Dynamics of the sucrose metabolism and related gene expression in tomato fruits under water deficit
The impact of water deficit on sucrose metabolism in sink organs like the fruit remains poorly known despite the need to improve fruit crops resilience to drought in the face of climate change. The present study investigated the effects of water deficit on sucrose metabolism and related gene express...
Saved in:
Published in | Physiology and molecular biology of plants Vol. 29; no. 2; pp. 159 - 172 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.02.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The impact of water deficit on sucrose metabolism in sink organs like the fruit remains poorly known despite the need to improve fruit crops resilience to drought in the face of climate change. The present study investigated the effects of water deficit on sucrose metabolism and related gene expression in tomato fruits, aiming to identify candidate genes for improving fruit quality upon low water availability. Tomato plants were subjected to irrigated control and water deficit (−60% water supply compared to control) treatments, which were applied from the first fruit set to first fruit maturity stages. The results have shown that water deficit significantly reduced fruit dry biomass and number, among other plant physiological and growth variables, but substantially increased the total soluble solids content. The determination of soluble sugars on the basis of fruit dry weight revealed an active accumulation of sucrose and concomitant reduction in glucose and fructose levels in response to water deficit. The complete repertoire of genes encoding sucrose synthase (
SUSY1-7
), sucrose-phosphate synthase (
SPS1-4
), and cytosolic (
CIN1-8
), vacuolar (
VIN1-2
) and cell wall invertases (
WIN1-4
) was identified and characterized, of which
SlSUSY4
,
SlSPS1
,
SlCIN3
,
SlVIN2
, and
SlCWIN2
were shown to be positively regulated by water deficit. Collectively, these results show that water deficit regulates positively the expression of certain genes from different gene families related to sucrose metabolism in fruits, favoring the active accumulation of sucrose in this organ under water-limiting conditions. |
---|---|
AbstractList | The impact of water deficit on sucrose metabolism in sink organs like the fruit remains poorly known despite the need to improve fruit crops resilience to drought in the face of climate change. The present study investigated the effects of water deficit on sucrose metabolism and related gene expression in tomato fruits, aiming to identify candidate genes for improving fruit quality upon low water availability. Tomato plants were subjected to irrigated control and water deficit (−60% water supply compared to control) treatments, which were applied from the first fruit set to first fruit maturity stages. The results have shown that water deficit significantly reduced fruit dry biomass and number, among other plant physiological and growth variables, but substantially increased the total soluble solids content. The determination of soluble sugars on the basis of fruit dry weight revealed an active accumulation of sucrose and concomitant reduction in glucose and fructose levels in response to water deficit. The complete repertoire of genes encoding sucrose synthase (
SUSY1-7
), sucrose-phosphate synthase (
SPS1-4
), and cytosolic (
CIN1-8
), vacuolar (
VIN1-2
) and cell wall invertases (
WIN1-4
) was identified and characterized, of which
SlSUSY4
,
SlSPS1
,
SlCIN3
,
SlVIN2
, and
SlCWIN2
were shown to be positively regulated by water deficit. Collectively, these results show that water deficit regulates positively the expression of certain genes from different gene families related to sucrose metabolism in fruits, favoring the active accumulation of sucrose in this organ under water-limiting conditions. The impact of water deficit on sucrose metabolism in sink organs like the fruit remains poorly known despite the need to improve fruit crops resilience to drought in the face of climate change. The present study investigated the effects of water deficit on sucrose metabolism and related gene expression in tomato fruits, aiming to identify candidate genes for improving fruit quality upon low water availability. Tomato plants were subjected to irrigated control and water deficit (-60% water supply compared to control) treatments, which were applied from the first fruit set to first fruit maturity stages. The results have shown that water deficit significantly reduced fruit dry biomass and number, among other plant physiological and growth variables, but substantially increased the total soluble solids content. The determination of soluble sugars on the basis of fruit dry weight revealed an active accumulation of sucrose and concomitant reduction in glucose and fructose levels in response to water deficit. The complete repertoire of genes encoding sucrose synthase (SUSY1-7), sucrose-phosphate synthase (SPS1-4), and cytosolic (CIN1-8), vacuolar (VIN1-2) and cell wall invertases (WIN1-4) was identified and characterized, of which SlSUSY4, SlSPS1, SlCIN3, SlVIN2, and SlCWIN2 were shown to be positively regulated by water deficit. Collectively, these results show that water deficit regulates positively the expression of certain genes from different gene families related to sucrose metabolism in fruits, favoring the active accumulation of sucrose in this organ under water-limiting conditions.The impact of water deficit on sucrose metabolism in sink organs like the fruit remains poorly known despite the need to improve fruit crops resilience to drought in the face of climate change. The present study investigated the effects of water deficit on sucrose metabolism and related gene expression in tomato fruits, aiming to identify candidate genes for improving fruit quality upon low water availability. Tomato plants were subjected to irrigated control and water deficit (-60% water supply compared to control) treatments, which were applied from the first fruit set to first fruit maturity stages. The results have shown that water deficit significantly reduced fruit dry biomass and number, among other plant physiological and growth variables, but substantially increased the total soluble solids content. The determination of soluble sugars on the basis of fruit dry weight revealed an active accumulation of sucrose and concomitant reduction in glucose and fructose levels in response to water deficit. The complete repertoire of genes encoding sucrose synthase (SUSY1-7), sucrose-phosphate synthase (SPS1-4), and cytosolic (CIN1-8), vacuolar (VIN1-2) and cell wall invertases (WIN1-4) was identified and characterized, of which SlSUSY4, SlSPS1, SlCIN3, SlVIN2, and SlCWIN2 were shown to be positively regulated by water deficit. Collectively, these results show that water deficit regulates positively the expression of certain genes from different gene families related to sucrose metabolism in fruits, favoring the active accumulation of sucrose in this organ under water-limiting conditions.The online version contains supplementary material available at 10.1007/s12298-023-01288-7.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-023-01288-7. The impact of water deficit on sucrose metabolism in sink organs like the fruit remains poorly known despite the need to improve fruit crops resilience to drought in the face of climate change. The present study investigated the effects of water deficit on sucrose metabolism and related gene expression in tomato fruits, aiming to identify candidate genes for improving fruit quality upon low water availability. Tomato plants were subjected to irrigated control and water deficit (−60% water supply compared to control) treatments, which were applied from the first fruit set to first fruit maturity stages. The results have shown that water deficit significantly reduced fruit dry biomass and number, among other plant physiological and growth variables, but substantially increased the total soluble solids content. The determination of soluble sugars on the basis of fruit dry weight revealed an active accumulation of sucrose and concomitant reduction in glucose and fructose levels in response to water deficit. The complete repertoire of genes encoding sucrose synthase (SUSY1-7), sucrose-phosphate synthase (SPS1-4), and cytosolic (CIN1-8), vacuolar (VIN1-2) and cell wall invertases (WIN1-4) was identified and characterized, of which SlSUSY4, SlSPS1, SlCIN3, SlVIN2, and SlCWIN2 were shown to be positively regulated by water deficit. Collectively, these results show that water deficit regulates positively the expression of certain genes from different gene families related to sucrose metabolism in fruits, favoring the active accumulation of sucrose in this organ under water-limiting conditions. The impact of water deficit on sucrose metabolism in sink organs like the fruit remains poorly known despite the need to improve fruit crops resilience to drought in the face of climate change. The present study investigated the effects of water deficit on sucrose metabolism and related gene expression in tomato fruits, aiming to identify candidate genes for improving fruit quality upon low water availability. Tomato plants were subjected to irrigated control and water deficit (-60% water supply compared to control) treatments, which were applied from the first fruit set to first fruit maturity stages. The results have shown that water deficit significantly reduced fruit dry biomass and number, among other plant physiological and growth variables, but substantially increased the total soluble solids content. The determination of soluble sugars on the basis of fruit dry weight revealed an active accumulation of sucrose and concomitant reduction in glucose and fructose levels in response to water deficit. The complete repertoire of genes encoding sucrose synthase ( ), sucrose-phosphate synthase ( ), and cytosolic ( ), vacuolar ( ) and cell wall invertases ( ) was identified and characterized, of which , , , , and were shown to be positively regulated by water deficit. Collectively, these results show that water deficit regulates positively the expression of certain genes from different gene families related to sucrose metabolism in fruits, favoring the active accumulation of sucrose in this organ under water-limiting conditions. The online version contains supplementary material available at 10.1007/s12298-023-01288-7. |
Author | de Oliveira, Paulo H. G. A. Rocha, Dilson S. Barbosa, Ana C. O. Silva, Glaucia C. B. Santos, Miguel G. M. Costa, Marcio G. C. Camillo, Luciana R. Cavalari, Aline A. |
Author_xml | – sequence: 1 givenname: Ana C. O. surname: Barbosa fullname: Barbosa, Ana C. O. organization: Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz – sequence: 2 givenname: Dilson S. surname: Rocha fullname: Rocha, Dilson S. organization: Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz – sequence: 3 givenname: Glaucia C. B. surname: Silva fullname: Silva, Glaucia C. B. organization: Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz – sequence: 4 givenname: Miguel G. M. surname: Santos fullname: Santos, Miguel G. M. organization: Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz – sequence: 5 givenname: Luciana R. surname: Camillo fullname: Camillo, Luciana R. organization: Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz – sequence: 6 givenname: Paulo H. G. A. surname: de Oliveira fullname: de Oliveira, Paulo H. G. A. organization: Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz – sequence: 7 givenname: Aline A. surname: Cavalari fullname: Cavalari, Aline A. organization: Departamento de Ciências Biológicas, Universidade Federal de São Paulo – sequence: 8 givenname: Marcio G. C. orcidid: 0000-0002-4358-5489 surname: Costa fullname: Costa, Marcio G. C. email: marciogc.costa@gmail.com organization: Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36875726$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vFSEUhompsR_6B1wYEjfdjPI1A2xMTOtX0sRNXRMuc7ilmYErMNr--3J726pd1A2Q8LznnLzvOUR7MUVA6DUl7ygh8n2hjGnVEcY7QplSnXyGDoiWoiOCk73bN-16pcU-OizlkpCBC0lfoH0-KNlLNhwgd3od7RxcwcnjegG4LC6nAniGaldpCmXGNo44w2QrjHgNETBcbTKUElLEIeKaZlsT9nkJteAljpDx7wZnPIIPLtSX6Lm3U4FXd_cR-vH50_nJ1-7s-5dvJx_POtcTWTvGidBiGD1TlgvQynmxskC9GHsnpONMWyFgJUY_KEG9GvzAvQQxeGGFd_wIfdjV3SyrGUYHsWY7mU0Os83XJtlg_v2J4cKs0y-jtaKqF63A8V2BnH4uUKqZQ3EwTTZCWoppHivSPNfs_6hUXKp26Ia-fYRepiXH5sSWooPWkmx7v_l7-Iep76NqANsB23xKBv-AUGK2-2B2-2DaPpjbfTCyidQjUcvD1pZcMyBMT0v5Tlpan7iG_GfsJ1Q32pDLRg |
CitedBy_id | crossref_primary_10_3389_fpls_2023_1323048 crossref_primary_10_3390_horticulturae10070772 crossref_primary_10_1186_s40538_024_00727_1 crossref_primary_10_3390_agronomy14061237 crossref_primary_10_3390_agronomy14030539 |
Cites_doi | 10.1093/jxb/erh047 10.1093/jxb/erp169 10.1016/j.jplph.2015.10.006 10.1016/S2095-3119(17)61755-6 10.1016/j.pbiomolbio.2018.11.006 10.1046/j.1365-313X.1999.00506.x 10.1146/annurev-arplant-050213-040251 10.1093/jxb/erz526 10.1051/fruits/2011066 10.1104/pp.108.4.1471 10.1360/yc-007-1023 10.1104/pp.115.1.273 10.1007/s11103-007-9177-4 10.1007/s11738-015-1829-4 10.1093/jexbot/52.358.881 10.1104/pp.107.105049 10.1073/pnas.1613910113 10.1104/pp.104.042457 10.1093/jxb/ert416 10.1007/s00425-020-03421-2 10.1093/jxb/ert400 10.1016/j.plantsci.2013.12.007 10.1093/oxfordjournals.molbev.a040454 10.1007/s00239-004-0242-1 10.1093/jxb/err069 10.1104/pp.114.3.947 10.1016/j.tplants.2017.11.001 10.1016/j.postharvbio.2022.112112 10.1111/pce.12916 10.1080/13102818.2019.1643784 10.1104/pp.115.2.609 10.1016/j.scienta.2019.108753 10.3389/fpls.2017.01130 10.1016/j.jplph.2006.04.014 10.3390/genes8040111 10.1016/j.plantsci.2008.02.009 10.1093/nar/22.22.4673 10.1007/s00425-015-2297-1 10.1006/meth.2001.1262 10.1016/j.foodchem.2020.126407 10.1111/J.1365-3040.2007.01716.X 10.1007/s10535-016-0658-7 10.1111/febs.12595 10.1093/jxb/50.337.1281 10.3389/FCHEM.2018.00291 10.3389/fpls.2018.00339 10.1007/s00425-007-0590-3 10.21273/jashs.126.5.599 10.1158/0008-5472.CAN-04-0496 10.1371/journal.pone.0129598 10.1016/j.gene.2014.01.062 10.1111/j.1365-3040.2010.02265.x 10.1111/NPH.12176 10.1007/s11103-018-0746-5 10.1016/S1369-5266(03)00033-5 10.1111/j.1365-3040.2012.02564.x 10.1007/s00425-008-0718-0 10.1007/s12374-011-0032-4 10.1021/jf072101n 10.3390/horticulturae8060491 10.1093/jxb/eru197 10.1016/j.scienta.2017.04.013 10.1126/SCIENCE.148.3668.339 10.1038/nature11119 10.1104/pp.112.203893 10.1006/anbo.2000.1123 10.1071/FP08017 10.1080/07352680091139178 10.1111/pce.12054 10.1016/j.tplants.2004.10.009 10.1038/srep17583 10.1007/s10725-020-00631-2 |
ContentType | Journal Article |
Copyright | Prof. H.S. Srivastava Foundation for Science and Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Prof. H.S. Srivastava Foundation for Science and Society 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: Prof. H.S. Srivastava Foundation for Science and Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Prof. H.S. Srivastava Foundation for Science and Society 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1007/s12298-023-01288-7 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 0974-0430 |
EndPage | 172 |
ExternalDocumentID | PMC9981854 36875726 10_1007_s12298_023_01288_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 304878/2018-9 funderid: http://dx.doi.org/10.13039/501100003593 – fundername: Universidade Estadual de Santa Cruz funderid: http://dx.doi.org/10.13039/501100020648 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior funderid: http://dx.doi.org/10.13039/501100002322 – fundername: ; – fundername: ; grantid: 304878/2018-9 |
GroupedDBID | -56 -5G -BR -EM -Y2 -~C .VR 06C 06D 0R~ 0VY 123 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5VS 67N 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABLLD ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BAWUL BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DIK DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HYE HZ~ IJ- IKXTQ IWAJR IXC IXD I~Z J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9I O9J OK1 PF0 PT4 QOR QOS R89 R9I RIG ROL RPM RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z7U ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM ABRTQ 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c507t-2304946df28a34e98cf4bae1f4d5c47c329a44eb4df6841f86f63f7e46f4a4fc3 |
IEDL.DBID | U2A |
ISSN | 0971-5894 |
IngestDate | Thu Aug 21 18:35:35 EDT 2025 Fri Jul 11 04:14:37 EDT 2025 Mon Jul 21 11:59:31 EDT 2025 Fri Jul 25 11:09:04 EDT 2025 Thu Apr 03 07:01:18 EDT 2025 Tue Jul 01 02:17:09 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Fri Feb 21 02:44:33 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Sucrose synthase Drought Sucrose-phosphate synthase Fruit quality Invertase Solanum lycopersicum |
Language | English |
License | Prof. H.S. Srivastava Foundation for Science and Society 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-2304946df28a34e98cf4bae1f4d5c47c329a44eb4df6841f86f63f7e46f4a4fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4358-5489 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9981854 |
PMID | 36875726 |
PQID | 2781699704 |
PQPubID | 2044193 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9981854 proquest_miscellaneous_2888022992 proquest_miscellaneous_2783787839 proquest_journals_2781699704 pubmed_primary_36875726 crossref_primary_10_1007_s12298_023_01288_7 crossref_citationtrail_10_1007_s12298_023_01288_7 springer_journals_10_1007_s12298_023_01288_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: India – name: Heidelberg |
PublicationSubtitle | An International Journal of Functional Plant Biology |
PublicationTitle | Physiology and molecular biology of plants |
PublicationTitleAbbrev | Physiol Mol Biol Plants |
PublicationTitleAlternate | Physiol Mol Biol Plants |
PublicationYear | 2023 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | Welham, Pike, Horst, Flemetakis, Katinakis, Kaneko, Sato, Tabata, Perry, Parniske, Wang (CR66) 2009; 60 Sun, Zhang, Larue, Huber (CR53) 2011; 34 Thompson, Higgins, Gibson (CR57) 1994; 22 Scholander, Hammel, Bradstreet, Hemmingsen (CR49) 1965; 148 Hirose, Scofield, Terao (CR20) 2008; 174 Eom, Rim, Hyun (CR13) 2019; 33 Godt, Roitsch (CR16) 1997; 115 Zhang, Tieman, Jiao, Xu, Chen, Fe, Giovannoni, Klee (CR70) 2016; 113 Andersen, Jensen, Ørntoft (CR3) 2004; 64 Guo, Zhu, Chen, Luo (CR18) 2007; 29 Toroser, Huber (CR59) 1997; 114 Ripoll, Urban, Staudt, Lopez-Lauri, Bidel, Bertin (CR44) 2014; 65 Zhu, Wang, Li, Jiu, Wang, Fang (CR73) 2017; 8 Liao, Li, Lu, Peng (CR32) 2017; 61 Juárez-Colunga, López-González, Morales-Elías, Massange-Sánchez, Trachsel, Tiessen (CR28) 2018; 97 Pagliuso, Grandis, Igarashi, Lam, Buckeridge (CR40) 2018; 6 Ripoll, Urban, Brunel, Bertin (CR43) 2016; 190 Wan, Wu, Yang, Zhou, Ruan (CR61) 2018; 23 An, Chen, Wang, Ye, Ji, Wang, Liao, Ma (CR2) 2014; 539 Castellarin, Pfeiffer, Sivilotti, Degan, Peterlunger, Di Gaspero (CR10) 2007; 30 Bai, Zuo, Watkins, Wang, Liang, Zheng, Liu, Ji (CR4) 2023; 195 Jiang, Chi, Wang, Zhou, Cheng, Zhang, Ma, Vanitha, Ramachandran (CR27) 2015; 5 Li, Meng, Zhang, Zhang, Sun, Ren, Niu, Wang, Yin (CR31) 2012; 55 Xiang, Le Roy, Bolouri-Moghaddam, Vanhaecke, Lammens, Rolland, Van Den Ende (CR67) 2011; 62 Hyun, Eom, Kim (CR23) 2011; 4 Livak, Schmittgen (CR33) 2001; 25 Roitsch, González (CR45) 2004; 9 Saitou, Nei (CR48) 1987; 4 Zhang, Yu, Ma, Shen, Zhang, Korir (CR71) 2015; 37 Beckles, Ong, Tamova, Uengwilai (CR6) 2012; 67 Bertin, Guichard, Leonardi, Longuenesse, Langlois, Navez (CR7) 2000; 85 Hou, ZhangDuKangDavies (CR22) 2020; 71 Geigenberger, Reimholz, Deiting, Sonnewald, Stitt (CR15) 1999; 19 Stein, Granot (CR52) 2018; 9 Kumar, Rouphael, Cardarelli, Cola (CR29) 2007; 8 Tong, Wang, Ma, Zhang, Zhu, Ma, Li (CR58) 2018; 17 Nguyen-Quoc, Foyer (CR39) 2001; 52 Castleden, Aoki, Gillespie, Macrae, Quick, Buchne, Foyer, Furbank, Lunn (CR11) 2004; 135 Wang, Wei, Wu, Xu, Li, Luo, Zhang, Chen, Xie, Cao (CR64) 2015; 242 Zhang, Zeng, Liu, Zhu (CR72) 2022; 8 Seneweera, Basra, Barlow, Conroy (CR50) 1995; 108 Wei, Chai, Ru, Pan, Cheng, Ruan, Ye, Wang, Yao, Zhou, Chen, Wan (CR65) 2020; 92 Hernandez-Garcia, Finer (CR19) 2014; 217–218 Zhu, Komor, Moore (CR74) 1997; 115 Almadanim, Alexandre, Rosa, Sapeta, Leitão, Ramalho, Lam, Negrão, Abreu, Oliveira (CR1) 2017; 40 Vargas, Pontis, Salerno (CR60) 2007; 226 Yoshida, Anjos, Medeiros, Araújo, Fernie, Daloso (CR69) 2019; 146 Lutfiyya, Xu, Ordine, Morrell, Miller, Duff (CR35) 2007; 164 Le Roy, Lammens, Verhaest, De Coninck, Rabijns, Van Laere, Van Den Ende (CR30) 2007; 145 Wang, Ruan (CR62) 2012; 160 Baud, Vaultier, Rochat (CR5) 2004; 55 Siebeneichler, Crizel, Camozatto, Paim, da Silva, Rombaldi, Galli (CR51) 2020; 317 Qi, Wu, Li, Mo, Wu, Chu, Wu (CR42) 2007; 64 Meissner, Orsini, Ruschhaupt, Melchinger, Hincha, Heyer (CR37) 2013; 36 Jia, Zhang, Mao, Li, Wu, Wu, Wu (CR26) 2008; 228 Lunn, Macrae (CR34) 2003; 6 Terry, Chope, Bordonaba (CR55) 2007; 55 Mou, Li, Luo, Mao, Ying (CR38) 2015; 10 Ruan (CR46) 2014; 65 Prioul, Pelleschi, Séne, Thévenot, Causse, De Vienne, Leonardi (CR41) 1999; 50 Dahiya, Saini, Saini, Devi (CR12) 2017; 6 Ma, Sun, Lu, Zhu, Gao, Hao (CR36) 2017; 220 Granot, Kelly, Stein, David-Schwartz (CR17) 2014; 65 Hockema, Etxeberria (CR21) 2001; 126 (CR56) 2012; 485 Wang, Liu, Wang, Tao, Fan, Zhao, Guo (CR63) 2019; 258 Xiao, Tang, Fang, Yang, Zhou, Qi (CR68) 2014; 281 Jia, Wang, Sun, Li, Han, Zhao, Li, Ding, Li, Ji, Jia (CR25) 2013; 198 Bilska-Kos, Mytych, Suski, Magoń, Ochodzki, Zebrowski (CR8) 2020; 252 Ji, Van Den Ende, Van Laere, Cheng, Bennett (CR24) 2005; 60 Garchery, Gest, Do, Alhagdow, Baldet, Menard, Rothan, Massot, Gautier, Aarrouf, Fernie, Stevens (CR14) 2013; 36 Braun, Wang, Ruan (CR9) 2014; 65 Taylor, Winter, Huber (CR54) 2000; 1 Ruan, Llewellyn, Liu, Xu, Wu, Wang, Furbank (CR47) 2008; 35 J Ripoll (1288_CR44) 2014; 65 MC Almadanim (1288_CR1) 2017; 40 H Jia (1288_CR25) 2013; 198 The Tomato Genome Consortium (1288_CR56) 2012; 485 X Zhu (1288_CR73) 2017; 8 S Juárez-Colunga (1288_CR28) 2018; 97 O Stein (1288_CR52) 2018; 9 T Hirose (1288_CR20) 2008; 174 X An (1288_CR2) 2014; 539 L Jia (1288_CR26) 2008; 228 X Ji (1288_CR24) 2005; 60 X-l Tong (1288_CR58) 2018; 17 JD Thompson (1288_CR57) 1994; 22 YJ Zhu (1288_CR74) 1997; 115 QJ Ma (1288_CR36) 2017; 220 DA Dahiya (1288_CR12) 2017; 6 Z Wang (1288_CR64) 2015; 242 X Hou (1288_CR22) 2020; 71 AY Guo (1288_CR18) 2007; 29 JE Lunn (1288_CR34) 2003; 6 D Granot (1288_CR17) 2014; 65 H Wan (1288_CR61) 2018; 23 DM Braun (1288_CR9) 2014; 65 N Saitou (1288_CR48) 1987; 4 S Baud (1288_CR5) 2004; 55 P Kumar (1288_CR29) 2007; 8 TK Hyun (1288_CR23) 2011; 4 M Meissner (1288_CR37) 2013; 36 KJ Livak (1288_CR33) 2001; 25 WB Liao (1288_CR32) 2017; 61 X Qi (1288_CR42) 2007; 64 LL Lutfiyya (1288_CR35) 2007; 164 Y Ruan (1288_CR46) 2014; 65 PF Scholander (1288_CR49) 1965; 148 SD Castellarin (1288_CR10) 2007; 30 CL Andersen (1288_CR3) 2004; 64 N Bertin (1288_CR7) 2000; 85 SH Eom (1288_CR13) 2019; 33 LA Terry (1288_CR55) 2007; 55 H Wei (1288_CR65) 2020; 92 P Geigenberger (1288_CR15) 1999; 19 L Wang (1288_CR62) 2012; 160 A Bilska-Kos (1288_CR8) 2020; 252 D Pagliuso (1288_CR40) 2018; 6 YL Ruan (1288_CR47) 2008; 35 X Xiao (1288_CR68) 2014; 281 DMB Beckles (1288_CR6) 2012; 67 C Zhang (1288_CR71) 2015; 37 SP Seneweera (1288_CR50) 1995; 108 J Sun (1288_CR53) 2011; 34 T Yoshida (1288_CR69) 2019; 146 S Jiang (1288_CR27) 2015; 5 C Garchery (1288_CR14) 2013; 36 CM Hernandez-Garcia (1288_CR19) 2014; 217–218 CK Castleden (1288_CR11) 2004; 135 W Mou (1288_CR38) 2015; 10 B Zhang (1288_CR70) 2016; 113 TJ Siebeneichler (1288_CR51) 2020; 317 JL Prioul (1288_CR41) 1999; 50 Y Zhang (1288_CR72) 2022; 8 B Nguyen-Quoc (1288_CR39) 2001; 52 Y Wang (1288_CR63) 2019; 258 DE Godt (1288_CR16) 1997; 115 L Xiang (1288_CR67) 2011; 62 P Taylor (1288_CR54) 2000; 1 BR Hockema (1288_CR21) 2001; 126 K Le Roy (1288_CR30) 2007; 145 C Bai (1288_CR4) 2023; 195 T Roitsch (1288_CR45) 2004; 9 WA Vargas (1288_CR60) 2007; 226 D Toroser (1288_CR59) 1997; 114 T Welham (1288_CR66) 2009; 60 J Ripoll (1288_CR43) 2016; 190 YC Li (1288_CR31) 2012; 55 |
References_xml | – volume: 55 start-page: 397 year: 2004 end-page: 409 ident: CR5 article-title: Structure and expression profile of the sucrose synthase multigene family in Arabidopsis publication-title: J Exp Bot doi: 10.1093/jxb/erh047 – volume: 60 start-page: 3353 year: 2009 end-page: 3365 ident: CR66 article-title: A cytosolic invertase is required for normal growth and cell development in the model legume, publication-title: J Exp Bot doi: 10.1093/jxb/erp169 – volume: 190 start-page: 26 year: 2016 end-page: 35 ident: CR43 article-title: Water deficit effects on tomato quality depend on fruit developmental stage and genotype publication-title: J Plant Physiol doi: 10.1016/j.jplph.2015.10.006 – volume: 17 start-page: 847 year: 2018 end-page: 856 ident: CR58 article-title: Structure and expression analysis of the sucrose synthase gene family in apple publication-title: J Integr Agr doi: 10.1016/S2095-3119(17)61755-6 – volume: 146 start-page: 37 year: 2019 end-page: 49 ident: CR69 article-title: Insights into ABA-mediated regulation of guard cell primary metabolism revealed by systems biology approaches publication-title: Prog Biophys Mol Biol doi: 10.1016/j.pbiomolbio.2018.11.006 – volume: 19 start-page: 119 year: 1999 end-page: 129 ident: CR15 article-title: Decreased expression of sucrose phosphate synthase strongly inhibits the water stress-induced synthesis of sucrose in growing potato tubers publication-title: Plant J doi: 10.1046/j.1365-313X.1999.00506.x – volume: 65 start-page: 33 year: 2014 end-page: 67 ident: CR46 article-title: Sucrose metabolism : gateway to diverse carbon use and sugar signaling publication-title: Ann Rev Plant Biol doi: 10.1146/annurev-arplant-050213-040251 – volume: 71 start-page: 1249 year: 2020 end-page: 1264 ident: CR22 article-title: Responses of water accumulation and solute metabolism in tomato fruit to water scarcity and implications for main fruit quality variables publication-title: J Exp Bot doi: 10.1093/jxb/erz526 – volume: 67 start-page: 49 year: 2012 end-page: 64 ident: CR6 article-title: Biochemical factors contributing to tomato fruit sugar content: a review publication-title: Fruits doi: 10.1051/fruits/2011066 – volume: 108 start-page: 1471 year: 1995 end-page: 1477 ident: CR50 article-title: Diurnal regulation of leaf blade elongation in rice by CO . Is it related to sucrose-phosphate synthase activity publication-title: Plant Physiol doi: 10.1104/pp.108.4.1471 – volume: 29 start-page: 1023 year: 2007 end-page: 1026 ident: CR18 article-title: GSDS a gene structure display server publication-title: Hereditas doi: 10.1360/yc-007-1023 – volume: 115 start-page: 273 year: 1997 end-page: 282 ident: CR16 article-title: Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism publication-title: Plant Physiol doi: 10.1104/pp.115.1.273 – volume: 64 start-page: 575 year: 2007 end-page: 587 ident: CR42 article-title: AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis publication-title: Plant Mol Biol doi: 10.1007/s11103-007-9177-4 – volume: 37 start-page: 81 year: 2015 ident: CR71 article-title: Structure, expression profile, and evolution of the sucrose synthase gene family in peach ( ) publication-title: Acta Physiol Plant doi: 10.1007/s11738-015-1829-4 – volume: 52 start-page: 881 year: 2001 end-page: 889 ident: CR39 article-title: A role for “futile cycles” involving invertase and sucrose synthase in sucrose metabolism of tomato fruit publication-title: J Exp Bot doi: 10.1093/jexbot/52.358.881 – volume: 145 start-page: 616 year: 2007 end-page: 625 ident: CR30 article-title: Unraveling the difference between invertases and fructan exohydrolases: A single amino acid (Asp-239) substitution transforms Arabidopsis cell wall invertase1 into a fructan 1-exohydrolase publication-title: Plant Physiol doi: 10.1104/pp.107.105049 – volume: 113 start-page: 12580 year: 2016 end-page: 12585 ident: CR70 article-title: Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.1613910113 – volume: 4 start-page: 391 year: 2011 end-page: 399 ident: CR23 article-title: Genomic analysis and gene structure of the two invertase families in the domesticated apple ( Borkh) publication-title: Plant Omics – volume: 135 start-page: 1753 year: 2004 end-page: 1764 ident: CR11 article-title: Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses publication-title: Plant Physiol doi: 10.1104/pp.104.042457 – volume: 65 start-page: 1713 year: 2014 end-page: 1735 ident: CR9 article-title: Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security publication-title: J Exp Bot doi: 10.1093/jxb/ert416 – volume: 252 start-page: 23 year: 2020 ident: CR8 article-title: Sucrose phosphate synthase (SPS), sucrose synthase (SUS) and their products in the leaves of and at low temperature publication-title: Planta doi: 10.1007/s00425-020-03421-2 – volume: 65 start-page: 809 year: 2014 end-page: 819 ident: CR17 article-title: Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development publication-title: J Exp Bot doi: 10.1093/jxb/ert400 – volume: 217–218 start-page: 109 year: 2014 end-page: 119 ident: CR19 article-title: Identification and validation of promoters and cis-acting regulatory elements publication-title: Plant Sci doi: 10.1016/j.plantsci.2013.12.007 – volume: 4 start-page: 406 year: 1987 end-page: 425 ident: CR48 article-title: The neighbor-joining method: A new method for reconstruction of phylogenetic trees publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a040454 – volume: 60 start-page: 615 year: 2005 end-page: 634 ident: CR24 article-title: Structure, evolution, and expression of the two invertase gene families of rice publication-title: J Mol Evol doi: 10.1007/s00239-004-0242-1 – volume: 62 start-page: 3849 year: 2011 end-page: 3862 ident: CR67 article-title: Exploring the neutral invertase-oxidative stress defence connection in publication-title: J Exp Bot doi: 10.1093/jxb/err069 – volume: 114 start-page: 947 year: 1997 end-page: 955 ident: CR59 article-title: Protein phosphorylation as a mechanism for osmotic-stress activation of sucrose-phosphate synthase in spinach leaves publication-title: Plant Physiol doi: 10.1104/pp.114.3.947 – volume: 23 start-page: 163 year: 2018 end-page: 177 ident: CR61 article-title: Evolution of sucrose metabolism: the dichotomy of invertases and beyond publication-title: Trend Plant Sci doi: 10.1016/j.tplants.2017.11.001 – volume: 195 start-page: 112112 year: 2023 ident: CR4 article-title: Sugar accumulation and fruit quality of tomatoes under water deficit irrigation publication-title: Postharvest Biol Technol doi: 10.1016/j.postharvbio.2022.112112 – volume: 40 start-page: 1197 year: 2017 end-page: 1213 ident: CR1 article-title: Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response publication-title: Plant Cell Environ doi: 10.1111/pce.12916 – volume: 33 start-page: 1158 year: 2019 end-page: 1163 ident: CR13 article-title: Genome-wide identification and evolutionary analysis of neutral/alkaline invertases in publication-title: Biotechnol Biotec Eq doi: 10.1080/13102818.2019.1643784 – volume: 115 start-page: 609 year: 1997 end-page: 616 ident: CR74 article-title: Sucrose accumulation in the sugarcane stem is regulated by the difference between the activities of soluble acid invertase and sucrose phosphate synthase publication-title: Plant Physiol doi: 10.1104/pp.115.2.609 – volume: 258 start-page: 108753 year: 2019 ident: CR63 article-title: Effects of soil water stress on fruit yield, quality and their relationship with sugar metabolism in ‘Gala’apple publication-title: Sci Hortic doi: 10.1016/j.scienta.2019.108753 – volume: 8 start-page: 1130 year: 2007 ident: CR29 article-title: Vegetable grafting as a tool to improve drought resistance and water use efficiency publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01130 – volume: 164 start-page: 923 year: 2007 end-page: 933 ident: CR35 article-title: Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants publication-title: J Plant Physiol doi: 10.1016/j.jplph.2006.04.014 – volume: 8 start-page: 111 year: 2017 ident: CR73 article-title: Genome-wide analysis of the sucrose synthase gene family in grape ( ): structure, evolution, and expression profiles publication-title: Genes doi: 10.3390/genes8040111 – volume: 174 start-page: 534 year: 2008 end-page: 543 ident: CR20 article-title: An expression analysis profile for the entire sucrose synthase gene family in rice publication-title: Plant Sci doi: 10.1016/j.plantsci.2008.02.009 – volume: 22 start-page: 4673 year: 1994 end-page: 4680 ident: CR57 article-title: Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice publication-title: Nucleic Acids Res doi: 10.1093/nar/22.22.4673 – volume: 242 start-page: 153 year: 2015 end-page: 166 ident: CR64 article-title: Analysis of the sucrose synthase gene family in tobacco: structure, phylogeny, and expression patterns publication-title: Planta doi: 10.1007/s00425-015-2297-1 – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: CR33 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2 method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 317 start-page: 126407 year: 2020 ident: CR51 article-title: The postharvest ripening of strawberry fruits induced by abscisic acid and sucrose differs from their in vivo ripening publication-title: Food Chem doi: 10.1016/j.foodchem.2020.126407 – volume: 30 start-page: 1381 year: 2007 end-page: 1399 ident: CR10 article-title: Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit publication-title: Plant Cell Environ doi: 10.1111/J.1365-3040.2007.01716.X – volume: 61 start-page: 219 year: 2017 end-page: 226 ident: CR32 article-title: Expression of sucrose metabolism and transport genes in cassava petiole abscission zones in response to water stress publication-title: Biol Plant doi: 10.1007/s10535-016-0658-7 – volume: 281 start-page: 291 year: 2014 end-page: 305 ident: CR68 article-title: Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers publication-title: FEBS J doi: 10.1111/febs.12595 – volume: 50 start-page: 1281 year: 1999 end-page: 1288 ident: CR41 article-title: From QTLs for enzyme activity to candidate genes in maize publication-title: J Exp Bot doi: 10.1093/jxb/50.337.1281 – volume: 6 start-page: 291 year: 2018 ident: CR40 article-title: Correlation of apiose levels and growth rates in duckweeds publication-title: Front Chem doi: 10.3389/FCHEM.2018.00291 – volume: 9 start-page: 339 year: 2018 ident: CR52 article-title: Plant fructokinases: evolutionary, developmental, and metabolic aspects in sink tissues publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00339 – volume: 226 start-page: 1535 year: 2007 end-page: 1545 ident: CR60 article-title: Differential expression of alkaline and neutral invertases in response to environmental stresses: characterization of an alkaline isoform as a stress-response enzyme in wheat leaves publication-title: Planta doi: 10.1007/s00425-007-0590-3 – volume: 126 start-page: 599 year: 2001 end-page: 605 ident: CR21 article-title: Metabolic contributors to drought-enhanced accumulation of sugars and acids in oranges publication-title: J Am Soc Hortic Sci doi: 10.21273/jashs.126.5.599 – volume: 64 start-page: 5245 year: 2004 end-page: 5250 ident: CR3 article-title: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-0496 – volume: 10 start-page: e0129598 year: 2015 ident: CR38 article-title: Transcriptomic analysis reveals possible influences of ABA on secondary metabolism of pigments, flavonoids and antioxidants in tomato fruit during ripening publication-title: PLoS ONE doi: 10.1371/journal.pone.0129598 – volume: 539 start-page: 58 year: 2014 end-page: 67 ident: CR2 article-title: Identification and characterization of the Populus sucrose synthase gene family publication-title: Gene doi: 10.1016/j.gene.2014.01.062 – volume: 34 start-page: 592 year: 2011 end-page: 604 ident: CR53 article-title: Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2010.02265.x – volume: 198 start-page: 453 year: 2013 end-page: 465 ident: CR25 article-title: Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening publication-title: New Phytol doi: 10.1111/NPH.12176 – volume: 97 start-page: 385 year: 2018 end-page: 406 ident: CR28 article-title: Genome-wide analysis of the invertase gene family from maize publication-title: Plant Mol Biol doi: 10.1007/s11103-018-0746-5 – volume: 6 start-page: 208 year: 2003 end-page: 214 ident: CR34 article-title: New complexities in the synthesis of sucrose publication-title: Curr Opin Plant Biol doi: 10.1016/S1369-5266(03)00033-5 – volume: 36 start-page: 159 year: 2013 end-page: 175 ident: CR14 article-title: A diminution in ascorbate oxidase activity affects carbonal location and improves yield in tomato under water deficit publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2012.02564.x – volume: 228 start-page: 51 year: 2008 end-page: 59 ident: CR26 article-title: OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice ( L.) publication-title: Planta doi: 10.1007/s00425-008-0718-0 – volume: 55 start-page: 349 year: 2012 end-page: 360 ident: CR31 article-title: Comparative analysis of water stress-responsive transcriptomes in drought-susceptible and -tolerant wheat ( L.) publication-title: J Plant Biol doi: 10.1007/s12374-011-0032-4 – volume: 55 start-page: 10812 year: 2007 end-page: 10819 ident: CR55 article-title: Effect of water deficit irrigation and inoculation with on strawberry ( ) fruit quality publication-title: J Agr Food Chem doi: 10.1021/jf072101n – volume: 8 start-page: 491 year: 2022 ident: CR72 article-title: , a sucrose phosphate synthase gene, mediates plant growth and thermotolerance in tomato publication-title: Horticulturae doi: 10.3390/horticulturae8060491 – volume: 65 start-page: 4097 year: 2014 end-page: 4117 ident: CR44 article-title: Water shortage and quality of fleshy fruits - making the most of the unavoidable publication-title: J Exp Bot doi: 10.1093/jxb/eru197 – volume: 220 start-page: 259 year: 2017 end-page: 266 ident: CR36 article-title: Ectopic expression of apple MdSUT2 gene influences development and abiotic stress resistance in tomato publication-title: Sci Hortic doi: 10.1016/j.scienta.2017.04.013 – volume: 148 start-page: 339 year: 1965 end-page: 346 ident: CR49 article-title: Sap pressure in vascular plants publication-title: Science doi: 10.1126/SCIENCE.148.3668.339 – volume: 485 start-page: 635 year: 2012 end-page: 641 ident: CR56 article-title: The tomato genome sequence provides insights into fleshy fruit evolution publication-title: Nature doi: 10.1038/nature11119 – volume: 160 start-page: 777 year: 2012 end-page: 787 ident: CR62 article-title: New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton publication-title: Plant Physiol doi: 10.1104/pp.112.203893 – volume: 85 start-page: 741 year: 2000 end-page: 750 ident: CR7 article-title: Seasonal evolution of the quality of fresh glasshouse tomatoes under Mediterranean conditions, as affected by air vapour pressure deficit and plant fruit load publication-title: Ann Bot doi: 10.1006/anbo.2000.1123 – volume: 6 start-page: 1563 year: 2017 end-page: 1572 ident: CR12 article-title: Sucrose metabolism: controls the sugar sensing and generation of signalling molecules in plants publication-title: J Pharmacogn Phytochem – volume: 35 start-page: 382 year: 2008 end-page: 393 ident: CR47 article-title: Expression of sucrose synthase in the developing endosperm is essential for early seed development in cotton publication-title: Funct Plant Biol doi: 10.1071/FP08017 – volume: 1 start-page: 31 year: 2000 end-page: 67 ident: CR54 article-title: Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes publication-title: Crit Rev Plant Sci doi: 10.1080/07352680091139178 – volume: 36 start-page: 1256 year: 2013 end-page: 1267 ident: CR37 article-title: Mapping quantitative trait loci for freezing tolerance in a recombinant inbred line population of accessions Tenela and C24 reveals REVEILLE1 as negative regulator of cold acclimation publication-title: Plant Cell Environ doi: 10.1111/pce.12054 – volume: 9 start-page: 606 year: 2004 end-page: 613 ident: CR45 article-title: Function and regulation of plant invertases: sweet sensations publication-title: Trend Plant Sci doi: 10.1016/j.tplants.2004.10.009 – volume: 5 start-page: 17583 year: 2015 ident: CR27 article-title: Sucrose metabolism gene families and their biological functions publication-title: Sci Rep doi: 10.1038/srep17583 – volume: 92 start-page: 205 year: 2020 end-page: 217 ident: CR65 article-title: New insights into the evolution and expression dynamics of invertase gene family in publication-title: Plant Growth Regul doi: 10.1007/s10725-020-00631-2 – volume: 220 start-page: 259 year: 2017 ident: 1288_CR36 publication-title: Sci Hortic doi: 10.1016/j.scienta.2017.04.013 – volume: 97 start-page: 385 year: 2018 ident: 1288_CR28 publication-title: Plant Mol Biol doi: 10.1007/s11103-018-0746-5 – volume: 67 start-page: 49 year: 2012 ident: 1288_CR6 publication-title: Fruits doi: 10.1051/fruits/2011066 – volume: 71 start-page: 1249 year: 2020 ident: 1288_CR22 publication-title: J Exp Bot doi: 10.1093/jxb/erz526 – volume: 5 start-page: 17583 year: 2015 ident: 1288_CR27 publication-title: Sci Rep doi: 10.1038/srep17583 – volume: 25 start-page: 402 year: 2001 ident: 1288_CR33 publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 6 start-page: 208 year: 2003 ident: 1288_CR34 publication-title: Curr Opin Plant Biol doi: 10.1016/S1369-5266(03)00033-5 – volume: 4 start-page: 406 year: 1987 ident: 1288_CR48 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a040454 – volume: 6 start-page: 1563 year: 2017 ident: 1288_CR12 publication-title: J Pharmacogn Phytochem – volume: 115 start-page: 609 year: 1997 ident: 1288_CR74 publication-title: Plant Physiol doi: 10.1104/pp.115.2.609 – volume: 198 start-page: 453 year: 2013 ident: 1288_CR25 publication-title: New Phytol doi: 10.1111/NPH.12176 – volume: 1 start-page: 31 year: 2000 ident: 1288_CR54 publication-title: Crit Rev Plant Sci doi: 10.1080/07352680091139178 – volume: 64 start-page: 5245 year: 2004 ident: 1288_CR3 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-0496 – volume: 61 start-page: 219 year: 2017 ident: 1288_CR32 publication-title: Biol Plant doi: 10.1007/s10535-016-0658-7 – volume: 228 start-page: 51 year: 2008 ident: 1288_CR26 publication-title: Planta doi: 10.1007/s00425-008-0718-0 – volume: 62 start-page: 3849 year: 2011 ident: 1288_CR67 publication-title: J Exp Bot doi: 10.1093/jxb/err069 – volume: 190 start-page: 26 year: 2016 ident: 1288_CR43 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2015.10.006 – volume: 65 start-page: 33 year: 2014 ident: 1288_CR46 publication-title: Ann Rev Plant Biol doi: 10.1146/annurev-arplant-050213-040251 – volume: 258 start-page: 108753 year: 2019 ident: 1288_CR63 publication-title: Sci Hortic doi: 10.1016/j.scienta.2019.108753 – volume: 252 start-page: 23 year: 2020 ident: 1288_CR8 publication-title: Planta doi: 10.1007/s00425-020-03421-2 – volume: 113 start-page: 12580 year: 2016 ident: 1288_CR70 publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.1613910113 – volume: 10 start-page: e0129598 year: 2015 ident: 1288_CR38 publication-title: PLoS ONE doi: 10.1371/journal.pone.0129598 – volume: 226 start-page: 1535 year: 2007 ident: 1288_CR60 publication-title: Planta doi: 10.1007/s00425-007-0590-3 – volume: 17 start-page: 847 year: 2018 ident: 1288_CR58 publication-title: J Integr Agr doi: 10.1016/S2095-3119(17)61755-6 – volume: 108 start-page: 1471 year: 1995 ident: 1288_CR50 publication-title: Plant Physiol doi: 10.1104/pp.108.4.1471 – volume: 242 start-page: 153 year: 2015 ident: 1288_CR64 publication-title: Planta doi: 10.1007/s00425-015-2297-1 – volume: 145 start-page: 616 year: 2007 ident: 1288_CR30 publication-title: Plant Physiol doi: 10.1104/pp.107.105049 – volume: 114 start-page: 947 year: 1997 ident: 1288_CR59 publication-title: Plant Physiol doi: 10.1104/pp.114.3.947 – volume: 92 start-page: 205 year: 2020 ident: 1288_CR65 publication-title: Plant Growth Regul doi: 10.1007/s10725-020-00631-2 – volume: 174 start-page: 534 year: 2008 ident: 1288_CR20 publication-title: Plant Sci doi: 10.1016/j.plantsci.2008.02.009 – volume: 65 start-page: 1713 year: 2014 ident: 1288_CR9 publication-title: J Exp Bot doi: 10.1093/jxb/ert416 – volume: 60 start-page: 3353 year: 2009 ident: 1288_CR66 publication-title: J Exp Bot doi: 10.1093/jxb/erp169 – volume: 37 start-page: 81 year: 2015 ident: 1288_CR71 publication-title: Acta Physiol Plant doi: 10.1007/s11738-015-1829-4 – volume: 36 start-page: 1256 year: 2013 ident: 1288_CR37 publication-title: Plant Cell Environ doi: 10.1111/pce.12054 – volume: 146 start-page: 37 year: 2019 ident: 1288_CR69 publication-title: Prog Biophys Mol Biol doi: 10.1016/j.pbiomolbio.2018.11.006 – volume: 23 start-page: 163 year: 2018 ident: 1288_CR61 publication-title: Trend Plant Sci doi: 10.1016/j.tplants.2017.11.001 – volume: 36 start-page: 159 year: 2013 ident: 1288_CR14 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2012.02564.x – volume: 115 start-page: 273 year: 1997 ident: 1288_CR16 publication-title: Plant Physiol doi: 10.1104/pp.115.1.273 – volume: 217–218 start-page: 109 year: 2014 ident: 1288_CR19 publication-title: Plant Sci doi: 10.1016/j.plantsci.2013.12.007 – volume: 160 start-page: 777 year: 2012 ident: 1288_CR62 publication-title: Plant Physiol doi: 10.1104/pp.112.203893 – volume: 60 start-page: 615 year: 2005 ident: 1288_CR24 publication-title: J Mol Evol doi: 10.1007/s00239-004-0242-1 – volume: 19 start-page: 119 year: 1999 ident: 1288_CR15 publication-title: Plant J doi: 10.1046/j.1365-313X.1999.00506.x – volume: 317 start-page: 126407 year: 2020 ident: 1288_CR51 publication-title: Food Chem doi: 10.1016/j.foodchem.2020.126407 – volume: 30 start-page: 1381 year: 2007 ident: 1288_CR10 publication-title: Plant Cell Environ doi: 10.1111/J.1365-3040.2007.01716.X – volume: 55 start-page: 10812 year: 2007 ident: 1288_CR55 publication-title: J Agr Food Chem doi: 10.1021/jf072101n – volume: 135 start-page: 1753 year: 2004 ident: 1288_CR11 publication-title: Plant Physiol doi: 10.1104/pp.104.042457 – volume: 9 start-page: 606 year: 2004 ident: 1288_CR45 publication-title: Trend Plant Sci doi: 10.1016/j.tplants.2004.10.009 – volume: 85 start-page: 741 year: 2000 ident: 1288_CR7 publication-title: Ann Bot doi: 10.1006/anbo.2000.1123 – volume: 164 start-page: 923 year: 2007 ident: 1288_CR35 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2006.04.014 – volume: 50 start-page: 1281 year: 1999 ident: 1288_CR41 publication-title: J Exp Bot doi: 10.1093/jxb/50.337.1281 – volume: 8 start-page: 111 year: 2017 ident: 1288_CR73 publication-title: Genes doi: 10.3390/genes8040111 – volume: 55 start-page: 349 year: 2012 ident: 1288_CR31 publication-title: J Plant Biol doi: 10.1007/s12374-011-0032-4 – volume: 6 start-page: 291 year: 2018 ident: 1288_CR40 publication-title: Front Chem doi: 10.3389/FCHEM.2018.00291 – volume: 52 start-page: 881 year: 2001 ident: 1288_CR39 publication-title: J Exp Bot doi: 10.1093/jexbot/52.358.881 – volume: 9 start-page: 339 year: 2018 ident: 1288_CR52 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00339 – volume: 126 start-page: 599 year: 2001 ident: 1288_CR21 publication-title: J Am Soc Hortic Sci doi: 10.21273/jashs.126.5.599 – volume: 8 start-page: 491 year: 2022 ident: 1288_CR72 publication-title: Horticulturae doi: 10.3390/horticulturae8060491 – volume: 65 start-page: 809 year: 2014 ident: 1288_CR17 publication-title: J Exp Bot doi: 10.1093/jxb/ert400 – volume: 40 start-page: 1197 year: 2017 ident: 1288_CR1 publication-title: Plant Cell Environ doi: 10.1111/pce.12916 – volume: 4 start-page: 391 year: 2011 ident: 1288_CR23 publication-title: Plant Omics – volume: 29 start-page: 1023 year: 2007 ident: 1288_CR18 publication-title: Hereditas doi: 10.1360/yc-007-1023 – volume: 539 start-page: 58 year: 2014 ident: 1288_CR2 publication-title: Gene doi: 10.1016/j.gene.2014.01.062 – volume: 55 start-page: 397 year: 2004 ident: 1288_CR5 publication-title: J Exp Bot doi: 10.1093/jxb/erh047 – volume: 33 start-page: 1158 year: 2019 ident: 1288_CR13 publication-title: Biotechnol Biotec Eq doi: 10.1080/13102818.2019.1643784 – volume: 281 start-page: 291 year: 2014 ident: 1288_CR68 publication-title: FEBS J doi: 10.1111/febs.12595 – volume: 195 start-page: 112112 year: 2023 ident: 1288_CR4 publication-title: Postharvest Biol Technol doi: 10.1016/j.postharvbio.2022.112112 – volume: 64 start-page: 575 year: 2007 ident: 1288_CR42 publication-title: Plant Mol Biol doi: 10.1007/s11103-007-9177-4 – volume: 148 start-page: 339 year: 1965 ident: 1288_CR49 publication-title: Science doi: 10.1126/SCIENCE.148.3668.339 – volume: 22 start-page: 4673 year: 1994 ident: 1288_CR57 publication-title: Nucleic Acids Res doi: 10.1093/nar/22.22.4673 – volume: 8 start-page: 1130 year: 2007 ident: 1288_CR29 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01130 – volume: 65 start-page: 4097 year: 2014 ident: 1288_CR44 publication-title: J Exp Bot doi: 10.1093/jxb/eru197 – volume: 485 start-page: 635 year: 2012 ident: 1288_CR56 publication-title: Nature doi: 10.1038/nature11119 – volume: 35 start-page: 382 year: 2008 ident: 1288_CR47 publication-title: Funct Plant Biol doi: 10.1071/FP08017 – volume: 34 start-page: 592 year: 2011 ident: 1288_CR53 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2010.02265.x |
SSID | ssj0063471 |
Score | 2.2923656 |
Snippet | The impact of water deficit on sucrose metabolism in sink organs like the fruit remains poorly known despite the need to improve fruit crops resilience to... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 159 |
SubjectTerms | Accumulation Biological and Medical Physics biomass Biomedical and Life Sciences Biophysics Cell Biology Cell walls Climate change Drought fructose Fruit crops fruit maturity fruit quality Fruit set Fruits Gene expression Gene families Genes glucose irrigation Life Sciences Metabolism Plant Physiology Plant Sciences Research Article Sucrose Sucrose synthase Sucrose-phosphate synthase Tomatoes vacuoles Water availability Water deficit Water shortages Water supply |
Title | Dynamics of the sucrose metabolism and related gene expression in tomato fruits under water deficit |
URI | https://link.springer.com/article/10.1007/s12298-023-01288-7 https://www.ncbi.nlm.nih.gov/pubmed/36875726 https://www.proquest.com/docview/2781699704 https://www.proquest.com/docview/2783787839 https://www.proquest.com/docview/2888022992 https://pubmed.ncbi.nlm.nih.gov/PMC9981854 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5By4EL4t2FsjISN4hEnIljHxdoqUBwYqVyiuzEI1ZqE7TJCvj3jJ1kV0uhEmdPEjvz8DeehwFeON5zU6Q6KRgeJGwlKWEXzCS8nXunM0fGhqOBT5_V2RI_nOfnY1FYN2W7TyHJaKl3xW5ShnIwGfJ_JPO3uAmHefDdWYqXcjHZX5UNblZojpTk2uBYKvP3d-xvR1cw5tVUyT_ipXEbOr0Ld0b8KBYDw-_BDd_ch1tvWsZ4vx5A9W64YL4TLQmGdqLbhO96cel75vbFqrsUtqlFrGDxtWDp8cL_HJNhG7FqRN8yhm0FrTervhOhxGwtfjDxWtQ-dJvoH8Ly9OTL27NkvEYhqRjs9UmMpKGqSWqboTe6InTWp4R1XmFRZdJYRO-wJqUxJa1IZVR4VIQWqcoewUHTNv4IBFlHnr02nVtCXUmnKM8JU-lS61iXZ5BOf7Osxh7j4aqLi3LXHTlwoGQOlJEDZTGDl9tnvg8dNq6lPp6YVI7a1pWy0KkypniNM3i-HWY9CcEP2_h2E2kyNk6MB6-h0TpUHhsjZ_B44Pt2SpkKrf8lL7HYk4gtQejTvT_SrL7Fft3s0TIq4rm9mmRnN_V_r_TJ_5E_hdsyynXItDmGg3698c8YL_VuDoeL918_nszjUdY8KstvH4gPsg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQYIL4s1CASNxg0jEmTj2sTyqBdqeulJvkZ14xEptgjZZAf-esZPsailU4pxJYmde32QeBnjt2OemSHVSMDxI2EpSwiGYSdide6czR8aGXwPHJ2q-wC9n-dnYFNZN1e5TSjJa6m2zm5ShHUyG-h_J_C2uww0GAzoUci3kwWR_VTaEWWE4UpJrg2OrzN-fseuOLmHMy6WSf-RLoxs6vAt3RvwoDgaG34NrvrkPN9-3jPF-PYDq43DAfCdaEgztRLcO7_XiwvfM7fNldyFsU4vYweJrwdLjhf85FsM2YtmIvmUM2wparZd9J0KL2Ur8YOKVqH2YNtE_hMXhp9MP82Q8RiGpGOz1ScykoapJapuhN7oidNanhHVeYVFl0lhE77AmpTElrUhlVHhUhBapyh7BXtM2_gkIso48R206t4S6kk5RnhOm0qXWsS7PIJ2-ZlmNM8bDURfn5XY6cuBAyRwoIwfKYgZvNvd8HyZsXEm9PzGpHLWtK2WhU2VM8Q5n8GpzmfUkJD9s49t1pMnYODEevIJG69B5bIycweOB75slZSqM_pe8xWJHIjYEYU737pVm-S3O6-aIllERr-3tJDvbpf97p0__j_wl3JqfHh-VR59Pvj6D2zLKeKi62Ye9frX2zxk79e5FVJXfL7YQAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagIMQF8WZpC0biBlEbZ-LYx5ayKq-KAyv1FtmJR6zUOtUmK-DfM3aSXbaFSpw9ie3MjOdz5sXYa0s2NwWsk4LgQUKnJCZ0BdMJmXNnVWZRm_Br4MuJPJ7Bx9P89I8s_hjtProk-5yGUKXJd3sXNe6tE9-ECKlhIsQCCeJ1cZPdoonSINczcTCexTLrr1yhUFKSKw1D2szf37Fpmq7gzathk5d8p9EkTe-zewOW5Ac98x-wG84_ZLcPG8J7vx6x6qhvNt_yBjnBPN4uw7yOn7uOOH82b8-58TWP2Syu5iRJjrufQ2Cs53PPu4bwbMNxsZx3LQ_pZgv-g4gXvHah8kT3mM2m77-9O06GlgpJRcCvS6JXDWSNQpkMnFYVgjUuRajzCooqE9oAOAs1SgUpKokyw8KBRDCAVfaEbfnGu2eMo7Ho6AancoOgKmEl5jlCKmxqLOn1hKXj1yyrod54aHtxVq4rJQcOlMSBMnKgLCbszeqZi77axrXUOyOTykHz2lIUKpVaF_swYa9Ww6QzwRFivGuWkSajg4qw4TU0SoUsZK3FhD3t-b5aUiZDGwBBWyw2JGJFEGp2b474-fdYu5tut4SQaG1vR9lZL_3fO33-f-Qv2Z2vR9Py84eTT9vsrogiHgJwdthWt1i6XYJRnX0RNeU3g94UPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+the+sucrose+metabolism+and+related+gene+expression+in+tomato+fruits+under+water+deficit&rft.jtitle=Physiology+and+molecular+biology+of+plants&rft.au=Barbosa%2C+Ana+C.+O.&rft.au=Rocha%2C+Dilson+S.&rft.au=Silva%2C+Glaucia+C.+B.&rft.au=Santos%2C+Miguel+G.+M.&rft.date=2023-02-01&rft.pub=Springer+India&rft.issn=0971-5894&rft.eissn=0974-0430&rft.volume=29&rft.issue=2&rft.spage=159&rft.epage=172&rft_id=info:doi/10.1007%2Fs12298-023-01288-7&rft_id=info%3Apmid%2F36875726&rft.externalDocID=PMC9981854 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0971-5894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0971-5894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0971-5894&client=summon |