Advances of microfluidic lung chips for assessing atmospheric pollutants exposure
[Display omitted] •An up-to-the-date review summarizes the key features of lung chips.•Current trends in the fabrication of lung chips.•Recent progresses in the application of lung chip to assess air pollutants exposure.•Current challenges and future opportunities of lung chip development. Atmospher...
Saved in:
Published in | Environment international Vol. 172; p. 107801 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.02.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•An up-to-the-date review summarizes the key features of lung chips.•Current trends in the fabrication of lung chips.•Recent progresses in the application of lung chip to assess air pollutants exposure.•Current challenges and future opportunities of lung chip development.
Atmospheric pollutants, including particulate matters, nanoparticles, bioaerosols, and some chemicals, have posed serious threats to the environment and the human’s health. The lungs are the responsible organs for providing the interface betweenthecirculatory system and the external environment, where pollutant particles can deposit or penetrate into bloodstream circulation. Conventional studies to decipher the mechanismunderlying air pollution and human health are quite limited, due to the lack of reliable models that can reproduce in vivo features of lung tissues after pollutants exposure. In the past decade, advanced near-to-native lung chips, combining cell biology with bioengineered technology, present a new strategy for atmospheric pollutants assessment and narrow the gap between 2D cell culture and in vivo animal models. In this review, the key features of artificial lung chips and the cutting-edge technologies of the lung chip manufacture are introduced. The recent progresses of lung chip technologies for atmospheric pollutants exposure assessment are summarized and highlighted. We further discuss the current challenges and the future opportunities of the development of advanced lung chips and their potential utilities in atmospheric pollutants associated toxicity testing and drug screening. |
---|---|
AbstractList | Atmospheric pollutants, including particulate matters, nanoparticles, bioaerosols, and some chemicals, have posed serious threats to the environment and the human's health. The lungs are the responsible organs for providing the interface betweenthecirculatory system and the external environment, where pollutant particles can deposit or penetrate into bloodstream circulation. Conventional studies to decipher the mechanismunderlying air pollution and human health are quite limited, due to the lack of reliable models that can reproduce in vivo features of lung tissues after pollutants exposure. In the past decade, advanced near-to-native lung chips, combining cell biology with bioengineered technology, present a new strategy for atmospheric pollutants assessment and narrow the gap between 2D cell culture and in vivo animal models. In this review, the key features of artificial lung chips and the cutting-edge technologies of the lung chip manufacture are introduced. The recent progresses of lung chip technologies for atmospheric pollutants exposure assessment are summarized and highlighted. We further discuss the current challenges and the future opportunities of the development of advanced lung chips and their potential utilities in atmospheric pollutants associated toxicity testing and drug screening. [Display omitted] •An up-to-the-date review summarizes the key features of lung chips.•Current trends in the fabrication of lung chips.•Recent progresses in the application of lung chip to assess air pollutants exposure.•Current challenges and future opportunities of lung chip development. Atmospheric pollutants, including particulate matters, nanoparticles, bioaerosols, and some chemicals, have posed serious threats to the environment and the human’s health. The lungs are the responsible organs for providing the interface betweenthecirculatory system and the external environment, where pollutant particles can deposit or penetrate into bloodstream circulation. Conventional studies to decipher the mechanismunderlying air pollution and human health are quite limited, due to the lack of reliable models that can reproduce in vivo features of lung tissues after pollutants exposure. In the past decade, advanced near-to-native lung chips, combining cell biology with bioengineered technology, present a new strategy for atmospheric pollutants assessment and narrow the gap between 2D cell culture and in vivo animal models. In this review, the key features of artificial lung chips and the cutting-edge technologies of the lung chip manufacture are introduced. The recent progresses of lung chip technologies for atmospheric pollutants exposure assessment are summarized and highlighted. We further discuss the current challenges and the future opportunities of the development of advanced lung chips and their potential utilities in atmospheric pollutants associated toxicity testing and drug screening. Atmospheric pollutants, including particulate matters, nanoparticles, bioaerosols, and some chemicals, have posed serious threats to the environment and the human's health. The lungs are the responsible organs for providing the interface betweenthecirculatory system and the external environment, where pollutant particles can deposit or penetrate into bloodstream circulation. Conventional studies to decipher the mechanismunderlying air pollution and human health are quite limited, due to the lack of reliable models that can reproduce in vivo features of lung tissues after pollutants exposure. In the past decade, advanced near-to-native lung chips, combining cell biology with bioengineered technology, present a new strategy for atmospheric pollutants assessment and narrow the gap between 2D cell culture and in vivo animal models. In this review, the key features of artificial lung chips and the cutting-edge technologies of the lung chip manufacture are introduced. The recent progresses of lung chip technologies for atmospheric pollutants exposure assessment are summarized and highlighted. We further discuss the current challenges and the future opportunities of the development of advanced lung chips and their potential utilities in atmospheric pollutants associated toxicity testing and drug screening.Atmospheric pollutants, including particulate matters, nanoparticles, bioaerosols, and some chemicals, have posed serious threats to the environment and the human's health. The lungs are the responsible organs for providing the interface betweenthecirculatory system and the external environment, where pollutant particles can deposit or penetrate into bloodstream circulation. Conventional studies to decipher the mechanismunderlying air pollution and human health are quite limited, due to the lack of reliable models that can reproduce in vivo features of lung tissues after pollutants exposure. In the past decade, advanced near-to-native lung chips, combining cell biology with bioengineered technology, present a new strategy for atmospheric pollutants assessment and narrow the gap between 2D cell culture and in vivo animal models. In this review, the key features of artificial lung chips and the cutting-edge technologies of the lung chip manufacture are introduced. The recent progresses of lung chip technologies for atmospheric pollutants exposure assessment are summarized and highlighted. We further discuss the current challenges and the future opportunities of the development of advanced lung chips and their potential utilities in atmospheric pollutants associated toxicity testing and drug screening. Atmospheric pollutants, including particulate matters, nanoparticles, bioaerosols, and some chemicals, have posed serious threats to the environment and the human’s health. The lungs are the responsible organs for providing the interface between the circulatory system and the external environment, where pollutant particles can deposit or penetrate into bloodstream circulation. Conventional studies to decipher the mechanism underlying air pollution and human health are quite limited, due to the lack of reliable models that can reproduce in vivo features of lung tissues after pollutants exposure. In the past decade, advanced near-to-native lung chips, combining cell biology with bioengineered technology, present a new strategy for atmospheric pollutants assessment and narrow the gap between 2D cell culture and in vivo animal models. In this review, the key features of artificial lung chips and the cutting-edge technologies of the lung chip manufacture are introduced. The recent progresses of lung chip technologies for atmospheric pollutants exposure assessment are summarized and highlighted. We further discuss the current challenges and the future opportunities of the development of advanced lung chips and their potential utilities in atmospheric pollutants associated toxicity testing and drug screening. |
ArticleNumber | 107801 |
Author | Li, Zhongyu Su, Wentao Yin, Fangchao Wang, Hui Li, Dong |
Author_xml | – sequence: 1 givenname: Hui surname: Wang fullname: Wang, Hui organization: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China – sequence: 2 givenname: Fangchao surname: Yin fullname: Yin, Fangchao organization: School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China – sequence: 3 givenname: Zhongyu surname: Li fullname: Li, Zhongyu organization: College of Life Science, Dalian Minzu University, Dalian 116600, China – sequence: 4 givenname: Wentao surname: Su fullname: Su, Wentao email: suwentao2020@yeah.net organization: Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034 Liaoning, China – sequence: 5 givenname: Dong orcidid: 0000-0002-7268-657X surname: Li fullname: Li, Dong email: li_dong@ntu.edu.cn organization: Medical School, Nantong University, Nantong 226001, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36774736$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1r3DAYhEVJSDZp_kEpPvbirb4l91AIoU0DgVBoz0KWXydabMuV5CX999XGSQ89NCfBMPMgZt4zdDSFCRB6R_CWYCI_7rYw7f2UtxRTViSlMXmDNkQrVksl8BHaFBuuOaH4FJ2ltMMYU67FCTplUimumNyg75fd3k4OUhX6avQuhn5YfOddNSzTfeUe_JyqPsTKpgQp-aLZPIY0P0AspjkMw5LtlFMFj3NIS4S36Li3Q4KL5_cc_fz65cfVt_r27vrm6vK2dgKrXDNsCW-p64klqmmYEl3DiHUSJAfiiO4V1y1vG85bQjtJBG2soD23uuPKMnaOblZuF-zOzNGPNv42wXrzJIR4b2zM3g1giKQaiHCSScmF7GzDsBICc-0o56AK68PKmmP4tUDKZvTJwTDYCcKSDNWMUyy5lq9blRKNwJIeqO-frUs7Qvf3jy_tF8On1VBqTylCb5zPNvsw5Wj9YAg2h6nNzqxTm8PUZp26hPk_4Rf-K7HPawzKNnsP0STnoVxA5yO4XMrz_wf8AQVnws8 |
CitedBy_id | crossref_primary_10_1080_10962247_2023_2253709 crossref_primary_10_1016_j_mtbio_2023_100905 crossref_primary_10_17816_clinpract637140 crossref_primary_10_3390_e25040650 crossref_primary_10_1111_all_16179 crossref_primary_10_3390_en16186507 crossref_primary_10_3390_s23125406 crossref_primary_10_3389_fbioe_2024_1346660 crossref_primary_10_1039_D3SE01590D crossref_primary_10_1016_j_jhazmat_2023_131962 crossref_primary_10_1016_j_bprint_2024_e00342 crossref_primary_10_1016_j_tiv_2023_105718 crossref_primary_10_1039_D4LC00578C crossref_primary_10_1016_j_metabol_2024_156065 crossref_primary_10_1016_j_mtbio_2024_101079 crossref_primary_10_1016_j_scitotenv_2024_170745 |
Cites_doi | 10.1016/j.cell.2020.05.006 10.1002/jat.4052 10.1016/j.stemcr.2022.02.004 10.1089/aivt.2017.0034 10.1002/adbi.202101139 10.1101/2020.07.20.211789 10.1073/pnas.2016146118 10.3389/fbioe.2020.00519 10.1016/j.cell.2016.02.049 10.1002/advs.202004990 10.1128/Spectrum.00257-21 10.1002/anbr.202000111 10.1039/D0TB00613K 10.1038/nmeth.3697 10.1002/admt.202000726 10.1038/srep31304 10.1002/adma.202107876 10.1002/adma.202108972 10.1002/admt.202100828 10.1021/acssensors.8b01370 10.1002/adhm.202100633 10.3390/mi12020215 10.3390/cells10071602 10.1063/5.0084415 10.1063/5.0038924 10.1101/685552 10.1042/BST20190569 10.1007/s13770-021-00348-x 10.1016/j.celrep.2017.01.004 10.1109/MPULS.2021.3078598 10.1016/j.cels.2016.10.003 10.1016/j.celrep.2022.110318 10.3390/cancers13163930 10.3389/fbioe.2020.00549 10.3390/bios11110456 10.1002/adhm.202102581 10.1016/j.tips.2021.05.007 10.1002/asia.202001051 10.1111/cea.13815 10.1002/adma.201902042 10.1016/j.tim.2020.06.005 10.1039/C7LC01357D 10.1039/C9LC00496C 10.1039/D1LC00348H 10.1007/s11356-020-09042-2 10.1016/j.celrep.2017.09.043 10.3390/mi12060624 10.1021/acs.chemrestox.1c00219 10.1039/C7LC01224A 10.3390/chemosensors9090248 10.1088/1758-5090/aae545 10.1080/07388551.2019.1710458 10.1152/ajplung.00153.2021 10.3390/mi12101250 10.1021/acs.chemrev.1c00621 10.1002/adhm.202100812 10.15252/msb.20156520 10.3389/fmed.2021.644678 10.1002/adma.202005476 10.1038/s41551-021-00718-9 10.1038/s41467-017-01985-4 10.1002/smll.202003797 10.1016/B978-0-323-98367-9.00018-4 10.1038/nprot.2013.137 10.1289/ehp.7339 10.1021/acsbiomaterials.1c01463 10.1016/j.ecoenv.2021.112601 10.1002/bit.27728 10.1021/acsbiomaterials.0c00221 10.1038/s41596-019-0230-y 10.1016/j.actbio.2021.03.002 10.1007/s42242-020-00092-6 10.1063/5.0011353 10.1126/scitranslmed.3004249 10.3389/fphys.2022.853317 10.4236/jbm.2017.59003 10.1016/j.isci.2022.103780 10.1002/advs.202105187 10.1038/s41551-019-0497-x 10.1021/acssensors.8b01672 10.1038/s41467-022-29562-4 10.34133/2022/9819154 10.1016/j.drudis.2019.03.006 10.1021/acs.analchem.0c00759 10.1007/s00204-021-03188-9 10.15252/embr.202152744 10.1038/s42003-021-01695-0 10.1002/adbi.201900026 10.3389/fbioe.2020.581995 10.1126/science.1114397 10.3390/v13050792 10.3389/fbioe.2022.848699 10.1126/science.aav9750 10.1016/j.scitotenv.2020.143718 10.1002/adbi.202000624 10.1039/C9LC00492K 10.1016/j.addr.2020.09.008 10.1038/s41467-019-11397-1 10.1039/C8TX00156A 10.1002/adhm.201901862 10.1039/C4LC01252F 10.3390/ma15062313 10.1002/advs.202101251 10.1126/science.1188302 10.3389/fbioe.2020.00091 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2023 The Author(s) – notice: Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 DOA |
DOI | 10.1016/j.envint.2023.107801 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Public Health Environmental Sciences |
EISSN | 1873-6750 |
ExternalDocumentID | oai_doaj_org_article_1628e15c6366456da930755048c244e7 36774736 10_1016_j_envint_2023_107801 S0160412023000740 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ADEZE ADMUD ADNMO ADVLN AEBSH AEGFY AEIPS AEKER AENEX AFJKZ AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMC HVGLF HZ~ IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SEN SES SEW SSH SSJ SSZ T5K TN5 WUQ XPP ~02 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c507t-30a14b2cf1a1799375d931ac6e64e1c18f748b4b944b12d61529a52f4a8d47a33 |
IEDL.DBID | .~1 |
ISSN | 0160-4120 1873-6750 |
IngestDate | Wed Aug 27 01:24:09 EDT 2025 Thu Jul 10 21:57:17 EDT 2025 Fri Jul 11 05:58:59 EDT 2025 Mon Jul 21 06:00:20 EDT 2025 Tue Jul 01 02:38:18 EDT 2025 Thu Apr 24 23:02:41 EDT 2025 Sun Apr 06 06:53:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bioengineering Microphysiological system Atmospheric pollutants exposure Microfluidics Lung chips |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-30a14b2cf1a1799375d931ac6e64e1c18f748b4b944b12d61529a52f4a8d47a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7268-657X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0160412023000740 |
PMID | 36774736 |
PQID | 2775950627 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1628e15c6366456da930755048c244e7 proquest_miscellaneous_2834206486 proquest_miscellaneous_2775950627 pubmed_primary_36774736 crossref_citationtrail_10_1016_j_envint_2023_107801 crossref_primary_10_1016_j_envint_2023_107801 elsevier_sciencedirect_doi_10_1016_j_envint_2023_107801 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 20230201 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Environment international |
PublicationTitleAlternate | Environ Int |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Nof, Zidan, Artzy-Schnirman, Mouhadeb, Beckerman, Bhardwaj, Elias-Kirma, Gur, Beth-Din, Levenberg, Korin, Ordentlich, Sznitman (b0325) 2022; 13 Yang, Shen, Lin, Cheng, Chen, Chen, Kumar, Lin, Lu, Chen (b0515) 2020; 8 Johansson, Martin, He, Chen, Weirauch, Kroner, Khurana Hershey, Biagini (b0220) 2021; 51 Petrou, D'Ovidio, Bolukbas, Tas, Brown, Allawzi, Lindstedt, Nozik-Grayck, Stenmark, Wagner, Magin (b0355) 2020; 8 Si, L., Prantil-Baun, R., Benam, K.H., Bai, H., Rodas, M., Burt, M. and Ingber, D.E., 2019. Discovery of influenza drug resistance mutations and host therapeutic targets using a human airway chip, bioRxiv, https://doi.org/10.1101/685552. Hassell, Goyal, Lee, Sontheimer-Phelps, Levy, Chen, Ingber (b0160) 2017; 21 Amin Arefi, Tony Yang, Sin, Feng (b0015) 2020; 14 Kim, Kim, Park, Cho (b0255) 2021; 132 Artzy-Schnirman, Zidan, Elias-Kirma, Ben-Porat, Tenenbaum-Katan, Carius, Fishler, Schneider-Daum, Lehr, Sznitman (b0020) 2019; 3 Singh, Romeo, Scott, Wagener, Leibrock, Laux, Luch, Kerkar, Balakrishnan, Dakua, Park (b0430) 2021; 10 Barkal, Procknow, Alvarez-Garcia, Niu, Jimenez-Torres, Brockman-Schneider, Gern, Denlinger, Theberge, Keller, Berthier, Beebe (b0045) 2017; 8 Movia, Bruni-Favier, Prina-Mello (b0310) 2020; 8 Nie, Fu, He (b0320) 2020; 16 Ainslie, Davis, Ewart, Lieberman, Rowlands, Thorley, Yoder, Ryan (b0005) 2019; 19 Zhang, Tian, Liu, Wang, Wei, Wang, Wang, Liu (b0535) 2018; 3 Su, Sutarlie, Loh (b0440) 2020; 15 Almetwally, Bin-Jumah, Allam (b0010) 2020; 27 Bost, Giladi, Liu, Bendjelal, Xu, David, Blecher-Gonen, Cohen, Medaglia, Li, Deczkowska, Zhang, Schwikowski, Zhang, Amit (b0090) 2020; 181 Cao, Shao, Yu, Xie, Yang, Sun, Yang, He, Xu, Fan, Ye (b0100) 2022; 2022 Bauer, Trump, Ishaque, Thurmann, Gu, Bauer, Bieg, Gu, Weichenhan, Mallm, Roder, Herberth, Takada, Mucke, Winter, Junge, Grutzmann, Rolle-Kampczyk, Wang, Lawerenz, Borte, Polte, Schlesner, Schanne, Wiemann, Georg, Stunnenberg, Plass, Rippe, Mizuguchi, Herrmann, Eils, Lehmann (b0065) 2016; 12 Si, L., Bai, H., Oh, C.Y., Jin, L., Prantil-Baun, R., Ingber, D.E., 2021a. Clinically Relevant Influenza Virus Evolution Reconstituted in a Human Lung Airway-on-a-Chip. MicrobiolSpectrum e00257-21. Jiang, Lyu, Zhao, Li, Kong, Huang, Genin, Du (b0215) 2019; 10 Huang, Liu, Liao, Maharjan, Xie, Perez, Anaya, Wang, Tirado Mayer, Kang, Kong, Mainardi, Garciamendez-Mijares, Garcia Martinez, Moretti, Zhang, Gu, Ghaemmaghami, Zhang (b0180) 2021; 118 Kumar, Madhurakkat Perikamana, Tata, Hoque, Gilpin, Tata, Varghese (b0265) 2022; 10 Zhang, Xu, Jiang, Qin (b0545) 2018; 7 Saygili, Yildiz-Ozturk, Green, Ghaemmaghami, Yesil-Celiktas (b0375) 2021; 15 Cidem, Bradbury, Traini, Ong (b0115) 2020; 8 Liu, Zhao, Wang, Chen, Hu, Chen (b0285) 2021; 12 Kiener, Roldan, Machahua, Sengupta, Geiser, Guenat, Funke-Chambour, Hobi, Kruithof-de Julio (b0245) 2021; 8 Tsugita, Morimoto, Tashiro, Kinoshita, Nakayama (b0470) 2017; 18 Zamprogno, Wuthrich, Achenbach, Thoma, Stucki, Hobi, Schneider-Daum, Lehr, Huwer, Geiser, Schmid, Guenat (b0520) 2021; 4 Thacker, Sharma, Dhar, Mancini, Sordet-Dessimoz, McKinney (b0460) 2021; 22 Xu, Zhang, Chen, Jiang, Chen, Qin (b0505) 2020; 6 Tran, Shi, Li, Chowdhury, Jiang, Liu, Wang, Yan, Wallace, Lu, Ryan, Marconett, Zhou, Borok, Offringa (b0465) 2022; 25 Zhang, M., Wang, P., Luo, R., Wang, Y., Li, Z., Guo, Y., Yao, Y., Li, M., Tao, T., Chen, W., Han, J., Liu, H., Cui, K., Zhang, X., Zheng, Y. and Qin, J., 2020b. Biomimetic Human Disease Model of SARS-CoV-2 Induced Lung Injury and Immune Responses on Organ Chip System. Adv Sci: 2002928. Huh, Leslie, Matthews, Fraser, Jurek, Hamilton, Thorneloe, McAlexander, Ingber (b0190) 2012; 4 Tang, Abouleila, Si, Ortega-Prieto, Mummery, Ingber, Mashaghi (b0455) 2020; 28 Ashammakhi, Darabi, Celebi-Saltik, Tutar, Hartel, Lee, Hussein, Goudie, Cornelius, Dokmeci, Khademhosseini (b0025) 2020; 4 Hou, Hu, Yong, Zhang, Ma (b0170) 2020; 3 Lin, Yen, Yang, Chung, Chen (b0275) 2022; 14 Campillo, Oliveira, da Palma (b0095) 2021; 9 De Santis, Alsafadi, Tas, Bolukbas, Prithiviraj, Da Silva, Mittendorfer, Ota, Stegmayr, Daoud, Konigshoff, Sward, Wood, Tassieri, Bourgine, Lindstedt, Mohlin, Wagner (b0125) 2021; 33 Bai, Si, Jiang, Belgur, Zhai, Plebani, Oh, Rodas, Patil, Nurani, Gilpin, Powers, Goyal, Prantil-Baun, Ingber (b0030) 2022; 13 Park, Young (b0350) 2021; 6 Chen, Wang, Asmani, Li, Liu, Li, Lippmann, Wu, Zhao (b0105) 2016; 6 Vignal, Guilloteau, Gower-Rousseau, Body-Malapel (b0490) 2021; 757 Sznitman (b0450) 2022; 122 Ding, Zhang, Wang (b0130) 2021; 11 Elias-Kirma, Artzy-Schnirman, Das, Heller-Algazi, Korin, Sznitman (b0140) 2020; 8 Huh, Matthews, Mammoto, Montoya-Zavala, Hsin, Ingber (b0185) 2010; 328 Bennet, Randhawa, Hua, Cheung (b0085) 2021; 10 Kavand, Nasiri, Herland (b0240) 2022; 34 da Silva da Costa, F.A., Soares, M.R., Malagutti-Ferreira, M.J., da Silva, G.R., Livero, F. and Ribeiro-Paes, J.T., 2021. Three-Dimensional Cell Cultures as a Research Platform in Lung Diseases and COVID-19. Tissue Eng Regen Med, 18(5): 735-745. Bates (b0060) 2021; 12 Yang, Li, Zhang, Liu, Guo, Wen, Gao (b0510) 2018; 18 Ching, Toh, Hashimoto, Zhang (b0110) 2021; 42 Wei, Wang, Li, Yang (b0500) 2020; 41 Singh, Maharjan, Kromer, Laux, Luch, Vats, Chandrasekar, Dakua, Park (b0425) 2021; 34 Hu, Wang, Gao, Liang (b0175) 2022 Novak, Ingram, Marquez, Das, Delahanty, Herland, Maoz, Jeanty, Somayaji, Burt, Calamari, Chalkiadaki, Cho, Choe, Chou, Cronce, Dauth, Divic, Fernandez-Alcon, Ferrante, Ferrier, FitzGerald, Fleming, Jalili-Firoozinezhad, Grevesse, Goss, Hamkins-Indik, Henry, Hinojosa, Huffstater, Jang, Kujala, Leng, Mannix, Milton, Nawroth, Nestor, Ng, O'Connor, Park, Sanchez, Sliz, Sontheimer-Phelps, Swenor, Thompson, Touloumes, Tranchemontagne, Wen, Yadid, Bahinski, Hamilton, Levner, Levy, Przekwas, Prantil-Baun, Parker, Ingber (b0330) 2020; 4 Sen, Freund, Gomperts (b0385) 2022; 50 Baptista, Moreira Teixeira, Barata, Tahmasebi Birgani, King, van Riet, Pasman, Poot, Stamatialis, Rottier, Hiemstra, Carlier, van Blitterswijk, Habibovic, Giselbrecht, Truckenmuller (b0040) 2022; 8 Kang, Park, Kim, Kim, Lee, Kim, Yoo, Jung (b0230) 2021; 8 Sedlakova, Klouckova, Garlikova, Vasickova, Jaros, Kandra, Kotasova, Hampl (b0380) 2019; 24 Barros, Costa, Sarmento (b0055) 2021; 170 Moreira, Muller, Costa, Kohl (b0305) 2022; 6 Huh, Kim, Fraser, Shea, Khan, Bahinski, Hamilton, Ingber (b0195) 2013; 8 Benam, Villenave, Lucchesi, Varone, Hubeau, Lee, Alves, Salmon, Ferrante, Weaver, Bahinski, Hamilton, Ingber (b0075) 2016; 13 Shrestha, Razavi Bazaz, Aboulkheyr Es, Yaghobian Azari, Thierry, Ebrahimi Warkiani, Ghadiri (b0395) 2020; 40 Sun, Hoffman, Luu, Ashammakhi, Li (b0445) 2021 Nel, Xia, Madler, Li (b0315) 2016; 311 Oberdorster, Oberdorster, Oberdorster (b0335) 2005; 113 Guan, Tang, Chang, Chen, Chen, Mu, Zhao, Fan, Tian, Darland, Zhang (b0155) 2021; 223 Park, Kim, Kim, You, Jung (b0340) 2021; 13 Grigoryan, Paulsen, Corbett, Sazer, Fortin, Zaita, Greenfield, Calafat, Gounley, Ta, Johansson, Randles, Rosenkrantz, Louis-Rosenberg, Galie, Stevens, Miller (b0150) 2019; 364 Zhu, Y., Sun, L., Wang, Y., Cai, L., Zhang, Z., Shang, Y. and Zhao, Y., 2022. A Biomimetic Human Lung-on-a-Chip with Colorful Display of Microphysiological Breath. Adv Mater: e2108972. Benam, Novak, Ferrante, Choe, Ingber (b0080) 2020; 15 Singh, Drude, Blank, Desai, Konigs, Rutten, Langen, Moller, Mottaghy, Morgenroth (b0420) 2021; 10 Kang, Tan, Lee, Cho (b0235) 2021; 8 Konrath, Liaw, Wu, Zhu, Walker, Xu, Schultheis, Chokkalingam, Chawla, Du, Tursi, Moore, Adolf-Bryfogle, Purwar, Reuschel, Frase, Sullivan, Fry, Maricic, Andrade, Iffland, Crispin, Broderick, Humeau, Patel, Smith, Pallesen, Weiner, Kulp (b0260) 2022; 38 Dong, Yang, Zhu (b0135) 2022; 16 Ingber (b0210) 2016; 164 Lu, Lai, Benge, Wang, Davenport Huyer, Rafatian, Radisic (b0290) 2020; 6 Kim, D., Hwang, K.S., Seo, E.U., Seo, S., Lee, B.C., Choi, N., Choi, J. and Kim, H.N., 2022. Vascularized Lung Cancer Model for Evaluating the Promoted Transport of Anticancer Drugs and Immune Cells in an Engineered Tumor Microenvironment. Adv Healthc Mater: e2102581. Zarkesh, Kazemi Ashtiani, Shiri, Aran, Braun, Baharvand (b0525) 2022; 17 Heinen, Klohn, Steinmann, Pfaender (b0165) 2021; 13 Humayun, Chow, Young (b0200) 2018; 18 van Riet, van Schadewijk, Khedoe, Limpens, Barcena, Stolk, Hiemstra, van der Does (b0480) 2022; 322 Lacroix, Koch, Ritter, Gutleb, Larsen, Loret, Zanetti, Constant, Chortarea, Rothen-Rutishauser, Hiemstra, Frejafon, Hubert, Gribaldo, Kearns, Aublant, Diabate, Weiss, de Groot, Kooter (b0270) 2018; 4 Zhang, Liu, Zhou, Jiang, Wang, Wei, Liu, Wei, Liu (b0540) 2020; 92 Si, Bai, Rodas, Cao, Oh, Jiang, Moller, Hoagland, Oishi, Horiuchi, Uhl, Blanco-Melo, Albrecht, Liu, Jordan, Nilsson-Payant, Golynker, Frere, Logue, Haupt, McGrath, Weston, Zhang, Plebani, Soong, Nurani, Kim, Zhu, Benam, Goyal, Gilpin, Prantil-Baun, Gygi, Powers, Carlson, Frieman, tenOever, Ingber (b0400) 2021; 5 Shay (b0390) 2017; 05 Wang, Wang, Qin (b0495) 2022; 9 Baldassi, Gabold, Merkel (b0035) 2021; 1 Benam, Novak, Nawroth, Hirano-Kobayashi, Ferrante, Choe, Prantil-Baun, Weaver, Bahinski, Parker, Ingber (b0070) 2016; 3 Jung, Shin, Kim, Sung, Jang, Jeong (b0225) 2019; 19 Barron, Saez, Owens (b0050) 2021; 5 Park, Ryu, Lee, Ha, Ahn, Kim, Kim, Jeon, Cho (b0345) 2018; 11 Hwang, Lee, Park, Jeon, Cho, Kim (b0205) 2021; 12 Zheng, Dong, Zhao, Zhang, Duan, Zhang, Liu, Sui (b0550) 2019; 4 Masui, Hirai, Gotoh (b0300) 2022; 96 Tsuzuki, Baassiri, Mahmoudi, Perumal, Rajendran, Rubies, Nicolau (b0475) 2022; 15 Grant, Ozkan, Oh, Mahajan, Prantil-Baun, Ingber (b0145) 2021; 21 Pun, Haney, Barrile (b0370) 2021; 12 Singh, Ansari, Rosenkranz, Maharjan, Kriegel, Gandhi, Kanase, Singh, Laux, Luch (b0415) 2020; 9 Liu, Wang, Cui, Guo, Zhang, Qin (b0280) 2019; 31 Polaka, Pulugu, Tekade, Sharma, Tekade (b0365) 2022 Plebani, Potla, Soong, Bai, Izadifar, Jiang, Travis, Belgur, Dinis, Cartwright, Prantil-Baun, Jolly, Gilpin, Romano, Ingber (b0360) 2021; 1569–1993 Stucki, Stucki, Hall, Felder, Mermoud, Schmid, Geiser, Guenat (b0435) 2015; 15 Mahfouzi, Amoabediny, Safiabadi Tali (b0295) 2021; 118 Artzy-Schnirman (10.1016/j.envint.2023.107801_b0020) 2019; 3 Ding (10.1016/j.envint.2023.107801_b0130) 2021; 11 Kavand (10.1016/j.envint.2023.107801_b0240) 2022; 34 Campillo (10.1016/j.envint.2023.107801_b0095) 2021; 9 Sedlakova (10.1016/j.envint.2023.107801_b0380) 2019; 24 Nel (10.1016/j.envint.2023.107801_b0315) 2016; 311 Zhang (10.1016/j.envint.2023.107801_b0535) 2018; 3 Barron (10.1016/j.envint.2023.107801_b0050) 2021; 5 Kang (10.1016/j.envint.2023.107801_b0235) 2021; 8 Singh (10.1016/j.envint.2023.107801_b0430) 2021; 10 Ingber (10.1016/j.envint.2023.107801_b0210) 2016; 164 Shay (10.1016/j.envint.2023.107801_b0390) 2017; 05 Bates (10.1016/j.envint.2023.107801_b0060) 2021; 12 Hwang (10.1016/j.envint.2023.107801_b0205) 2021; 12 Ainslie (10.1016/j.envint.2023.107801_b0005) 2019; 19 Sen (10.1016/j.envint.2023.107801_b0385) 2022; 50 Kang (10.1016/j.envint.2023.107801_b0230) 2021; 8 Zhang (10.1016/j.envint.2023.107801_b0540) 2020; 92 Zarkesh (10.1016/j.envint.2023.107801_b0525) 2022; 17 Wei (10.1016/j.envint.2023.107801_b0500) 2020; 41 Huh (10.1016/j.envint.2023.107801_b0190) 2012; 4 Nie (10.1016/j.envint.2023.107801_b0320) 2020; 16 Chen (10.1016/j.envint.2023.107801_b0105) 2016; 6 Novak (10.1016/j.envint.2023.107801_b0330) 2020; 4 Park (10.1016/j.envint.2023.107801_b0340) 2021; 13 Tsuzuki (10.1016/j.envint.2023.107801_b0475) 2022; 15 Zhang (10.1016/j.envint.2023.107801_b0545) 2018; 7 Liu (10.1016/j.envint.2023.107801_b0280) 2019; 31 Benam (10.1016/j.envint.2023.107801_b0080) 2020; 15 Pun (10.1016/j.envint.2023.107801_b0370) 2021; 12 Humayun (10.1016/j.envint.2023.107801_b0200) 2018; 18 Tang (10.1016/j.envint.2023.107801_b0455) 2020; 28 Kim (10.1016/j.envint.2023.107801_b0255) 2021; 132 Lin (10.1016/j.envint.2023.107801_b0275) 2022; 14 Su (10.1016/j.envint.2023.107801_b0440) 2020; 15 Thacker (10.1016/j.envint.2023.107801_b0460) 2021; 22 Tran (10.1016/j.envint.2023.107801_b0465) 2022; 25 Baldassi (10.1016/j.envint.2023.107801_b0035) 2021; 1 Bauer (10.1016/j.envint.2023.107801_b0065) 2016; 12 Almetwally (10.1016/j.envint.2023.107801_b0010) 2020; 27 Saygili (10.1016/j.envint.2023.107801_b0375) 2021; 15 Amin Arefi (10.1016/j.envint.2023.107801_b0015) 2020; 14 Petrou (10.1016/j.envint.2023.107801_b0355) 2020; 8 Bai (10.1016/j.envint.2023.107801_b0030) 2022; 13 Singh (10.1016/j.envint.2023.107801_b0415) 2020; 9 Bost (10.1016/j.envint.2023.107801_b0090) 2020; 181 Polaka (10.1016/j.envint.2023.107801_b0365) 2022 Kiener (10.1016/j.envint.2023.107801_b0245) 2021; 8 Park (10.1016/j.envint.2023.107801_b0350) 2021; 6 Cao (10.1016/j.envint.2023.107801_b0100) 2022; 2022 Benam (10.1016/j.envint.2023.107801_b0075) 2016; 13 van Riet (10.1016/j.envint.2023.107801_b0480) 2022; 322 Heinen (10.1016/j.envint.2023.107801_b0165) 2021; 13 Jiang (10.1016/j.envint.2023.107801_b0215) 2019; 10 Singh (10.1016/j.envint.2023.107801_b0425) 2021; 34 Moreira (10.1016/j.envint.2023.107801_b0305) 2022; 6 Xu (10.1016/j.envint.2023.107801_b0505) 2020; 6 Yang (10.1016/j.envint.2023.107801_b0515) 2020; 8 Wang (10.1016/j.envint.2023.107801_b0495) 2022; 9 Liu (10.1016/j.envint.2023.107801_b0285) 2021; 12 Grant (10.1016/j.envint.2023.107801_b0145) 2021; 21 Bennet (10.1016/j.envint.2023.107801_b0085) 2021; 10 Dong (10.1016/j.envint.2023.107801_b0135) 2022; 16 Elias-Kirma (10.1016/j.envint.2023.107801_b0140) 2020; 8 Movia (10.1016/j.envint.2023.107801_b0310) 2020; 8 Zamprogno (10.1016/j.envint.2023.107801_b0520) 2021; 4 10.1016/j.envint.2023.107801_b0555 Kumar (10.1016/j.envint.2023.107801_b0265) 2022; 10 Nof (10.1016/j.envint.2023.107801_b0325) 2022; 13 Barkal (10.1016/j.envint.2023.107801_b0045) 2017; 8 Benam (10.1016/j.envint.2023.107801_b0070) 2016; 3 Konrath (10.1016/j.envint.2023.107801_b0260) 2022; 38 Barros (10.1016/j.envint.2023.107801_b0055) 2021; 170 Huh (10.1016/j.envint.2023.107801_b0195) 2013; 8 Tsugita (10.1016/j.envint.2023.107801_b0470) 2017; 18 Sznitman (10.1016/j.envint.2023.107801_b0450) 2022; 122 Baptista (10.1016/j.envint.2023.107801_b0040) 2022; 8 Plebani (10.1016/j.envint.2023.107801_b0360) 2021; 1569–1993 Yang (10.1016/j.envint.2023.107801_b0510) 2018; 18 Hou (10.1016/j.envint.2023.107801_b0170) 2020; 3 Hu (10.1016/j.envint.2023.107801_b0175) 2022 Zheng (10.1016/j.envint.2023.107801_b0550) 2019; 4 Ashammakhi (10.1016/j.envint.2023.107801_b0025) 2020; 4 Huang (10.1016/j.envint.2023.107801_b0180) 2021; 118 Hassell (10.1016/j.envint.2023.107801_b0160) 2017; 21 Sun (10.1016/j.envint.2023.107801_b0445) 2021 Vignal (10.1016/j.envint.2023.107801_b0490) 2021; 757 Guan (10.1016/j.envint.2023.107801_b0155) 2021; 223 10.1016/j.envint.2023.107801_b0250 Cidem (10.1016/j.envint.2023.107801_b0115) 2020; 8 10.1016/j.envint.2023.107801_b0410 Jung (10.1016/j.envint.2023.107801_b0225) 2019; 19 Lu (10.1016/j.envint.2023.107801_b0290) 2020; 6 10.1016/j.envint.2023.107801_b0530 De Santis (10.1016/j.envint.2023.107801_b0125) 2021; 33 Si (10.1016/j.envint.2023.107801_b0400) 2021; 5 Park (10.1016/j.envint.2023.107801_b0345) 2018; 11 Mahfouzi (10.1016/j.envint.2023.107801_b0295) 2021; 118 10.1016/j.envint.2023.107801_b0405 Ching (10.1016/j.envint.2023.107801_b0110) 2021; 42 Stucki (10.1016/j.envint.2023.107801_b0435) 2015; 15 Masui (10.1016/j.envint.2023.107801_b0300) 2022; 96 Shrestha (10.1016/j.envint.2023.107801_b0395) 2020; 40 Lacroix (10.1016/j.envint.2023.107801_b0270) 2018; 4 Johansson (10.1016/j.envint.2023.107801_b0220) 2021; 51 10.1016/j.envint.2023.107801_b0120 Oberdorster (10.1016/j.envint.2023.107801_b0335) 2005; 113 Huh (10.1016/j.envint.2023.107801_b0185) 2010; 328 Grigoryan (10.1016/j.envint.2023.107801_b0150) 2019; 364 Singh (10.1016/j.envint.2023.107801_b0420) 2021; 10 |
References_xml | – volume: 6 start-page: 31304 year: 2016 ident: b0105 article-title: Lung Microtissue Array to Screen the Fibrogenic Potential of Carbon Nanotubes publication-title: Sci. Rep – reference: da Silva da Costa, F.A., Soares, M.R., Malagutti-Ferreira, M.J., da Silva, G.R., Livero, F. and Ribeiro-Paes, J.T., 2021. Three-Dimensional Cell Cultures as a Research Platform in Lung Diseases and COVID-19. Tissue Eng Regen Med, 18(5): 735-745. – volume: 13 year: 2022 ident: b0325 article-title: Human multi-compartment airways-on-chip platform for emulating respiratory airborne transmission: from nose to pulmonary acini publication-title: Front. Physiol – volume: 8 start-page: 1770 year: 2017 ident: b0045 article-title: Microbial volatile communication in human organotypic lung models publication-title: Nat. Commun – volume: 10 start-page: 1602 year: 2021 ident: b0085 article-title: Airway-On-A-Chip: Designs and Applications for Lung Repair and Disease publication-title: Cells – volume: 4 start-page: 159ra147 year: 2012 ident: b0190 article-title: A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice publication-title: Sci. Transl. Med – volume: 18 start-page: 1298 year: 2017 end-page: 1311 ident: b0470 article-title: SR-B1 Is a Silica Receptor that Mediates Canonical Inflammasome Activation publication-title: Cell. Rep – volume: 10 start-page: e2100812 year: 2021 ident: b0420 article-title: Protease Responsive Nanogels for Transcytosis across the Blood-Brain Barrier and Intracellular Delivery of Radiopharmaceuticals to Brain Tumor Cells publication-title: Adv. Healthc. Mater – volume: 8 start-page: 549 year: 2020 ident: b0310 article-title: In vitro Alternatives to Acute Inhalation Toxicity Studies in Animal Models-A Perspective publication-title: Front. Bioeng. Biotechnol – volume: 16 start-page: e2003797 year: 2020 ident: b0320 article-title: Hydrogels: The Next Generation Body Materials for Microfluidic Chips? publication-title: Small – volume: 34 start-page: e2107876 year: 2022 ident: b0240 article-title: Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces publication-title: Adv. Mater – volume: 21 start-page: 3509 year: 2021 end-page: 3519 ident: b0145 article-title: Simulating drug concentrations in PDMS microfluidic organ chips publication-title: Lab. Chip – volume: 164 start-page: 1105 year: 2016 end-page: 1109 ident: b0210 article-title: Reverse Engineering Human Pathophysiology with Organs-on-Chips publication-title: Cell – volume: 18 start-page: 486 year: 2018 end-page: 495 ident: b0510 article-title: Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing publication-title: Lab. Chip – volume: 6 start-page: 3081 year: 2020 end-page: 3090 ident: b0505 article-title: Assessment of Air Pollutant PM2.5 Pulmonary Exposure Using a 3D Lung-on-Chip Model publication-title: ACS. Biomater. Sci. Eng – volume: 3 start-page: 383 year: 2020 end-page: 395 ident: b0170 article-title: Cigarette smoke-induced malignant transformation via STAT3 signalling in pulmonary epithelial cells in a lung-on-a-chip model publication-title: Bio-Des. Manuf – volume: 10 start-page: 3491 year: 2019 ident: b0215 article-title: Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D publication-title: Nat. Commun – volume: 22 start-page: e52744 year: 2021 ident: b0460 article-title: Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model publication-title: EMBO. Rep – volume: 118 start-page: 2142 year: 2021 end-page: 2167 ident: b0295 article-title: Advances in bioreactors for lung bioengineering: From scalable cell culture to tissue growth monitoring publication-title: Biotechnol. Bioeng – volume: 96 start-page: 389 year: 2022 end-page: 402 ident: b0300 article-title: Perspectives of future lung toxicology studies using human pluripotent stem cells publication-title: Arch. Toxicol – volume: 6 start-page: e2101139 year: 2022 ident: b0305 article-title: Advanced in vitro lung models for drug and toxicity screening: the promising role of induced pluripotent stem cells publication-title: Adv. Biol – volume: 9 start-page: e2105187 year: 2022 ident: b0495 article-title: Human Organoids and Organs-on-Chips for Addressing COVID-19 Challenges publication-title: Adv. Sci – volume: 27 start-page: 24815 year: 2020 end-page: 24830 ident: b0010 article-title: Ambient air pollution and its influence on human health and welfare: an overview publication-title: Environ. Sci. Pollut. Res. Int – volume: 8 start-page: e2101251 year: 2021 ident: b0235 article-title: An Air Particulate Pollutant Induces Neuroinflammation and Neurodegeneration in Human Brain Models publication-title: Adv. Sci – volume: 8 year: 2021 ident: b0245 article-title: Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19 publication-title: Front. Med – volume: 9 start-page: e1901862 year: 2020 ident: b0415 article-title: Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine publication-title: Adv. Healthc. Mater – volume: 1569–1993 year: 2021 ident: b0360 article-title: Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip: Cystic fibrosis airway chip publication-title: J. Cyst. Fibros – volume: 3 start-page: e1900026 year: 2019 ident: b0020 article-title: Capturing the Onset of Bacterial Pulmonary Infection in Acini-On-Chips publication-title: Adv. Biosyst – volume: 11 year: 2018 ident: b0345 article-title: Development of a functional airway-on-a-chip by 3D cell printing publication-title: Biofabrication – volume: 170 start-page: 386 year: 2021 end-page: 395 ident: b0055 article-title: Building three-dimensional lung models for studying pharmacokinetics of inhaled drugs publication-title: Adv. Drug. Deliv. Rev – volume: 15 start-page: 1302 year: 2015 end-page: 1310 ident: b0435 article-title: A lung-on-a-chip array with an integrated bio-inspired respiration mechanism publication-title: Lab. Chip – volume: 8 year: 2020 ident: b0115 article-title: Modifying and Integrating in vitro and ex vivo Respiratory Models for Inhalation Drug Screening publication-title: Front. Bioeng. Biotechnol – volume: 8 start-page: 519 year: 2020 ident: b0515 article-title: Organ-on-a-Chip: Opportunities for Assessing the Toxicity of Particulate Matter publication-title: Front. Bioeng. Biotechnol – volume: 122 start-page: 7182 year: 2022 end-page: 7204 ident: b0450 article-title: Revisiting Airflow and Aerosol Transport Phenomena in the Deep Lungs with Microfluidics publication-title: Chem. Rev – volume: 15 year: 2021 ident: b0375 article-title: Human lung-on-chips: Advanced systems for respiratory virus models and assessment of immune response publication-title: Biomicrofluidics – volume: 15 start-page: 183 year: 2020 end-page: 206 ident: b0080 article-title: Biomimetic smoking robot for in vitro inhalation exposure compatible with microfluidic organ chips publication-title: Nat. Protoc – volume: 132 start-page: 37 year: 2021 end-page: 51 ident: b0255 article-title: Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling publication-title: Acta. Biomater – volume: 8 start-page: 91 year: 2020 ident: b0140 article-title: In situ-Like Aerosol Inhalation Exposure for Cytotoxicity Assessment Using Airway-on-Chips Platforms publication-title: Front. Bioeng. Biotechnol – volume: 4 start-page: 407 year: 2020 end-page: 420 ident: b0330 article-title: Robotic fluidic coupling and interrogation of multiple vascularized organ chips publication-title: Nat. Biomed. Eng – volume: 364 start-page: 458 year: 2019 end-page: 464 ident: b0150 article-title: Lung Multivascular networks and functional intravascular topologies within biocompatible hydrogels publication-title: Science – volume: 322 start-page: L526 year: 2022 end-page: L538 ident: b0480 article-title: Organoid-based expansion of patient-derived primary alveolar type 2 cells for establishment of alveolus epithelial Lung-Chip cultures publication-title: Am. J. Physiol. Lung. Cell. Mol. Physiol – volume: 14 year: 2020 ident: b0015 article-title: Simulation of nanoparticle transport and adsorption in a microfluidic lung-on-a-chip device publication-title: Biomicrofluidics – volume: 8 start-page: 6814 year: 2020 end-page: 6826 ident: b0355 article-title: Clickable decellularized extracellular matrix as a new tool for building hybrid-hydrogels to model chronic fibrotic diseases in vitro publication-title: J. Mater. Chem. B – start-page: 1 year: 2022 end-page: 15 ident: b0175 article-title: Toxicity of transition metal nanoparticles: A review of different experimental models in the gastrointestinal tract publication-title: J. Appl. Toxicol – volume: 50 start-page: 1045 year: 2022 end-page: 1056 ident: b0385 article-title: Three-dimensional models of the lung: past, present and future: a mini review publication-title: Biochem. Soc. Trans – reference: Zhu, Y., Sun, L., Wang, Y., Cai, L., Zhang, Z., Shang, Y. and Zhao, Y., 2022. A Biomimetic Human Lung-on-a-Chip with Colorful Display of Microphysiological Breath. Adv Mater: e2108972. – volume: 28 start-page: 934 year: 2020 end-page: 946 ident: b0455 article-title: Human Organs-on-Chips for Virology publication-title: Trends. Microbiol – volume: 113 start-page: 823 year: 2005 end-page: 839 ident: b0335 article-title: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles publication-title: Environ. Health. Perspect – volume: 3 start-page: 2716 year: 2018 end-page: 2725 ident: b0535 article-title: Determination of Benzopyrene-Induced Lung Inflammatory and Cytotoxic Injury in a Chemical Gradient-Integrated Microfluidic Bronchial Epithelium System publication-title: ACS. Sens – volume: 16 year: 2022 ident: b0135 article-title: Recent advances in the understanding of alveolar flow publication-title: Biomicrofluidics – volume: 223 year: 2021 ident: b0155 article-title: Development of alveolar-capillary-exchange (ACE) chip and its application for assessment of PM2.5-induced toxicity publication-title: Ecotoxicol. Environ. Saf – volume: 757 year: 2021 ident: b0490 article-title: Review article: Epidemiological and animal evidence for the role of air pollution in intestinal diseases publication-title: Sci. Total. Environ – volume: 12 year: 2021 ident: b0285 article-title: In Situ Vitrification of Lung Cancer Organoids on a Microwell Array publication-title: Micromachines – volume: 24 start-page: 971 year: 2019 end-page: 982 ident: b0380 article-title: Options for modeling the respiratory system: inserts, scaffolds and microfluidic chips publication-title: Drug. Discov. Today – volume: 13 start-page: 1928 year: 2022 ident: b0030 article-title: Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip publication-title: Nat. Commun – volume: 6 start-page: 2100828 year: 2021 ident: b0350 article-title: E-FLOAT: Extractable Floating Liquid Gel-Based Organ-on-a-Chip for Airway Tissue Modeling under Airflow publication-title: Adv. Mater. Technol – volume: 17 start-page: 715 year: 2022 end-page: 733 ident: b0525 article-title: Synthetic developmental biology: Engineering approaches to guide multicellular organization publication-title: Stem. Cell. Reports – volume: 7 start-page: 1048 year: 2018 end-page: 1060 ident: b0545 article-title: A 3D human lung-on-a-chip model for nanotoxicity testing publication-title: Toxicol. Res – volume: 11 year: 2021 ident: b0130 article-title: Microfluidic-Chip-Integrated Biosensors for Lung Disease Models publication-title: Biosensors – volume: 12 start-page: 861 year: 2016 ident: b0065 article-title: Environment-induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children publication-title: Mol. Syst. Biol – volume: 118 year: 2021 ident: b0180 article-title: Reversed-engineered human alveolar lung-on-a-chip model publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: 907 year: 2019 end-page: 917 ident: b0550 article-title: An air-liquid interface organ-level lung microfluidics platform for analysis on molecular mechanisms of cytotoxicity induced by cancer-causing fine particles publication-title: ACS. Sens – volume: 328 start-page: 1662 year: 2010 end-page: 1668 ident: b0185 article-title: Reconstituting organ-level lung functions on a chip publication-title: Science – volume: 8 start-page: 2684 year: 2022 end-page: 2699 ident: b0040 article-title: 3D Lung-on-Chip Model Based on Biomimetically Microcurved Culture Membranes publication-title: ACS. Biomater. Sci. Eng – start-page: 1 year: 2021 end-page: 19 ident: b0445 article-title: Application of lung microphysiological systems to COVID-19 modeling and drug discovery: a review publication-title: Biodes. Manuf – volume: 25 year: 2022 ident: b0465 article-title: Development of human alveolar epithelial cell models to study distal lung biology and disease publication-title: iScience – volume: 5 start-page: 815 year: 2021 end-page: 829 ident: b0400 article-title: A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics publication-title: Nat. Biomed. Eng – volume: 6 year: 2020 ident: b0290 article-title: Heart-on-a-chip platform for assessing toxicity of air pollution related nanoparticles publication-title: Adv. Mater. Technol – volume: 18 start-page: 1298 year: 2018 end-page: 1309 ident: b0200 article-title: Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions publication-title: Lab. Chip – volume: 40 start-page: 213 year: 2020 end-page: 230 ident: b0395 article-title: Lung-on-a-chip: the future of respiratory disease models and pharmacological studies publication-title: Crit. Rev. Biotechnol – volume: 1 start-page: 2000111 year: 2021 ident: b0035 article-title: Air-liquid interface cultures of the healthy and diseased human respiratory tract: promises, challenges and future directions publication-title: Adv. Nanobiomed. Res – volume: 05 start-page: 22 year: 2017 end-page: 28 ident: b0390 article-title: Organs-on-a-Chip: A Future of Rational Drug-Design publication-title: Journal. of. Biosciences. and. Medicines – volume: 8 start-page: 2135 year: 2013 end-page: 2157 ident: b0195 article-title: Microfabrication of human organs-on-chips publication-title: Nat. Protoc – volume: 51 start-page: 801 year: 2021 end-page: 810 ident: b0220 article-title: Second-hand smoke and NFE2L2 genotype interaction increases paediatric asthma risk and severity publication-title: Clin. Exp. Allergy – volume: 38 year: 2022 ident: b0260 article-title: Nucleic acid delivery of immune-focused SARS-CoV-2 nanoparticles drives rapid and potent immunogenicity capable of single-dose protection publication-title: Cell. Rep – reference: Si, L., Prantil-Baun, R., Benam, K.H., Bai, H., Rodas, M., Burt, M. and Ingber, D.E., 2019. Discovery of influenza drug resistance mutations and host therapeutic targets using a human airway chip, bioRxiv, https://doi.org/10.1101/685552. – volume: 12 year: 2021 ident: b0205 article-title: Potential of Drug Efficacy Evaluation in Lung and Kidney Cancer Models Using Organ-on-a-Chip Technology publication-title: Micromachines – volume: 10 start-page: e2100633 year: 2021 ident: b0430 article-title: Emerging Technologies for In Vitro Inhalation Toxicology publication-title: Adv. Healthc. Mater – volume: 3 start-page: 456 year: 2016 end-page: 466 e4 ident: b0070 article-title: Matched-Comparative Modeling of Normal and Diseased Human Airway Responses Using a Microengineered Breathing Lung Chip publication-title: Cell. Syst – volume: 19 start-page: 2854 year: 2019 end-page: 2865 ident: b0225 article-title: A one-stop microfluidic-based lung cancer organoid culture platform for testing drug sensitivity publication-title: Lab. Chip – volume: 4 start-page: 168 year: 2021 ident: b0520 article-title: Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane publication-title: Commun. Biol – reference: Zhang, M., Wang, P., Luo, R., Wang, Y., Li, Z., Guo, Y., Yao, Y., Li, M., Tao, T., Chen, W., Han, J., Liu, H., Cui, K., Zhang, X., Zheng, Y. and Qin, J., 2020b. Biomimetic Human Disease Model of SARS-CoV-2 Induced Lung Injury and Immune Responses on Organ Chip System. Adv Sci: 2002928. – volume: 10 year: 2022 ident: b0265 article-title: An In Vitro Microfluidic Alveolus Model to Study Lung Biomechanics publication-title: Front. Bioeng. Biotechnol – volume: 8 start-page: 2004990 year: 2021 ident: b0230 article-title: All-Inkjet-Printed 3D Alveolar Barrier Model with Physiologically Relevant Microarchitecture publication-title: Adv. Sci – volume: 41 start-page: 410 year: 2020 end-page: 420 ident: b0500 article-title: Water-soluble fraction of particulate matter <2.5 mum promoted lung epithelia cells apoptosis by regulating the expression of caveolin-1 and Kruppel-like factor 5 publication-title: J. Appl. Toxicol – volume: 5 start-page: e2000624 year: 2021 ident: b0050 article-title: In Vitro Models for Studying Respiratory Host-Pathogen Interactions publication-title: Adv. Biol – volume: 4 year: 2020 ident: b0025 article-title: Microphysiological Systems: Next Generation Systems for Assessing Toxicity and Therapeutic Effects of Nanomaterials publication-title: Small. Methods – volume: 12 start-page: 6 year: 2021 end-page: 10 ident: b0060 article-title: Fighting COVID-19 With Lung-Chips publication-title: IEEE. Pulse – volume: 42 start-page: 715 year: 2021 end-page: 728 ident: b0110 article-title: Bridging the academia-to-industry gap: organ-on-a-chip platforms for safety and toxicology assessment publication-title: Trends. Pharmacol. Sci – volume: 31 start-page: e1902042 year: 2019 ident: b0280 article-title: Advances in Hydrogels in Organoids and Organs-on-a-Chip publication-title: Adv. Mater – volume: 9 year: 2021 ident: b0095 article-title: Alveolus Lung-on-a-Chip Platform: A Proposal publication-title: Chemosensors – volume: 13 year: 2021 ident: b0165 article-title: In vitro lung models and their application to study SARS-CoV-2 pathogenesis and disease publication-title: Viruses – volume: 4 start-page: 91 year: 2018 end-page: 106 ident: b0270 article-title: Air-Liquid Interface In Vitro Models for Respiratory Toxicology Research: Consensus Workshop and Recommendations publication-title: Appl. In. Vitro. Toxicol – volume: 13 year: 2021 ident: b0340 article-title: Three-Dimensional Vascularized Lung Cancer-on-a-Chip with Lung Extracellular Matrix Hydrogels for In Vitro Screening publication-title: Cancers – reference: Si, L., Bai, H., Oh, C.Y., Jin, L., Prantil-Baun, R., Ingber, D.E., 2021a. Clinically Relevant Influenza Virus Evolution Reconstituted in a Human Lung Airway-on-a-Chip. MicrobiolSpectrum e00257-21. – volume: 181 start-page: 1475 year: 2020 end-page: 1488 e12 ident: b0090 article-title: Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients publication-title: Cell – volume: 2022 start-page: 9819154 year: 2022 ident: b0100 article-title: Biomimetic Alveolus-on-a-Chip for SARS-CoV-2 Infection Recapitulation publication-title: Research – reference: Kim, D., Hwang, K.S., Seo, E.U., Seo, S., Lee, B.C., Choi, N., Choi, J. and Kim, H.N., 2022. Vascularized Lung Cancer Model for Evaluating the Promoted Transport of Anticancer Drugs and Immune Cells in an Engineered Tumor Microenvironment. Adv Healthc Mater: e2102581. – volume: 15 year: 2022 ident: b0475 article-title: Hydrophobic Recovery of PDMS Surfaces in Contact with Hydrophilic Entities: Relevance to Biomedical Devices publication-title: Materials – volume: 12 year: 2021 ident: b0370 article-title: Modelling Human Physiology on-Chip: Historical Perspectives and Future Directions publication-title: Micromachines – volume: 13 start-page: 151 year: 2016 end-page: 157 ident: b0075 article-title: Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro publication-title: Nat. Methods – volume: 19 start-page: 3152 year: 2019 end-page: 3161 ident: b0005 article-title: Microphysiological lung models to evaluate the safety of new pharmaceutical modalities: a biopharmaceutical perspective publication-title: Lab. Chip – volume: 33 start-page: e2005476 year: 2021 ident: b0125 article-title: Extracellular-Matrix-Reinforced Bioinks for 3D Bioprinting Human Tissue publication-title: Adv. Mater – volume: 92 start-page: 7200 year: 2020 end-page: 7208 ident: b0540 article-title: Investigation of Environmental Pollutant-Induced Lung Inflammation and Injury in a 3D Coculture-Based Microfluidic Pulmonary Alveolus System publication-title: Anal. Chem – volume: 21 start-page: 508 year: 2017 end-page: 516 ident: b0160 article-title: Human Organ Chip Models Recapitulate Orthotopic Lung Cancer Growth, Therapeutic Responses, and Tumor Dormancy In Vitro publication-title: Cell. Rep – volume: 15 start-page: 4241 year: 2020 end-page: 4255 ident: b0440 article-title: Sensors and Analytical Technologies for Air Quality: Particulate Matters and Bioaerosols publication-title: Chem. Asian. J – volume: 311 start-page: 622 year: 2016 end-page: 627 ident: b0315 article-title: Toxic potential of materials at the nanolevel publication-title: Science – volume: 14 year: 2022 ident: b0275 article-title: Airborne toxicological assessment: The potential of lung-on-a-chip as an alternative to animal testing publication-title: Mater. Today. Adv – volume: 34 start-page: 1984 year: 2021 end-page: 2002 ident: b0425 article-title: Advances in Smoking Related In Vitro Inhalation Toxicology: A Perspective Case of Challenges and Opportunities from Progresses in Lung-on-Chip Technologies publication-title: Chem. Res. Toxicol – start-page: 385 year: 2022 end-page: 400 ident: b0365 article-title: Organ-on-chip for assessing environmental toxicants publication-title: Pharmacokin. Toxicokin. Considerations – volume: 181 start-page: 1475 issue: 7 year: 2020 ident: 10.1016/j.envint.2023.107801_b0090 article-title: Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients publication-title: Cell doi: 10.1016/j.cell.2020.05.006 – volume: 41 start-page: 410 year: 2020 ident: 10.1016/j.envint.2023.107801_b0500 article-title: Water-soluble fraction of particulate matter <2.5 mum promoted lung epithelia cells apoptosis by regulating the expression of caveolin-1 and Kruppel-like factor 5 publication-title: J. Appl. Toxicol doi: 10.1002/jat.4052 – volume: 17 start-page: 715 issue: 4 year: 2022 ident: 10.1016/j.envint.2023.107801_b0525 article-title: Synthetic developmental biology: Engineering approaches to guide multicellular organization publication-title: Stem. Cell. Reports doi: 10.1016/j.stemcr.2022.02.004 – volume: 4 start-page: 91 issue: 2 year: 2018 ident: 10.1016/j.envint.2023.107801_b0270 article-title: Air-Liquid Interface In Vitro Models for Respiratory Toxicology Research: Consensus Workshop and Recommendations publication-title: Appl. In. Vitro. Toxicol doi: 10.1089/aivt.2017.0034 – volume: 6 start-page: e2101139 issue: 2 year: 2022 ident: 10.1016/j.envint.2023.107801_b0305 article-title: Advanced in vitro lung models for drug and toxicity screening: the promising role of induced pluripotent stem cells publication-title: Adv. Biol doi: 10.1002/adbi.202101139 – ident: 10.1016/j.envint.2023.107801_b0530 doi: 10.1101/2020.07.20.211789 – volume: 118 issue: 19 year: 2021 ident: 10.1016/j.envint.2023.107801_b0180 article-title: Reversed-engineered human alveolar lung-on-a-chip model publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2016146118 – volume: 8 start-page: 519 year: 2020 ident: 10.1016/j.envint.2023.107801_b0515 article-title: Organ-on-a-Chip: Opportunities for Assessing the Toxicity of Particulate Matter publication-title: Front. Bioeng. Biotechnol doi: 10.3389/fbioe.2020.00519 – volume: 164 start-page: 1105 issue: 6 year: 2016 ident: 10.1016/j.envint.2023.107801_b0210 article-title: Reverse Engineering Human Pathophysiology with Organs-on-Chips publication-title: Cell doi: 10.1016/j.cell.2016.02.049 – volume: 8 start-page: 2004990 issue: 10 year: 2021 ident: 10.1016/j.envint.2023.107801_b0230 article-title: All-Inkjet-Printed 3D Alveolar Barrier Model with Physiologically Relevant Microarchitecture publication-title: Adv. Sci doi: 10.1002/advs.202004990 – ident: 10.1016/j.envint.2023.107801_b0410 doi: 10.1128/Spectrum.00257-21 – volume: 1 start-page: 2000111 issue: 6 year: 2021 ident: 10.1016/j.envint.2023.107801_b0035 article-title: Air-liquid interface cultures of the healthy and diseased human respiratory tract: promises, challenges and future directions publication-title: Adv. Nanobiomed. Res doi: 10.1002/anbr.202000111 – volume: 8 start-page: 6814 issue: 31 year: 2020 ident: 10.1016/j.envint.2023.107801_b0355 article-title: Clickable decellularized extracellular matrix as a new tool for building hybrid-hydrogels to model chronic fibrotic diseases in vitro publication-title: J. Mater. Chem. B doi: 10.1039/D0TB00613K – volume: 13 start-page: 151 issue: 2 year: 2016 ident: 10.1016/j.envint.2023.107801_b0075 article-title: Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro publication-title: Nat. Methods doi: 10.1038/nmeth.3697 – volume: 6 issue: 2 year: 2020 ident: 10.1016/j.envint.2023.107801_b0290 article-title: Heart-on-a-chip platform for assessing toxicity of air pollution related nanoparticles publication-title: Adv. Mater. Technol doi: 10.1002/admt.202000726 – volume: 6 start-page: 31304 year: 2016 ident: 10.1016/j.envint.2023.107801_b0105 article-title: Lung Microtissue Array to Screen the Fibrogenic Potential of Carbon Nanotubes publication-title: Sci. Rep doi: 10.1038/srep31304 – volume: 4 issue: 1 year: 2020 ident: 10.1016/j.envint.2023.107801_b0025 article-title: Microphysiological Systems: Next Generation Systems for Assessing Toxicity and Therapeutic Effects of Nanomaterials publication-title: Small. Methods – volume: 34 start-page: e2107876 issue: 17 year: 2022 ident: 10.1016/j.envint.2023.107801_b0240 article-title: Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces publication-title: Adv. Mater doi: 10.1002/adma.202107876 – ident: 10.1016/j.envint.2023.107801_b0555 doi: 10.1002/adma.202108972 – volume: 6 start-page: 2100828 issue: 12 year: 2021 ident: 10.1016/j.envint.2023.107801_b0350 article-title: E-FLOAT: Extractable Floating Liquid Gel-Based Organ-on-a-Chip for Airway Tissue Modeling under Airflow publication-title: Adv. Mater. Technol doi: 10.1002/admt.202100828 – volume: 3 start-page: 2716 issue: 12 year: 2018 ident: 10.1016/j.envint.2023.107801_b0535 article-title: Determination of Benzopyrene-Induced Lung Inflammatory and Cytotoxic Injury in a Chemical Gradient-Integrated Microfluidic Bronchial Epithelium System publication-title: ACS. Sens doi: 10.1021/acssensors.8b01370 – volume: 10 start-page: e2100633 issue: 18 year: 2021 ident: 10.1016/j.envint.2023.107801_b0430 article-title: Emerging Technologies for In Vitro Inhalation Toxicology publication-title: Adv. Healthc. Mater doi: 10.1002/adhm.202100633 – volume: 12 issue: 2 year: 2021 ident: 10.1016/j.envint.2023.107801_b0205 article-title: Potential of Drug Efficacy Evaluation in Lung and Kidney Cancer Models Using Organ-on-a-Chip Technology publication-title: Micromachines doi: 10.3390/mi12020215 – volume: 10 start-page: 1602 issue: 7 year: 2021 ident: 10.1016/j.envint.2023.107801_b0085 article-title: Airway-On-A-Chip: Designs and Applications for Lung Repair and Disease publication-title: Cells doi: 10.3390/cells10071602 – volume: 16 issue: 2 year: 2022 ident: 10.1016/j.envint.2023.107801_b0135 article-title: Recent advances in the understanding of alveolar flow publication-title: Biomicrofluidics doi: 10.1063/5.0084415 – volume: 15 issue: 2 year: 2021 ident: 10.1016/j.envint.2023.107801_b0375 article-title: Human lung-on-chips: Advanced systems for respiratory virus models and assessment of immune response publication-title: Biomicrofluidics doi: 10.1063/5.0038924 – ident: 10.1016/j.envint.2023.107801_b0405 doi: 10.1101/685552 – volume: 50 start-page: 1045 issue: 2 year: 2022 ident: 10.1016/j.envint.2023.107801_b0385 article-title: Three-dimensional models of the lung: past, present and future: a mini review publication-title: Biochem. Soc. Trans doi: 10.1042/BST20190569 – ident: 10.1016/j.envint.2023.107801_b0120 doi: 10.1007/s13770-021-00348-x – volume: 18 start-page: 1298 issue: 5 year: 2017 ident: 10.1016/j.envint.2023.107801_b0470 article-title: SR-B1 Is a Silica Receptor that Mediates Canonical Inflammasome Activation publication-title: Cell. Rep doi: 10.1016/j.celrep.2017.01.004 – volume: 12 start-page: 6 issue: 3 year: 2021 ident: 10.1016/j.envint.2023.107801_b0060 article-title: Fighting COVID-19 With Lung-Chips publication-title: IEEE. Pulse doi: 10.1109/MPULS.2021.3078598 – volume: 3 start-page: 456 issue: 5 year: 2016 ident: 10.1016/j.envint.2023.107801_b0070 article-title: Matched-Comparative Modeling of Normal and Diseased Human Airway Responses Using a Microengineered Breathing Lung Chip publication-title: Cell. Syst doi: 10.1016/j.cels.2016.10.003 – volume: 38 issue: 5 year: 2022 ident: 10.1016/j.envint.2023.107801_b0260 article-title: Nucleic acid delivery of immune-focused SARS-CoV-2 nanoparticles drives rapid and potent immunogenicity capable of single-dose protection publication-title: Cell. Rep doi: 10.1016/j.celrep.2022.110318 – volume: 13 issue: 16 year: 2021 ident: 10.1016/j.envint.2023.107801_b0340 article-title: Three-Dimensional Vascularized Lung Cancer-on-a-Chip with Lung Extracellular Matrix Hydrogels for In Vitro Screening publication-title: Cancers doi: 10.3390/cancers13163930 – volume: 8 start-page: 549 year: 2020 ident: 10.1016/j.envint.2023.107801_b0310 article-title: In vitro Alternatives to Acute Inhalation Toxicity Studies in Animal Models-A Perspective publication-title: Front. Bioeng. Biotechnol doi: 10.3389/fbioe.2020.00549 – volume: 11 issue: 11 year: 2021 ident: 10.1016/j.envint.2023.107801_b0130 article-title: Microfluidic-Chip-Integrated Biosensors for Lung Disease Models publication-title: Biosensors doi: 10.3390/bios11110456 – ident: 10.1016/j.envint.2023.107801_b0250 doi: 10.1002/adhm.202102581 – volume: 42 start-page: 715 issue: 9 year: 2021 ident: 10.1016/j.envint.2023.107801_b0110 article-title: Bridging the academia-to-industry gap: organ-on-a-chip platforms for safety and toxicology assessment publication-title: Trends. Pharmacol. Sci doi: 10.1016/j.tips.2021.05.007 – volume: 15 start-page: 4241 issue: 24 year: 2020 ident: 10.1016/j.envint.2023.107801_b0440 article-title: Sensors and Analytical Technologies for Air Quality: Particulate Matters and Bioaerosols publication-title: Chem. Asian. J doi: 10.1002/asia.202001051 – start-page: 1 year: 2021 ident: 10.1016/j.envint.2023.107801_b0445 article-title: Application of lung microphysiological systems to COVID-19 modeling and drug discovery: a review publication-title: Biodes. Manuf – volume: 51 start-page: 801 issue: 6 year: 2021 ident: 10.1016/j.envint.2023.107801_b0220 article-title: Second-hand smoke and NFE2L2 genotype interaction increases paediatric asthma risk and severity publication-title: Clin. Exp. Allergy doi: 10.1111/cea.13815 – volume: 31 start-page: e1902042 issue: 50 year: 2019 ident: 10.1016/j.envint.2023.107801_b0280 article-title: Advances in Hydrogels in Organoids and Organs-on-a-Chip publication-title: Adv. Mater doi: 10.1002/adma.201902042 – volume: 28 start-page: 934 issue: 11 year: 2020 ident: 10.1016/j.envint.2023.107801_b0455 article-title: Human Organs-on-Chips for Virology publication-title: Trends. Microbiol doi: 10.1016/j.tim.2020.06.005 – volume: 18 start-page: 1298 issue: 9 year: 2018 ident: 10.1016/j.envint.2023.107801_b0200 article-title: Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions publication-title: Lab. Chip doi: 10.1039/C7LC01357D – volume: 19 start-page: 2854 issue: 17 year: 2019 ident: 10.1016/j.envint.2023.107801_b0225 article-title: A one-stop microfluidic-based lung cancer organoid culture platform for testing drug sensitivity publication-title: Lab. Chip doi: 10.1039/C9LC00496C – volume: 14 year: 2022 ident: 10.1016/j.envint.2023.107801_b0275 article-title: Airborne toxicological assessment: The potential of lung-on-a-chip as an alternative to animal testing publication-title: Mater. Today. Adv – volume: 21 start-page: 3509 issue: 18 year: 2021 ident: 10.1016/j.envint.2023.107801_b0145 article-title: Simulating drug concentrations in PDMS microfluidic organ chips publication-title: Lab. Chip doi: 10.1039/D1LC00348H – volume: 27 start-page: 24815 issue: 20 year: 2020 ident: 10.1016/j.envint.2023.107801_b0010 article-title: Ambient air pollution and its influence on human health and welfare: an overview publication-title: Environ. Sci. Pollut. Res. Int doi: 10.1007/s11356-020-09042-2 – volume: 21 start-page: 508 issue: 2 year: 2017 ident: 10.1016/j.envint.2023.107801_b0160 article-title: Human Organ Chip Models Recapitulate Orthotopic Lung Cancer Growth, Therapeutic Responses, and Tumor Dormancy In Vitro publication-title: Cell. Rep doi: 10.1016/j.celrep.2017.09.043 – volume: 1569–1993 year: 2021 ident: 10.1016/j.envint.2023.107801_b0360 article-title: Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip: Cystic fibrosis airway chip publication-title: J. Cyst. Fibros – volume: 12 issue: 6 year: 2021 ident: 10.1016/j.envint.2023.107801_b0285 article-title: In Situ Vitrification of Lung Cancer Organoids on a Microwell Array publication-title: Micromachines doi: 10.3390/mi12060624 – volume: 34 start-page: 1984 issue: 9 year: 2021 ident: 10.1016/j.envint.2023.107801_b0425 article-title: Advances in Smoking Related In Vitro Inhalation Toxicology: A Perspective Case of Challenges and Opportunities from Progresses in Lung-on-Chip Technologies publication-title: Chem. Res. Toxicol doi: 10.1021/acs.chemrestox.1c00219 – volume: 18 start-page: 486 issue: 3 year: 2018 ident: 10.1016/j.envint.2023.107801_b0510 article-title: Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing publication-title: Lab. Chip doi: 10.1039/C7LC01224A – volume: 9 issue: 9 year: 2021 ident: 10.1016/j.envint.2023.107801_b0095 article-title: Alveolus Lung-on-a-Chip Platform: A Proposal publication-title: Chemosensors doi: 10.3390/chemosensors9090248 – volume: 11 issue: 1 year: 2018 ident: 10.1016/j.envint.2023.107801_b0345 article-title: Development of a functional airway-on-a-chip by 3D cell printing publication-title: Biofabrication doi: 10.1088/1758-5090/aae545 – volume: 40 start-page: 213 issue: 2 year: 2020 ident: 10.1016/j.envint.2023.107801_b0395 article-title: Lung-on-a-chip: the future of respiratory disease models and pharmacological studies publication-title: Crit. Rev. Biotechnol doi: 10.1080/07388551.2019.1710458 – volume: 322 start-page: L526 issue: 4 year: 2022 ident: 10.1016/j.envint.2023.107801_b0480 article-title: Organoid-based expansion of patient-derived primary alveolar type 2 cells for establishment of alveolus epithelial Lung-Chip cultures publication-title: Am. J. Physiol. Lung. Cell. Mol. Physiol doi: 10.1152/ajplung.00153.2021 – volume: 12 issue: 10 year: 2021 ident: 10.1016/j.envint.2023.107801_b0370 article-title: Modelling Human Physiology on-Chip: Historical Perspectives and Future Directions publication-title: Micromachines doi: 10.3390/mi12101250 – volume: 122 start-page: 7182 issue: 7 year: 2022 ident: 10.1016/j.envint.2023.107801_b0450 article-title: Revisiting Airflow and Aerosol Transport Phenomena in the Deep Lungs with Microfluidics publication-title: Chem. Rev doi: 10.1021/acs.chemrev.1c00621 – volume: 10 start-page: e2100812 issue: 20 year: 2021 ident: 10.1016/j.envint.2023.107801_b0420 article-title: Protease Responsive Nanogels for Transcytosis across the Blood-Brain Barrier and Intracellular Delivery of Radiopharmaceuticals to Brain Tumor Cells publication-title: Adv. Healthc. Mater doi: 10.1002/adhm.202100812 – volume: 12 start-page: 861 issue: 3 year: 2016 ident: 10.1016/j.envint.2023.107801_b0065 article-title: Environment-induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children publication-title: Mol. Syst. Biol doi: 10.15252/msb.20156520 – volume: 8 year: 2021 ident: 10.1016/j.envint.2023.107801_b0245 article-title: Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19 publication-title: Front. Med doi: 10.3389/fmed.2021.644678 – volume: 33 start-page: e2005476 issue: 3 year: 2021 ident: 10.1016/j.envint.2023.107801_b0125 article-title: Extracellular-Matrix-Reinforced Bioinks for 3D Bioprinting Human Tissue publication-title: Adv. Mater doi: 10.1002/adma.202005476 – volume: 5 start-page: 815 issue: 8 year: 2021 ident: 10.1016/j.envint.2023.107801_b0400 article-title: A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics publication-title: Nat. Biomed. Eng doi: 10.1038/s41551-021-00718-9 – volume: 8 start-page: 1770 issue: 1 year: 2017 ident: 10.1016/j.envint.2023.107801_b0045 article-title: Microbial volatile communication in human organotypic lung models publication-title: Nat. Commun doi: 10.1038/s41467-017-01985-4 – volume: 16 start-page: e2003797 issue: 46 year: 2020 ident: 10.1016/j.envint.2023.107801_b0320 article-title: Hydrogels: The Next Generation Body Materials for Microfluidic Chips? publication-title: Small doi: 10.1002/smll.202003797 – start-page: 385 year: 2022 ident: 10.1016/j.envint.2023.107801_b0365 article-title: Organ-on-chip for assessing environmental toxicants publication-title: Pharmacokin. Toxicokin. Considerations doi: 10.1016/B978-0-323-98367-9.00018-4 – volume: 8 start-page: 2135 issue: 11 year: 2013 ident: 10.1016/j.envint.2023.107801_b0195 article-title: Microfabrication of human organs-on-chips publication-title: Nat. Protoc doi: 10.1038/nprot.2013.137 – volume: 113 start-page: 823 issue: 7 year: 2005 ident: 10.1016/j.envint.2023.107801_b0335 article-title: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles publication-title: Environ. Health. Perspect doi: 10.1289/ehp.7339 – volume: 8 start-page: 2684 issue: 6 year: 2022 ident: 10.1016/j.envint.2023.107801_b0040 article-title: 3D Lung-on-Chip Model Based on Biomimetically Microcurved Culture Membranes publication-title: ACS. Biomater. Sci. Eng doi: 10.1021/acsbiomaterials.1c01463 – volume: 223 year: 2021 ident: 10.1016/j.envint.2023.107801_b0155 article-title: Development of alveolar-capillary-exchange (ACE) chip and its application for assessment of PM2.5-induced toxicity publication-title: Ecotoxicol. Environ. Saf doi: 10.1016/j.ecoenv.2021.112601 – volume: 118 start-page: 2142 issue: 6 year: 2021 ident: 10.1016/j.envint.2023.107801_b0295 article-title: Advances in bioreactors for lung bioengineering: From scalable cell culture to tissue growth monitoring publication-title: Biotechnol. Bioeng doi: 10.1002/bit.27728 – volume: 6 start-page: 3081 issue: 5 year: 2020 ident: 10.1016/j.envint.2023.107801_b0505 article-title: Assessment of Air Pollutant PM2.5 Pulmonary Exposure Using a 3D Lung-on-Chip Model publication-title: ACS. Biomater. Sci. Eng doi: 10.1021/acsbiomaterials.0c00221 – volume: 15 start-page: 183 issue: 2 year: 2020 ident: 10.1016/j.envint.2023.107801_b0080 article-title: Biomimetic smoking robot for in vitro inhalation exposure compatible with microfluidic organ chips publication-title: Nat. Protoc doi: 10.1038/s41596-019-0230-y – volume: 132 start-page: 37 year: 2021 ident: 10.1016/j.envint.2023.107801_b0255 article-title: Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling publication-title: Acta. Biomater doi: 10.1016/j.actbio.2021.03.002 – volume: 3 start-page: 383 issue: 4 year: 2020 ident: 10.1016/j.envint.2023.107801_b0170 article-title: Cigarette smoke-induced malignant transformation via STAT3 signalling in pulmonary epithelial cells in a lung-on-a-chip model publication-title: Bio-Des. Manuf doi: 10.1007/s42242-020-00092-6 – volume: 14 issue: 4 year: 2020 ident: 10.1016/j.envint.2023.107801_b0015 article-title: Simulation of nanoparticle transport and adsorption in a microfluidic lung-on-a-chip device publication-title: Biomicrofluidics doi: 10.1063/5.0011353 – volume: 4 start-page: 159ra147 issue: 159 year: 2012 ident: 10.1016/j.envint.2023.107801_b0190 article-title: A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice publication-title: Sci. Transl. Med doi: 10.1126/scitranslmed.3004249 – volume: 13 year: 2022 ident: 10.1016/j.envint.2023.107801_b0325 article-title: Human multi-compartment airways-on-chip platform for emulating respiratory airborne transmission: from nose to pulmonary acini publication-title: Front. Physiol doi: 10.3389/fphys.2022.853317 – volume: 05 start-page: 22 issue: 09 year: 2017 ident: 10.1016/j.envint.2023.107801_b0390 article-title: Organs-on-a-Chip: A Future of Rational Drug-Design publication-title: Journal. of. Biosciences. and. Medicines doi: 10.4236/jbm.2017.59003 – start-page: 1 year: 2022 ident: 10.1016/j.envint.2023.107801_b0175 article-title: Toxicity of transition metal nanoparticles: A review of different experimental models in the gastrointestinal tract publication-title: J. Appl. Toxicol – volume: 25 issue: 2 year: 2022 ident: 10.1016/j.envint.2023.107801_b0465 article-title: Development of human alveolar epithelial cell models to study distal lung biology and disease publication-title: iScience doi: 10.1016/j.isci.2022.103780 – volume: 9 start-page: e2105187 issue: 10 year: 2022 ident: 10.1016/j.envint.2023.107801_b0495 article-title: Human Organoids and Organs-on-Chips for Addressing COVID-19 Challenges publication-title: Adv. Sci doi: 10.1002/advs.202105187 – volume: 4 start-page: 407 issue: 4 year: 2020 ident: 10.1016/j.envint.2023.107801_b0330 article-title: Robotic fluidic coupling and interrogation of multiple vascularized organ chips publication-title: Nat. Biomed. Eng doi: 10.1038/s41551-019-0497-x – volume: 4 start-page: 907 issue: 4 year: 2019 ident: 10.1016/j.envint.2023.107801_b0550 article-title: An air-liquid interface organ-level lung microfluidics platform for analysis on molecular mechanisms of cytotoxicity induced by cancer-causing fine particles publication-title: ACS. Sens doi: 10.1021/acssensors.8b01672 – volume: 13 start-page: 1928 issue: 1 year: 2022 ident: 10.1016/j.envint.2023.107801_b0030 article-title: Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip publication-title: Nat. Commun doi: 10.1038/s41467-022-29562-4 – volume: 2022 start-page: 9819154 year: 2022 ident: 10.1016/j.envint.2023.107801_b0100 article-title: Biomimetic Alveolus-on-a-Chip for SARS-CoV-2 Infection Recapitulation publication-title: Research doi: 10.34133/2022/9819154 – volume: 24 start-page: 971 issue: 4 year: 2019 ident: 10.1016/j.envint.2023.107801_b0380 article-title: Options for modeling the respiratory system: inserts, scaffolds and microfluidic chips publication-title: Drug. Discov. Today doi: 10.1016/j.drudis.2019.03.006 – volume: 92 start-page: 7200 issue: 10 year: 2020 ident: 10.1016/j.envint.2023.107801_b0540 article-title: Investigation of Environmental Pollutant-Induced Lung Inflammation and Injury in a 3D Coculture-Based Microfluidic Pulmonary Alveolus System publication-title: Anal. Chem doi: 10.1021/acs.analchem.0c00759 – volume: 96 start-page: 389 issue: 2 year: 2022 ident: 10.1016/j.envint.2023.107801_b0300 article-title: Perspectives of future lung toxicology studies using human pluripotent stem cells publication-title: Arch. Toxicol doi: 10.1007/s00204-021-03188-9 – volume: 22 start-page: e52744 issue: 6 year: 2021 ident: 10.1016/j.envint.2023.107801_b0460 article-title: Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model publication-title: EMBO. Rep doi: 10.15252/embr.202152744 – volume: 4 start-page: 168 issue: 1 year: 2021 ident: 10.1016/j.envint.2023.107801_b0520 article-title: Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane publication-title: Commun. Biol doi: 10.1038/s42003-021-01695-0 – volume: 3 start-page: e1900026 issue: 9 year: 2019 ident: 10.1016/j.envint.2023.107801_b0020 article-title: Capturing the Onset of Bacterial Pulmonary Infection in Acini-On-Chips publication-title: Adv. Biosyst doi: 10.1002/adbi.201900026 – volume: 8 year: 2020 ident: 10.1016/j.envint.2023.107801_b0115 article-title: Modifying and Integrating in vitro and ex vivo Respiratory Models for Inhalation Drug Screening publication-title: Front. Bioeng. Biotechnol doi: 10.3389/fbioe.2020.581995 – volume: 311 start-page: 622 issue: 5761 year: 2016 ident: 10.1016/j.envint.2023.107801_b0315 article-title: Toxic potential of materials at the nanolevel publication-title: Science doi: 10.1126/science.1114397 – volume: 13 issue: 5 year: 2021 ident: 10.1016/j.envint.2023.107801_b0165 article-title: In vitro lung models and their application to study SARS-CoV-2 pathogenesis and disease publication-title: Viruses doi: 10.3390/v13050792 – volume: 10 year: 2022 ident: 10.1016/j.envint.2023.107801_b0265 article-title: An In Vitro Microfluidic Alveolus Model to Study Lung Biomechanics publication-title: Front. Bioeng. Biotechnol doi: 10.3389/fbioe.2022.848699 – volume: 364 start-page: 458 year: 2019 ident: 10.1016/j.envint.2023.107801_b0150 article-title: Lung Multivascular networks and functional intravascular topologies within biocompatible hydrogels publication-title: Science doi: 10.1126/science.aav9750 – volume: 757 year: 2021 ident: 10.1016/j.envint.2023.107801_b0490 article-title: Review article: Epidemiological and animal evidence for the role of air pollution in intestinal diseases publication-title: Sci. Total. Environ doi: 10.1016/j.scitotenv.2020.143718 – volume: 5 start-page: e2000624 issue: 6 year: 2021 ident: 10.1016/j.envint.2023.107801_b0050 article-title: In Vitro Models for Studying Respiratory Host-Pathogen Interactions publication-title: Adv. Biol doi: 10.1002/adbi.202000624 – volume: 19 start-page: 3152 issue: 19 year: 2019 ident: 10.1016/j.envint.2023.107801_b0005 article-title: Microphysiological lung models to evaluate the safety of new pharmaceutical modalities: a biopharmaceutical perspective publication-title: Lab. Chip doi: 10.1039/C9LC00492K – volume: 170 start-page: 386 year: 2021 ident: 10.1016/j.envint.2023.107801_b0055 article-title: Building three-dimensional lung models for studying pharmacokinetics of inhaled drugs publication-title: Adv. Drug. Deliv. Rev doi: 10.1016/j.addr.2020.09.008 – volume: 10 start-page: 3491 issue: 1 year: 2019 ident: 10.1016/j.envint.2023.107801_b0215 article-title: Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D publication-title: Nat. Commun doi: 10.1038/s41467-019-11397-1 – volume: 7 start-page: 1048 issue: 6 year: 2018 ident: 10.1016/j.envint.2023.107801_b0545 article-title: A 3D human lung-on-a-chip model for nanotoxicity testing publication-title: Toxicol. Res doi: 10.1039/C8TX00156A – volume: 9 start-page: e1901862 issue: 17 year: 2020 ident: 10.1016/j.envint.2023.107801_b0415 article-title: Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine publication-title: Adv. Healthc. Mater doi: 10.1002/adhm.201901862 – volume: 15 start-page: 1302 issue: 5 year: 2015 ident: 10.1016/j.envint.2023.107801_b0435 article-title: A lung-on-a-chip array with an integrated bio-inspired respiration mechanism publication-title: Lab. Chip doi: 10.1039/C4LC01252F – volume: 15 issue: 6 year: 2022 ident: 10.1016/j.envint.2023.107801_b0475 article-title: Hydrophobic Recovery of PDMS Surfaces in Contact with Hydrophilic Entities: Relevance to Biomedical Devices publication-title: Materials doi: 10.3390/ma15062313 – volume: 8 start-page: e2101251 issue: 21 year: 2021 ident: 10.1016/j.envint.2023.107801_b0235 article-title: An Air Particulate Pollutant Induces Neuroinflammation and Neurodegeneration in Human Brain Models publication-title: Adv. Sci doi: 10.1002/advs.202101251 – volume: 328 start-page: 1662 issue: 5986 year: 2010 ident: 10.1016/j.envint.2023.107801_b0185 article-title: Reconstituting organ-level lung functions on a chip publication-title: Science doi: 10.1126/science.1188302 – volume: 8 start-page: 91 year: 2020 ident: 10.1016/j.envint.2023.107801_b0140 article-title: In situ-Like Aerosol Inhalation Exposure for Cytotoxicity Assessment Using Airway-on-Chips Platforms publication-title: Front. Bioeng. Biotechnol doi: 10.3389/fbioe.2020.00091 |
SSID | ssj0002485 |
Score | 2.487783 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•An up-to-the-date review summarizes the key features of lung chips.•Current trends in the fabrication of lung chips.•Recent progresses in... Atmospheric pollutants, including particulate matters, nanoparticles, bioaerosols, and some chemicals, have posed serious threats to the environment and the... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107801 |
SubjectTerms | air pollution Animals Atmospheric pollutants exposure bioaerosols Bioengineering blood flow cell biology cell culture Cell Culture Techniques drugs environment Environmental Pollutants exposure assessment human health Humans Lung Lung chips lungs manufacturing Microfluidics Microphysiological system nanoparticles Particulate Matter - toxicity pollutants toxicity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yT4qIrp6uX0TwNbhJJh99POWOQ1AQPLi3kLQpruy1i90F_3xnmnY9H3RffA3TNM1MOr8kM79h7K1xhEuzFlVjlACEBMJXzgjXZJBVkjGPB_qfPtvLK_h4ba5vlfqimLBCD1wm7p20ymdpaqutRWffxAqtEmE1-Bo9Ux7zyNHnzZup6R9MRF2F1XslQKrVnDQ3RnZRCllHcZRKY5PzU0GY2SmN3P1_-Ka_Yc_RB108ZA8m8MjPyqAfsTu5W7B7tygFF-z0_HfmGopOS3dYsPvlgI6XvKPH7MtZuf0feN_yGwrLazf7dYMSG1z_vP623g4cES2P47Uwds7j7qYfiIYAhbZUIpkqEA88_9z2dM74hF1dnH_9cCmm-gqiRhS4E3oVJSRVtzISL5x2pqm0jLXNFrKspW8d-ASpAkhSNYh9VBWNaiH6BlzU-pSddH2XnzFuk5UtKgp3Hw1IUFGmhNgCEgK8GL1aMj1PcKgn8nGqgbEJc5TZ91DUEkgtoahlycThqW0h3zgi_550d5Al6uyxAQ0qTAYVjhnUkrlZ82FCIQVdYFfrI69_MxtKwEVKNy-xy_1-CMo5UxlihP6HjNegECB6u2RPi5UdPkRbROlO2-f_4wNfsLs06BJ6_pKd7H7s8ytEVrv0elxEvwDXHxqN priority: 102 providerName: Directory of Open Access Journals |
Title | Advances of microfluidic lung chips for assessing atmospheric pollutants exposure |
URI | https://dx.doi.org/10.1016/j.envint.2023.107801 https://www.ncbi.nlm.nih.gov/pubmed/36774736 https://www.proquest.com/docview/2775950627 https://www.proquest.com/docview/2834206486 https://doaj.org/article/1628e15c6366456da930755048c244e7 |
Volume | 172 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcgEhBAuFLbAyEtew9Uds57hUrRYQlRBU6s2yEweCtsmq2ZU49bczYydbeoBKHGNNEiczHj_bM28IeZtrxKVBZEWV80wCJMhMofNMV0GywjMX4ob-5zO1PJcfL_KLPXI85sJgWOXg-5NPj956aJkPf3O-bpr5V-RGkwzLf8eJENftUmq08nfXN2EeSNmV-L2PMpQe0-dijBcmk7UYUckFNGkzlIYZp6fI4n9rlvobCo2z0elj8miAkXSRevqE7IV2Qh78QS44IQcnNzlsIDoM4n5CHqatOpoykJ6SL4sUB9DTrqaXGKBXr7ZNBRIr8AS0_NGsewrYlrp4QAwPp25z2fVISABCayyWjLWIexp-rTvccXxGzk9Pvh0vs6HSQlYCHtxk4sgx6XlZM4cMcULnVSGYK1VQMrCSmVpL46UvpPSMV4CCeOFyXktnKqmdEAdkv-3a8IJQ5RWruQmwDqkkk9wx7wFlSA9QzznDp0SMP9iWAw05VsNY2THe7KdNarGoFpvUMiXZ7q51ouG4Q_496m4niyTasaG7-m4HK7JMQT9ZXiqhFODIyhXg8GDFJk0JoCfoKdGj5u0tm4RHNXe8_s1oKBaGK57BuDZ0295yrfMiR27of8gYITlARaOm5Hmyst2HCAV4XQt1-N99e0nu41WKPH9F9jdX2_AagNXGz-LImZF7iw-flmezuD3xG2xlICo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7gHQhKAwKJ9G4jXq_BE7eSzTpo5tlRCbtDfLTpwR1CXV0kr787mLncIeYBKvzjlxfPb5Z_vud4R8TjXiUi-SvEx5IgESJFmu00SXXrLcMev7A_3zhZpfyq9X6dUOORxiYdCtMtr-YNN7ax1LprE3p6u6nn5HbjTJMP13vxDCvn0X2anSEdmdnZzOF1uDjKxdgeL7IMEKQwRd7-aF8WQNOlVyAUU6i9lhhhWqJ_K_t1D9DYj2C9LxM_I0Ikk6C419TnZ8MyZP_uAXHJP9o99hbCAa53E3JnvhtI6GIKQX5NssuAJ0tK3oDfroVctNXYLEEowBLX7Uq44CvKW2vyOGl1O7vmk75CQAoRXmS8Z0xB31d6sWDx1fksvjo4vDeRKTLSQFQMJ1Ig4sk44XFbNIEid0WuaC2UJ5JT0rWFZpmTnpcikd4yUAIZ7blFfSZqXUVoh9Mmraxr8mVDnFKp552IqUkklumXMANKQDtGdtxidEDB1sishEjgkxlmZwOftpgloMqsUEtUxIsq21CkwcD8h_Qd1tZZFHuy9ob69NHEiGKWgnSwsllAIoWdocbB5s2mRWAO7xekL0oHlzb1jCq-oHPv9pGCgGZixew9jGt5vOcK3TPEV66H_IZEJyQIuZmpBXYZRtf0QogOxaqDf_3baP5NH84vzMnJ0sTt-Sx_gkOKK_I6P17ca_B5y1dh_iPPoFdwkh5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+of+microfluidic+lung+chips+for+assessing+atmospheric+pollutants+exposure&rft.jtitle=Environment+international&rft.au=Wang%2C+Hui&rft.au=Yin%2C+Fangchao&rft.au=Li%2C+Zhongyu&rft.au=Su%2C+Wentao&rft.date=2023-02-01&rft.issn=0160-4120&rft.volume=172+p.107801-&rft_id=info:doi/10.1016%2Fj.envint.2023.107801&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon |