Acetylation of PHF5A Modulates Stress Responses and Colorectal Carcinogenesis through Alternative Splicing-Mediated Upregulation of KDM3A

Alternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates accompanying the malignant phenotype under stress. Here, we uncover a list of hyperacetylated proteins in the context of acutely reduced Acetyl-CoA...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 74; no. 6; pp. 1250 - 1263.e6
Main Authors Wang, Zhe, Yang, Xin, Liu, Cheng, Li, Xin, Zhang, Buyu, Wang, Bo, Zhang, Yu, Song, Chen, Zhang, Tianzhuo, Liu, Minghui, Liu, Boya, Ren, Mengmeng, Jiang, Hongpeng, Zou, Junhua, Liu, Xiaoyun, Zhang, Hongquan, Zhu, Wei-Guo, Yin, Yuxin, Zhang, Zhang, Gu, Wei, Luo, Jianyuan
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates accompanying the malignant phenotype under stress. Here, we uncover a list of hyperacetylated proteins in the context of acutely reduced Acetyl-CoA levels under nutrient starvation. PHF5A, a component of U2 snRNPs, can be acetylated at lysine 29 in response to multiple cellular stresses, which is dependent on p300. PHF5A acetylation strengthens the interaction among U2 snRNPs and affects global pre-mRNA splicing pattern and extensive gene expression. PHF5A hyperacetylation-induced alternative splicing stabilizes KDM3A mRNA and promotes its protein expression. Pathologically, PHF5A K29 hyperacetylation and KDM3A upregulation axis are correlated with poor prognosis of colon cancer. Our findings uncover a mechanism of an anti-stress pathway through which acetylation on PHF5A promotes the cancer cells’ capacity for stress resistance and consequently contributes to colon carcinogenesis. [Display omitted] •Quantitative acetylomics reveals hyperacetylated proteins upon nutrition starvation•Multiple cellular stresses result in p300-dependent PHF5A K29 acetylation•PHF5A K29 acetylation enhances KDM3A expression by stabilizing its mRNA•PHF5A acetylation and KDM3A upregulation predict poor prognosis in colon cancer Wang et al. uncover a list of proteins that become hyperacetylated upon nutrient starvation. p300-mediated PHF5A K29 acetylation is induced by multiple cellular stresses and affects global pre-mRNA splicing. PHF5A acetylation upregulates KDM3A expression by reducing its aberrant mRNA alternative splicing, which is positively correlated with colorectal tumorigenesis.
AbstractList Alternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates accompanying the malignant phenotype under stress. Here, we uncover a list of hyperacetylated proteins in the context of acutely reduced Acetyl-CoA levels under nutrient starvation. PHF5A, a component of U2 snRNPs, can be acetylated at lysine 29 in response to multiple cellular stresses, which is dependent on p300. PHF5A acetylation strengthens the interaction among U2 snRNPs and affects global pre-mRNA splicing pattern and extensive gene expression. PHF5A hyperacetylation-induced alternative splicing stabilizes KDM3A mRNA and promotes its protein expression. Pathologically, PHF5A K29 hyperacetylation and KDM3A upregulation axis are correlated with poor prognosis of colon cancer. Our findings uncover a mechanism of an anti-stress pathway through which acetylation on PHF5A promotes the cancer cells’ capacity for stress resistance and consequently contributes to colon carcinogenesis. [Display omitted] •Quantitative acetylomics reveals hyperacetylated proteins upon nutrition starvation•Multiple cellular stresses result in p300-dependent PHF5A K29 acetylation•PHF5A K29 acetylation enhances KDM3A expression by stabilizing its mRNA•PHF5A acetylation and KDM3A upregulation predict poor prognosis in colon cancer Wang et al. uncover a list of proteins that become hyperacetylated upon nutrient starvation. p300-mediated PHF5A K29 acetylation is induced by multiple cellular stresses and affects global pre-mRNA splicing. PHF5A acetylation upregulates KDM3A expression by reducing its aberrant mRNA alternative splicing, which is positively correlated with colorectal tumorigenesis.
Alternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates accompanying the malignant phenotype under stress. Here, we uncover a list of hyperacetylated proteins in the context of acutely reduced Acetyl-CoA levels under nutrient starvation. PHF5A, a component of U2 snRNPs, can be acetylated at lysine 29 in response to multiple cellular stresses, which is dependent on p300. PHF5A acetylation strengthens the interaction among U2 snRNPs and affects global pre-mRNA splicing pattern and extensive gene expression. PHF5A hyperacetylation-induced alternative splicing stabilizes KDM3A mRNA and promotes its protein expression. Pathologically, PHF5A K29 hyperacetylation and KDM3A upregulation axis are correlated with poor prognosis of colon cancer. Our findings uncover a mechanism of an anti-stress pathway through which acetylation on PHF5A promotes the cancer cells' capacity for stress resistance and consequently contributes to colon carcinogenesis.Alternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates accompanying the malignant phenotype under stress. Here, we uncover a list of hyperacetylated proteins in the context of acutely reduced Acetyl-CoA levels under nutrient starvation. PHF5A, a component of U2 snRNPs, can be acetylated at lysine 29 in response to multiple cellular stresses, which is dependent on p300. PHF5A acetylation strengthens the interaction among U2 snRNPs and affects global pre-mRNA splicing pattern and extensive gene expression. PHF5A hyperacetylation-induced alternative splicing stabilizes KDM3A mRNA and promotes its protein expression. Pathologically, PHF5A K29 hyperacetylation and KDM3A upregulation axis are correlated with poor prognosis of colon cancer. Our findings uncover a mechanism of an anti-stress pathway through which acetylation on PHF5A promotes the cancer cells' capacity for stress resistance and consequently contributes to colon carcinogenesis.
Alternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates accompanying the malignant phenotype under stress. Here, we uncover a list of hyperacetylated proteins in the context of acutely reduced Acetyl-CoA levels under nutrient starvation. PHF5A, a component of U2 snRNPs, can be acetylated at lysine 29 in response to multiple cellular stresses, which is dependent on p300. PHF5A acetylation strengthens the interaction among U2 snRNPs and affects global pre-mRNA splicing pattern and extensive gene expression. PHF5A hyperacetylation-induced alternative splicing stabilizes KDM3A mRNA and promotes its protein expression. Pathologically, PHF5A K29 hyperacetylation and KDM3A upregulation axis are correlated with poor prognosis of colon cancer. Our findings uncover a mechanism of an anti-stress pathway through which acetylation on PHF5A promotes the cancer cells' capacity for stress resistance and consequently contributes to colon carcinogenesis.
Author Wang, Zhe
Song, Chen
Yang, Xin
Gu, Wei
Zhang, Yu
Liu, Xiaoyun
Zhang, Buyu
Yin, Yuxin
Zhang, Tianzhuo
Li, Xin
Zou, Junhua
Zhang, Zhang
Jiang, Hongpeng
Luo, Jianyuan
Ren, Mengmeng
Wang, Bo
Liu, Minghui
Zhang, Hongquan
Liu, Cheng
Liu, Boya
Zhu, Wei-Guo
Author_xml – sequence: 1
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
  organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
– sequence: 2
  givenname: Xin
  surname: Yang
  fullname: Yang, Xin
  organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
– sequence: 3
  givenname: Cheng
  surname: Liu
  fullname: Liu, Cheng
  organization: Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
– sequence: 4
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: Department of Allergy, Peking Union Medical College Hospital, Beijing 100730, China
– sequence: 5
  givenname: Buyu
  surname: Zhang
  fullname: Zhang, Buyu
  organization: Department of Microbiology, Peking University Health Science Center, Beijing 100191, China
– sequence: 6
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  organization: Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China
– sequence: 7
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
– sequence: 8
  givenname: Chen
  surname: Song
  fullname: Song, Chen
  organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
– sequence: 9
  givenname: Tianzhuo
  surname: Zhang
  fullname: Zhang, Tianzhuo
  organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
– sequence: 10
  givenname: Minghui
  surname: Liu
  fullname: Liu, Minghui
  organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
– sequence: 11
  givenname: Boya
  surname: Liu
  fullname: Liu, Boya
  organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
– sequence: 12
  givenname: Mengmeng
  surname: Ren
  fullname: Ren, Mengmeng
  organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
– sequence: 13
  givenname: Hongpeng
  surname: Jiang
  fullname: Jiang, Hongpeng
  organization: Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China
– sequence: 14
  givenname: Junhua
  surname: Zou
  fullname: Zou, Junhua
  organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
– sequence: 15
  givenname: Xiaoyun
  surname: Liu
  fullname: Liu, Xiaoyun
  organization: Department of Microbiology, Peking University Health Science Center, Beijing 100191, China
– sequence: 16
  givenname: Hongquan
  surname: Zhang
  fullname: Zhang, Hongquan
  organization: Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
– sequence: 17
  givenname: Wei-Guo
  surname: Zhu
  fullname: Zhu, Wei-Guo
  organization: Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518060, China
– sequence: 18
  givenname: Yuxin
  surname: Yin
  fullname: Yin, Yuxin
  organization: Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
– sequence: 19
  givenname: Zhang
  surname: Zhang
  fullname: Zhang, Zhang
  organization: Jingjie PTM Biolab (Hangzhou) Co. Ltd., Hangzhou, Zhejiang 310018, China
– sequence: 20
  givenname: Wei
  surname: Gu
  fullname: Gu, Wei
  organization: Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
– sequence: 21
  givenname: Jianyuan
  surname: Luo
  fullname: Luo, Jianyuan
  email: luojianyuan@bjmu.edu.cn
  organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31054974$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9vFCEUxYmpse3qNzCGR19mhIH5gw8mm9VaYzcaa5_JDNzZsmFhBKZJP4LfWra7auKDygvk5nfOJeecoxPnHSD0nJKSEtq82pY7bxXYsiJUlISXhIhH6IwS0RacNvzk-K7apj5F5zFuCaG87sQTdMooqblo-Rn6vlSQ7m2fjHfYj_jz5UW9xGuv5zyDiK9TgBjxF4iTdzEPeqfxylsfQKXe4lUflHF-Aw6iiTjdBj9vbvHSJgguu94Bvp6sycymWIM22VTjmynAZv699OPbNVs-RY_H3kZ4drwX6Obi3dfVZXH16f2H1fKqUDVpU0FHMbYVhZYC19XAgVGuVSUqBqoe-rZtlVJMD5zUXcebYeS8Y2KgWrORgQC2QC8PvlPw32aISe5MzDna3oGfo6yqrulq0RDxHyirKOlYPgv04ojOww60nILZ9eFe_kw6A_wAqOBjDDD-QiiR-0LlVh4KlftCJeGSPHzh9R8yZdJDcCn0xv5L_OYghpznnYEgozLgVO5hX5_U3vzd4Af_tr-M
CitedBy_id crossref_primary_10_1080_15548627_2022_2148432
crossref_primary_10_1038_s41392_020_00252_1
crossref_primary_10_1038_s41467_024_53830_0
crossref_primary_10_1016_j_biopha_2024_116488
crossref_primary_10_1093_carcin_bgad058
crossref_primary_10_1042_BCJ20240221
crossref_primary_10_3390_ijms222111790
crossref_primary_10_1038_s41467_025_57546_7
crossref_primary_10_1038_s41698_021_00158_3
crossref_primary_10_3389_fcell_2024_1403396
crossref_primary_10_3892_ijo_2022_5393
crossref_primary_10_1016_j_bbcan_2023_188973
crossref_primary_10_15252_embj_2020106393
crossref_primary_10_1021_acssensors_2c01345
crossref_primary_10_1038_s41598_023_44899_6
crossref_primary_10_1016_j_cellsig_2024_111445
crossref_primary_10_1158_0008_5472_CAN_20_0233
crossref_primary_10_1016_j_mce_2024_112383
crossref_primary_10_3390_biom13030417
crossref_primary_10_1016_j_celrep_2023_112102
crossref_primary_10_3390_metabo14030171
crossref_primary_10_1038_s41388_024_03235_6
crossref_primary_10_1038_s41419_021_03814_5
crossref_primary_10_1177_11779322241287115
crossref_primary_10_3390_cancers14030560
crossref_primary_10_3390_ijms241411299
crossref_primary_10_1016_j_jcmgh_2020_10_004
crossref_primary_10_1007_s13402_023_00835_4
crossref_primary_10_3389_fmmed_2022_1044585
crossref_primary_10_3389_fcell_2022_1065702
crossref_primary_10_1002_wrna_1815
crossref_primary_10_1038_s41419_022_04725_9
crossref_primary_10_1016_j_biopha_2023_115857
crossref_primary_10_1016_j_arr_2024_102324
crossref_primary_10_1002_ijc_33375
crossref_primary_10_1242_dev_202247
crossref_primary_10_1038_s41419_021_04031_w
crossref_primary_10_1186_s13062_023_00396_4
crossref_primary_10_1038_s41419_023_05561_1
crossref_primary_10_1007_s00018_020_03493_z
crossref_primary_10_3389_fmmed_2022_1011882
crossref_primary_10_1158_1541_7786_MCR_19_0889
crossref_primary_10_1080_00498254_2021_2001076
crossref_primary_10_1016_j_heliyon_2023_e18010
crossref_primary_10_1016_j_omtn_2021_10_025
crossref_primary_10_1186_s13046_022_02355_9
crossref_primary_10_1002_mc_23390
crossref_primary_10_1186_s13046_024_03053_4
crossref_primary_10_1186_s12967_022_03821_w
crossref_primary_10_3389_fcell_2021_793428
crossref_primary_10_1016_j_jare_2023_12_012
crossref_primary_10_3389_fcell_2021_710479
crossref_primary_10_1186_s12885_024_12620_z
crossref_primary_10_1186_s12870_021_02852_7
crossref_primary_10_3389_fmolb_2021_696319
crossref_primary_10_3724_zdxbyxb_2022_0459
crossref_primary_10_2174_0113862073249972231026060301
crossref_primary_10_4252_wjsc_v15_i5_302
crossref_primary_10_1016_j_tice_2023_102253
crossref_primary_10_3390_ani12202812
crossref_primary_10_3390_life13030604
crossref_primary_10_1053_j_gastro_2021_08_003
crossref_primary_10_1515_hsz_2022_0180
crossref_primary_10_3390_cancers12051098
crossref_primary_10_1038_s41421_024_00715_7
crossref_primary_10_1016_j_celrep_2023_113126
Cites_doi 10.1074/jbc.RA118.001730
10.4161/rna.22036
10.1158/0008-5472.CAN-17-3514
10.1126/science.1217032
10.1038/s41588-017-0004-9
10.1016/j.tibs.2012.02.009
10.1016/S0092-8674(00)00122-7
10.1016/j.molcel.2010.07.006
10.1074/jbc.M109.091553
10.1038/nature08909
10.1158/0008-5472.CAN-12-3231
10.1073/pnas.1313618111
10.1038/ncomms7428
10.1101/gad.212548.112
10.1016/j.cmet.2018.08.013
10.1126/science.289.5487.2126
10.1038/ncomms10258
10.1101/gad.290940.116
10.1038/ncomms15522
10.1158/2159-8290.CD-13-0253
10.1126/science.1179689
10.1016/S0006-291X(02)00277-2
10.1038/nrg2781
10.1016/j.ceb.2015.02.003
10.1016/0005-2787(70)90058-4
10.1038/ncb3424
10.1038/nature07777
10.1074/jbc.M804578200
10.1038/emboj.2010.333
10.1016/j.molcel.2014.01.016
10.1016/j.cell.2009.01.042
10.1186/s13046-018-0736-0
10.1016/j.jprot.2014.06.017
10.1016/j.molcel.2006.06.026
10.1101/cshperspect.a003707
10.1038/ncomms15146
10.1038/nprot.2016.095
10.1146/annurev.biochem.76.050106.093909
10.1016/j.molcel.2016.08.036
10.1016/j.cell.2006.03.027
10.1158/0008-5472.CAN-17-1912
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.molcel.2019.04.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 1263.e6
ExternalDocumentID 31054974
10_1016_j_molcel_2019_04_009
S1097276519302795
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
5VS
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c507t-1f9f721e71e4d2b4e314dc2923ec5ba777ccc3db4058846bf44839b1dd3f3e9e3
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Fri Jul 11 04:25:47 EDT 2025
Fri Jul 11 05:54:57 EDT 2025
Thu Apr 03 06:59:38 EDT 2025
Tue Jul 01 03:21:13 EDT 2025
Thu Apr 24 23:07:46 EDT 2025
Fri Feb 23 02:30:33 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords acetylation
p300
RNA stability
KDM3A
PHF5A
colorectal cancer
alternative splicing
cell proliferation
spliceosome
HDAC6
cellular stress
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-1f9f721e71e4d2b4e314dc2923ec5ba777ccc3db4058846bf44839b1dd3f3e9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S1097276519302795/pdf
PMID 31054974
PQID 2232108333
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2286859609
proquest_miscellaneous_2232108333
pubmed_primary_31054974
crossref_primary_10_1016_j_molcel_2019_04_009
crossref_citationtrail_10_1016_j_molcel_2019_04_009
elsevier_sciencedirect_doi_10_1016_j_molcel_2019_04_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-20
PublicationDateYYYYMMDD 2019-06-20
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Peng, Su, Ji, Yang, Miao, Mo, Li, Xu, Li, Yu (bib22) 2018; 293
Strikoudis, Lazaris, Trimarchi, Galvao Neto, Yang, Ntziachristos, Rothbart, Buckley, Dolgalev, Stadtfeld (bib28) 2016; 18
Teng, Tsai, Puyang, Seiler, Peng, Prajapati, Aird, Buonamici, Caleb, Chan (bib31) 2017; 8
Paik, Pearson, Lee, Kim (bib21) 1970; 213
Beyer, Kristensen, Jensen, Johansen, Staller (bib1) 2008; 283
Cretu, Schmitzová, Ponce-Salvatierra, Dybkov, De Laurentiis, Sharma, Will, Urlaub, Lührmann, Pena (bib4) 2016; 64
Pertea, Kim, Pertea, Leek, Salzberg (bib23) 2016; 11
Hubert, Bradley, Ding, Toledo, Herman, Skutt-Kakaria, Girard, Davison, Berndt, Corrin (bib11) 2013; 27
Tateishi, Okada, Kallin, Zhang (bib30) 2009; 458
Geeraert, Ratier, Pfisterer, Perdiz, Cantaloube, Rouault, Pattingre, Proikas-Cezanne, Codogno, Poüs (bib8) 2010; 285
Weake, Workman (bib33) 2010; 11
Chang, Imam, Wilkinson (bib3) 2007; 76
Mariño, Pietrocola, Eisenberg, Kong, Malik, Andryushkova, Schroeder, Pendl, Harger, Niso-Santano (bib17) 2014; 53
Sonenberg, Hinnebusch (bib27) 2009; 136
Will, Lührmann (bib34) 2011; 3
Yang, Hadjikyriacou, Xia, Gayatri, Kim, Zurita-Lopez, Kelly, Guo, Li, Clarke, Bedford (bib36) 2015; 6
Osawa, Tsuchida, Muramatsu, Shimamura, Wang, Suehiro, Kanki, Wada, Yuasa, Aburatani (bib20) 2013; 73
Yamane, Toumazou, Tsukada, Erdjument-Bromage, Tempst, Wong, Zhang (bib35) 2006; 125
Fan, Luo (bib7) 2010; 39
Li, Yu, Deng, Cheng, Yu, Kevork, Ramadoss, Ding, Li, Wang (bib13) 2017; 8
Hoskins, Moore (bib9) 2012; 37
Sebti, Prébois, Pérez-Gracia, Bauvy, Desmots, Pirot, Gongora, Bach, Hubberstey, Palissot (bib24) 2014; 111
Son, Park, Lee, Siddiqi, Lee, Menzies, Rubinsztein (bib26) 2019; 29
Bienz, Clevers (bib2) 2000; 103
Lin, Li, Liu, Zhang, Li, Chen, Zhang, Lian, Liu, Ruan (bib16) 2012; 336
Ohguchi, Hideshima, Bhasin, Gorgun, Santo, Cea, Samur, Mimura, Suzuki, Tai (bib19) 2016; 7
Tani, Akimitsu (bib29) 2012; 9
Zhang, Manley (bib39) 2013; 3
Hu, Liu, Yu, Liu (bib10) 2014; 109
Zhao, Xu, Jiang, Yu, Lin, Zhang, Yao, Zhou, Zeng, Li (bib40) 2010; 327
Li, Knowles, Humphrey, Barbeira, Dickinson, Im, Pritchard (bib14) 2018; 50
Shi, Tu (bib25) 2015; 33
Trappe, Ahmed, Gläser, Vogel, Tascou, Burfeind, Engel (bib32) 2002; 293
Falletta, Sanchez-Del-Campo, Chauhan, Effern, Kenyon, Kershaw, Siddaway, Lisle, Freter, Daniels (bib6) 2017; 31
Yang, Zhu, Zhang, Liu, Li, Zhu, Xu, Wang, Su, Ou, Wu (bib38) 2018; 37
Edmond, Moysan, Khochbin, Matthias, Brambilla, Brambilla, Gazzeri, Eymin (bib5) 2011; 30
Lin, Defossez, Guarente (bib15) 2000; 289
Nilsen, Graveley (bib18) 2010; 463
Kim, Sprung, Chen, Xu, Ball, Pei, Cheng, Kho, Xiao, Xiao (bib12) 2006; 23
Yang, Wang, Li, Liu, Liu, Liu, Chen, Ren, Wang, Yu (bib37) 2018; 78
Zheng, Xue, Shen, Li, Ma, Gong, Liu, Qiao, Xie, Lian (bib41) 2018; 78
Shi (10.1016/j.molcel.2019.04.009_bib25) 2015; 33
Geeraert (10.1016/j.molcel.2019.04.009_bib8) 2010; 285
Ohguchi (10.1016/j.molcel.2019.04.009_bib19) 2016; 7
Bienz (10.1016/j.molcel.2019.04.009_bib2) 2000; 103
Sebti (10.1016/j.molcel.2019.04.009_bib24) 2014; 111
Teng (10.1016/j.molcel.2019.04.009_bib31) 2017; 8
Mariño (10.1016/j.molcel.2019.04.009_bib17) 2014; 53
Yang (10.1016/j.molcel.2019.04.009_bib37) 2018; 78
Fan (10.1016/j.molcel.2019.04.009_bib7) 2010; 39
Hoskins (10.1016/j.molcel.2019.04.009_bib9) 2012; 37
Hubert (10.1016/j.molcel.2019.04.009_bib11) 2013; 27
Weake (10.1016/j.molcel.2019.04.009_bib33) 2010; 11
Tani (10.1016/j.molcel.2019.04.009_bib29) 2012; 9
Nilsen (10.1016/j.molcel.2019.04.009_bib18) 2010; 463
Pertea (10.1016/j.molcel.2019.04.009_bib23) 2016; 11
Kim (10.1016/j.molcel.2019.04.009_bib12) 2006; 23
Yang (10.1016/j.molcel.2019.04.009_bib36) 2015; 6
Edmond (10.1016/j.molcel.2019.04.009_bib5) 2011; 30
Trappe (10.1016/j.molcel.2019.04.009_bib32) 2002; 293
Son (10.1016/j.molcel.2019.04.009_bib26) 2019; 29
Beyer (10.1016/j.molcel.2019.04.009_bib1) 2008; 283
Lin (10.1016/j.molcel.2019.04.009_bib15) 2000; 289
Cretu (10.1016/j.molcel.2019.04.009_bib4) 2016; 64
Lin (10.1016/j.molcel.2019.04.009_bib16) 2012; 336
Li (10.1016/j.molcel.2019.04.009_bib13) 2017; 8
Osawa (10.1016/j.molcel.2019.04.009_bib20) 2013; 73
Yang (10.1016/j.molcel.2019.04.009_bib38) 2018; 37
Hu (10.1016/j.molcel.2019.04.009_bib10) 2014; 109
Tateishi (10.1016/j.molcel.2019.04.009_bib30) 2009; 458
Paik (10.1016/j.molcel.2019.04.009_bib21) 1970; 213
Strikoudis (10.1016/j.molcel.2019.04.009_bib28) 2016; 18
Peng (10.1016/j.molcel.2019.04.009_bib22) 2018; 293
Zheng (10.1016/j.molcel.2019.04.009_bib41) 2018; 78
Will (10.1016/j.molcel.2019.04.009_bib34) 2011; 3
Zhang (10.1016/j.molcel.2019.04.009_bib39) 2013; 3
Yamane (10.1016/j.molcel.2019.04.009_bib35) 2006; 125
Zhao (10.1016/j.molcel.2019.04.009_bib40) 2010; 327
Falletta (10.1016/j.molcel.2019.04.009_bib6) 2017; 31
Sonenberg (10.1016/j.molcel.2019.04.009_bib27) 2009; 136
Li (10.1016/j.molcel.2019.04.009_bib14) 2018; 50
Chang (10.1016/j.molcel.2019.04.009_bib3) 2007; 76
References_xml – volume: 29
  start-page: 192
  year: 2019
  end-page: 201
  ident: bib26
  article-title: Leucine signals to mTORC1 via its metabolite acetyl-coenzyme A
  publication-title: Cell Metab.
– volume: 23
  start-page: 607
  year: 2006
  end-page: 618
  ident: bib12
  article-title: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
  publication-title: Mol. Cell
– volume: 336
  start-page: 477
  year: 2012
  end-page: 481
  ident: bib16
  article-title: GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy
  publication-title: Science
– volume: 136
  start-page: 731
  year: 2009
  end-page: 745
  ident: bib27
  article-title: Regulation of translation initiation in eukaryotes: mechanisms and biological targets
  publication-title: Cell
– volume: 283
  start-page: 36542
  year: 2008
  end-page: 36552
  ident: bib1
  article-title: The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF
  publication-title: J. Biol. Chem.
– volume: 458
  start-page: 757
  year: 2009
  end-page: 761
  ident: bib30
  article-title: Role of Jhdm2a in regulating metabolic gene expression and obesity resistance
  publication-title: Nature
– volume: 293
  start-page: 10606
  year: 2018
  end-page: 10619
  ident: bib22
  article-title: Histone demethylase JMJD1A promotes colorectal cancer growth and metastasis by enhancing Wnt/β-catenin signaling
  publication-title: J. Biol. Chem.
– volume: 50
  start-page: 151
  year: 2018
  end-page: 158
  ident: bib14
  article-title: Annotation-free quantification of RNA splicing using LeafCutter
  publication-title: Nat. Genet.
– volume: 289
  start-page: 2126
  year: 2000
  end-page: 2128
  ident: bib15
  article-title: Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
  publication-title: Science
– volume: 78
  start-page: 372
  year: 2018
  end-page: 386
  ident: bib37
  article-title: SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation
  publication-title: Cancer Res.
– volume: 8
  start-page: 15146
  year: 2017
  ident: bib13
  article-title: KDM3 epigenetically controls tumorigenic potentials of human colorectal cancer stem cells through Wnt/β-catenin signalling
  publication-title: Nat. Commun.
– volume: 7
  start-page: 10258
  year: 2016
  ident: bib19
  article-title: The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival
  publication-title: Nat. Commun.
– volume: 327
  start-page: 1000
  year: 2010
  end-page: 1004
  ident: bib40
  article-title: Regulation of cellular metabolism by protein lysine acetylation
  publication-title: Science
– volume: 103
  start-page: 311
  year: 2000
  end-page: 320
  ident: bib2
  article-title: Linking colorectal cancer to Wnt signaling
  publication-title: Cell
– volume: 31
  start-page: 18
  year: 2017
  end-page: 33
  ident: bib6
  article-title: Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma
  publication-title: Genes Dev.
– volume: 11
  start-page: 1650
  year: 2016
  end-page: 1667
  ident: bib23
  article-title: Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown
  publication-title: Nat. Protoc.
– volume: 37
  start-page: 65
  year: 2018
  ident: bib38
  article-title: PHD-finger domain protein 5A functions as a novel oncoprotein in lung adenocarcinoma
  publication-title: J. Exp. Clin. Cancer Res.
– volume: 33
  start-page: 125
  year: 2015
  end-page: 131
  ident: bib25
  article-title: Acetyl-CoA and the regulation of metabolism: mechanisms and consequences
  publication-title: Curr. Opin. Cell Biol.
– volume: 293
  start-page: 816
  year: 2002
  end-page: 826
  ident: bib32
  article-title: Identification and characterization of a novel murine multigene family containing a PHD-finger-like motif
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 53
  start-page: 710
  year: 2014
  end-page: 725
  ident: bib17
  article-title: Regulation of autophagy by cytosolic acetyl-coenzyme A
  publication-title: Mol. Cell
– volume: 73
  start-page: 3019
  year: 2013
  end-page: 3028
  ident: bib20
  article-title: Inhibition of histone demethylase JMJD1A improves anti-angiogenic therapy and reduces tumor-associated macrophages
  publication-title: Cancer Res.
– volume: 3
  start-page: a003707
  year: 2011
  ident: bib34
  article-title: Spliceosome structure and function
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 78
  start-page: 3190
  year: 2018
  end-page: 3206
  ident: bib41
  article-title: PHF5A epigenetically inhibits apoptosis to promote breast cancer progression
  publication-title: Cancer Res.
– volume: 8
  start-page: 15522
  year: 2017
  ident: bib31
  article-title: Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A-SF3b complex
  publication-title: Nat. Commun.
– volume: 285
  start-page: 24184
  year: 2010
  end-page: 24194
  ident: bib8
  article-title: Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation
  publication-title: J. Biol. Chem.
– volume: 76
  start-page: 51
  year: 2007
  end-page: 74
  ident: bib3
  article-title: The nonsense-mediated decay RNA surveillance pathway
  publication-title: Annu. Rev. Biochem.
– volume: 37
  start-page: 179
  year: 2012
  end-page: 188
  ident: bib9
  article-title: The spliceosome: a flexible, reversible macromolecular machine
  publication-title: Trends Biochem. Sci.
– volume: 39
  start-page: 247
  year: 2010
  end-page: 258
  ident: bib7
  article-title: SIRT1 regulates UV-induced DNA repair through deacetylating XPA
  publication-title: Mol. Cell
– volume: 64
  start-page: 307
  year: 2016
  end-page: 319
  ident: bib4
  article-title: Molecular architecture of SF3b and structural consequences of its cancer-related mutations
  publication-title: Mol. Cell
– volume: 111
  start-page: 4115
  year: 2014
  end-page: 4120
  ident: bib24
  article-title: BAT3 modulates p300-dependent acetylation of p53 and autophagy-related protein 7 (ATG7) during autophagy
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 1127
  year: 2016
  end-page: 1138
  ident: bib28
  article-title: Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a
  publication-title: Nat. Cell Biol.
– volume: 3
  start-page: 1228
  year: 2013
  end-page: 1237
  ident: bib39
  article-title: Misregulation of pre-mRNA alternative splicing in cancer
  publication-title: Cancer Discov.
– volume: 213
  start-page: 513
  year: 1970
  end-page: 522
  ident: bib21
  article-title: Nonenzymatic acetylation of histones with acetyl-CoA
  publication-title: Biochim. Biophys. Acta
– volume: 6
  start-page: 6428
  year: 2015
  ident: bib36
  article-title: PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1233
  year: 2012
  end-page: 1238
  ident: bib29
  article-title: Genome-wide technology for determining RNA stability in mammalian cells: historical perspective and recent advantages based on modified nucleotide labeling
  publication-title: RNA Biol.
– volume: 27
  start-page: 1032
  year: 2013
  end-page: 1045
  ident: bib11
  article-title: Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A
  publication-title: Genes Dev.
– volume: 125
  start-page: 483
  year: 2006
  end-page: 495
  ident: bib35
  article-title: JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor
  publication-title: Cell
– volume: 109
  start-page: 16
  year: 2014
  end-page: 25
  ident: bib10
  article-title: Decreasing the amount of trypsin in in-gel digestion leads to diminished chemical noise and improved protein identifications
  publication-title: J. Proteomics
– volume: 463
  start-page: 457
  year: 2010
  end-page: 463
  ident: bib18
  article-title: Expansion of the eukaryotic proteome by alternative splicing
  publication-title: Nature
– volume: 11
  start-page: 426
  year: 2010
  end-page: 437
  ident: bib33
  article-title: Inducible gene expression: diverse regulatory mechanisms
  publication-title: Nat. Rev. Genet.
– volume: 30
  start-page: 510
  year: 2011
  end-page: 523
  ident: bib5
  article-title: Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin
  publication-title: EMBO J.
– volume: 293
  start-page: 10606
  year: 2018
  ident: 10.1016/j.molcel.2019.04.009_bib22
  article-title: Histone demethylase JMJD1A promotes colorectal cancer growth and metastasis by enhancing Wnt/β-catenin signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.001730
– volume: 9
  start-page: 1233
  year: 2012
  ident: 10.1016/j.molcel.2019.04.009_bib29
  article-title: Genome-wide technology for determining RNA stability in mammalian cells: historical perspective and recent advantages based on modified nucleotide labeling
  publication-title: RNA Biol.
  doi: 10.4161/rna.22036
– volume: 78
  start-page: 3190
  year: 2018
  ident: 10.1016/j.molcel.2019.04.009_bib41
  article-title: PHF5A epigenetically inhibits apoptosis to promote breast cancer progression
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-3514
– volume: 336
  start-page: 477
  year: 2012
  ident: 10.1016/j.molcel.2019.04.009_bib16
  article-title: GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy
  publication-title: Science
  doi: 10.1126/science.1217032
– volume: 50
  start-page: 151
  year: 2018
  ident: 10.1016/j.molcel.2019.04.009_bib14
  article-title: Annotation-free quantification of RNA splicing using LeafCutter
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-017-0004-9
– volume: 37
  start-page: 179
  year: 2012
  ident: 10.1016/j.molcel.2019.04.009_bib9
  article-title: The spliceosome: a flexible, reversible macromolecular machine
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2012.02.009
– volume: 103
  start-page: 311
  year: 2000
  ident: 10.1016/j.molcel.2019.04.009_bib2
  article-title: Linking colorectal cancer to Wnt signaling
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00122-7
– volume: 39
  start-page: 247
  year: 2010
  ident: 10.1016/j.molcel.2019.04.009_bib7
  article-title: SIRT1 regulates UV-induced DNA repair through deacetylating XPA
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.07.006
– volume: 285
  start-page: 24184
  year: 2010
  ident: 10.1016/j.molcel.2019.04.009_bib8
  article-title: Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.091553
– volume: 463
  start-page: 457
  year: 2010
  ident: 10.1016/j.molcel.2019.04.009_bib18
  article-title: Expansion of the eukaryotic proteome by alternative splicing
  publication-title: Nature
  doi: 10.1038/nature08909
– volume: 73
  start-page: 3019
  year: 2013
  ident: 10.1016/j.molcel.2019.04.009_bib20
  article-title: Inhibition of histone demethylase JMJD1A improves anti-angiogenic therapy and reduces tumor-associated macrophages
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3231
– volume: 111
  start-page: 4115
  year: 2014
  ident: 10.1016/j.molcel.2019.04.009_bib24
  article-title: BAT3 modulates p300-dependent acetylation of p53 and autophagy-related protein 7 (ATG7) during autophagy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1313618111
– volume: 6
  start-page: 6428
  year: 2015
  ident: 10.1016/j.molcel.2019.04.009_bib36
  article-title: PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7428
– volume: 27
  start-page: 1032
  year: 2013
  ident: 10.1016/j.molcel.2019.04.009_bib11
  article-title: Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A
  publication-title: Genes Dev.
  doi: 10.1101/gad.212548.112
– volume: 29
  start-page: 192
  year: 2019
  ident: 10.1016/j.molcel.2019.04.009_bib26
  article-title: Leucine signals to mTORC1 via its metabolite acetyl-coenzyme A
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.08.013
– volume: 289
  start-page: 2126
  year: 2000
  ident: 10.1016/j.molcel.2019.04.009_bib15
  article-title: Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
  publication-title: Science
  doi: 10.1126/science.289.5487.2126
– volume: 7
  start-page: 10258
  year: 2016
  ident: 10.1016/j.molcel.2019.04.009_bib19
  article-title: The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10258
– volume: 31
  start-page: 18
  year: 2017
  ident: 10.1016/j.molcel.2019.04.009_bib6
  article-title: Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma
  publication-title: Genes Dev.
  doi: 10.1101/gad.290940.116
– volume: 8
  start-page: 15522
  year: 2017
  ident: 10.1016/j.molcel.2019.04.009_bib31
  article-title: Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A-SF3b complex
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15522
– volume: 3
  start-page: 1228
  year: 2013
  ident: 10.1016/j.molcel.2019.04.009_bib39
  article-title: Misregulation of pre-mRNA alternative splicing in cancer
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-13-0253
– volume: 327
  start-page: 1000
  year: 2010
  ident: 10.1016/j.molcel.2019.04.009_bib40
  article-title: Regulation of cellular metabolism by protein lysine acetylation
  publication-title: Science
  doi: 10.1126/science.1179689
– volume: 293
  start-page: 816
  year: 2002
  ident: 10.1016/j.molcel.2019.04.009_bib32
  article-title: Identification and characterization of a novel murine multigene family containing a PHD-finger-like motif
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(02)00277-2
– volume: 11
  start-page: 426
  year: 2010
  ident: 10.1016/j.molcel.2019.04.009_bib33
  article-title: Inducible gene expression: diverse regulatory mechanisms
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2781
– volume: 33
  start-page: 125
  year: 2015
  ident: 10.1016/j.molcel.2019.04.009_bib25
  article-title: Acetyl-CoA and the regulation of metabolism: mechanisms and consequences
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2015.02.003
– volume: 213
  start-page: 513
  year: 1970
  ident: 10.1016/j.molcel.2019.04.009_bib21
  article-title: Nonenzymatic acetylation of histones with acetyl-CoA
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2787(70)90058-4
– volume: 18
  start-page: 1127
  year: 2016
  ident: 10.1016/j.molcel.2019.04.009_bib28
  article-title: Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3424
– volume: 458
  start-page: 757
  year: 2009
  ident: 10.1016/j.molcel.2019.04.009_bib30
  article-title: Role of Jhdm2a in regulating metabolic gene expression and obesity resistance
  publication-title: Nature
  doi: 10.1038/nature07777
– volume: 283
  start-page: 36542
  year: 2008
  ident: 10.1016/j.molcel.2019.04.009_bib1
  article-title: The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M804578200
– volume: 30
  start-page: 510
  year: 2011
  ident: 10.1016/j.molcel.2019.04.009_bib5
  article-title: Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.333
– volume: 53
  start-page: 710
  year: 2014
  ident: 10.1016/j.molcel.2019.04.009_bib17
  article-title: Regulation of autophagy by cytosolic acetyl-coenzyme A
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.01.016
– volume: 136
  start-page: 731
  year: 2009
  ident: 10.1016/j.molcel.2019.04.009_bib27
  article-title: Regulation of translation initiation in eukaryotes: mechanisms and biological targets
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.042
– volume: 37
  start-page: 65
  year: 2018
  ident: 10.1016/j.molcel.2019.04.009_bib38
  article-title: PHD-finger domain protein 5A functions as a novel oncoprotein in lung adenocarcinoma
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-018-0736-0
– volume: 109
  start-page: 16
  year: 2014
  ident: 10.1016/j.molcel.2019.04.009_bib10
  article-title: Decreasing the amount of trypsin in in-gel digestion leads to diminished chemical noise and improved protein identifications
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2014.06.017
– volume: 23
  start-page: 607
  year: 2006
  ident: 10.1016/j.molcel.2019.04.009_bib12
  article-title: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.06.026
– volume: 3
  start-page: a003707
  year: 2011
  ident: 10.1016/j.molcel.2019.04.009_bib34
  article-title: Spliceosome structure and function
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a003707
– volume: 8
  start-page: 15146
  year: 2017
  ident: 10.1016/j.molcel.2019.04.009_bib13
  article-title: KDM3 epigenetically controls tumorigenic potentials of human colorectal cancer stem cells through Wnt/β-catenin signalling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15146
– volume: 11
  start-page: 1650
  year: 2016
  ident: 10.1016/j.molcel.2019.04.009_bib23
  article-title: Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.095
– volume: 76
  start-page: 51
  year: 2007
  ident: 10.1016/j.molcel.2019.04.009_bib3
  article-title: The nonsense-mediated decay RNA surveillance pathway
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.050106.093909
– volume: 64
  start-page: 307
  year: 2016
  ident: 10.1016/j.molcel.2019.04.009_bib4
  article-title: Molecular architecture of SF3b and structural consequences of its cancer-related mutations
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.08.036
– volume: 125
  start-page: 483
  year: 2006
  ident: 10.1016/j.molcel.2019.04.009_bib35
  article-title: JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor
  publication-title: Cell
  doi: 10.1016/j.cell.2006.03.027
– volume: 78
  start-page: 372
  year: 2018
  ident: 10.1016/j.molcel.2019.04.009_bib37
  article-title: SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-1912
SSID ssj0014589
Score 2.5423508
Snippet Alternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1250
SubjectTerms acetyl coenzyme A
Acetyl Coenzyme A - deficiency
Acetylation
Alternative Splicing
Animals
carcinogenesis
Carcinogenesis - genetics
Carcinogenesis - metabolism
Carcinogenesis - pathology
Cell Movement
Cell Proliferation
cellular stress
colon
colorectal cancer
colorectal neoplasms
Colorectal Neoplasms - diagnosis
Colorectal Neoplasms - genetics
Colorectal Neoplasms - mortality
Colorectal Neoplasms - pathology
gene expression
Gene Expression Regulation, Neoplastic
HCT116 Cells
HDAC6
Humans
Jumonji Domain-Containing Histone Demethylases - antagonists & inhibitors
Jumonji Domain-Containing Histone Demethylases - genetics
Jumonji Domain-Containing Histone Demethylases - metabolism
KDM3A
lysine
Male
MCF-7 Cells
messenger RNA
Mice
Mice, Nude
neoplasm cells
p300
p300-CBP Transcription Factors - genetics
p300-CBP Transcription Factors - metabolism
phenotype
PHF5A
Prognosis
protein synthesis
proteins
Ribonucleoprotein, U2 Small Nuclear - genetics
Ribonucleoprotein, U2 Small Nuclear - metabolism
RNA stability
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
RNA-Binding Proteins - antagonists & inhibitors
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Signal Transduction
spliceosome
starvation
stress response
stress tolerance
Survival Analysis
Trans-Activators - antagonists & inhibitors
Trans-Activators - genetics
Trans-Activators - metabolism
Xenograft Model Antitumor Assays
Title Acetylation of PHF5A Modulates Stress Responses and Colorectal Carcinogenesis through Alternative Splicing-Mediated Upregulation of KDM3A
URI https://dx.doi.org/10.1016/j.molcel.2019.04.009
https://www.ncbi.nlm.nih.gov/pubmed/31054974
https://www.proquest.com/docview/2232108333
https://www.proquest.com/docview/2286859609
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBalZbCXsfuyrUWDvYrUlhzJj17aEBYyRrOwvAnr4pGS2aFJB_0J-9c7R5IDg22FPdpIttCRzvmkc_kIeQ9mwJhRnTFAwzkD_K-YwWAaZ5WTDfelNXgPOf80mi7Fx1WxOiLjPhcGwyqT7o86PWjr9GaYZnO4Xa-HC_Sd5nKEEATOViUmmnOhQhLf6sPBkyCKQIOHjRm27tPnQozX925jPTogsjIUPMWwxD-bp7_Bz2CGJo_Jo4QfaRWH-IQc-fYpeRAZJe-ekZ-V9fu7GN9Gu4Z-nk6Kis47hyxdfkcXITWEXsXIWHhRt46OoTNOAnx3jNRCbfcNNeB6RxOLD6026d7wh6cL9HiDwWPzwPLhHV1ubyKjffrp7GLOq-dkObn8Mp6yxLbALGDCPcuasoHjoJeZFy43wvNMOJsDAPS2MLWU0lrLnQGEpwC0mAYEy0uTOcdRpp6_IMdt1_pXhHqbZVaYWpQGKcxlmTcKkVltVMNdnQ8I7ydZ21SKHBkxNrqPObvWUTQaRaPPhQbRDAg79NrGUhz3tJe9_PRvS0qDtbin57te3Bp2G7pQ6tZ3tzsNYArOyIpz_q82aqQKrOQ3IC_jWjmMF8A0HMileP3fY3tDHuITRqvl52_J8f7m1p8CLtqbM3JSza6-zs7CBvgFBz4ORw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcY07S9TLDPbsCMxKtVEjt18pgVqjIImiiV-mbFH0GduqSiZRJ_wv7r3cVOpUkwpL0m58Ty2Xe_8539I-QI3IDWgzJigIZjBvg_ZRqLaaxJray4y4zGfcjicjCeim-zZLZFht1ZGCyrDLbf2_TWWocn_TCa_eV83p9g7jSWA4QgEFtlyTPyHNCARP6Gs9nXTSpBJC0PHkozFO_Oz7VFXj-bhXGYgYiy9sZTrEt82D89hj9bPzTaIa8DgKS57-Mu2XL1G_LCU0revyW_c-PW977AjTYV_T4eJTktGos0XW5FJ-3ZEHrlS2PhQVlbOoTGOArw3SFyC9XNDZrA-YoGGh-aL8LG4S9HJ5jyBo_Hipbmw1k6Xd56Svvw0_OTgufvyHR0ej0cs0C3wAyAwjWLqqyCeNDJyAkba-F4JKyJAQE6k-hSSmmM4VYDxEsBtegKNMszHVnLUamOvyfbdVO7j4Q6E0VG6FJkGjnMZRZXKUKzUqcVt2XcI7wbZGXCXeRIibFQXdHZD-VVo1A16lgoUE2PsE2rpb-L4wl52elP_TWnFLiLJ1oedupWsNwwh1LWrrlbKUBTECSnnPN_yaSDNMGr_Hrkg58rm_4CmoaIXIpP_923L-Tl-Lq4UBdnl-efySt8g6Vr8fEe2V7f3rl9AElrfdAugj8Yfw_D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acetylation+of+PHF5A+Modulates+Stress+Responses+and+Colorectal+Carcinogenesis+through+Alternative+Splicing-Mediated+Upregulation+of+KDM3A&rft.jtitle=Molecular+cell&rft.au=Wang%2C+Zhe&rft.au=Yang%2C+Xin&rft.au=Liu%2C+Cheng&rft.au=Li%2C+Xin&rft.date=2019-06-20&rft.issn=1097-4164&rft.eissn=1097-4164&rft.volume=74&rft.issue=6&rft.spage=1250&rft_id=info:doi/10.1016%2Fj.molcel.2019.04.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon