Microclimatic edge-to-interior gradients of European deciduous forests

•We quantified evaporation and soil and air temperature offsets in forest edges across Europe.•Roughly 10% of European broadleaved forests are affected by altered temperature regimes.•Macroclimate and management affected edge-to-interior temperature offset gradients.•Forest structure and the forest-...

Full description

Saved in:
Bibliographic Details
Published inAgricultural and forest meteorology Vol. 311; p. 108699
Main Authors Meeussen, Camille, Govaert, Sanne, Vanneste, Thomas, Bollmann, Kurt, Brunet, Jörg, Calders, Kim, Cousins, Sara A.O., De Pauw, Karen, Diekmann, Martin, Gasperini, Cristina, Hedwall, Per-Ola, Hylander, Kristoffer, Iacopetti, Giovanni, Lenoir, Jonathan, Lindmo, Sigrid, Orczewska, Anna, Ponette, Quentin, Plue, Jan, Sanczuk, Pieter, Selvi, Federico, Spicher, Fabien, Verbeeck, Hans, Zellweger, Florian, Verheyen, Kris, Vangansbeke, Pieter, De Frenne, Pieter
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2021
Elsevier Masson
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We quantified evaporation and soil and air temperature offsets in forest edges across Europe.•Roughly 10% of European broadleaved forests are affected by altered temperature regimes.•Macroclimate and management affected edge-to-interior temperature offset gradients.•Forest structure and the forest-floor biomass are important drivers of temperature offsets.•Dense forest edges can help mitigate edge influences and protect forest interior microclimates. Global forest cover is heavily fragmented. Due to high edge-to-surface ratios in small forest patches, a large proportion of forests is affected by edge influences involving steep microclimatic gradients. Although forest edges are important ecotones and account for 20% of the global forested area, it remains unclear how biotic and abiotic drivers affect forest edge microclimates at the continental scale. Here we report soil and air temperatures measured in 225 deciduous forest plots across Europe for two years. Forest stands were situated along a latitudinal gradient and subject to a varying vegetation structure as quantified by terrestrial laser scanning. In summer, the average offset of air and soil temperatures in forest edges compared to temperatures outside the forest amounted to -2.8 °C and -2.3 °C, respectively. Edge-to-interior summer temperature gradients were affected by the macroclimate and edge structure. From the edge onwards, larger offsets were observed in dense forest edges and in warmer, southern regions. In open forests and northern Europe, altered microclimatic conditions extended deeper into the forest and gradients were steeper. Canopy closure and plant area index were important drivers of summer offsets in edges, whereas in winter also the forest-floor biomass played a key role. Using high-resolution maps, we estimated that approximately 10% of the European broadleaved forests would be affected by altered temperature regimes. Gradual transition zones between forest and adjacent lands are valuable habitat types for edge species. However, if cool and moist forest interiors are desired, then (i) dense and complex forest edges, (ii) an undisturbed forested buffer zone of at least 12.5 m deep and (iii) trees with a high shade casting ability could all contribute to an increased offset. These findings provide important guidelines to mitigate edge influences, to protect typical forest microclimates and to adapt forest management to climate change.
AbstractList Global forest cover is heavily fragmented. Due to high edge-to-surface ratios in small forest patches, a large proportion of forests is affected by edge influences involving steep microclimatic gradients. Although forest edges are important ecotones and account for 20% of the global forested area, it remains unclear how biotic and abiotic drivers affect forest edge microclimates at the continental scale. Here we report soil and air temperatures measured in 225 deciduous forest plots across Europe for two years. Forest stands were situated along a latitudinal gradient and subject to a varying vegetation structure as quantified by terrestrial laser scanning. In summer, the average offset of air and soil temperatures in forest edges compared to temperatures outside the forest amounted to -2.8 degrees C and -2.3 degrees C, respectively. Edge-to-interior summer temperature gradients were affected by the macroclimate and edge structure. From the edge onwards, larger offsets were observed in dense forest edges and in warmer, southern regions. In open forests and northern Europe, altered microclimatic conditions extended deeper into the forest and gradients were steeper. Canopy closure and plant area index were important drivers of summer offsets in edges, whereas in winter also the forest-floor biomass played a key role. Using high-resolution maps, we estimated that approximately 10% of the European broadleaved forests would be affected by altered temperature regimes. Gradual transition zones between forest and adjacent lands are valuable habitat types for edge species. However, if cool and moist forest interiors are desired, then (i) dense and complex forest edges, (ii) an undisturbed forested buffer zone of at least 12.5 m deep and (iii) trees with a high shade casting ability could all contribute to an increased offset. These findings provide important guidelines to mitigate edge influences, to protect typical forest microclimates and to adapt forest management to climate change.
•We quantified evaporation and soil and air temperature offsets in forest edges across Europe.•Roughly 10% of European broadleaved forests are affected by altered temperature regimes.•Macroclimate and management affected edge-to-interior temperature offset gradients.•Forest structure and the forest-floor biomass are important drivers of temperature offsets.•Dense forest edges can help mitigate edge influences and protect forest interior microclimates. Global forest cover is heavily fragmented. Due to high edge-to-surface ratios in small forest patches, a large proportion of forests is affected by edge influences involving steep microclimatic gradients. Although forest edges are important ecotones and account for 20% of the global forested area, it remains unclear how biotic and abiotic drivers affect forest edge microclimates at the continental scale. Here we report soil and air temperatures measured in 225 deciduous forest plots across Europe for two years. Forest stands were situated along a latitudinal gradient and subject to a varying vegetation structure as quantified by terrestrial laser scanning. In summer, the average offset of air and soil temperatures in forest edges compared to temperatures outside the forest amounted to -2.8 °C and -2.3 °C, respectively. Edge-to-interior summer temperature gradients were affected by the macroclimate and edge structure. From the edge onwards, larger offsets were observed in dense forest edges and in warmer, southern regions. In open forests and northern Europe, altered microclimatic conditions extended deeper into the forest and gradients were steeper. Canopy closure and plant area index were important drivers of summer offsets in edges, whereas in winter also the forest-floor biomass played a key role. Using high-resolution maps, we estimated that approximately 10% of the European broadleaved forests would be affected by altered temperature regimes. Gradual transition zones between forest and adjacent lands are valuable habitat types for edge species. However, if cool and moist forest interiors are desired, then (i) dense and complex forest edges, (ii) an undisturbed forested buffer zone of at least 12.5 m deep and (iii) trees with a high shade casting ability could all contribute to an increased offset. These findings provide important guidelines to mitigate edge influences, to protect typical forest microclimates and to adapt forest management to climate change.
Global forest cover is heavily fragmented. Due to high edge-to-surface ratios in small forest patches, a large proportion of forests is affected by edge influences involving steep microclimatic gradients. Although forest edges are important ecotones and account for 20% of the global forested area, it remains unclear how biotic and abiotic drivers affect forest edge microclimates at the continental scale. Here we report soil and air temperatures measured in 225 deciduous forest plots across Europe for two years. Forest stands were situated along a latitudinal gradient and subject to a varying vegetation structure as quantified by terrestrial laser scanning. In summer, the average offset of air and soil temperatures in forest edges compared to temperatures outside the forest amounted to -2.8 °C and -2.3 °C, respectively. Edge-to-interior summer temperature gradients were affected by the macroclimate and edge structure. From the edge onwards, larger offsets were observed in dense forest edges and in warmer, southern regions. In open forests and northern Europe, altered microclimatic conditions extended deeper into the forest and gradients were steeper. Canopy closure and plant area index were important drivers of summer offsets in edges, whereas in winter also the forest-floor biomass played a key role. Using high-resolution maps, we estimated that approximately 10% of the European broadleaved forests would be affected by altered temperature regimes. Gradual transition zones between forest and adjacent lands are valuable habitat types for edge species. However, if cool and moist forest interiors are desired, then (i) dense and complex forest edges, (ii) an undisturbed forested buffer zone of at least 12.5 m deep and (iii) trees with a high shade casting ability could all contribute to an increased offset. These findings provide important guidelines to mitigate edge influences, to protect typical forest microclimates and to adapt forest management to climate change.
ArticleNumber 108699
Author Diekmann, Martin
Gasperini, Cristina
Hylander, Kristoffer
Verbeeck, Hans
Bollmann, Kurt
Vangansbeke, Pieter
Brunet, Jörg
Verheyen, Kris
Ponette, Quentin
Vanneste, Thomas
De Pauw, Karen
Hedwall, Per-Ola
Meeussen, Camille
Lindmo, Sigrid
De Frenne, Pieter
Iacopetti, Giovanni
Orczewska, Anna
Govaert, Sanne
Zellweger, Florian
Spicher, Fabien
Calders, Kim
Plue, Jan
Cousins, Sara A.O.
Lenoir, Jonathan
Sanczuk, Pieter
Selvi, Federico
Author_xml – sequence: 1
  givenname: Camille
  surname: Meeussen
  fullname: Meeussen, Camille
  email: Camille.meeussen@ugent.be
  organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium
– sequence: 2
  givenname: Sanne
  surname: Govaert
  fullname: Govaert, Sanne
  organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium
– sequence: 3
  givenname: Thomas
  surname: Vanneste
  fullname: Vanneste, Thomas
  organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium
– sequence: 4
  givenname: Kurt
  surname: Bollmann
  fullname: Bollmann, Kurt
  organization: Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
– sequence: 5
  givenname: Jörg
  surname: Brunet
  fullname: Brunet, Jörg
  organization: Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 234 22 Lomma, Sweden
– sequence: 6
  givenname: Kim
  surname: Calders
  fullname: Calders, Kim
  organization: CAVElab – Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, 9000 Ghent, Belgium
– sequence: 7
  givenname: Sara A.O.
  surname: Cousins
  fullname: Cousins, Sara A.O.
  organization: Landscape, Environment and Geomatics, Department of Physical Geography, Stockholm University, 10691 Stockholm, Sweden
– sequence: 8
  givenname: Karen
  surname: De Pauw
  fullname: De Pauw, Karen
  organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium
– sequence: 9
  givenname: Martin
  surname: Diekmann
  fullname: Diekmann, Martin
  organization: Vegetation Ecology and Conservation Biology, Institute of Ecology, FB2, University of Bremen, 28359 Bremen, Germany
– sequence: 10
  givenname: Cristina
  surname: Gasperini
  fullname: Gasperini, Cristina
  organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium
– sequence: 11
  givenname: Per-Ola
  surname: Hedwall
  fullname: Hedwall, Per-Ola
  organization: Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 234 22 Lomma, Sweden
– sequence: 12
  givenname: Kristoffer
  surname: Hylander
  fullname: Hylander, Kristoffer
  organization: Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
– sequence: 13
  givenname: Giovanni
  surname: Iacopetti
  fullname: Iacopetti, Giovanni
  organization: Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Florence, Italy
– sequence: 14
  givenname: Jonathan
  surname: Lenoir
  fullname: Lenoir, Jonathan
  organization: UMR 7058 CNRS Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN), Université de Picardie Jules Verne, 80000 Amiens, France
– sequence: 15
  givenname: Sigrid
  surname: Lindmo
  fullname: Lindmo, Sigrid
  organization: Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
– sequence: 16
  givenname: Anna
  surname: Orczewska
  fullname: Orczewska, Anna
  organization: Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-007 Katowice, Poland
– sequence: 17
  givenname: Quentin
  surname: Ponette
  fullname: Ponette, Quentin
  organization: Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
– sequence: 18
  givenname: Jan
  surname: Plue
  fullname: Plue, Jan
  organization: Landscape, Environment and Geomatics, Department of Physical Geography, Stockholm University, 10691 Stockholm, Sweden
– sequence: 19
  givenname: Pieter
  surname: Sanczuk
  fullname: Sanczuk, Pieter
  organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium
– sequence: 20
  givenname: Federico
  surname: Selvi
  fullname: Selvi, Federico
  organization: Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Florence, Italy
– sequence: 21
  givenname: Fabien
  surname: Spicher
  fullname: Spicher, Fabien
  organization: UMR 7058 CNRS Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN), Université de Picardie Jules Verne, 80000 Amiens, France
– sequence: 22
  givenname: Hans
  surname: Verbeeck
  fullname: Verbeeck, Hans
  organization: CAVElab – Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, 9000 Ghent, Belgium
– sequence: 23
  givenname: Florian
  surname: Zellweger
  fullname: Zellweger, Florian
  organization: Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
– sequence: 24
  givenname: Kris
  surname: Verheyen
  fullname: Verheyen, Kris
  organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium
– sequence: 25
  givenname: Pieter
  surname: Vangansbeke
  fullname: Vangansbeke, Pieter
  organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium
– sequence: 26
  givenname: Pieter
  surname: De Frenne
  fullname: De Frenne, Pieter
  organization: Forest & Nature Lab, Department of Environment, Ghent University, 9090 Melle-Gontrode, Belgium
BackLink https://u-picardie.hal.science/hal-03614154$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-199681$$DView record from Swedish Publication Index
https://res.slu.se/id/publ/114431$$DView record from Swedish Publication Index
BookMark eNqFkUFv1DAQhS1UJLaF30COIJHF42Sd5MBhVVqKtFUvhevIsceLV9l4sZ0i_j2OAkggVT2NNPO9mdF75-xs9CMx9hr4GjjI94e12gfrw5HSWnABudvKrnvGVtA2VSlEzc_YKpNtCZ2oXrDzGA-cg2iabsWub50OXg_uqJLTBZk9lcmXbkwUnA_FPijjaEyx8La4moI_kRoLQ9qZyU-xyIcppviSPbdqiPTqd71gX66v7i9vyt3dp8-X212pN7xJZW0bkMaqnnMjSJKUqiUhQCrQGyDTN9B2jVSG6hqs3FjNK54HwvadVaqrLth62Rt_0Gnq8RTy4-EneuUwDlOvwlwwEgLUdQVZ8O5RwUf3dYs-7DFOCF0n2xl_u-Df1PAPe7Pd4dzjlYQaNvXDzL5Z2FPw36fsAh5d1DQMaqRsDQpZyablUMmMfljQ7HWMgSxql7LhfkxBuQGB45wlHvBvljhniUuWWd_8p__z29PK7aKknMqDo-yPznlqMi6QTmi8e3LHL0TSwb0
CitedBy_id crossref_primary_10_1007_s11252_023_01486_x
crossref_primary_10_1111_geb_13676
crossref_primary_10_1016_j_foreco_2022_120709
crossref_primary_10_1016_j_foreco_2024_122416
crossref_primary_10_1111_avsc_12739
crossref_primary_10_1111_gcb_17196
crossref_primary_10_1111_jvs_13236
crossref_primary_10_3832_efor4224_019
crossref_primary_10_1016_j_agrformet_2023_109662
crossref_primary_10_1016_j_ufug_2024_128462
crossref_primary_10_1007_s10342_024_01702_z
crossref_primary_10_1016_j_foreco_2022_120465
crossref_primary_10_1016_j_rse_2023_113820
crossref_primary_10_1038_s41558_023_01744_y
crossref_primary_10_1038_s41559_024_02335_6
crossref_primary_10_3389_ffgc_2022_828725
crossref_primary_10_3389_ffgc_2023_1233052
crossref_primary_10_1002_rse2_334
crossref_primary_10_1111_geb_13789
crossref_primary_10_1111_1365_2745_14229
crossref_primary_10_1111_1365_2745_14105
crossref_primary_10_1111_1365_2745_14425
crossref_primary_10_1111_1365_2745_14345
crossref_primary_10_1038_s41467_024_53460_6
crossref_primary_10_1111_gcb_17064
crossref_primary_10_1016_j_agrformet_2024_109894
crossref_primary_10_1016_j_foreco_2023_121407
crossref_primary_10_1016_j_gecco_2023_e02601
crossref_primary_10_1016_j_scitotenv_2024_170531
crossref_primary_10_1016_j_scitotenv_2021_149373
crossref_primary_10_1002_fee_2828
crossref_primary_10_1002_eap_2851
crossref_primary_10_1016_j_agrformet_2023_109632
crossref_primary_10_1016_j_foreco_2025_122517
crossref_primary_10_1007_s00484_024_02702_9
crossref_primary_10_1111_oik_09755
crossref_primary_10_1111_plb_13412
crossref_primary_10_1016_j_agrformet_2023_109684
crossref_primary_10_1016_j_scitotenv_2023_165543
crossref_primary_10_1111_nph_18539
crossref_primary_10_1016_j_agrformet_2024_110105
crossref_primary_10_4236_ojf_2024_144021
crossref_primary_10_1016_j_ecolind_2024_111624
crossref_primary_10_1016_j_foreco_2023_121496
crossref_primary_10_1016_j_foreco_2025_122661
crossref_primary_10_1111_geb_13568
crossref_primary_10_1111_ecog_07449
crossref_primary_10_3390_plants11050653
crossref_primary_10_1111_2041_210X_14476
crossref_primary_10_1007_s10980_025_02054_8
Cites_doi 10.1111/1365-2664.13238
10.1038/s41598-018-33186-4
10.1016/0168-1923(96)02337-4
10.1093/treephys/25.6.733
10.1111/j.1654-1103.2012.01435.x
10.1016/j.agrformet.2019.02.015
10.1016/j.agrformet.2016.10.022
10.2307/1942053
10.1126/science.abd3881
10.1016/j.foreco.2014.09.008
10.1016/j.foreco.2019.05.069
10.1016/j.biosystemseng.2017.02.001
10.1016/j.foreco.2016.05.040
10.1111/avsc.12344
10.1111/gcb.14942
10.1016/j.soilbio.2012.02.028
10.1016/bs.aecr.2017.12.005
10.18637/jss.v082.i13
10.1016/j.agrformet.2005.08.008
10.1016/j.foreco.2018.10.008
10.1111/j.1365-2745.2011.01928.x
10.1029/2004JF000224
10.1111/geb.13216
10.1038/nclimate3303
10.1016/j.rse.2020.112102
10.1111/jvs.12844
10.1016/S0169-5347(00)88977-6
10.1016/S0378-1127(01)00490-X
10.1111/ddi.12909
10.1126/sciadv.1500052
10.1038/s41559-019-0842-1
10.1007/s00704-010-0361-0
10.1146/annurev.ecolsys.35.112202.130148
10.18637/jss.v067.i01
10.1038/nature10548
10.1016/j.agrformet.2019.01.001
10.1002/joc.5020
10.1111/j.1365-2664.2005.01033.x
10.1016/S0378-1127(00)00654-X
10.1016/j.agrformet.2016.11.268
10.1016/S0022-1694(01)00515-7
10.1641/B571007
10.1126/sciadv.1501392
10.1007/978-0-387-87458-6_5
10.1111/gcb.15569
10.1016/j.scitotenv.2020.143497
10.1002/bimj.200810425
10.2307/1313612
10.1016/S0378-1127(00)00624-1
10.1088/1748-9326/6/4/045509
10.1017/S0266467404001828
10.1051/forest:2000119
10.1111/geb.12991
10.1016/0006-3207(94)90010-8
10.1007/s10980-015-0270-9
10.1016/S0378-1127(98)00468-X
10.1111/1365-2745.12426
10.1890/03-5093
10.1016/j.agrformet.2003.08.030
10.1038/nplants.2015.110
10.1007/s11104-015-2664-5
10.1126/science.1244693
10.1016/0006-3207(93)90004-K
10.1016/j.agrformet.2017.12.252
10.1111/1365-2745.13671
10.1073/pnas.1311190110
10.1016/j.foreco.2020.117929
10.1111/1365-2435.12428
10.1007/s11284-010-0712-4
10.1038/sdata.2017.122
10.1007/s10661-017-6430-4
10.1111/j.1600-0706.2011.19694.x
10.1016/S0034-4257(99)00056-5
10.1111/j.1523-1739.2005.00045.x
10.1038/nature24457
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID AAYXX
CITATION
7S9
L.6
1XC
ADTPV
AOWAS
DG7
DOI 10.1016/j.agrformet.2021.108699
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Agriculture
EISSN 1873-2240
ExternalDocumentID oai_slubar_slu_se_114431
oai_DiVA_org_su_199681
oai_HAL_hal_03614154v1
10_1016_j_agrformet_2021_108699
S0168192321003853
GeographicLocations Northern European region
Europe
GeographicLocations_xml – name: Europe
– name: Northern European region
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABGRD
ABJNI
ABLJU
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
WH7
Y6R
ZMT
~02
~G-
~KM
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMA
HVGLF
HZ~
R2-
RIG
SEP
SEW
SSH
WUQ
7S9
L.6
1XC
ADTPV
AOWAS
DG7
EFKBS
ID FETCH-LOGICAL-c507t-4f716dfab00d2e6e66a8e2216a1c51edb718976ade441f65fc03051e2fb9faa93
IEDL.DBID .~1
ISSN 0168-1923
1873-2240
IngestDate Thu Aug 21 06:40:52 EDT 2025
Thu Aug 21 06:59:09 EDT 2025
Fri May 09 12:13:31 EDT 2025
Thu Jul 10 17:52:15 EDT 2025
Tue Jul 01 04:35:23 EDT 2025
Thu Apr 24 22:54:50 EDT 2025
Fri Feb 23 02:41:28 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Edge influence
Climate change
Temperature buffering
Forest structure
Temperate forests
Fragmentation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-4f716dfab00d2e6e66a8e2216a1c51edb718976ade441f65fc03051e2fb9faa93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3820-125X
0000-0003-1265-9147
0000-0002-2067-9108
0000-0002-6999-669X
0000-0002-8939-1305
0000-0001-8369-2679
0000-0003-1490-0168
0000-0002-8613-0943
0000-0001-8482-0679
0000-0003-0638-9582
0000-0002-4690-7121
0000-0002-4562-2538
0000-0002-1215-2648
0000-0002-2726-7392
0000-0002-6356-2858
0000-0002-0120-7420
0000-0001-5296-917X
0000-0003-1107-4905
0000-0002-9999-955X
0000-0002-5869-4936
0000-0002-1472-4435
0000-0002-7924-9794
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0168192321003853
PQID 2636780136
PQPubID 24069
ParticipantIDs swepub_primary_oai_slubar_slu_se_114431
swepub_primary_oai_DiVA_org_su_199681
hal_primary_oai_HAL_hal_03614154v1
proquest_miscellaneous_2636780136
crossref_citationtrail_10_1016_j_agrformet_2021_108699
crossref_primary_10_1016_j_agrformet_2021_108699
elsevier_sciencedirect_doi_10_1016_j_agrformet_2021_108699
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Agricultural and forest meteorology
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Masson
Publisher_xml – name: Elsevier B.V
– name: Elsevier Masson
References Chen, Y., Liu, Y., Zhang, J., Yang, W., He, R., Deng, C., 2018. Microclimate exerts greater control over litter decomposition and enzyme activity than litter quality in an alpine forest-tundra ecotone. Sci. Rep. 8, 1–13.
De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B.R., Zellweger, F., Aalto, J., Ashcroft, M.B., Christiansen, D.M., Decocq, G., De Pauw, K., Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D.H., Koelemeijer, I.A., Lembrechts, J.J., Marrec, R., Meeussen, C., Ogée, J., Tyystjärvi, V., Vangansbeke, P., Hylander, K., 2021. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Chang. Biol. Gcb. 15569.
Bertrand, Lenoir, Piedallu, Riofrío-Dillon, de Ruffray, Vidal, Pierrat, Gégout (bib0006) 2011; 479
De Frenne, P., Rodríguez-Sánchez, F., De Schrijver, A., Coomes, D.A., Hermy, M., Vangansbeke, P., Verheyen, K., 2015. Light accelerates plant responses to warming. Nat. Plants, 1(9), 1–3.
De Pauw, K., Meeussen, C., Govaert, S., Sanczuk, P., Vanneste, T., Bernhardt-Römermann, M., Bollmann, K., Brunet, J., Calders, K., Cousins, S., Diekmann, M., Hedwall, P., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Ponette, Q., Plue, J., Selvi, F., Spicher, F., Verbeeck, H., Vermeir, P., Zellweger, F., Verheyen, K., Vangansbeke, P., De Frenne, P., 2021. Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges. J. Ecol.
Zellweger, F., de Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., van Calster, H., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., Macek, M., Malicki, M., Naaf, T., Nagel, T.A., Ortmann-Ajkai, A., Petřík, P., Pielech, R., Reczynska, K., Schmidt, W., Standovár, T., Swierkosz, K., Teleki, B., Vild, O., Wulf, M., Coomes, D., 2020. Forest microclimate dynamics drive plant responses to warming. Science 80. 368.
Papaioannou, G., Vouraki, K., Kerkides, P., 1996. Piche evaporimeter data as a substitute for Penman equation’ s aerodynamic term. Agric. For. Meteorol. 82, 83–92.
Bartlett (bib0004) 2004; 109
Meeussen, C., Govaert, S., Vanneste, T., Calders, K., Bollmann, K., Brunet, J., Cousins, S.A.O., Diekmann, M., Graae, B.J., Hedwall, P.O., Krishna Moorthy, S.M., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Ponette, Q., Plue, J., Selvi, F., Spicher, F., Tolosano, M., Verbeeck, H., Verheyen, K., Vangansbeke, P., De Frenne, P., 2020. Structural variation of forest edges across Europe. For. Ecol. Manage. 462, 117929.
Davies-Colley, R.J., Payne, G.W., Van Elswijk, M., 2000. Microclimate gradients across a forest edge. NZJ. Ecol. 24, 111–121.
De Frenne, P., Rodríguez-Sánchez, F., Coomes, D.A., Baeten, L., Verstraeten, G., Vellen, M., Bernhardt-Römermann, M., Brown, C.D., Brunet, J., Cornelis, J., Decocq, G.M., Dierschke, H., Eriksson, O., Gilliam, F.S., Hédl, R., Heinken, T., Hermy, M., Hommel, P., Jenkins, M.A., Kelly, D.L., Kirby, K.J., Mitchell, F.J.G., Naaf, T., Newman, M., Peterken, G., Petřík, P., Schultz, J., Sonnier, G., Van Calster, H., Waller, D.M., Walther, G.R., White, P.S., Woods, K.D., Wulf, M., Graae, B.J., Verheyen, K., 2013. Microclimate moderates plant responses to macroclimate warming. Proc. Natl. Acad. Sci. USA 110, 18561–18565.
Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26.
ISO 11277, 2009. Soil Quality – Determination of Particle Size Distribution in Mineral Soil Material – Method by Sieving and Sedimentation ISO, Geneva.
Matlack, G.R., 1993. Microenvironment variation within and among forest edge sites in the eastern United States. Biol. Conserv. 66, 185–194.
Pellissier, V., Bergès, L., Nedeltcheva, T., Schmitt, M.-.C., Avon, C., Cluzeau, C., Dupouey, J.L., 2013. Understorey plant species show long-range spatial patterns in forest patches according to distance-to-edge. J. Veg. Sci. 24, 9–24.
EU-DEM. (2018). EU-digital elevation model (DEM). Version 1.1. Retrieved from https://land.coper nicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1.
Saunders, S.C., Chen, J., Drummer, T.D., Crow, T.R., 1999. Modeling temperature gradients across edges over time in a managed landscape. For. Ecol. Manage. 117, 17–31.
Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K.D., Macias-Fauria, M., Sass-Klaassen, U., Lévesque, E., Boudrea, S., Ropars, P., Hermanutz, L., Trant, A., Siegwart Collier, L., Weijers, S., Rozema, J., Rayback, S.A., Schmidt, N.M., Schaepman-Strub, G., Wipf, S., Rixen, C., Ménard, C.B., Venn, S., Goetz, S., Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P., Epstein, H.E., Hik, D.S., 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett., 6(4), 045509.
Baker, Jordan, Steel, Fountain-Jones, Wardlaw, Baker (bib0003) 2014; 334
IPCC, 2018. Summary for Policymakers. In: Global Warming of 1.5 °C. An IPCC Special Report On the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission pathways, in the Context of Strengthening the Global Response to the Threat of Climate change, Sustainable development, and Efforts to Eradicate Poverty Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla et al. (eds.). World Meteorological Organization, Geneva, Switzerland, 32 pp.
Gower, S.T., Kucharik, C.J., Norman, J.M., 1999. Direct and indirect estimation of leaf area index, f(APAR), and net primary production of terrestrial ecosystems. Remote Sens. Environ. 70, 29–51.
De Smedt, P., Baeten, L., Proesmans, W., Van de Poel, S., Van Keer, J., Giffard, B., Martin, L., Vanhulle, R., Brunet, J., Cousins, S.A.O., Decocq, G., Deconchat, M., Diekmann, M., Gallet-Moron, E., Le Roux, V., Liira, J., Valdés, A., Wulf, M., Andrieu, E., Hermy, M., Bonte, D., Verheyen, K., 2019. Strength of forest edge effects on litter-dwelling macro-arthropods across Europe is influenced by forest age and edge properties. Divers. Distrib. 25, 963–974.
Feeley, K.J., 2004. The effects of forest fragmentation and increased edge exposure on leaf litter accumulation. J. Trop. Ecol. 20, 709–712.
Young, A., Mitchell, N., 1994. Microclimate and vegetation edge effects in a fragmented podocarp-broadleaf forest in New Zealand. Biol. Conserv. 67, 63–72.
Fekete, I., Varga, C., Biró, B., Tóth, J.A., Várbíró, G., Lajtha, K., Szabó, G., Kotroczó, Z., 2016. The effects of litter production and litter depth on soil microclimate in a central european deciduous forest. Plant Soil 398, 291–300.
Harper, K.A., Macdonald, S.E., Burton, P.J., Chen, J., Brosofske, K.D., Saunders, S.C., Euskirchen, E.S., Roberts, D., Jaiteh, M.S., Esseen, .P.-A., 2005. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 19, 768–782.
R Core Team, 2020. R: A Language and Environment For Statistical Computing. R Foundation for Statistical Computing. Austria. URL, Vienna
Dutta, B., Grant, B.B., Congreves, K.A., Smith, W.N., Wagner-Riddle, C., VanderZaag, A.C., Tenuta, M., Desjardins, R.L., 2018. Characterising effects of management practices, snow cover, and soil texture on soil temperature: model development in DNDC. Biosyst. Eng. 168, 54–72.
Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., Lovejoy, T.E., Sexton, J.O., Austin, M.P., Collins, C.D., Cook, W.M., Damschen, E.I., Ewers, R.M., Foster, B.L., Jenkins, C.N., King, A.J., Laurance, W.F., Levey, D.J., Margules, C.R., Melbourne, B.A., Nicholls, A.O., Orrock, J.L., Song, D.-.X., Townshend, J.R., 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci. Adv. 1, e1500052.
Hilmers, T., Friess, N., Bässler, C., Heurich, M., Brandl, R., Pretzsch, H., Seidl, R., Müller, J., 2018. Biodiversity along temperate forest succession. J. Appl. Ecol. 55, 2756–2766.
Muñoz Sabater, J., 2019. ERA5-Land Hourly Data from 1981 to Present Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 23-02-2021)
.
Gilliam, F.S., 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience, 57(10), 845–858.
MEA, 2005. Millennium Ecosystem Assessment. Ecosystems and Human well-being: Biodiversity synthesis. Washington, DC: Millennium Ecosystem Assessment.
Remy, E., Wuyts, K., Boeckx, P., Ginzburg, S., Gundersen, P., Demey, A., Van Den Bulcke, J., Van Acker, J., Verheyen, K., 2016. Strong gradients in nitrogen and carbon stocks at temperate forest edges. For. Ecol. Manage. 376, 45–58.
Aalto, Riihimäki, Meineri, Hylander, Luoto (bib0001) 2017; 37
Schmidt, M., Jochheim, H., Kersebaum, K.-.C., Lischeid, G., Nendel, C., 2017. Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes–a review. Agric. For. Meteorol. 232, 659–671.
Honnay, O., Verheyen, K., Hermy, M., 2002. Permeability of ancient forest edges for weedy plant species invasion. For. Ecol. Manage. 161, 109–122.
Duelli, P., Obrist, M.K., & Fluckiger, P.F., 2002. Forest edges are biodiversity hotspots–also for Neuroptera. Acta Zool. Acad. Sci. Hung., 48(Suppl 2), 75–87.
Ries, L., Fletcher, R.J., Battin, J., Sisk, T.D., 2004. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 35, 491–522.
Kalácska, M., Calvo-Alvarado, J.C., Sánchez-Azofeifa, G.A., 2005. Calibration and assessment of seasonal changes in leaf area index of a tropical dry forest in different stages of succession. Tree Physiol. 25, 733–744.
Stevens, J.T., Safford, H.D., Harrison, S., Latimer, A.M., 2015. Forest disturbance accelerates thermophilization of understory plant communities. J. Ecol. 103, 1253–1263.
Pfeifer, M., Lefebvre, V., Peres, C.A., Banks-Leite, C., Wearn, O.R., Marsh, C.J., Butchart, S.H.M., Arroyo-Rodríguez, V., Barlow, J., Cerezo, A., Cisneros, L., D'Cruze
10.1016/j.agrformet.2021.108699_bib0013
10.1016/j.agrformet.2021.108699_bib0057
10.1016/j.agrformet.2021.108699_bib0012
10.1016/j.agrformet.2021.108699_bib0056
10.1016/j.agrformet.2021.108699_bib0015
10.1016/j.agrformet.2021.108699_bib0059
10.1016/j.agrformet.2021.108699_bib0014
10.1016/j.agrformet.2021.108699_bib0058
10.1016/j.agrformet.2021.108699_bib0053
10.1016/j.agrformet.2021.108699_bib0052
10.1016/j.agrformet.2021.108699_bib0055
10.1016/j.agrformet.2021.108699_bib0054
Baker (10.1016/j.agrformet.2021.108699_bib0003) 2014; 334
10.1016/j.agrformet.2021.108699_bib0051
10.1016/j.agrformet.2021.108699_bib0050
10.1016/j.agrformet.2021.108699_bib0049
10.1016/j.agrformet.2021.108699_bib0024
10.1016/j.agrformet.2021.108699_bib0068
10.1016/j.agrformet.2021.108699_bib0023
10.1016/j.agrformet.2021.108699_bib0067
10.1016/j.agrformet.2021.108699_bib0026
10.1016/j.agrformet.2021.108699_bib0025
10.1016/j.agrformet.2021.108699_bib0069
10.1016/j.agrformet.2021.108699_bib0020
10.1016/j.agrformet.2021.108699_bib0064
10.1016/j.agrformet.2021.108699_bib0063
Chen (10.1016/j.agrformet.2021.108699_bib0011) 1999; 49
10.1016/j.agrformet.2021.108699_bib0022
10.1016/j.agrformet.2021.108699_bib0066
10.1016/j.agrformet.2021.108699_bib0021
10.1016/j.agrformet.2021.108699_bib0065
10.1016/j.agrformet.2021.108699_bib0060
10.1016/j.agrformet.2021.108699_bib0062
10.1016/j.agrformet.2021.108699_bib0061
Bates (10.1016/j.agrformet.2021.108699_bib0005) 2015; 67
Bramer (10.1016/j.agrformet.2021.108699_bib0008) 2018
Aussenac (10.1016/j.agrformet.2021.108699_bib0002) 2000
Aalto (10.1016/j.agrformet.2021.108699_bib0001) 2017; 37
10.1016/j.agrformet.2021.108699_bib0017
10.1016/j.agrformet.2021.108699_bib0016
10.1016/j.agrformet.2021.108699_bib0019
10.1016/j.agrformet.2021.108699_bib0018
10.1016/j.agrformet.2021.108699_bib0035
10.1016/j.agrformet.2021.108699_bib0079
Bertrand (10.1016/j.agrformet.2021.108699_bib0006) 2011; 479
10.1016/j.agrformet.2021.108699_bib0034
10.1016/j.agrformet.2021.108699_bib0078
Calders (10.1016/j.agrformet.2021.108699_bib0009) 2020
10.1016/j.agrformet.2021.108699_bib0037
10.1016/j.agrformet.2021.108699_bib0036
10.1016/j.agrformet.2021.108699_bib0031
10.1016/j.agrformet.2021.108699_bib0075
10.1016/j.agrformet.2021.108699_bib0030
10.1016/j.agrformet.2021.108699_bib0074
10.1016/j.agrformet.2021.108699_bib0033
10.1016/j.agrformet.2021.108699_bib0077
Chen (10.1016/j.agrformet.2021.108699_bib0010) 1995; 5
10.1016/j.agrformet.2021.108699_bib0032
10.1016/j.agrformet.2021.108699_bib0076
10.1016/j.agrformet.2021.108699_bib0071
10.1016/j.agrformet.2021.108699_bib0070
10.1016/j.agrformet.2021.108699_bib0073
10.1016/j.agrformet.2021.108699_bib0072
10.1016/j.agrformet.2021.108699_bib0028
10.1016/j.agrformet.2021.108699_bib0027
10.1016/j.agrformet.2021.108699_bib0029
10.1016/j.agrformet.2021.108699_bib0046
10.1016/j.agrformet.2021.108699_bib0045
10.1016/j.agrformet.2021.108699_bib0048
10.1016/j.agrformet.2021.108699_bib0047
10.1016/j.agrformet.2021.108699_bib0042
10.1016/j.agrformet.2021.108699_bib0086
10.1016/j.agrformet.2021.108699_bib0041
10.1016/j.agrformet.2021.108699_bib0085
10.1016/j.agrformet.2021.108699_bib0044
10.1016/j.agrformet.2021.108699_bib0043
10.1016/j.agrformet.2021.108699_bib0087
10.1016/j.agrformet.2021.108699_bib0082
10.1016/j.agrformet.2021.108699_bib0081
Bonan (10.1016/j.agrformet.2021.108699_bib0007) 2008; 80
10.1016/j.agrformet.2021.108699_bib0040
10.1016/j.agrformet.2021.108699_bib0084
10.1016/j.agrformet.2021.108699_bib0083
10.1016/j.agrformet.2021.108699_bib0080
Bartlett (10.1016/j.agrformet.2021.108699_bib0004) 2004; 109
10.1016/j.agrformet.2021.108699_bib0039
10.1016/j.agrformet.2021.108699_bib0038
References_xml – reference: Zellweger, F., de Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., van Calster, H., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., Macek, M., Malicki, M., Naaf, T., Nagel, T.A., Ortmann-Ajkai, A., Petřík, P., Pielech, R., Reczynska, K., Schmidt, W., Standovár, T., Swierkosz, K., Teleki, B., Vild, O., Wulf, M., Coomes, D., 2020. Forest microclimate dynamics drive plant responses to warming. Science 80. 368.
– reference: Niinemets, Ü., 2010. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693–714.
– year: 2000
  ident: bib0002
  article-title: Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture
  publication-title: Ann. For. Sci.
– reference: Hofmeister, J., Hošek, J., Brabec, M., Střalková, R., Mýlová, P., Bouda, M., Pettit, J.L., Rydval, M., Svoboda, M., 2019. Microclimate edge effect in small fragments of temperate forests in the context of climate change. For. Ecol. Manage. 448, 48–56.
– volume: 109
  start-page: F04008
  year: 2004
  ident: bib0004
  article-title: Snow and the ground temperature record of climate change
  publication-title: J. Geophys. Res.
– reference: Matlack, G.R., 1993. Microenvironment variation within and among forest edge sites in the eastern United States. Biol. Conserv. 66, 185–194.
– reference: Fekete, I., Varga, C., Biró, B., Tóth, J.A., Várbíró, G., Lajtha, K., Szabó, G., Kotroczó, Z., 2016. The effects of litter production and litter depth on soil microclimate in a central european deciduous forest. Plant Soil 398, 291–300.
– volume: 49
  start-page: 288
  year: 1999
  end-page: 297
  ident: bib0011
  article-title: Microclimate in forest ecosystem and landscape ecology
  publication-title: Bioscience
– reference: Schmidt, M., Lischeid, G., Nendel, C., 2019. Microclimate and matter dynamics in transition zones of forest to arable land. Agric. For. Meteorol. 268, 1–10.
– reference: De Frenne, P., Rodríguez-Sánchez, F., Coomes, D.A., Baeten, L., Verstraeten, G., Vellen, M., Bernhardt-Römermann, M., Brown, C.D., Brunet, J., Cornelis, J., Decocq, G.M., Dierschke, H., Eriksson, O., Gilliam, F.S., Hédl, R., Heinken, T., Hermy, M., Hommel, P., Jenkins, M.A., Kelly, D.L., Kirby, K.J., Mitchell, F.J.G., Naaf, T., Newman, M., Peterken, G., Petřík, P., Schultz, J., Sonnier, G., Van Calster, H., Waller, D.M., Walther, G.R., White, P.S., Woods, K.D., Wulf, M., Graae, B.J., Verheyen, K., 2013. Microclimate moderates plant responses to macroclimate warming. Proc. Natl. Acad. Sci. USA 110, 18561–18565.
– reference: Frey, S.J.K., Hadley, A.S., Johnson, S.L., Schulze, M., Jones, J.A., Betts, M.G., 2016. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392.
– reference: Orczewska, A., Glista, A., 2005. Floristic analysis of the two woodland-meadow ecotones differing in orientation of the forest edge. Polish J. Ecol. 53, 365–382.
– volume: 334
  year: 2014
  ident: bib0003
  article-title: Microclimate through space and time: microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales
  publication-title: For. Ecol. Manage.
– reference: Feeley, K.J., 2004. The effects of forest fragmentation and increased edge exposure on leaf litter accumulation. J. Trop. Ecol. 20, 709–712.
– reference: EU-DEM. (2018). EU-digital elevation model (DEM). Version 1.1. Retrieved from https://land.coper nicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1.
– reference: Meeussen, C., Govaert, S., Vanneste, T., Calders, K., Bollmann, K., Brunet, J., Cousins, S.A.O., Diekmann, M., Graae, B.J., Hedwall, P.O., Krishna Moorthy, S.M., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Ponette, Q., Plue, J., Selvi, F., Spicher, F., Tolosano, M., Verbeeck, H., Verheyen, K., Vangansbeke, P., De Frenne, P., 2020. Structural variation of forest edges across Europe. For. Ecol. Manage. 462, 117929.
– reference: Hylander, K., 2005. Aspect modifies the magnitude of edge effects on bryophyte growth in boreal forests. J. Appl. Ecol. 42, 518–525.
– reference: Schmidt, M., Jochheim, H., Kersebaum, K.-.C., Lischeid, G., Nendel, C., 2017. Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes–a review. Agric. For. Meteorol. 232, 659–671.
– volume: 67
  start-page: 1
  year: 2015
  end-page: 48
  ident: bib0005
  article-title: Fitting linear mixed-effects models using lme4
  publication-title: J. Stat. Softw.
– reference: Muñoz Sabater, J., 2019. ERA5-Land Hourly Data from 1981 to Present Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 23-02-2021),
– reference: Murcia, C., 1995. Edge effects in fragmented forests: implications for conservation. Trends Ecol. Evol. 10, 58–62.
– reference: IPCC, 2018. Summary for Policymakers. In: Global Warming of 1.5 °C. An IPCC Special Report On the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission pathways, in the Context of Strengthening the Global Response to the Threat of Climate change, Sustainable development, and Efforts to Eradicate Poverty Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla et al. (eds.). World Meteorological Organization, Geneva, Switzerland, 32 pp.
– reference: Mourelle, C., Kellman, M., Kwon, L., 2001. Light occlusion at forest edges: an analysis of tree architectural characteristics. For. Ecol. Manage. 154, 179–192.
– reference: De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B.R., Hylander, K., Luoto, M., Vellend, M., Verheyen, K., Lenoir, J., 2019. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749.
– reference: ISO 11277, 2009. Soil Quality – Determination of Particle Size Distribution in Mineral Soil Material – Method by Sieving and Sedimentation ISO, Geneva.
– reference: R Core Team, 2020. R: A Language and Environment For Statistical Computing. R Foundation for Statistical Computing. Austria. URL, Vienna
– reference: Davis, F.W., Synes, N.W., Fricker, G.A., McCullough, I.M., Serra-Diaz, J.M., Franklin, J., Flint, A.L., 2019. LiDAR-derived topography and forest structure predict fine-scale variation in daily surface temperatures in oak savanna and conifer forest landscapes. Agric. For. Meteorol. 269–270, 192–202.
– reference: De Smedt, P., Baeten, L., Proesmans, W., Van de Poel, S., Van Keer, J., Giffard, B., Martin, L., Vanhulle, R., Brunet, J., Cousins, S.A.O., Decocq, G., Deconchat, M., Diekmann, M., Gallet-Moron, E., Le Roux, V., Liira, J., Valdés, A., Wulf, M., Andrieu, E., Hermy, M., Bonte, D., Verheyen, K., 2019. Strength of forest edge effects on litter-dwelling macro-arthropods across Europe is influenced by forest age and edge properties. Divers. Distrib. 25, 963–974.
– volume: 80
  year: 2008
  ident: bib0007
  article-title: Forests and climate change: forcings, feedbacks, and the climate benefits of forests
  publication-title: Science
– reference: Honnay, O., Verheyen, K., Hermy, M., 2002. Permeability of ancient forest edges for weedy plant species invasion. For. Ecol. Manage. 161, 109–122.
– reference: Lindgren, J., Kimberley, A., Cousins, S.A.O., 2018. The complexity of forest borders determines the understorey vegetation. Appl. Veg. Sci. 21, 85–93.
– reference: Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853.
– reference: Jucker, T., Bouriaud, O., Coomes, D.A., 2015. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29, 1078–1086.
– reference: Li, Y., Kang, W., Han, Y., Song, Y., 2018. Spatial and temporal patterns of microclimates at an urban forest edge and their management implications. Environ. Monit. Assess. 190, 93.
– year: 2020
  ident: bib0009
  article-title: Terrestrial laser scanning in forest ecology: expanding the horizon
  publication-title: Remote Sens. Environ.
– reference: De Frenne, P., Rodríguez-Sánchez, F., De Schrijver, A., Coomes, D.A., Hermy, M., Vangansbeke, P., Verheyen, K., 2015. Light accelerates plant responses to warming. Nat. Plants, 1(9), 1–3.
– reference: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P., Kessler, M., 2017. Climatologies at high resolution for the earth's land surface areas. Sci. Data 4, 170122.
– reference: Pfeifer, M., Lefebvre, V., Peres, C.A., Banks-Leite, C., Wearn, O.R., Marsh, C.J., Butchart, S.H.M., Arroyo-Rodríguez, V., Barlow, J., Cerezo, A., Cisneros, L., D'Cruze, N., Faria, D., Hadley, A., Harris, S.M., Klingbeil, B.T., Kormann, U., Lens, L., Medina-Rangel, G.F., Morante-Filho, J.C., Olivier, P., Peters, S.L., Pidgeon, A., Ribeiro, D.B., Scherber, C., Schneider-Maunoury, L., Struebig, M., Urbina-Cardona, N., Watling, J.I., Willig, M.R., Wood, E.M., Ewers, R.M., 2017. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191.
– reference: Vasconcelos, H.L., Luizão, F.J., 2004. Litter production and litter nutrient concentrations in a fragmented amazonian landscape. Ecol. Appl. 14, 884–892.
– reference: MEA, 2005. Millennium Ecosystem Assessment. Ecosystems and Human well-being: Biodiversity synthesis. Washington, DC: Millennium Ecosystem Assessment.
– reference: Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K.D., Macias-Fauria, M., Sass-Klaassen, U., Lévesque, E., Boudrea, S., Ropars, P., Hermanutz, L., Trant, A., Siegwart Collier, L., Weijers, S., Rozema, J., Rayback, S.A., Schmidt, N.M., Schaepman-Strub, G., Wipf, S., Rixen, C., Ménard, C.B., Venn, S., Goetz, S., Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P., Epstein, H.E., Hik, D.S., 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett., 6(4), 045509.
– reference: De Pauw, K., Meeussen, C., Govaert, S., Sanczuk, P., Vanneste, T., Bernhardt-Römermann, M., Bollmann, K., Brunet, J., Calders, K., Cousins, S., Diekmann, M., Hedwall, P., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Ponette, Q., Plue, J., Selvi, F., Spicher, F., Verbeeck, H., Vermeir, P., Zellweger, F., Verheyen, K., Vangansbeke, P., De Frenne, P., 2021. Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges. J. Ecol.
– reference: Pellissier, V., Bergès, L., Nedeltcheva, T., Schmitt, M.-.C., Avon, C., Cluzeau, C., Dupouey, J.L., 2013. Understorey plant species show long-range spatial patterns in forest patches according to distance-to-edge. J. Veg. Sci. 24, 9–24.
– reference: Meeussen, C., Govaert, S., Vanneste, T., Haesen, S., Van Meerbeek, K., Bollmann, K., Brunet, J., Calders, K., Cousins, S.A.O., Diekmann, M., Graae, B.J., Iacopetti, G., Lenoir, J., Orczewska, A., Ponette, Q., Plue, J., Selvi, F., Spicher, F., Sørensen, M.V., Verbeeck, H., Vermeir, P., Verheyen, K., Vangansbeke, P., De Frenne, P., 2021. Drivers of carbon stocks in forest edges across Europe. Sci. Total Environ. 759, 143497.
– reference: Lembrechts, J.J., Lenoir, J., 2019. Microclimatic conditions anywhere at any time! Glob. Chang. Biol.
– reference: Magura, T., 2002. Carabids and forest edge: spatial pattern and edge effect. For. Ecol. Manage. 157, 23–37.
– start-page: 101
  year: 2018
  end-page: 161
  ident: bib0008
  article-title: Advances in monitoring and modelling climate at ecologically relevant scales
  publication-title: Advances in Ecological Research
– reference: Kalácska, M., Calvo-Alvarado, J.C., Sánchez-Azofeifa, G.A., 2005. Calibration and assessment of seasonal changes in leaf area index of a tropical dry forest in different stages of succession. Tree Physiol. 25, 733–744.
– reference: Zuur, A., Ieno, E., Walker, N., Saveliev, A., Smith, G., 2009. Mixed effects modelling for nested data, in: Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M. (Eds.), Mixed Effects Models and Extensions in Ecology with R. Springer, New York, NY, USA, pp. 101–142.
– volume: 479
  start-page: 517
  year: 2011
  end-page: 520
  ident: bib0006
  article-title: Changes in plant community composition lag behind climate warming in lowland forests
  publication-title: Nature
– reference: Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., Lovejoy, T.E., Sexton, J.O., Austin, M.P., Collins, C.D., Cook, W.M., Damschen, E.I., Ewers, R.M., Foster, B.L., Jenkins, C.N., King, A.J., Laurance, W.F., Levey, D.J., Margules, C.R., Melbourne, B.A., Nicholls, A.O., Orrock, J.L., Song, D.-.X., Townshend, J.R., 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci. Adv. 1, e1500052.
– reference: Davies-Colley, R.J., Payne, G.W., Van Elswijk, M., 2000. Microclimate gradients across a forest edge. NZJ. Ecol. 24, 111–121.
– reference: Govaert, S., Meeussen, C., Vanneste, T., Bollmann, K., Brunet, J., Cousins, S.A.O., Diekmann, M., Graae, B.J., Hedwall, P.-.O., Heinken, T., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Perring, M.P., Ponette, Q., Plue, J., Selvi, F., Spicher, F., Tolosano, M., Vermeir, P., Zellweger, F., Verheyen, K., Vangansbeke, P., De Frenne, P., 2020. Edge influence on understorey plant communities depends on forest management. J. Veg. Sci. 31.
– reference: Ehbrecht, M., Schall, P., Ammer, C., Fischer, M., Seidel, D., 2019. Effects of structural heterogeneity on the diurnal temperature range in temperate forest ecosystems. For. Ecol. Manage. 432, 860–867.
– reference: Graae, B.J., De Frenne, P., Kolb, A., Brunet, J., Chabrerie, O., Verheyen, K., Pepin, N., Heinken, T., Zobel, M., Shevtsova, A., Nijs, I., Milbau, A., 2012. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121, 3–19.
– volume: 37
  start-page: 544
  year: 2017
  end-page: 556
  ident: bib0001
  article-title: Revealing topoclimatic heterogeneity using meteorological station data
  publication-title: Int. J. Climatol.
– reference: Duelli, P., Obrist, M.K., & Fluckiger, P.F., 2002. Forest edges are biodiversity hotspots–also for Neuroptera. Acta Zool. Acad. Sci. Hung., 48(Suppl 2), 75–87.
– reference: Verheyen, K., Baeten, L., De Frenne, P., Bernhardt-Römermann, M., Brunet, J., Cornelis, J., Decocq, G., Dierschke, H., Eriksson, O., Hédl, R., Heinken, T., Hermy, M., Hommel, P., Kirby, K., Naaf, T., Peterken, G., Petřík, P., Pfadenhauer, J., Van Calster, H., Walther, G.R., Wulf, M., Verstraeten, G., 2012. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. J. Ecol. 100, 352–365.
– reference: Hothorn, T., Bretz, F., Westfall, P., 2008. Simultaneous inference in general parametric models. Biometrical J.
– reference: Riutta, T., Slade, E.M., Bebber, D.P., Taylor, M.E., Malhi, Y., Riordan, P., Macdonald, D.W., Morecroft, M.D., 2012. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol. Biochem. 49, 124–131.
– reference: Sanczuk, P., Govaert, S., Meeussen, C., De Pauw, K., Vanneste, T., Depauw, L., Moreira, X., Schoelynck, J., De Boevre, M., De Saeger, S., Bollmann, K., Brunet, J., Cousins, S.A.O., Plue, J., Diekmann, M., Graae, B.J., Hedwall, P., Iacopetti, G., Lenoir, J., Orczewska, A., Ponette, Q., Selvi, F., Spicher, F., Vermeir, P., Calders, K., Verbeeck, H., Verheyen, K., Vangansbeke, P., De Frenne, P., 2021. Small scale environmental variation modulates plant defence syndromes of understorey plants in deciduous forests of Eur. Global Ecol. Biogeogr., 30(1), 205–219.
– reference: Zellweger, F., Coomes, D., Lenoir, J., Depauw, L., Maes, S.L., Wulf, M., Kirby, K.J., Brunet, J., Kopecký, M., Máliš, F., Schmidt, W., Heinrichs, S., den Ouden, J., Jaroszewicz, B., Buyse, G., Spicher, F., Verheyen, K., De Frenne, P., 2019. Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Glob. Ecol. Biogeogr. 28, 1774–1786.
– reference: De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B.R., Zellweger, F., Aalto, J., Ashcroft, M.B., Christiansen, D.M., Decocq, G., De Pauw, K., Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D.H., Koelemeijer, I.A., Lembrechts, J.J., Marrec, R., Meeussen, C., Ogée, J., Tyystjärvi, V., Vangansbeke, P., Hylander, K., 2021. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Chang. Biol. Gcb. 15569.
– reference: Renaud, V., Innes, J.L., Dobbertin, M., Rebetez, M., 2011. Comparison between open-site and below-canopy climatic conditions in Switzerland for different types of forests over 10 years (1998-2007). Theor. Appl. Climatol. 105, 119–127.
– reference: Stevens, J.T., Safford, H.D., Harrison, S., Latimer, A.M., 2015. Forest disturbance accelerates thermophilization of understory plant communities. J. Ecol. 103, 1253–1263.
– reference: Young, A., Mitchell, N., 1994. Microclimate and vegetation edge effects in a fragmented podocarp-broadleaf forest in New Zealand. Biol. Conserv. 67, 63–72.
– reference: Ogée, J., Brunet, Y., 2002. A forest floor model for heat and moisture including a litter layer. J. Hydrol. 255, 212–233.
– reference: Remy, E., Wuyts, K., Boeckx, P., Ginzburg, S., Gundersen, P., Demey, A., Van Den Bulcke, J., Van Acker, J., Verheyen, K., 2016. Strong gradients in nitrogen and carbon stocks at temperate forest edges. For. Ecol. Manage. 376, 45–58.
– reference: Ries, L., Fletcher, R.J., Battin, J., Sisk, T.D., 2004. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 35, 491–522.
– reference: Gower, S.T., Kucharik, C.J., Norman, J.M., 1999. Direct and indirect estimation of leaf area index, f(APAR), and net primary production of terrestrial ecosystems. Remote Sens. Environ. 70, 29–51.
– reference: International Civil Aviation Organization, 1993. Manual of the ICAO Standard atmosphere: Extended to 80 Kilometres (262 500 Feet), 3rd ed. International Civil Aviation Organization, Montreal, Quebec.
– reference: Hilmers, T., Friess, N., Bässler, C., Heurich, M., Brandl, R., Pretzsch, H., Seidl, R., Müller, J., 2018. Biodiversity along temperate forest succession. J. Appl. Ecol. 55, 2756–2766.
– reference: Geiger, R., Aron, R.H., Todhunter, P., 2009. The Climate Near the Ground. Rowman & Littlefield.
– reference: Paul, K.I., Polglase, P.J., Smethurst, P.J., O'Connell, A.M., Carlyle, C.J., Khanna, P.K., 2004. Soil temperature under forests: a simple model for predicting soil temperature under a range of forest types. Agric. For. Meteorol. 121, 167–182.
– reference: Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M.J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T.A., Reyer, C.P.O., 2017. Forest disturbances under climate change. Nat. Clim. Chang.
– reference: .
– reference: Saunders, S.C., Chen, J., Drummer, T.D., Crow, T.R., 1999. Modeling temperature gradients across edges over time in a managed landscape. For. Ecol. Manage. 117, 17–31.
– reference: Gilliam, F.S., 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience, 57(10), 845–858.
– reference: Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26.
– reference: Riitters, K., Wickham, J., Costanza, J.K., Vogt, P., 2016. A global evaluation of forest interior area dynamics using tree cover data from 2000 to 2012. Landsc. Ecol. 31, 137–148.
– reference: Harper, K.A., Macdonald, S.E., Burton, P.J., Chen, J., Brosofske, K.D., Saunders, S.C., Euskirchen, E.S., Roberts, D., Jaiteh, M.S., Esseen, .P.-A., 2005. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 19, 768–782.
– reference: Mellander, P.E., Laudon, H., Bishop, K., 2005. Modelling variability of snow depths and soil temperatures in Scots pine stands, in: Agricultural and Forest Meteorology. Elsevier, pp. 109–118.
– reference: Papaioannou, G., Vouraki, K., Kerkides, P., 1996. Piche evaporimeter data as a substitute for Penman equation’ s aerodynamic term. Agric. For. Meteorol. 82, 83–92.
– reference: Kovács, B., Tinya, F., Ódor, P., 2017. Stand structural drivers of microclimate in mature temperate mixed forests. Agric. For. Meteorol. 234–235, 11–21.
– reference: Chen, Y., Liu, Y., Zhang, J., Yang, W., He, R., Deng, C., 2018. Microclimate exerts greater control over litter decomposition and enzyme activity than litter quality in an alpine forest-tundra ecotone. Sci. Rep. 8, 1–13.
– reference: Dutta, B., Grant, B.B., Congreves, K.A., Smith, W.N., Wagner-Riddle, C., VanderZaag, A.C., Tenuta, M., Desjardins, R.L., 2018. Characterising effects of management practices, snow cover, and soil texture on soil temperature: model development in DNDC. Biosyst. Eng. 168, 54–72.
– volume: 5
  start-page: 74
  year: 1995
  end-page: 86
  ident: bib0010
  article-title: Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests
  publication-title: Ecol. Appl.
– reference: Greiser, C., Meineri, E., Luoto, M., Ehrlén, J., Hylander, K., 2018. Monthly microclimate models in a managed boreal forest landscape. Agric. For. Meteorol. 250–251, 147–158.
– ident: 10.1016/j.agrformet.2021.108699_bib0037
  doi: 10.1111/1365-2664.13238
– ident: 10.1016/j.agrformet.2021.108699_bib0055
– ident: 10.1016/j.agrformet.2021.108699_bib0012
  doi: 10.1038/s41598-018-33186-4
– ident: 10.1016/j.agrformet.2021.108699_bib0066
  doi: 10.1016/0168-1923(96)02337-4
– ident: 10.1016/j.agrformet.2021.108699_bib0046
  doi: 10.1093/treephys/25.6.733
– ident: 10.1016/j.agrformet.2021.108699_bib0068
  doi: 10.1111/j.1654-1103.2012.01435.x
– ident: 10.1016/j.agrformet.2021.108699_bib0014
  doi: 10.1016/j.agrformet.2019.02.015
– ident: 10.1016/j.agrformet.2021.108699_bib0078
  doi: 10.1016/j.agrformet.2016.10.022
– volume: 5
  start-page: 74
  year: 1995
  ident: 10.1016/j.agrformet.2021.108699_bib0010
  article-title: Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests
  publication-title: Ecol. Appl.
  doi: 10.2307/1942053
– ident: 10.1016/j.agrformet.2021.108699_bib0086
  doi: 10.1126/science.abd3881
– volume: 334
  year: 2014
  ident: 10.1016/j.agrformet.2021.108699_bib0003
  article-title: Microclimate through space and time: microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2014.09.008
– ident: 10.1016/j.agrformet.2021.108699_bib0038
  doi: 10.1016/j.foreco.2019.05.069
– ident: 10.1016/j.agrformet.2021.108699_bib0022
  doi: 10.1016/j.biosystemseng.2017.02.001
– ident: 10.1016/j.agrformet.2021.108699_bib0071
  doi: 10.1016/j.foreco.2016.05.040
– ident: 10.1016/j.agrformet.2021.108699_bib0052
  doi: 10.1111/avsc.12344
– ident: 10.1016/j.agrformet.2021.108699_bib0050
  doi: 10.1111/gcb.14942
– ident: 10.1016/j.agrformet.2021.108699_bib0075
  doi: 10.1016/j.soilbio.2012.02.028
– ident: 10.1016/j.agrformet.2021.108699_bib0060
– volume: 80
  year: 2008
  ident: 10.1016/j.agrformet.2021.108699_bib0007
  article-title: Forests and climate change: forcings, feedbacks, and the climate benefits of forests
  publication-title: Science
– start-page: 101
  year: 2018
  ident: 10.1016/j.agrformet.2021.108699_bib0008
  article-title: Advances in monitoring and modelling climate at ecologically relevant scales
  doi: 10.1016/bs.aecr.2017.12.005
– ident: 10.1016/j.agrformet.2021.108699_bib0049
  doi: 10.18637/jss.v082.i13
– ident: 10.1016/j.agrformet.2021.108699_bib0058
  doi: 10.1016/j.agrformet.2005.08.008
– ident: 10.1016/j.agrformet.2021.108699_bib0023
  doi: 10.1016/j.foreco.2018.10.008
– ident: 10.1016/j.agrformet.2021.108699_bib0083
  doi: 10.1111/j.1365-2745.2011.01928.x
– volume: 109
  start-page: F04008
  year: 2004
  ident: 10.1016/j.agrformet.2021.108699_bib0004
  article-title: Snow and the ground temperature record of climate change
  publication-title: J. Geophys. Res.
  doi: 10.1029/2004JF000224
– ident: 10.1016/j.agrformet.2021.108699_bib0076
  doi: 10.1111/geb.13216
– ident: 10.1016/j.agrformet.2021.108699_bib0080
  doi: 10.1038/nclimate3303
– year: 2020
  ident: 10.1016/j.agrformet.2021.108699_bib0009
  article-title: Terrestrial laser scanning in forest ecology: expanding the horizon
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112102
– ident: 10.1016/j.agrformet.2021.108699_bib0030
  doi: 10.1111/jvs.12844
– ident: 10.1016/j.agrformet.2021.108699_bib0021
– ident: 10.1016/j.agrformet.2021.108699_bib0070
– ident: 10.1016/j.agrformet.2021.108699_bib0042
– ident: 10.1016/j.agrformet.2021.108699_bib0061
  doi: 10.1016/S0169-5347(00)88977-6
– ident: 10.1016/j.agrformet.2021.108699_bib0039
  doi: 10.1016/S0378-1127(01)00490-X
– ident: 10.1016/j.agrformet.2021.108699_bib0020
  doi: 10.1111/ddi.12909
– ident: 10.1016/j.agrformet.2021.108699_bib0034
  doi: 10.1126/sciadv.1500052
– ident: 10.1016/j.agrformet.2021.108699_bib0018
  doi: 10.1038/s41559-019-0842-1
– ident: 10.1016/j.agrformet.2021.108699_bib0072
  doi: 10.1007/s00704-010-0361-0
– ident: 10.1016/j.agrformet.2021.108699_bib0073
  doi: 10.1146/annurev.ecolsys.35.112202.130148
– volume: 67
  start-page: 1
  year: 2015
  ident: 10.1016/j.agrformet.2021.108699_bib0005
  article-title: Fitting linear mixed-effects models using lme4
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v067.i01
– volume: 479
  start-page: 517
  year: 2011
  ident: 10.1016/j.agrformet.2021.108699_bib0006
  article-title: Changes in plant community composition lag behind climate warming in lowland forests
  publication-title: Nature
  doi: 10.1038/nature10548
– ident: 10.1016/j.agrformet.2021.108699_bib0079
  doi: 10.1016/j.agrformet.2019.01.001
– volume: 37
  start-page: 544
  year: 2017
  ident: 10.1016/j.agrformet.2021.108699_bib0001
  article-title: Revealing topoclimatic heterogeneity using meteorological station data
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5020
– ident: 10.1016/j.agrformet.2021.108699_bib0028
– ident: 10.1016/j.agrformet.2021.108699_bib0041
  doi: 10.1111/j.1365-2664.2005.01033.x
– ident: 10.1016/j.agrformet.2021.108699_bib0053
  doi: 10.1016/S0378-1127(00)00654-X
– ident: 10.1016/j.agrformet.2021.108699_bib0024
– ident: 10.1016/j.agrformet.2021.108699_bib0048
  doi: 10.1016/j.agrformet.2016.11.268
– ident: 10.1016/j.agrformet.2021.108699_bib0064
  doi: 10.1016/S0022-1694(01)00515-7
– ident: 10.1016/j.agrformet.2021.108699_bib0029
  doi: 10.1641/B571007
– ident: 10.1016/j.agrformet.2021.108699_bib0027
  doi: 10.1126/sciadv.1501392
– ident: 10.1016/j.agrformet.2021.108699_bib0087
  doi: 10.1007/978-0-387-87458-6_5
– ident: 10.1016/j.agrformet.2021.108699_bib0015
  doi: 10.1111/gcb.15569
– ident: 10.1016/j.agrformet.2021.108699_bib0057
  doi: 10.1016/j.scitotenv.2020.143497
– ident: 10.1016/j.agrformet.2021.108699_bib0040
  doi: 10.1002/bimj.200810425
– volume: 49
  start-page: 288
  year: 1999
  ident: 10.1016/j.agrformet.2021.108699_bib0011
  article-title: Microclimate in forest ecosystem and landscape ecology
  publication-title: Bioscience
  doi: 10.2307/1313612
– ident: 10.1016/j.agrformet.2021.108699_bib0043
– ident: 10.1016/j.agrformet.2021.108699_bib0059
  doi: 10.1016/S0378-1127(00)00624-1
– ident: 10.1016/j.agrformet.2021.108699_bib0062
  doi: 10.1088/1748-9326/6/4/045509
– ident: 10.1016/j.agrformet.2021.108699_bib0025
  doi: 10.1017/S0266467404001828
– year: 2000
  ident: 10.1016/j.agrformet.2021.108699_bib0002
  article-title: Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture
  publication-title: Ann. For. Sci.
  doi: 10.1051/forest:2000119
– ident: 10.1016/j.agrformet.2021.108699_bib0085
  doi: 10.1111/geb.12991
– ident: 10.1016/j.agrformet.2021.108699_bib0084
  doi: 10.1016/0006-3207(94)90010-8
– ident: 10.1016/j.agrformet.2021.108699_bib0074
  doi: 10.1007/s10980-015-0270-9
– ident: 10.1016/j.agrformet.2021.108699_bib0077
  doi: 10.1016/S0378-1127(98)00468-X
– ident: 10.1016/j.agrformet.2021.108699_bib0081
  doi: 10.1111/1365-2745.12426
– ident: 10.1016/j.agrformet.2021.108699_bib0082
  doi: 10.1890/03-5093
– ident: 10.1016/j.agrformet.2021.108699_bib0067
  doi: 10.1016/j.agrformet.2003.08.030
– ident: 10.1016/j.agrformet.2021.108699_bib0017
  doi: 10.1038/nplants.2015.110
– ident: 10.1016/j.agrformet.2021.108699_bib0026
  doi: 10.1007/s11104-015-2664-5
– ident: 10.1016/j.agrformet.2021.108699_bib0035
  doi: 10.1126/science.1244693
– ident: 10.1016/j.agrformet.2021.108699_bib0054
  doi: 10.1016/0006-3207(93)90004-K
– ident: 10.1016/j.agrformet.2021.108699_bib0033
  doi: 10.1016/j.agrformet.2017.12.252
– ident: 10.1016/j.agrformet.2021.108699_bib0019
  doi: 10.1111/1365-2745.13671
– ident: 10.1016/j.agrformet.2021.108699_bib0016
  doi: 10.1073/pnas.1311190110
– ident: 10.1016/j.agrformet.2021.108699_bib0056
  doi: 10.1016/j.foreco.2020.117929
– ident: 10.1016/j.agrformet.2021.108699_bib0045
  doi: 10.1111/1365-2435.12428
– ident: 10.1016/j.agrformet.2021.108699_bib0063
  doi: 10.1007/s11284-010-0712-4
– ident: 10.1016/j.agrformet.2021.108699_bib0047
  doi: 10.1038/sdata.2017.122
– ident: 10.1016/j.agrformet.2021.108699_bib0051
  doi: 10.1007/s10661-017-6430-4
– ident: 10.1016/j.agrformet.2021.108699_bib0065
– ident: 10.1016/j.agrformet.2021.108699_bib0032
  doi: 10.1111/j.1600-0706.2011.19694.x
– ident: 10.1016/j.agrformet.2021.108699_bib0044
– ident: 10.1016/j.agrformet.2021.108699_bib0013
– ident: 10.1016/j.agrformet.2021.108699_bib0031
  doi: 10.1016/S0034-4257(99)00056-5
– ident: 10.1016/j.agrformet.2021.108699_bib0036
  doi: 10.1111/j.1523-1739.2005.00045.x
– ident: 10.1016/j.agrformet.2021.108699_bib0069
  doi: 10.1038/nature24457
SSID ssj0012779
Score 2.5596197
Snippet •We quantified evaporation and soil and air temperature offsets in forest edges across Europe.•Roughly 10% of European broadleaved forests are affected by...
Global forest cover is heavily fragmented. Due to high edge-to-surface ratios in small forest patches, a large proportion of forests is affected by edge...
SourceID swepub
hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108699
SubjectTerms air
biomass
canopy
Climate change
deciduous forests
ecotones
edge effects
Edge influence
Europe
forest litter
forest management
Forest Science
Forest structure
Fragmentation
habitats
Life Sciences
meteorology
microclimate
Northern European region
rain forests
Skogsvetenskap
summer
Temperate forests
Temperature buffering
winter
Title Microclimatic edge-to-interior gradients of European deciduous forests
URI https://dx.doi.org/10.1016/j.agrformet.2021.108699
https://www.proquest.com/docview/2636780136
https://u-picardie.hal.science/hal-03614154
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-199681
https://res.slu.se/id/publ/114431
Volume 311
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVK2cAClQIiUCqDeKzM1Bkn8bCLBkbDY7qBou4sx48haDSp8mDJt3Ovk4w6UqUuWEW27MT2tX1P7ONjQl7HhRfF1MQMsIJgwhSCyam0zEppnSik80GnYHWeLi_El8vk8oDMx7MwSKsc5v5-Tg-z9RAzGVpzclWWk-8AVlDNCw-h4PYWKn4KkWEvf_93R_Pgcdbr7UFihqn3OF56Hcj5DkmVMQ-3DgUR2Bs91J1fSJW8jkOva4sGf7Q4Ig8GIEnzvqwPyYHbHpP7-boexDTcMYlWgIirOiyc07d0vikBnobQI7JYIRPPhKjSUFxVY23FUD2iLquaruvABWsbWnk6LtlT60xpu6prKFQIStc8JheLTz_mSzbcqcAMIL-WCQ8_SNZrGG02dqlLUy1dHPNUc5NwZwvwVYBQNBhKcJ8m3uCMwF3si5nXejZ9Qg631dY9JdRrYVJATxYlZtxM6sx7mWSWZ5mVM3MWkXRsR2UGwXG892KjRmbZb7UzgEIDqN4AETnbZbzqNTduz_JhNJTa6z4KPMPtmV-BaXefQsHtZf5NYRz4dw4QR_zhEXk5Wl7BCMRtFb110OAqTqfg8VH7LiJv-i6x966P5c9cVfVaNZ1CzreEd727IV2z6Qpd40M1Dk-LA7Z79j_1ek7uYQjJNzw5IYdt3bkXAKHa4jSMkVNyN__8dXn-DyjlHnE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9MwGLa2cQAOCAaI8GkQHyfTOXUSl1tVqAq0u7Ch3SzHHyWoaqZ8cOS3875OUq3SpB04RXHsxPZr-31iP35MyNs49yIfm5gBVhBMmFwwOZaWWSmtE7l0PugUrE7Txbn4dpFcHJDZsBcGaZX92N-N6WG07kNGfW2OLoti9APACqp54SYUXN4aH5JbArovHmPw8e-O58HjrBPcg9gMo--RvPQ6sPMdsipjHo4dCiqw17qow1_IlbwKRK-KiwaHNL9P7vVIkk67zD4gB257TO5O11WvpuGOSbQCSFxWYeacvqezTQH4NNw9JPMVUvFMCCoMxWk11pQM5SOqoqzougpksKampafDnD21zhS2LduaQoEgd_Ujcj7_cjZbsP5QBWYA-jVMePhDsl5Dd7OxS12aaunimKeam4Q7m4OzAoiiwVKC-zTxBocE7mKfT7zWk_FjcrQtt-4JoV4LkwJ8sqgx4yZSZ97LJLM8y6ycmJOIpEM9KtMrjuPBFxs1UMt-q50BFBpAdQaIyMku4WUnunFzkk-DodRe-1HgGm5O_AZMu_sUKm4vpkuFYeDgOWAc8YdH5PVgeQVdENdV9NZBhas4HYPLR_G7iLzrmsTeuz4XP6eqrNaqbhWSviW868M18epNm-sKL6p2uF0cwN3T_ynXK3J7cbZaquXX0-_PyB18gkwcnjwnR03VuheAp5r8Zegv_wB9KB__
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microclimatic+edge-to-interior+gradients+of+European+deciduous+forests&rft.jtitle=Agricultural+and+forest+meteorology&rft.au=Meeussen%2C+Camille&rft.au=Govaert%2C+Sanne&rft.au=Vanneste%2C+Thomas&rft.au=Bollmann%2C+Kurt&rft.date=2021-12-15&rft.issn=1873-2240&rft.volume=311&rft_id=info:doi/10.1016%2Fj.agrformet.2021.108699&rft.externalDocID=oai_DiVA_org_su_199681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1923&client=summon