenoir, Piedallu, Riofrío-Dillon, de Ruffray, Vidal, Pierrat, Gégout (bib0006) 2011; 479 De Frenne, P., Rodríguez-Sánchez, F., De Schrijver, A., Coomes, D.A., Hermy, M., Vangansbeke, P., Verheyen, K., 2015. Light accelerates plant responses to warming. Nat. Plants, 1(9), 1–3. De Pauw, K., Meeussen, C., Govaert, S., Sanczuk, P., Vanneste, T., Bernhardt-Römermann, M., Bollmann, K., Brunet, J., Calders, K., Cousins, S., Diekmann, M., Hedwall, P., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Ponette, Q., Plue, J., Selvi, F., Spicher, F., Verbeeck, H., Vermeir, P., Zellweger, F., Verheyen, K., Vangansbeke, P., De Frenne, P., 2021. Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges. J. Ecol. Zellweger, F., de Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., van Calster, H., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., Macek, M., Malicki, M., Naaf, T., Nagel, T.A., Ortmann-Ajkai, A., Petřík, P., Pielech, R., Reczynska, K., Schmidt, W., Standovár, T., Swierkosz, K., Teleki, B., Vild, O., Wulf, M., Coomes, D., 2020. Forest microclimate dynamics drive plant responses to warming. Science 80. 368. Papaioannou, G., Vouraki, K., Kerkides, P., 1996. Piche evaporimeter data as a substitute for Penman equation’ s aerodynamic term. Agric. For. Meteorol. 82, 83–92. Bartlett (bib0004) 2004; 109 Meeussen, C., Govaert, S., Vanneste, T., Calders, K., Bollmann, K., Brunet, J., Cousins, S.A.O., Diekmann, M., Graae, B.J., Hedwall, P.O., Krishna Moorthy, S.M., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Ponette, Q., Plue, J., Selvi, F., Spicher, F., Tolosano, M., Verbeeck, H., Verheyen, K., Vangansbeke, P., De Frenne, P., 2020. Structural variation of forest edges across Europe. For. Ecol. Manage. 462, 117929. Davies-Colley, R.J., Payne, G.W., Van Elswijk, M., 2000. Microclimate gradients across a forest edge. NZJ. Ecol. 24, 111–121. De Frenne, P., Rodríguez-Sánchez, F., Coomes, D.A., Baeten, L., Verstraeten, G., Vellen, M., Bernhardt-Römermann, M., Brown, C.D., Brunet, J., Cornelis, J., Decocq, G.M., Dierschke, H., Eriksson, O., Gilliam, F.S., Hédl, R., Heinken, T., Hermy, M., Hommel, P., Jenkins, M.A., Kelly, D.L., Kirby, K.J., Mitchell, F.J.G., Naaf, T., Newman, M., Peterken, G., Petřík, P., Schultz, J., Sonnier, G., Van Calster, H., Waller, D.M., Walther, G.R., White, P.S., Woods, K.D., Wulf, M., Graae, B.J., Verheyen, K., 2013. Microclimate moderates plant responses to macroclimate warming. Proc. Natl. Acad. Sci. USA 110, 18561–18565. Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. ISO 11277, 2009. Soil Quality – Determination of Particle Size Distribution in Mineral Soil Material – Method by Sieving and Sedimentation ISO, Geneva. Matlack, G.R., 1993. Microenvironment variation within and among forest edge sites in the eastern United States. Biol. Conserv. 66, 185–194. Pellissier, V., Bergès, L., Nedeltcheva, T., Schmitt, M.-.C., Avon, C., Cluzeau, C., Dupouey, J.L., 2013. Understorey plant species show long-range spatial patterns in forest patches according to distance-to-edge. J. Veg. Sci. 24, 9–24. EU-DEM. (2018). EU-digital elevation model (DEM). Version 1.1. Retrieved from https://land.coper nicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1. Saunders, S.C., Chen, J., Drummer, T.D., Crow, T.R., 1999. Modeling temperature gradients across edges over time in a managed landscape. For. Ecol. Manage. 117, 17–31. Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K.D., Macias-Fauria, M., Sass-Klaassen, U., Lévesque, E., Boudrea, S., Ropars, P., Hermanutz, L., Trant, A., Siegwart Collier, L., Weijers, S., Rozema, J., Rayback, S.A., Schmidt, N.M., Schaepman-Strub, G., Wipf, S., Rixen, C., Ménard, C.B., Venn, S., Goetz, S., Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P., Epstein, H.E., Hik, D.S., 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett., 6(4), 045509. Baker, Jordan, Steel, Fountain-Jones, Wardlaw, Baker (bib0003) 2014; 334 IPCC, 2018. Summary for Policymakers. In: Global Warming of 1.5 °C. An IPCC Special Report On the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission pathways, in the Context of Strengthening the Global Response to the Threat of Climate change, Sustainable development, and Efforts to Eradicate Poverty Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla et al. (eds.). World Meteorological Organization, Geneva, Switzerland, 32 pp. Gower, S.T., Kucharik, C.J., Norman, J.M., 1999. Direct and indirect estimation of leaf area index, f(APAR), and net primary production of terrestrial ecosystems. Remote Sens. Environ. 70, 29–51. De Smedt, P., Baeten, L., Proesmans, W., Van de Poel, S., Van Keer, J., Giffard, B., Martin, L., Vanhulle, R., Brunet, J., Cousins, S.A.O., Decocq, G., Deconchat, M., Diekmann, M., Gallet-Moron, E., Le Roux, V., Liira, J., Valdés, A., Wulf, M., Andrieu, E., Hermy, M., Bonte, D., Verheyen, K., 2019. Strength of forest edge effects on litter-dwelling macro-arthropods across Europe is influenced by forest age and edge properties. Divers. Distrib. 25, 963–974. Feeley, K.J., 2004. The effects of forest fragmentation and increased edge exposure on leaf litter accumulation. J. Trop. Ecol. 20, 709–712. Young, A., Mitchell, N., 1994. Microclimate and vegetation edge effects in a fragmented podocarp-broadleaf forest in New Zealand. Biol. Conserv. 67, 63–72. Fekete, I., Varga, C., Biró, B., Tóth, J.A., Várbíró, G., Lajtha, K., Szabó, G., Kotroczó, Z., 2016. The effects of litter production and litter depth on soil microclimate in a central european deciduous forest. Plant Soil 398, 291–300. Harper, K.A., Macdonald, S.E., Burton, P.J., Chen, J., Brosofske, K.D., Saunders, S.C., Euskirchen, E.S., Roberts, D., Jaiteh, M.S., Esseen, .P.-A., 2005. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 19, 768–782. R Core Team, 2020. R: A Language and Environment For Statistical Computing. R Foundation for Statistical Computing. Austria. URL, Vienna Dutta, B., Grant, B.B., Congreves, K.A., Smith, W.N., Wagner-Riddle, C., VanderZaag, A.C., Tenuta, M., Desjardins, R.L., 2018. Characterising effects of management practices, snow cover, and soil texture on soil temperature: model development in DNDC. Biosyst. Eng. 168, 54–72. Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., Lovejoy, T.E., Sexton, J.O., Austin, M.P., Collins, C.D., Cook, W.M., Damschen, E.I., Ewers, R.M., Foster, B.L., Jenkins, C.N., King, A.J., Laurance, W.F., Levey, D.J., Margules, C.R., Melbourne, B.A., Nicholls, A.O., Orrock, J.L., Song, D.-.X., Townshend, J.R., 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci. Adv. 1, e1500052. Hilmers, T., Friess, N., Bässler, C., Heurich, M., Brandl, R., Pretzsch, H., Seidl, R., Müller, J., 2018. Biodiversity along temperate forest succession. J. Appl. Ecol. 55, 2756–2766. Muñoz Sabater, J., 2019. ERA5-Land Hourly Data from 1981 to Present Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 23-02-2021) . Gilliam, F.S., 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience, 57(10), 845–858. MEA, 2005. Millennium Ecosystem Assessment. Ecosystems and Human well-being: Biodiversity synthesis. Washington, DC: Millennium Ecosystem Assessment. Remy, E., Wuyts, K., Boeckx, P., Ginzburg, S., Gundersen, P., Demey, A., Van Den Bulcke, J., Van Acker, J., Verheyen, K., 2016. Strong gradients in nitrogen and carbon stocks at temperate forest edges. For. Ecol. Manage. 376, 45–58. Aalto, Riihimäki, Meineri, Hylander, Luoto (bib0001) 2017; 37 Schmidt, M., Jochheim, H., Kersebaum, K.-.C., Lischeid, G., Nendel, C., 2017. Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes–a review. Agric. For. Meteorol. 232, 659–671. Honnay, O., Verheyen, K., Hermy, M., 2002. Permeability of ancient forest edges for weedy plant species invasion. For. Ecol. Manage. 161, 109–122. Duelli, P., Obrist, M.K., & Fluckiger, P.F., 2002. Forest edges are biodiversity hotspots–also for Neuroptera. Acta Zool. Acad. Sci. Hung., 48(Suppl 2), 75–87. Ries, L., Fletcher, R.J., Battin, J., Sisk, T.D., 2004. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 35, 491–522. Kalácska, M., Calvo-Alvarado, J.C., Sánchez-Azofeifa, G.A., 2005. Calibration and assessment of seasonal changes in leaf area index of a tropical dry forest in different stages of succession. Tree Physiol. 25, 733–744. Stevens, J.T., Safford, H.D., Harrison, S., Latimer, A.M., 2015. Forest disturbance accelerates thermophilization of understory plant communities. J. Ecol. 103, 1253–1263. Pfeifer, M., Lefebvre, V., Peres, C.A., Banks-Leite, C., Wearn, O.R., Marsh, C.J., Butchart, S.H.M., Arroyo-Rodríguez, V., Barlow, J., Cerezo, A., Cisneros, L., D'Cruze 10.1016/j.agrformet.2021.108699_bib0013 10.1016/j.agrformet.2021.108699_bib0057 10.1016/j.agrformet.2021.108699_bib0012 10.1016/j.agrformet.2021.108699_bib0056 10.1016/j.agrformet.2021.108699_bib0015 10.1016/j.agrformet.2021.108699_bib0059 10.1016/j.agrformet.2021.108699_bib0014 10.1016/j.agrformet.2021.108699_bib0058 10.1016/j.agrformet.2021.108699_bib0053 10.1016/j.agrformet.2021.108699_bib0052 10.1016/j.agrformet.2021.108699_bib0055 10.1016/j.agrformet.2021.108699_bib0054 Baker (10.1016/j.agrformet.2021.108699_bib0003) 2014; 334 10.1016/j.agrformet.2021.108699_bib0051 10.1016/j.agrformet.2021.108699_bib0050 10.1016/j.agrformet.2021.108699_bib0049 10.1016/j.agrformet.2021.108699_bib0024 10.1016/j.agrformet.2021.108699_bib0068 10.1016/j.agrformet.2021.108699_bib0023 10.1016/j.agrformet.2021.108699_bib0067 10.1016/j.agrformet.2021.108699_bib0026 10.1016/j.agrformet.2021.108699_bib0025 10.1016/j.agrformet.2021.108699_bib0069 10.1016/j.agrformet.2021.108699_bib0020 10.1016/j.agrformet.2021.108699_bib0064 10.1016/j.agrformet.2021.108699_bib0063 Chen (10.1016/j.agrformet.2021.108699_bib0011) 1999; 49 10.1016/j.agrformet.2021.108699_bib0022 10.1016/j.agrformet.2021.108699_bib0066 10.1016/j.agrformet.2021.108699_bib0021 10.1016/j.agrformet.2021.108699_bib0065 10.1016/j.agrformet.2021.108699_bib0060 10.1016/j.agrformet.2021.108699_bib0062 10.1016/j.agrformet.2021.108699_bib0061 Bates (10.1016/j.agrformet.2021.108699_bib0005) 2015; 67 Bramer (10.1016/j.agrformet.2021.108699_bib0008) 2018 Aussenac (10.1016/j.agrformet.2021.108699_bib0002) 2000 Aalto (10.1016/j.agrformet.2021.108699_bib0001) 2017; 37 10.1016/j.agrformet.2021.108699_bib0017 10.1016/j.agrformet.2021.108699_bib0016 10.1016/j.agrformet.2021.108699_bib0019 10.1016/j.agrformet.2021.108699_bib0018 10.1016/j.agrformet.2021.108699_bib0035 10.1016/j.agrformet.2021.108699_bib0079 Bertrand (10.1016/j.agrformet.2021.108699_bib0006) 2011; 479 10.1016/j.agrformet.2021.108699_bib0034 10.1016/j.agrformet.2021.108699_bib0078 Calders (10.1016/j.agrformet.2021.108699_bib0009) 2020 10.1016/j.agrformet.2021.108699_bib0037 10.1016/j.agrformet.2021.108699_bib0036 10.1016/j.agrformet.2021.108699_bib0031 10.1016/j.agrformet.2021.108699_bib0075 10.1016/j.agrformet.2021.108699_bib0030 10.1016/j.agrformet.2021.108699_bib0074 10.1016/j.agrformet.2021.108699_bib0033 10.1016/j.agrformet.2021.108699_bib0077 Chen (10.1016/j.agrformet.2021.108699_bib0010) 1995; 5 10.1016/j.agrformet.2021.108699_bib0032 10.1016/j.agrformet.2021.108699_bib0076 10.1016/j.agrformet.2021.108699_bib0071 10.1016/j.agrformet.2021.108699_bib0070 10.1016/j.agrformet.2021.108699_bib0073 10.1016/j.agrformet.2021.108699_bib0072 10.1016/j.agrformet.2021.108699_bib0028 10.1016/j.agrformet.2021.108699_bib0027 10.1016/j.agrformet.2021.108699_bib0029 10.1016/j.agrformet.2021.108699_bib0046 10.1016/j.agrformet.2021.108699_bib0045 10.1016/j.agrformet.2021.108699_bib0048 10.1016/j.agrformet.2021.108699_bib0047 10.1016/j.agrformet.2021.108699_bib0042 10.1016/j.agrformet.2021.108699_bib0086 10.1016/j.agrformet.2021.108699_bib0041 10.1016/j.agrformet.2021.108699_bib0085 10.1016/j.agrformet.2021.108699_bib0044 10.1016/j.agrformet.2021.108699_bib0043 10.1016/j.agrformet.2021.108699_bib0087 10.1016/j.agrformet.2021.108699_bib0082 10.1016/j.agrformet.2021.108699_bib0081 Bonan (10.1016/j.agrformet.2021.108699_bib0007) 2008; 80 10.1016/j.agrformet.2021.108699_bib0040 10.1016/j.agrformet.2021.108699_bib0084 10.1016/j.agrformet.2021.108699_bib0083 10.1016/j.agrformet.2021.108699_bib0080 Bartlett (10.1016/j.agrformet.2021.108699_bib0004) 2004; 109 10.1016/j.agrformet.2021.108699_bib0039 10.1016/j.agrformet.2021.108699_bib0038 |
References_xml | – reference: Zellweger, F., de Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., van Calster, H., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., Macek, M., Malicki, M., Naaf, T., Nagel, T.A., Ortmann-Ajkai, A., Petřík, P., Pielech, R., Reczynska, K., Schmidt, W., Standovár, T., Swierkosz, K., Teleki, B., Vild, O., Wulf, M., Coomes, D., 2020. Forest microclimate dynamics drive plant responses to warming. Science 80. 368. – reference: Niinemets, Ü., 2010. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693–714. – year: 2000 ident: bib0002 article-title: Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture publication-title: Ann. For. Sci. – reference: Hofmeister, J., Hošek, J., Brabec, M., Střalková, R., Mýlová, P., Bouda, M., Pettit, J.L., Rydval, M., Svoboda, M., 2019. Microclimate edge effect in small fragments of temperate forests in the context of climate change. For. Ecol. Manage. 448, 48–56. – volume: 109 start-page: F04008 year: 2004 ident: bib0004 article-title: Snow and the ground temperature record of climate change publication-title: J. Geophys. Res. – reference: Matlack, G.R., 1993. Microenvironment variation within and among forest edge sites in the eastern United States. Biol. Conserv. 66, 185–194. – reference: Fekete, I., Varga, C., Biró, B., Tóth, J.A., Várbíró, G., Lajtha, K., Szabó, G., Kotroczó, Z., 2016. The effects of litter production and litter depth on soil microclimate in a central european deciduous forest. Plant Soil 398, 291–300. – volume: 49 start-page: 288 year: 1999 end-page: 297 ident: bib0011 article-title: Microclimate in forest ecosystem and landscape ecology publication-title: Bioscience – reference: Schmidt, M., Lischeid, G., Nendel, C., 2019. Microclimate and matter dynamics in transition zones of forest to arable land. Agric. For. Meteorol. 268, 1–10. – reference: De Frenne, P., Rodríguez-Sánchez, F., Coomes, D.A., Baeten, L., Verstraeten, G., Vellen, M., Bernhardt-Römermann, M., Brown, C.D., Brunet, J., Cornelis, J., Decocq, G.M., Dierschke, H., Eriksson, O., Gilliam, F.S., Hédl, R., Heinken, T., Hermy, M., Hommel, P., Jenkins, M.A., Kelly, D.L., Kirby, K.J., Mitchell, F.J.G., Naaf, T., Newman, M., Peterken, G., Petřík, P., Schultz, J., Sonnier, G., Van Calster, H., Waller, D.M., Walther, G.R., White, P.S., Woods, K.D., Wulf, M., Graae, B.J., Verheyen, K., 2013. Microclimate moderates plant responses to macroclimate warming. Proc. Natl. Acad. Sci. USA 110, 18561–18565. – reference: Frey, S.J.K., Hadley, A.S., Johnson, S.L., Schulze, M., Jones, J.A., Betts, M.G., 2016. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392. – reference: Orczewska, A., Glista, A., 2005. Floristic analysis of the two woodland-meadow ecotones differing in orientation of the forest edge. Polish J. Ecol. 53, 365–382. – volume: 334 year: 2014 ident: bib0003 article-title: Microclimate through space and time: microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales publication-title: For. Ecol. Manage. – reference: Feeley, K.J., 2004. The effects of forest fragmentation and increased edge exposure on leaf litter accumulation. J. Trop. Ecol. 20, 709–712. – reference: EU-DEM. (2018). EU-digital elevation model (DEM). Version 1.1. Retrieved from https://land.coper nicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1. – reference: Meeussen, C., Govaert, S., Vanneste, T., Calders, K., Bollmann, K., Brunet, J., Cousins, S.A.O., Diekmann, M., Graae, B.J., Hedwall, P.O., Krishna Moorthy, S.M., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Ponette, Q., Plue, J., Selvi, F., Spicher, F., Tolosano, M., Verbeeck, H., Verheyen, K., Vangansbeke, P., De Frenne, P., 2020. Structural variation of forest edges across Europe. For. Ecol. Manage. 462, 117929. – reference: Hylander, K., 2005. Aspect modifies the magnitude of edge effects on bryophyte growth in boreal forests. J. Appl. Ecol. 42, 518–525. – reference: Schmidt, M., Jochheim, H., Kersebaum, K.-.C., Lischeid, G., Nendel, C., 2017. Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes–a review. Agric. For. Meteorol. 232, 659–671. – volume: 67 start-page: 1 year: 2015 end-page: 48 ident: bib0005 article-title: Fitting linear mixed-effects models using lme4 publication-title: J. Stat. Softw. – reference: Muñoz Sabater, J., 2019. ERA5-Land Hourly Data from 1981 to Present Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 23-02-2021), – reference: Murcia, C., 1995. Edge effects in fragmented forests: implications for conservation. Trends Ecol. Evol. 10, 58–62. – reference: IPCC, 2018. Summary for Policymakers. In: Global Warming of 1.5 °C. An IPCC Special Report On the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission pathways, in the Context of Strengthening the Global Response to the Threat of Climate change, Sustainable development, and Efforts to Eradicate Poverty Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla et al. (eds.). World Meteorological Organization, Geneva, Switzerland, 32 pp. – reference: Mourelle, C., Kellman, M., Kwon, L., 2001. Light occlusion at forest edges: an analysis of tree architectural characteristics. For. Ecol. Manage. 154, 179–192. – reference: De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B.R., Hylander, K., Luoto, M., Vellend, M., Verheyen, K., Lenoir, J., 2019. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749. – reference: ISO 11277, 2009. Soil Quality – Determination of Particle Size Distribution in Mineral Soil Material – Method by Sieving and Sedimentation ISO, Geneva. – reference: R Core Team, 2020. R: A Language and Environment For Statistical Computing. R Foundation for Statistical Computing. Austria. URL, Vienna – reference: Davis, F.W., Synes, N.W., Fricker, G.A., McCullough, I.M., Serra-Diaz, J.M., Franklin, J., Flint, A.L., 2019. LiDAR-derived topography and forest structure predict fine-scale variation in daily surface temperatures in oak savanna and conifer forest landscapes. Agric. For. Meteorol. 269–270, 192–202. – reference: De Smedt, P., Baeten, L., Proesmans, W., Van de Poel, S., Van Keer, J., Giffard, B., Martin, L., Vanhulle, R., Brunet, J., Cousins, S.A.O., Decocq, G., Deconchat, M., Diekmann, M., Gallet-Moron, E., Le Roux, V., Liira, J., Valdés, A., Wulf, M., Andrieu, E., Hermy, M., Bonte, D., Verheyen, K., 2019. Strength of forest edge effects on litter-dwelling macro-arthropods across Europe is influenced by forest age and edge properties. Divers. Distrib. 25, 963–974. – volume: 80 year: 2008 ident: bib0007 article-title: Forests and climate change: forcings, feedbacks, and the climate benefits of forests publication-title: Science – reference: Honnay, O., Verheyen, K., Hermy, M., 2002. Permeability of ancient forest edges for weedy plant species invasion. For. Ecol. Manage. 161, 109–122. – reference: Lindgren, J., Kimberley, A., Cousins, S.A.O., 2018. The complexity of forest borders determines the understorey vegetation. Appl. Veg. Sci. 21, 85–93. – reference: Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853. – reference: Jucker, T., Bouriaud, O., Coomes, D.A., 2015. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29, 1078–1086. – reference: Li, Y., Kang, W., Han, Y., Song, Y., 2018. Spatial and temporal patterns of microclimates at an urban forest edge and their management implications. Environ. Monit. Assess. 190, 93. – year: 2020 ident: bib0009 article-title: Terrestrial laser scanning in forest ecology: expanding the horizon publication-title: Remote Sens. Environ. – reference: De Frenne, P., Rodríguez-Sánchez, F., De Schrijver, A., Coomes, D.A., Hermy, M., Vangansbeke, P., Verheyen, K., 2015. Light accelerates plant responses to warming. Nat. Plants, 1(9), 1–3. – reference: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P., Kessler, M., 2017. Climatologies at high resolution for the earth's land surface areas. Sci. Data 4, 170122. – reference: Pfeifer, M., Lefebvre, V., Peres, C.A., Banks-Leite, C., Wearn, O.R., Marsh, C.J., Butchart, S.H.M., Arroyo-Rodríguez, V., Barlow, J., Cerezo, A., Cisneros, L., D'Cruze, N., Faria, D., Hadley, A., Harris, S.M., Klingbeil, B.T., Kormann, U., Lens, L., Medina-Rangel, G.F., Morante-Filho, J.C., Olivier, P., Peters, S.L., Pidgeon, A., Ribeiro, D.B., Scherber, C., Schneider-Maunoury, L., Struebig, M., Urbina-Cardona, N., Watling, J.I., Willig, M.R., Wood, E.M., Ewers, R.M., 2017. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191. – reference: Vasconcelos, H.L., Luizão, F.J., 2004. Litter production and litter nutrient concentrations in a fragmented amazonian landscape. Ecol. Appl. 14, 884–892. – reference: MEA, 2005. Millennium Ecosystem Assessment. Ecosystems and Human well-being: Biodiversity synthesis. Washington, DC: Millennium Ecosystem Assessment. – reference: Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K.D., Macias-Fauria, M., Sass-Klaassen, U., Lévesque, E., Boudrea, S., Ropars, P., Hermanutz, L., Trant, A., Siegwart Collier, L., Weijers, S., Rozema, J., Rayback, S.A., Schmidt, N.M., Schaepman-Strub, G., Wipf, S., Rixen, C., Ménard, C.B., Venn, S., Goetz, S., Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P., Epstein, H.E., Hik, D.S., 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett., 6(4), 045509. – reference: De Pauw, K., Meeussen, C., Govaert, S., Sanczuk, P., Vanneste, T., Bernhardt-Römermann, M., Bollmann, K., Brunet, J., Calders, K., Cousins, S., Diekmann, M., Hedwall, P., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Ponette, Q., Plue, J., Selvi, F., Spicher, F., Verbeeck, H., Vermeir, P., Zellweger, F., Verheyen, K., Vangansbeke, P., De Frenne, P., 2021. Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges. J. Ecol. – reference: Pellissier, V., Bergès, L., Nedeltcheva, T., Schmitt, M.-.C., Avon, C., Cluzeau, C., Dupouey, J.L., 2013. Understorey plant species show long-range spatial patterns in forest patches according to distance-to-edge. J. Veg. Sci. 24, 9–24. – reference: Meeussen, C., Govaert, S., Vanneste, T., Haesen, S., Van Meerbeek, K., Bollmann, K., Brunet, J., Calders, K., Cousins, S.A.O., Diekmann, M., Graae, B.J., Iacopetti, G., Lenoir, J., Orczewska, A., Ponette, Q., Plue, J., Selvi, F., Spicher, F., Sørensen, M.V., Verbeeck, H., Vermeir, P., Verheyen, K., Vangansbeke, P., De Frenne, P., 2021. Drivers of carbon stocks in forest edges across Europe. Sci. Total Environ. 759, 143497. – reference: Lembrechts, J.J., Lenoir, J., 2019. Microclimatic conditions anywhere at any time! Glob. Chang. Biol. – reference: Magura, T., 2002. Carabids and forest edge: spatial pattern and edge effect. For. Ecol. Manage. 157, 23–37. – start-page: 101 year: 2018 end-page: 161 ident: bib0008 article-title: Advances in monitoring and modelling climate at ecologically relevant scales publication-title: Advances in Ecological Research – reference: Kalácska, M., Calvo-Alvarado, J.C., Sánchez-Azofeifa, G.A., 2005. Calibration and assessment of seasonal changes in leaf area index of a tropical dry forest in different stages of succession. Tree Physiol. 25, 733–744. – reference: Zuur, A., Ieno, E., Walker, N., Saveliev, A., Smith, G., 2009. Mixed effects modelling for nested data, in: Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M. (Eds.), Mixed Effects Models and Extensions in Ecology with R. Springer, New York, NY, USA, pp. 101–142. – volume: 479 start-page: 517 year: 2011 end-page: 520 ident: bib0006 article-title: Changes in plant community composition lag behind climate warming in lowland forests publication-title: Nature – reference: Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., Lovejoy, T.E., Sexton, J.O., Austin, M.P., Collins, C.D., Cook, W.M., Damschen, E.I., Ewers, R.M., Foster, B.L., Jenkins, C.N., King, A.J., Laurance, W.F., Levey, D.J., Margules, C.R., Melbourne, B.A., Nicholls, A.O., Orrock, J.L., Song, D.-.X., Townshend, J.R., 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci. Adv. 1, e1500052. – reference: Davies-Colley, R.J., Payne, G.W., Van Elswijk, M., 2000. Microclimate gradients across a forest edge. NZJ. Ecol. 24, 111–121. – reference: Govaert, S., Meeussen, C., Vanneste, T., Bollmann, K., Brunet, J., Cousins, S.A.O., Diekmann, M., Graae, B.J., Hedwall, P.-.O., Heinken, T., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Perring, M.P., Ponette, Q., Plue, J., Selvi, F., Spicher, F., Tolosano, M., Vermeir, P., Zellweger, F., Verheyen, K., Vangansbeke, P., De Frenne, P., 2020. Edge influence on understorey plant communities depends on forest management. J. Veg. Sci. 31. – reference: Ehbrecht, M., Schall, P., Ammer, C., Fischer, M., Seidel, D., 2019. Effects of structural heterogeneity on the diurnal temperature range in temperate forest ecosystems. For. Ecol. Manage. 432, 860–867. – reference: Graae, B.J., De Frenne, P., Kolb, A., Brunet, J., Chabrerie, O., Verheyen, K., Pepin, N., Heinken, T., Zobel, M., Shevtsova, A., Nijs, I., Milbau, A., 2012. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121, 3–19. – volume: 37 start-page: 544 year: 2017 end-page: 556 ident: bib0001 article-title: Revealing topoclimatic heterogeneity using meteorological station data publication-title: Int. J. Climatol. – reference: Duelli, P., Obrist, M.K., & Fluckiger, P.F., 2002. Forest edges are biodiversity hotspots–also for Neuroptera. Acta Zool. Acad. Sci. Hung., 48(Suppl 2), 75–87. – reference: Verheyen, K., Baeten, L., De Frenne, P., Bernhardt-Römermann, M., Brunet, J., Cornelis, J., Decocq, G., Dierschke, H., Eriksson, O., Hédl, R., Heinken, T., Hermy, M., Hommel, P., Kirby, K., Naaf, T., Peterken, G., Petřík, P., Pfadenhauer, J., Van Calster, H., Walther, G.R., Wulf, M., Verstraeten, G., 2012. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. J. Ecol. 100, 352–365. – reference: Hothorn, T., Bretz, F., Westfall, P., 2008. Simultaneous inference in general parametric models. Biometrical J. – reference: Riutta, T., Slade, E.M., Bebber, D.P., Taylor, M.E., Malhi, Y., Riordan, P., Macdonald, D.W., Morecroft, M.D., 2012. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol. Biochem. 49, 124–131. – reference: Sanczuk, P., Govaert, S., Meeussen, C., De Pauw, K., Vanneste, T., Depauw, L., Moreira, X., Schoelynck, J., De Boevre, M., De Saeger, S., Bollmann, K., Brunet, J., Cousins, S.A.O., Plue, J., Diekmann, M., Graae, B.J., Hedwall, P., Iacopetti, G., Lenoir, J., Orczewska, A., Ponette, Q., Selvi, F., Spicher, F., Vermeir, P., Calders, K., Verbeeck, H., Verheyen, K., Vangansbeke, P., De Frenne, P., 2021. Small scale environmental variation modulates plant defence syndromes of understorey plants in deciduous forests of Eur. Global Ecol. Biogeogr., 30(1), 205–219. – reference: Zellweger, F., Coomes, D., Lenoir, J., Depauw, L., Maes, S.L., Wulf, M., Kirby, K.J., Brunet, J., Kopecký, M., Máliš, F., Schmidt, W., Heinrichs, S., den Ouden, J., Jaroszewicz, B., Buyse, G., Spicher, F., Verheyen, K., De Frenne, P., 2019. Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Glob. Ecol. Biogeogr. 28, 1774–1786. – reference: De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B.R., Zellweger, F., Aalto, J., Ashcroft, M.B., Christiansen, D.M., Decocq, G., De Pauw, K., Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D.H., Koelemeijer, I.A., Lembrechts, J.J., Marrec, R., Meeussen, C., Ogée, J., Tyystjärvi, V., Vangansbeke, P., Hylander, K., 2021. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Chang. Biol. Gcb. 15569. – reference: Renaud, V., Innes, J.L., Dobbertin, M., Rebetez, M., 2011. Comparison between open-site and below-canopy climatic conditions in Switzerland for different types of forests over 10 years (1998-2007). Theor. Appl. Climatol. 105, 119–127. – reference: Stevens, J.T., Safford, H.D., Harrison, S., Latimer, A.M., 2015. Forest disturbance accelerates thermophilization of understory plant communities. J. Ecol. 103, 1253–1263. – reference: Young, A., Mitchell, N., 1994. Microclimate and vegetation edge effects in a fragmented podocarp-broadleaf forest in New Zealand. Biol. Conserv. 67, 63–72. – reference: Ogée, J., Brunet, Y., 2002. A forest floor model for heat and moisture including a litter layer. J. Hydrol. 255, 212–233. – reference: Remy, E., Wuyts, K., Boeckx, P., Ginzburg, S., Gundersen, P., Demey, A., Van Den Bulcke, J., Van Acker, J., Verheyen, K., 2016. Strong gradients in nitrogen and carbon stocks at temperate forest edges. For. Ecol. Manage. 376, 45–58. – reference: Ries, L., Fletcher, R.J., Battin, J., Sisk, T.D., 2004. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 35, 491–522. – reference: Gower, S.T., Kucharik, C.J., Norman, J.M., 1999. Direct and indirect estimation of leaf area index, f(APAR), and net primary production of terrestrial ecosystems. Remote Sens. Environ. 70, 29–51. – reference: International Civil Aviation Organization, 1993. Manual of the ICAO Standard atmosphere: Extended to 80 Kilometres (262 500 Feet), 3rd ed. International Civil Aviation Organization, Montreal, Quebec. – reference: Hilmers, T., Friess, N., Bässler, C., Heurich, M., Brandl, R., Pretzsch, H., Seidl, R., Müller, J., 2018. Biodiversity along temperate forest succession. J. Appl. Ecol. 55, 2756–2766. – reference: Geiger, R., Aron, R.H., Todhunter, P., 2009. The Climate Near the Ground. Rowman & Littlefield. – reference: Paul, K.I., Polglase, P.J., Smethurst, P.J., O'Connell, A.M., Carlyle, C.J., Khanna, P.K., 2004. Soil temperature under forests: a simple model for predicting soil temperature under a range of forest types. Agric. For. Meteorol. 121, 167–182. – reference: Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M.J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T.A., Reyer, C.P.O., 2017. Forest disturbances under climate change. Nat. Clim. Chang. – reference: . – reference: Saunders, S.C., Chen, J., Drummer, T.D., Crow, T.R., 1999. Modeling temperature gradients across edges over time in a managed landscape. For. Ecol. Manage. 117, 17–31. – reference: Gilliam, F.S., 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience, 57(10), 845–858. – reference: Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. – reference: Riitters, K., Wickham, J., Costanza, J.K., Vogt, P., 2016. A global evaluation of forest interior area dynamics using tree cover data from 2000 to 2012. Landsc. Ecol. 31, 137–148. – reference: Harper, K.A., Macdonald, S.E., Burton, P.J., Chen, J., Brosofske, K.D., Saunders, S.C., Euskirchen, E.S., Roberts, D., Jaiteh, M.S., Esseen, .P.-A., 2005. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 19, 768–782. – reference: Mellander, P.E., Laudon, H., Bishop, K., 2005. Modelling variability of snow depths and soil temperatures in Scots pine stands, in: Agricultural and Forest Meteorology. Elsevier, pp. 109–118. – reference: Papaioannou, G., Vouraki, K., Kerkides, P., 1996. Piche evaporimeter data as a substitute for Penman equation’ s aerodynamic term. Agric. For. Meteorol. 82, 83–92. – reference: Kovács, B., Tinya, F., Ódor, P., 2017. Stand structural drivers of microclimate in mature temperate mixed forests. Agric. For. Meteorol. 234–235, 11–21. – reference: Chen, Y., Liu, Y., Zhang, J., Yang, W., He, R., Deng, C., 2018. Microclimate exerts greater control over litter decomposition and enzyme activity than litter quality in an alpine forest-tundra ecotone. Sci. Rep. 8, 1–13. – reference: Dutta, B., Grant, B.B., Congreves, K.A., Smith, W.N., Wagner-Riddle, C., VanderZaag, A.C., Tenuta, M., Desjardins, R.L., 2018. Characterising effects of management practices, snow cover, and soil texture on soil temperature: model development in DNDC. Biosyst. Eng. 168, 54–72. – volume: 5 start-page: 74 year: 1995 end-page: 86 ident: bib0010 article-title: Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests publication-title: Ecol. Appl. – reference: Greiser, C., Meineri, E., Luoto, M., Ehrlén, J., Hylander, K., 2018. Monthly microclimate models in a managed boreal forest landscape. Agric. For. Meteorol. 250–251, 147–158. – ident: 10.1016/j.agrformet.2021.108699_bib0037 doi: 10.1111/1365-2664.13238 – ident: 10.1016/j.agrformet.2021.108699_bib0055 – ident: 10.1016/j.agrformet.2021.108699_bib0012 doi: 10.1038/s41598-018-33186-4 – ident: 10.1016/j.agrformet.2021.108699_bib0066 doi: 10.1016/0168-1923(96)02337-4 – ident: 10.1016/j.agrformet.2021.108699_bib0046 doi: 10.1093/treephys/25.6.733 – ident: 10.1016/j.agrformet.2021.108699_bib0068 doi: 10.1111/j.1654-1103.2012.01435.x – ident: 10.1016/j.agrformet.2021.108699_bib0014 doi: 10.1016/j.agrformet.2019.02.015 – ident: 10.1016/j.agrformet.2021.108699_bib0078 doi: 10.1016/j.agrformet.2016.10.022 – volume: 5 start-page: 74 year: 1995 ident: 10.1016/j.agrformet.2021.108699_bib0010 article-title: Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests publication-title: Ecol. Appl. doi: 10.2307/1942053 – ident: 10.1016/j.agrformet.2021.108699_bib0086 doi: 10.1126/science.abd3881 – volume: 334 year: 2014 ident: 10.1016/j.agrformet.2021.108699_bib0003 article-title: Microclimate through space and time: microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2014.09.008 – ident: 10.1016/j.agrformet.2021.108699_bib0038 doi: 10.1016/j.foreco.2019.05.069 – ident: 10.1016/j.agrformet.2021.108699_bib0022 doi: 10.1016/j.biosystemseng.2017.02.001 – ident: 10.1016/j.agrformet.2021.108699_bib0071 doi: 10.1016/j.foreco.2016.05.040 – ident: 10.1016/j.agrformet.2021.108699_bib0052 doi: 10.1111/avsc.12344 – ident: 10.1016/j.agrformet.2021.108699_bib0050 doi: 10.1111/gcb.14942 – ident: 10.1016/j.agrformet.2021.108699_bib0075 doi: 10.1016/j.soilbio.2012.02.028 – ident: 10.1016/j.agrformet.2021.108699_bib0060 – volume: 80 year: 2008 ident: 10.1016/j.agrformet.2021.108699_bib0007 article-title: Forests and climate change: forcings, feedbacks, and the climate benefits of forests publication-title: Science – start-page: 101 year: 2018 ident: 10.1016/j.agrformet.2021.108699_bib0008 article-title: Advances in monitoring and modelling climate at ecologically relevant scales doi: 10.1016/bs.aecr.2017.12.005 – ident: 10.1016/j.agrformet.2021.108699_bib0049 doi: 10.18637/jss.v082.i13 – ident: 10.1016/j.agrformet.2021.108699_bib0058 doi: 10.1016/j.agrformet.2005.08.008 – ident: 10.1016/j.agrformet.2021.108699_bib0023 doi: 10.1016/j.foreco.2018.10.008 – ident: 10.1016/j.agrformet.2021.108699_bib0083 doi: 10.1111/j.1365-2745.2011.01928.x – volume: 109 start-page: F04008 year: 2004 ident: 10.1016/j.agrformet.2021.108699_bib0004 article-title: Snow and the ground temperature record of climate change publication-title: J. Geophys. Res. doi: 10.1029/2004JF000224 – ident: 10.1016/j.agrformet.2021.108699_bib0076 doi: 10.1111/geb.13216 – ident: 10.1016/j.agrformet.2021.108699_bib0080 doi: 10.1038/nclimate3303 – year: 2020 ident: 10.1016/j.agrformet.2021.108699_bib0009 article-title: Terrestrial laser scanning in forest ecology: expanding the horizon publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112102 – ident: 10.1016/j.agrformet.2021.108699_bib0030 doi: 10.1111/jvs.12844 – ident: 10.1016/j.agrformet.2021.108699_bib0021 – ident: 10.1016/j.agrformet.2021.108699_bib0070 – ident: 10.1016/j.agrformet.2021.108699_bib0042 – ident: 10.1016/j.agrformet.2021.108699_bib0061 doi: 10.1016/S0169-5347(00)88977-6 – ident: 10.1016/j.agrformet.2021.108699_bib0039 doi: 10.1016/S0378-1127(01)00490-X – ident: 10.1016/j.agrformet.2021.108699_bib0020 doi: 10.1111/ddi.12909 – ident: 10.1016/j.agrformet.2021.108699_bib0034 doi: 10.1126/sciadv.1500052 – ident: 10.1016/j.agrformet.2021.108699_bib0018 doi: 10.1038/s41559-019-0842-1 – ident: 10.1016/j.agrformet.2021.108699_bib0072 doi: 10.1007/s00704-010-0361-0 – ident: 10.1016/j.agrformet.2021.108699_bib0073 doi: 10.1146/annurev.ecolsys.35.112202.130148 – volume: 67 start-page: 1 year: 2015 ident: 10.1016/j.agrformet.2021.108699_bib0005 article-title: Fitting linear mixed-effects models using lme4 publication-title: J. Stat. Softw. doi: 10.18637/jss.v067.i01 – volume: 479 start-page: 517 year: 2011 ident: 10.1016/j.agrformet.2021.108699_bib0006 article-title: Changes in plant community composition lag behind climate warming in lowland forests publication-title: Nature doi: 10.1038/nature10548 – ident: 10.1016/j.agrformet.2021.108699_bib0079 doi: 10.1016/j.agrformet.2019.01.001 – volume: 37 start-page: 544 year: 2017 ident: 10.1016/j.agrformet.2021.108699_bib0001 article-title: Revealing topoclimatic heterogeneity using meteorological station data publication-title: Int. J. Climatol. doi: 10.1002/joc.5020 – ident: 10.1016/j.agrformet.2021.108699_bib0028 – ident: 10.1016/j.agrformet.2021.108699_bib0041 doi: 10.1111/j.1365-2664.2005.01033.x – ident: 10.1016/j.agrformet.2021.108699_bib0053 doi: 10.1016/S0378-1127(00)00654-X – ident: 10.1016/j.agrformet.2021.108699_bib0024 – ident: 10.1016/j.agrformet.2021.108699_bib0048 doi: 10.1016/j.agrformet.2016.11.268 – ident: 10.1016/j.agrformet.2021.108699_bib0064 doi: 10.1016/S0022-1694(01)00515-7 – ident: 10.1016/j.agrformet.2021.108699_bib0029 doi: 10.1641/B571007 – ident: 10.1016/j.agrformet.2021.108699_bib0027 doi: 10.1126/sciadv.1501392 – ident: 10.1016/j.agrformet.2021.108699_bib0087 doi: 10.1007/978-0-387-87458-6_5 – ident: 10.1016/j.agrformet.2021.108699_bib0015 doi: 10.1111/gcb.15569 – ident: 10.1016/j.agrformet.2021.108699_bib0057 doi: 10.1016/j.scitotenv.2020.143497 – ident: 10.1016/j.agrformet.2021.108699_bib0040 doi: 10.1002/bimj.200810425 – volume: 49 start-page: 288 year: 1999 ident: 10.1016/j.agrformet.2021.108699_bib0011 article-title: Microclimate in forest ecosystem and landscape ecology publication-title: Bioscience doi: 10.2307/1313612 – ident: 10.1016/j.agrformet.2021.108699_bib0043 – ident: 10.1016/j.agrformet.2021.108699_bib0059 doi: 10.1016/S0378-1127(00)00624-1 – ident: 10.1016/j.agrformet.2021.108699_bib0062 doi: 10.1088/1748-9326/6/4/045509 – ident: 10.1016/j.agrformet.2021.108699_bib0025 doi: 10.1017/S0266467404001828 – year: 2000 ident: 10.1016/j.agrformet.2021.108699_bib0002 article-title: Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture publication-title: Ann. For. Sci. doi: 10.1051/forest:2000119 – ident: 10.1016/j.agrformet.2021.108699_bib0085 doi: 10.1111/geb.12991 – ident: 10.1016/j.agrformet.2021.108699_bib0084 doi: 10.1016/0006-3207(94)90010-8 – ident: 10.1016/j.agrformet.2021.108699_bib0074 doi: 10.1007/s10980-015-0270-9 – ident: 10.1016/j.agrformet.2021.108699_bib0077 doi: 10.1016/S0378-1127(98)00468-X – ident: 10.1016/j.agrformet.2021.108699_bib0081 doi: 10.1111/1365-2745.12426 – ident: 10.1016/j.agrformet.2021.108699_bib0082 doi: 10.1890/03-5093 – ident: 10.1016/j.agrformet.2021.108699_bib0067 doi: 10.1016/j.agrformet.2003.08.030 – ident: 10.1016/j.agrformet.2021.108699_bib0017 doi: 10.1038/nplants.2015.110 – ident: 10.1016/j.agrformet.2021.108699_bib0026 doi: 10.1007/s11104-015-2664-5 – ident: 10.1016/j.agrformet.2021.108699_bib0035 doi: 10.1126/science.1244693 – ident: 10.1016/j.agrformet.2021.108699_bib0054 doi: 10.1016/0006-3207(93)90004-K – ident: 10.1016/j.agrformet.2021.108699_bib0033 doi: 10.1016/j.agrformet.2017.12.252 – ident: 10.1016/j.agrformet.2021.108699_bib0019 doi: 10.1111/1365-2745.13671 – ident: 10.1016/j.agrformet.2021.108699_bib0016 doi: 10.1073/pnas.1311190110 – ident: 10.1016/j.agrformet.2021.108699_bib0056 doi: 10.1016/j.foreco.2020.117929 – ident: 10.1016/j.agrformet.2021.108699_bib0045 doi: 10.1111/1365-2435.12428 – ident: 10.1016/j.agrformet.2021.108699_bib0063 doi: 10.1007/s11284-010-0712-4 – ident: 10.1016/j.agrformet.2021.108699_bib0047 doi: 10.1038/sdata.2017.122 – ident: 10.1016/j.agrformet.2021.108699_bib0051 doi: 10.1007/s10661-017-6430-4 – ident: 10.1016/j.agrformet.2021.108699_bib0065 – ident: 10.1016/j.agrformet.2021.108699_bib0032 doi: 10.1111/j.1600-0706.2011.19694.x – ident: 10.1016/j.agrformet.2021.108699_bib0044 – ident: 10.1016/j.agrformet.2021.108699_bib0013 – ident: 10.1016/j.agrformet.2021.108699_bib0031 doi: 10.1016/S0034-4257(99)00056-5 – ident: 10.1016/j.agrformet.2021.108699_bib0036 doi: 10.1111/j.1523-1739.2005.00045.x – ident: 10.1016/j.agrformet.2021.108699_bib0069 doi: 10.1038/nature24457 |
SSID | ssj0012779 |
Score | 2.5596197 |
Snippet | •We quantified evaporation and soil and air temperature offsets in forest edges across Europe.•Roughly 10% of European broadleaved forests are affected by... Global forest cover is heavily fragmented. Due to high edge-to-surface ratios in small forest patches, a large proportion of forests is affected by edge... |
SourceID | swepub hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108699 |
SubjectTerms | air biomass canopy Climate change deciduous forests ecotones edge effects Edge influence Europe forest litter forest management Forest Science Forest structure Fragmentation habitats Life Sciences meteorology microclimate Northern European region rain forests Skogsvetenskap summer Temperate forests Temperature buffering winter |
Title | Microclimatic edge-to-interior gradients of European deciduous forests |
URI | https://dx.doi.org/10.1016/j.agrformet.2021.108699 https://www.proquest.com/docview/2636780136 https://u-picardie.hal.science/hal-03614154 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-199681 https://res.slu.se/id/publ/114431 |
Volume | 311 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVK2cAClQIiUCqDeKzM1Bkn8bCLBkbDY7qBou4sx48haDSp8mDJt3Ovk4w6UqUuWEW27MT2tX1P7ONjQl7HhRfF1MQMsIJgwhSCyam0zEppnSik80GnYHWeLi_El8vk8oDMx7MwSKsc5v5-Tg-z9RAzGVpzclWWk-8AVlDNCw-h4PYWKn4KkWEvf_93R_Pgcdbr7UFihqn3OF56Hcj5DkmVMQ-3DgUR2Bs91J1fSJW8jkOva4sGf7Q4Ig8GIEnzvqwPyYHbHpP7-boexDTcMYlWgIirOiyc07d0vikBnobQI7JYIRPPhKjSUFxVY23FUD2iLquaruvABWsbWnk6LtlT60xpu6prKFQIStc8JheLTz_mSzbcqcAMIL-WCQ8_SNZrGG02dqlLUy1dHPNUc5NwZwvwVYBQNBhKcJ8m3uCMwF3si5nXejZ9Qg631dY9JdRrYVJATxYlZtxM6sx7mWSWZ5mVM3MWkXRsR2UGwXG892KjRmbZb7UzgEIDqN4AETnbZbzqNTduz_JhNJTa6z4KPMPtmV-BaXefQsHtZf5NYRz4dw4QR_zhEXk5Wl7BCMRtFb110OAqTqfg8VH7LiJv-i6x966P5c9cVfVaNZ1CzreEd727IV2z6Qpd40M1Dk-LA7Z79j_1ek7uYQjJNzw5IYdt3bkXAKHa4jSMkVNyN__8dXn-DyjlHnE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9MwGLa2cQAOCAaI8GkQHyfTOXUSl1tVqAq0u7Ch3SzHHyWoaqZ8cOS3875OUq3SpB04RXHsxPZr-31iP35MyNs49yIfm5gBVhBMmFwwOZaWWSmtE7l0PugUrE7Txbn4dpFcHJDZsBcGaZX92N-N6WG07kNGfW2OLoti9APACqp54SYUXN4aH5JbArovHmPw8e-O58HjrBPcg9gMo--RvPQ6sPMdsipjHo4dCiqw17qow1_IlbwKRK-KiwaHNL9P7vVIkk67zD4gB257TO5O11WvpuGOSbQCSFxWYeacvqezTQH4NNw9JPMVUvFMCCoMxWk11pQM5SOqoqzougpksKampafDnD21zhS2LduaQoEgd_Ujcj7_cjZbsP5QBWYA-jVMePhDsl5Dd7OxS12aaunimKeam4Q7m4OzAoiiwVKC-zTxBocE7mKfT7zWk_FjcrQtt-4JoV4LkwJ8sqgx4yZSZ97LJLM8y6ycmJOIpEM9KtMrjuPBFxs1UMt-q50BFBpAdQaIyMku4WUnunFzkk-DodRe-1HgGm5O_AZMu_sUKm4vpkuFYeDgOWAc8YdH5PVgeQVdENdV9NZBhas4HYPLR_G7iLzrmsTeuz4XP6eqrNaqbhWSviW868M18epNm-sKL6p2uF0cwN3T_ynXK3J7cbZaquXX0-_PyB18gkwcnjwnR03VuheAp5r8Zegv_wB9KB__ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microclimatic+edge-to-interior+gradients+of+European+deciduous+forests&rft.jtitle=Agricultural+and+forest+meteorology&rft.au=Meeussen%2C+Camille&rft.au=Govaert%2C+Sanne&rft.au=Vanneste%2C+Thomas&rft.au=Bollmann%2C+Kurt&rft.date=2021-12-15&rft.issn=1873-2240&rft.volume=311&rft_id=info:doi/10.1016%2Fj.agrformet.2021.108699&rft.externalDocID=oai_DiVA_org_su_199681 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1923&client=summon |