Acetylation of PHF5A Modulates Stress Responses and Colorectal Carcinogenesis through Alternative Splicing-Mediated Upregulation of KDM3A
Alternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates accompanying the malignant phenotype under stress. Here, we uncover a list of hyperacetylated proteins in the context of acutely reduced Acetyl-CoA...
Saved in:
Published in | Molecular cell Vol. 74; no. 6; pp. 1250 - 1263.e6 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates accompanying the malignant phenotype under stress. Here, we uncover a list of hyperacetylated proteins in the context of acutely reduced Acetyl-CoA levels under nutrient starvation. PHF5A, a component of U2 snRNPs, can be acetylated at lysine 29 in response to multiple cellular stresses, which is dependent on p300. PHF5A acetylation strengthens the interaction among U2 snRNPs and affects global pre-mRNA splicing pattern and extensive gene expression. PHF5A hyperacetylation-induced alternative splicing stabilizes KDM3A mRNA and promotes its protein expression. Pathologically, PHF5A K29 hyperacetylation and KDM3A upregulation axis are correlated with poor prognosis of colon cancer. Our findings uncover a mechanism of an anti-stress pathway through which acetylation on PHF5A promotes the cancer cells’ capacity for stress resistance and consequently contributes to colon carcinogenesis.
[Display omitted]
•Quantitative acetylomics reveals hyperacetylated proteins upon nutrition starvation•Multiple cellular stresses result in p300-dependent PHF5A K29 acetylation•PHF5A K29 acetylation enhances KDM3A expression by stabilizing its mRNA•PHF5A acetylation and KDM3A upregulation predict poor prognosis in colon cancer
Wang et al. uncover a list of proteins that become hyperacetylated upon nutrient starvation. p300-mediated PHF5A K29 acetylation is induced by multiple cellular stresses and affects global pre-mRNA splicing. PHF5A acetylation upregulates KDM3A expression by reducing its aberrant mRNA alternative splicing, which is positively correlated with colorectal tumorigenesis. |
---|---|
AbstractList | Alternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates accompanying the malignant phenotype under stress. Here, we uncover a list of hyperacetylated proteins in the context of acutely reduced Acetyl-CoA levels under nutrient starvation. PHF5A, a component of U2 snRNPs, can be acetylated at lysine 29 in response to multiple cellular stresses, which is dependent on p300. PHF5A acetylation strengthens the interaction among U2 snRNPs and affects global pre-mRNA splicing pattern and extensive gene expression. PHF5A hyperacetylation-induced alternative splicing stabilizes KDM3A mRNA and promotes its protein expression. Pathologically, PHF5A K29 hyperacetylation and KDM3A upregulation axis are correlated with poor prognosis of colon cancer. Our findings uncover a mechanism of an anti-stress pathway through which acetylation on PHF5A promotes the cancer cells’ capacity for stress resistance and consequently contributes to colon carcinogenesis.
[Display omitted]
•Quantitative acetylomics reveals hyperacetylated proteins upon nutrition starvation•Multiple cellular stresses result in p300-dependent PHF5A K29 acetylation•PHF5A K29 acetylation enhances KDM3A expression by stabilizing its mRNA•PHF5A acetylation and KDM3A upregulation predict poor prognosis in colon cancer
Wang et al. uncover a list of proteins that become hyperacetylated upon nutrient starvation. p300-mediated PHF5A K29 acetylation is induced by multiple cellular stresses and affects global pre-mRNA splicing. PHF5A acetylation upregulates KDM3A expression by reducing its aberrant mRNA alternative splicing, which is positively correlated with colorectal tumorigenesis. Alternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates accompanying the malignant phenotype under stress. Here, we uncover a list of hyperacetylated proteins in the context of acutely reduced Acetyl-CoA levels under nutrient starvation. PHF5A, a component of U2 snRNPs, can be acetylated at lysine 29 in response to multiple cellular stresses, which is dependent on p300. PHF5A acetylation strengthens the interaction among U2 snRNPs and affects global pre-mRNA splicing pattern and extensive gene expression. PHF5A hyperacetylation-induced alternative splicing stabilizes KDM3A mRNA and promotes its protein expression. Pathologically, PHF5A K29 hyperacetylation and KDM3A upregulation axis are correlated with poor prognosis of colon cancer. Our findings uncover a mechanism of an anti-stress pathway through which acetylation on PHF5A promotes the cancer cells' capacity for stress resistance and consequently contributes to colon carcinogenesis.Alternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates accompanying the malignant phenotype under stress. Here, we uncover a list of hyperacetylated proteins in the context of acutely reduced Acetyl-CoA levels under nutrient starvation. PHF5A, a component of U2 snRNPs, can be acetylated at lysine 29 in response to multiple cellular stresses, which is dependent on p300. PHF5A acetylation strengthens the interaction among U2 snRNPs and affects global pre-mRNA splicing pattern and extensive gene expression. PHF5A hyperacetylation-induced alternative splicing stabilizes KDM3A mRNA and promotes its protein expression. Pathologically, PHF5A K29 hyperacetylation and KDM3A upregulation axis are correlated with poor prognosis of colon cancer. Our findings uncover a mechanism of an anti-stress pathway through which acetylation on PHF5A promotes the cancer cells' capacity for stress resistance and consequently contributes to colon carcinogenesis. Alternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates accompanying the malignant phenotype under stress. Here, we uncover a list of hyperacetylated proteins in the context of acutely reduced Acetyl-CoA levels under nutrient starvation. PHF5A, a component of U2 snRNPs, can be acetylated at lysine 29 in response to multiple cellular stresses, which is dependent on p300. PHF5A acetylation strengthens the interaction among U2 snRNPs and affects global pre-mRNA splicing pattern and extensive gene expression. PHF5A hyperacetylation-induced alternative splicing stabilizes KDM3A mRNA and promotes its protein expression. Pathologically, PHF5A K29 hyperacetylation and KDM3A upregulation axis are correlated with poor prognosis of colon cancer. Our findings uncover a mechanism of an anti-stress pathway through which acetylation on PHF5A promotes the cancer cells' capacity for stress resistance and consequently contributes to colon carcinogenesis. |
Author | Wang, Zhe Song, Chen Yang, Xin Gu, Wei Zhang, Yu Liu, Xiaoyun Zhang, Buyu Yin, Yuxin Zhang, Tianzhuo Li, Xin Zou, Junhua Zhang, Zhang Jiang, Hongpeng Luo, Jianyuan Ren, Mengmeng Wang, Bo Liu, Minghui Zhang, Hongquan Liu, Cheng Liu, Boya Zhu, Wei-Guo |
Author_xml | – sequence: 1 givenname: Zhe surname: Wang fullname: Wang, Zhe organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China – sequence: 2 givenname: Xin surname: Yang fullname: Yang, Xin organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China – sequence: 3 givenname: Cheng surname: Liu fullname: Liu, Cheng organization: Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China – sequence: 4 givenname: Xin surname: Li fullname: Li, Xin organization: Department of Allergy, Peking Union Medical College Hospital, Beijing 100730, China – sequence: 5 givenname: Buyu surname: Zhang fullname: Zhang, Buyu organization: Department of Microbiology, Peking University Health Science Center, Beijing 100191, China – sequence: 6 givenname: Bo surname: Wang fullname: Wang, Bo organization: Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China – sequence: 7 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China – sequence: 8 givenname: Chen surname: Song fullname: Song, Chen organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China – sequence: 9 givenname: Tianzhuo surname: Zhang fullname: Zhang, Tianzhuo organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China – sequence: 10 givenname: Minghui surname: Liu fullname: Liu, Minghui organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China – sequence: 11 givenname: Boya surname: Liu fullname: Liu, Boya organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China – sequence: 12 givenname: Mengmeng surname: Ren fullname: Ren, Mengmeng organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China – sequence: 13 givenname: Hongpeng surname: Jiang fullname: Jiang, Hongpeng organization: Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China – sequence: 14 givenname: Junhua surname: Zou fullname: Zou, Junhua organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China – sequence: 15 givenname: Xiaoyun surname: Liu fullname: Liu, Xiaoyun organization: Department of Microbiology, Peking University Health Science Center, Beijing 100191, China – sequence: 16 givenname: Hongquan surname: Zhang fullname: Zhang, Hongquan organization: Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China – sequence: 17 givenname: Wei-Guo surname: Zhu fullname: Zhu, Wei-Guo organization: Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518060, China – sequence: 18 givenname: Yuxin surname: Yin fullname: Yin, Yuxin organization: Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China – sequence: 19 givenname: Zhang surname: Zhang fullname: Zhang, Zhang organization: Jingjie PTM Biolab (Hangzhou) Co. Ltd., Hangzhou, Zhejiang 310018, China – sequence: 20 givenname: Wei surname: Gu fullname: Gu, Wei organization: Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA – sequence: 21 givenname: Jianyuan surname: Luo fullname: Luo, Jianyuan email: luojianyuan@bjmu.edu.cn organization: Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31054974$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV9vFCEUxYmpse3qNzCGR19mhIH5gw8mm9VaYzcaa5_JDNzZsmFhBKZJP4LfWra7auKDygvk5nfOJeecoxPnHSD0nJKSEtq82pY7bxXYsiJUlISXhIhH6IwS0RacNvzk-K7apj5F5zFuCaG87sQTdMooqblo-Rn6vlSQ7m2fjHfYj_jz5UW9xGuv5zyDiK9TgBjxF4iTdzEPeqfxylsfQKXe4lUflHF-Aw6iiTjdBj9vbvHSJgguu94Bvp6sycymWIM22VTjmynAZv699OPbNVs-RY_H3kZ4drwX6Obi3dfVZXH16f2H1fKqUDVpU0FHMbYVhZYC19XAgVGuVSUqBqoe-rZtlVJMD5zUXcebYeS8Y2KgWrORgQC2QC8PvlPw32aISe5MzDna3oGfo6yqrulq0RDxHyirKOlYPgv04ojOww60nILZ9eFe_kw6A_wAqOBjDDD-QiiR-0LlVh4KlftCJeGSPHzh9R8yZdJDcCn0xv5L_OYghpznnYEgozLgVO5hX5_U3vzd4Af_tr-M |
CitedBy_id | crossref_primary_10_1080_15548627_2022_2148432 crossref_primary_10_1038_s41392_020_00252_1 crossref_primary_10_1038_s41467_024_53830_0 crossref_primary_10_1016_j_biopha_2024_116488 crossref_primary_10_1093_carcin_bgad058 crossref_primary_10_1042_BCJ20240221 crossref_primary_10_3390_ijms222111790 crossref_primary_10_1038_s41467_025_57546_7 crossref_primary_10_1038_s41698_021_00158_3 crossref_primary_10_3389_fcell_2024_1403396 crossref_primary_10_3892_ijo_2022_5393 crossref_primary_10_1016_j_bbcan_2023_188973 crossref_primary_10_15252_embj_2020106393 crossref_primary_10_1021_acssensors_2c01345 crossref_primary_10_1038_s41598_023_44899_6 crossref_primary_10_1016_j_cellsig_2024_111445 crossref_primary_10_1158_0008_5472_CAN_20_0233 crossref_primary_10_1016_j_mce_2024_112383 crossref_primary_10_3390_biom13030417 crossref_primary_10_1016_j_celrep_2023_112102 crossref_primary_10_3390_metabo14030171 crossref_primary_10_1038_s41388_024_03235_6 crossref_primary_10_1038_s41419_021_03814_5 crossref_primary_10_1177_11779322241287115 crossref_primary_10_3390_cancers14030560 crossref_primary_10_3390_ijms241411299 crossref_primary_10_1016_j_jcmgh_2020_10_004 crossref_primary_10_1007_s13402_023_00835_4 crossref_primary_10_3389_fmmed_2022_1044585 crossref_primary_10_3389_fcell_2022_1065702 crossref_primary_10_1002_wrna_1815 crossref_primary_10_1038_s41419_022_04725_9 crossref_primary_10_1016_j_biopha_2023_115857 crossref_primary_10_1016_j_arr_2024_102324 crossref_primary_10_1002_ijc_33375 crossref_primary_10_1242_dev_202247 crossref_primary_10_1038_s41419_021_04031_w crossref_primary_10_1186_s13062_023_00396_4 crossref_primary_10_1038_s41419_023_05561_1 crossref_primary_10_1007_s00018_020_03493_z crossref_primary_10_3389_fmmed_2022_1011882 crossref_primary_10_1158_1541_7786_MCR_19_0889 crossref_primary_10_1080_00498254_2021_2001076 crossref_primary_10_1016_j_heliyon_2023_e18010 crossref_primary_10_1016_j_omtn_2021_10_025 crossref_primary_10_1186_s13046_022_02355_9 crossref_primary_10_1002_mc_23390 crossref_primary_10_1186_s13046_024_03053_4 crossref_primary_10_1186_s12967_022_03821_w crossref_primary_10_3389_fcell_2021_793428 crossref_primary_10_1016_j_jare_2023_12_012 crossref_primary_10_3389_fcell_2021_710479 crossref_primary_10_1186_s12885_024_12620_z crossref_primary_10_1186_s12870_021_02852_7 crossref_primary_10_3389_fmolb_2021_696319 crossref_primary_10_3724_zdxbyxb_2022_0459 crossref_primary_10_2174_0113862073249972231026060301 crossref_primary_10_4252_wjsc_v15_i5_302 crossref_primary_10_1016_j_tice_2023_102253 crossref_primary_10_3390_ani12202812 crossref_primary_10_3390_life13030604 crossref_primary_10_1053_j_gastro_2021_08_003 crossref_primary_10_1515_hsz_2022_0180 crossref_primary_10_3390_cancers12051098 crossref_primary_10_1038_s41421_024_00715_7 crossref_primary_10_1016_j_celrep_2023_113126 |
Cites_doi | 10.1074/jbc.RA118.001730 10.4161/rna.22036 10.1158/0008-5472.CAN-17-3514 10.1126/science.1217032 10.1038/s41588-017-0004-9 10.1016/j.tibs.2012.02.009 10.1016/S0092-8674(00)00122-7 10.1016/j.molcel.2010.07.006 10.1074/jbc.M109.091553 10.1038/nature08909 10.1158/0008-5472.CAN-12-3231 10.1073/pnas.1313618111 10.1038/ncomms7428 10.1101/gad.212548.112 10.1016/j.cmet.2018.08.013 10.1126/science.289.5487.2126 10.1038/ncomms10258 10.1101/gad.290940.116 10.1038/ncomms15522 10.1158/2159-8290.CD-13-0253 10.1126/science.1179689 10.1016/S0006-291X(02)00277-2 10.1038/nrg2781 10.1016/j.ceb.2015.02.003 10.1016/0005-2787(70)90058-4 10.1038/ncb3424 10.1038/nature07777 10.1074/jbc.M804578200 10.1038/emboj.2010.333 10.1016/j.molcel.2014.01.016 10.1016/j.cell.2009.01.042 10.1186/s13046-018-0736-0 10.1016/j.jprot.2014.06.017 10.1016/j.molcel.2006.06.026 10.1101/cshperspect.a003707 10.1038/ncomms15146 10.1038/nprot.2016.095 10.1146/annurev.biochem.76.050106.093909 10.1016/j.molcel.2016.08.036 10.1016/j.cell.2006.03.027 10.1158/0008-5472.CAN-17-1912 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.molcel.2019.04.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 1263.e6 |
ExternalDocumentID | 31054974 10_1016_j_molcel_2019_04_009 S1097276519302795 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c507t-1f9f721e71e4d2b4e314dc2923ec5ba777ccc3db4058846bf44839b1dd3f3e9e3 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Fri Jul 11 04:25:47 EDT 2025 Fri Jul 11 05:54:57 EDT 2025 Thu Apr 03 06:59:38 EDT 2025 Tue Jul 01 03:21:13 EDT 2025 Thu Apr 24 23:07:46 EDT 2025 Fri Feb 23 02:30:33 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | acetylation p300 RNA stability KDM3A PHF5A colorectal cancer alternative splicing cell proliferation spliceosome HDAC6 cellular stress |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-1f9f721e71e4d2b4e314dc2923ec5ba777ccc3db4058846bf44839b1dd3f3e9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S1097276519302795/pdf |
PMID | 31054974 |
PQID | 2232108333 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2286859609 proquest_miscellaneous_2232108333 pubmed_primary_31054974 crossref_primary_10_1016_j_molcel_2019_04_009 crossref_citationtrail_10_1016_j_molcel_2019_04_009 elsevier_sciencedirect_doi_10_1016_j_molcel_2019_04_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-20 |
PublicationDateYYYYMMDD | 2019-06-20 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Peng, Su, Ji, Yang, Miao, Mo, Li, Xu, Li, Yu (bib22) 2018; 293 Strikoudis, Lazaris, Trimarchi, Galvao Neto, Yang, Ntziachristos, Rothbart, Buckley, Dolgalev, Stadtfeld (bib28) 2016; 18 Teng, Tsai, Puyang, Seiler, Peng, Prajapati, Aird, Buonamici, Caleb, Chan (bib31) 2017; 8 Paik, Pearson, Lee, Kim (bib21) 1970; 213 Beyer, Kristensen, Jensen, Johansen, Staller (bib1) 2008; 283 Cretu, Schmitzová, Ponce-Salvatierra, Dybkov, De Laurentiis, Sharma, Will, Urlaub, Lührmann, Pena (bib4) 2016; 64 Pertea, Kim, Pertea, Leek, Salzberg (bib23) 2016; 11 Hubert, Bradley, Ding, Toledo, Herman, Skutt-Kakaria, Girard, Davison, Berndt, Corrin (bib11) 2013; 27 Tateishi, Okada, Kallin, Zhang (bib30) 2009; 458 Geeraert, Ratier, Pfisterer, Perdiz, Cantaloube, Rouault, Pattingre, Proikas-Cezanne, Codogno, Poüs (bib8) 2010; 285 Weake, Workman (bib33) 2010; 11 Chang, Imam, Wilkinson (bib3) 2007; 76 Mariño, Pietrocola, Eisenberg, Kong, Malik, Andryushkova, Schroeder, Pendl, Harger, Niso-Santano (bib17) 2014; 53 Sonenberg, Hinnebusch (bib27) 2009; 136 Will, Lührmann (bib34) 2011; 3 Yang, Hadjikyriacou, Xia, Gayatri, Kim, Zurita-Lopez, Kelly, Guo, Li, Clarke, Bedford (bib36) 2015; 6 Osawa, Tsuchida, Muramatsu, Shimamura, Wang, Suehiro, Kanki, Wada, Yuasa, Aburatani (bib20) 2013; 73 Yamane, Toumazou, Tsukada, Erdjument-Bromage, Tempst, Wong, Zhang (bib35) 2006; 125 Fan, Luo (bib7) 2010; 39 Li, Yu, Deng, Cheng, Yu, Kevork, Ramadoss, Ding, Li, Wang (bib13) 2017; 8 Hoskins, Moore (bib9) 2012; 37 Sebti, Prébois, Pérez-Gracia, Bauvy, Desmots, Pirot, Gongora, Bach, Hubberstey, Palissot (bib24) 2014; 111 Son, Park, Lee, Siddiqi, Lee, Menzies, Rubinsztein (bib26) 2019; 29 Bienz, Clevers (bib2) 2000; 103 Lin, Li, Liu, Zhang, Li, Chen, Zhang, Lian, Liu, Ruan (bib16) 2012; 336 Ohguchi, Hideshima, Bhasin, Gorgun, Santo, Cea, Samur, Mimura, Suzuki, Tai (bib19) 2016; 7 Tani, Akimitsu (bib29) 2012; 9 Zhang, Manley (bib39) 2013; 3 Hu, Liu, Yu, Liu (bib10) 2014; 109 Zhao, Xu, Jiang, Yu, Lin, Zhang, Yao, Zhou, Zeng, Li (bib40) 2010; 327 Li, Knowles, Humphrey, Barbeira, Dickinson, Im, Pritchard (bib14) 2018; 50 Shi, Tu (bib25) 2015; 33 Trappe, Ahmed, Gläser, Vogel, Tascou, Burfeind, Engel (bib32) 2002; 293 Falletta, Sanchez-Del-Campo, Chauhan, Effern, Kenyon, Kershaw, Siddaway, Lisle, Freter, Daniels (bib6) 2017; 31 Yang, Zhu, Zhang, Liu, Li, Zhu, Xu, Wang, Su, Ou, Wu (bib38) 2018; 37 Edmond, Moysan, Khochbin, Matthias, Brambilla, Brambilla, Gazzeri, Eymin (bib5) 2011; 30 Lin, Defossez, Guarente (bib15) 2000; 289 Nilsen, Graveley (bib18) 2010; 463 Kim, Sprung, Chen, Xu, Ball, Pei, Cheng, Kho, Xiao, Xiao (bib12) 2006; 23 Yang, Wang, Li, Liu, Liu, Liu, Chen, Ren, Wang, Yu (bib37) 2018; 78 Zheng, Xue, Shen, Li, Ma, Gong, Liu, Qiao, Xie, Lian (bib41) 2018; 78 Shi (10.1016/j.molcel.2019.04.009_bib25) 2015; 33 Geeraert (10.1016/j.molcel.2019.04.009_bib8) 2010; 285 Ohguchi (10.1016/j.molcel.2019.04.009_bib19) 2016; 7 Bienz (10.1016/j.molcel.2019.04.009_bib2) 2000; 103 Sebti (10.1016/j.molcel.2019.04.009_bib24) 2014; 111 Teng (10.1016/j.molcel.2019.04.009_bib31) 2017; 8 Mariño (10.1016/j.molcel.2019.04.009_bib17) 2014; 53 Yang (10.1016/j.molcel.2019.04.009_bib37) 2018; 78 Fan (10.1016/j.molcel.2019.04.009_bib7) 2010; 39 Hoskins (10.1016/j.molcel.2019.04.009_bib9) 2012; 37 Hubert (10.1016/j.molcel.2019.04.009_bib11) 2013; 27 Weake (10.1016/j.molcel.2019.04.009_bib33) 2010; 11 Tani (10.1016/j.molcel.2019.04.009_bib29) 2012; 9 Nilsen (10.1016/j.molcel.2019.04.009_bib18) 2010; 463 Pertea (10.1016/j.molcel.2019.04.009_bib23) 2016; 11 Kim (10.1016/j.molcel.2019.04.009_bib12) 2006; 23 Yang (10.1016/j.molcel.2019.04.009_bib36) 2015; 6 Edmond (10.1016/j.molcel.2019.04.009_bib5) 2011; 30 Trappe (10.1016/j.molcel.2019.04.009_bib32) 2002; 293 Son (10.1016/j.molcel.2019.04.009_bib26) 2019; 29 Beyer (10.1016/j.molcel.2019.04.009_bib1) 2008; 283 Lin (10.1016/j.molcel.2019.04.009_bib15) 2000; 289 Cretu (10.1016/j.molcel.2019.04.009_bib4) 2016; 64 Lin (10.1016/j.molcel.2019.04.009_bib16) 2012; 336 Li (10.1016/j.molcel.2019.04.009_bib13) 2017; 8 Osawa (10.1016/j.molcel.2019.04.009_bib20) 2013; 73 Yang (10.1016/j.molcel.2019.04.009_bib38) 2018; 37 Hu (10.1016/j.molcel.2019.04.009_bib10) 2014; 109 Tateishi (10.1016/j.molcel.2019.04.009_bib30) 2009; 458 Paik (10.1016/j.molcel.2019.04.009_bib21) 1970; 213 Strikoudis (10.1016/j.molcel.2019.04.009_bib28) 2016; 18 Peng (10.1016/j.molcel.2019.04.009_bib22) 2018; 293 Zheng (10.1016/j.molcel.2019.04.009_bib41) 2018; 78 Will (10.1016/j.molcel.2019.04.009_bib34) 2011; 3 Zhang (10.1016/j.molcel.2019.04.009_bib39) 2013; 3 Yamane (10.1016/j.molcel.2019.04.009_bib35) 2006; 125 Zhao (10.1016/j.molcel.2019.04.009_bib40) 2010; 327 Falletta (10.1016/j.molcel.2019.04.009_bib6) 2017; 31 Sonenberg (10.1016/j.molcel.2019.04.009_bib27) 2009; 136 Li (10.1016/j.molcel.2019.04.009_bib14) 2018; 50 Chang (10.1016/j.molcel.2019.04.009_bib3) 2007; 76 |
References_xml | – volume: 29 start-page: 192 year: 2019 end-page: 201 ident: bib26 article-title: Leucine signals to mTORC1 via its metabolite acetyl-coenzyme A publication-title: Cell Metab. – volume: 23 start-page: 607 year: 2006 end-page: 618 ident: bib12 article-title: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey publication-title: Mol. Cell – volume: 336 start-page: 477 year: 2012 end-page: 481 ident: bib16 article-title: GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy publication-title: Science – volume: 136 start-page: 731 year: 2009 end-page: 745 ident: bib27 article-title: Regulation of translation initiation in eukaryotes: mechanisms and biological targets publication-title: Cell – volume: 283 start-page: 36542 year: 2008 end-page: 36552 ident: bib1 article-title: The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF publication-title: J. Biol. Chem. – volume: 458 start-page: 757 year: 2009 end-page: 761 ident: bib30 article-title: Role of Jhdm2a in regulating metabolic gene expression and obesity resistance publication-title: Nature – volume: 293 start-page: 10606 year: 2018 end-page: 10619 ident: bib22 article-title: Histone demethylase JMJD1A promotes colorectal cancer growth and metastasis by enhancing Wnt/β-catenin signaling publication-title: J. Biol. Chem. – volume: 50 start-page: 151 year: 2018 end-page: 158 ident: bib14 article-title: Annotation-free quantification of RNA splicing using LeafCutter publication-title: Nat. Genet. – volume: 289 start-page: 2126 year: 2000 end-page: 2128 ident: bib15 article-title: Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae publication-title: Science – volume: 78 start-page: 372 year: 2018 end-page: 386 ident: bib37 article-title: SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation publication-title: Cancer Res. – volume: 8 start-page: 15146 year: 2017 ident: bib13 article-title: KDM3 epigenetically controls tumorigenic potentials of human colorectal cancer stem cells through Wnt/β-catenin signalling publication-title: Nat. Commun. – volume: 7 start-page: 10258 year: 2016 ident: bib19 article-title: The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival publication-title: Nat. Commun. – volume: 327 start-page: 1000 year: 2010 end-page: 1004 ident: bib40 article-title: Regulation of cellular metabolism by protein lysine acetylation publication-title: Science – volume: 103 start-page: 311 year: 2000 end-page: 320 ident: bib2 article-title: Linking colorectal cancer to Wnt signaling publication-title: Cell – volume: 31 start-page: 18 year: 2017 end-page: 33 ident: bib6 article-title: Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma publication-title: Genes Dev. – volume: 11 start-page: 1650 year: 2016 end-page: 1667 ident: bib23 article-title: Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown publication-title: Nat. Protoc. – volume: 37 start-page: 65 year: 2018 ident: bib38 article-title: PHD-finger domain protein 5A functions as a novel oncoprotein in lung adenocarcinoma publication-title: J. Exp. Clin. Cancer Res. – volume: 33 start-page: 125 year: 2015 end-page: 131 ident: bib25 article-title: Acetyl-CoA and the regulation of metabolism: mechanisms and consequences publication-title: Curr. Opin. Cell Biol. – volume: 293 start-page: 816 year: 2002 end-page: 826 ident: bib32 article-title: Identification and characterization of a novel murine multigene family containing a PHD-finger-like motif publication-title: Biochem. Biophys. Res. Commun. – volume: 53 start-page: 710 year: 2014 end-page: 725 ident: bib17 article-title: Regulation of autophagy by cytosolic acetyl-coenzyme A publication-title: Mol. Cell – volume: 73 start-page: 3019 year: 2013 end-page: 3028 ident: bib20 article-title: Inhibition of histone demethylase JMJD1A improves anti-angiogenic therapy and reduces tumor-associated macrophages publication-title: Cancer Res. – volume: 3 start-page: a003707 year: 2011 ident: bib34 article-title: Spliceosome structure and function publication-title: Cold Spring Harb. Perspect. Biol. – volume: 78 start-page: 3190 year: 2018 end-page: 3206 ident: bib41 article-title: PHF5A epigenetically inhibits apoptosis to promote breast cancer progression publication-title: Cancer Res. – volume: 8 start-page: 15522 year: 2017 ident: bib31 article-title: Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A-SF3b complex publication-title: Nat. Commun. – volume: 285 start-page: 24184 year: 2010 end-page: 24194 ident: bib8 article-title: Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation publication-title: J. Biol. Chem. – volume: 76 start-page: 51 year: 2007 end-page: 74 ident: bib3 article-title: The nonsense-mediated decay RNA surveillance pathway publication-title: Annu. Rev. Biochem. – volume: 37 start-page: 179 year: 2012 end-page: 188 ident: bib9 article-title: The spliceosome: a flexible, reversible macromolecular machine publication-title: Trends Biochem. Sci. – volume: 39 start-page: 247 year: 2010 end-page: 258 ident: bib7 article-title: SIRT1 regulates UV-induced DNA repair through deacetylating XPA publication-title: Mol. Cell – volume: 64 start-page: 307 year: 2016 end-page: 319 ident: bib4 article-title: Molecular architecture of SF3b and structural consequences of its cancer-related mutations publication-title: Mol. Cell – volume: 111 start-page: 4115 year: 2014 end-page: 4120 ident: bib24 article-title: BAT3 modulates p300-dependent acetylation of p53 and autophagy-related protein 7 (ATG7) during autophagy publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 1127 year: 2016 end-page: 1138 ident: bib28 article-title: Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a publication-title: Nat. Cell Biol. – volume: 3 start-page: 1228 year: 2013 end-page: 1237 ident: bib39 article-title: Misregulation of pre-mRNA alternative splicing in cancer publication-title: Cancer Discov. – volume: 213 start-page: 513 year: 1970 end-page: 522 ident: bib21 article-title: Nonenzymatic acetylation of histones with acetyl-CoA publication-title: Biochim. Biophys. Acta – volume: 6 start-page: 6428 year: 2015 ident: bib36 article-title: PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145 publication-title: Nat. Commun. – volume: 9 start-page: 1233 year: 2012 end-page: 1238 ident: bib29 article-title: Genome-wide technology for determining RNA stability in mammalian cells: historical perspective and recent advantages based on modified nucleotide labeling publication-title: RNA Biol. – volume: 27 start-page: 1032 year: 2013 end-page: 1045 ident: bib11 article-title: Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A publication-title: Genes Dev. – volume: 125 start-page: 483 year: 2006 end-page: 495 ident: bib35 article-title: JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor publication-title: Cell – volume: 109 start-page: 16 year: 2014 end-page: 25 ident: bib10 article-title: Decreasing the amount of trypsin in in-gel digestion leads to diminished chemical noise and improved protein identifications publication-title: J. Proteomics – volume: 463 start-page: 457 year: 2010 end-page: 463 ident: bib18 article-title: Expansion of the eukaryotic proteome by alternative splicing publication-title: Nature – volume: 11 start-page: 426 year: 2010 end-page: 437 ident: bib33 article-title: Inducible gene expression: diverse regulatory mechanisms publication-title: Nat. Rev. Genet. – volume: 30 start-page: 510 year: 2011 end-page: 523 ident: bib5 article-title: Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin publication-title: EMBO J. – volume: 293 start-page: 10606 year: 2018 ident: 10.1016/j.molcel.2019.04.009_bib22 article-title: Histone demethylase JMJD1A promotes colorectal cancer growth and metastasis by enhancing Wnt/β-catenin signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.001730 – volume: 9 start-page: 1233 year: 2012 ident: 10.1016/j.molcel.2019.04.009_bib29 article-title: Genome-wide technology for determining RNA stability in mammalian cells: historical perspective and recent advantages based on modified nucleotide labeling publication-title: RNA Biol. doi: 10.4161/rna.22036 – volume: 78 start-page: 3190 year: 2018 ident: 10.1016/j.molcel.2019.04.009_bib41 article-title: PHF5A epigenetically inhibits apoptosis to promote breast cancer progression publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-3514 – volume: 336 start-page: 477 year: 2012 ident: 10.1016/j.molcel.2019.04.009_bib16 article-title: GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy publication-title: Science doi: 10.1126/science.1217032 – volume: 50 start-page: 151 year: 2018 ident: 10.1016/j.molcel.2019.04.009_bib14 article-title: Annotation-free quantification of RNA splicing using LeafCutter publication-title: Nat. Genet. doi: 10.1038/s41588-017-0004-9 – volume: 37 start-page: 179 year: 2012 ident: 10.1016/j.molcel.2019.04.009_bib9 article-title: The spliceosome: a flexible, reversible macromolecular machine publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2012.02.009 – volume: 103 start-page: 311 year: 2000 ident: 10.1016/j.molcel.2019.04.009_bib2 article-title: Linking colorectal cancer to Wnt signaling publication-title: Cell doi: 10.1016/S0092-8674(00)00122-7 – volume: 39 start-page: 247 year: 2010 ident: 10.1016/j.molcel.2019.04.009_bib7 article-title: SIRT1 regulates UV-induced DNA repair through deacetylating XPA publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.07.006 – volume: 285 start-page: 24184 year: 2010 ident: 10.1016/j.molcel.2019.04.009_bib8 article-title: Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.091553 – volume: 463 start-page: 457 year: 2010 ident: 10.1016/j.molcel.2019.04.009_bib18 article-title: Expansion of the eukaryotic proteome by alternative splicing publication-title: Nature doi: 10.1038/nature08909 – volume: 73 start-page: 3019 year: 2013 ident: 10.1016/j.molcel.2019.04.009_bib20 article-title: Inhibition of histone demethylase JMJD1A improves anti-angiogenic therapy and reduces tumor-associated macrophages publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3231 – volume: 111 start-page: 4115 year: 2014 ident: 10.1016/j.molcel.2019.04.009_bib24 article-title: BAT3 modulates p300-dependent acetylation of p53 and autophagy-related protein 7 (ATG7) during autophagy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1313618111 – volume: 6 start-page: 6428 year: 2015 ident: 10.1016/j.molcel.2019.04.009_bib36 article-title: PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145 publication-title: Nat. Commun. doi: 10.1038/ncomms7428 – volume: 27 start-page: 1032 year: 2013 ident: 10.1016/j.molcel.2019.04.009_bib11 article-title: Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A publication-title: Genes Dev. doi: 10.1101/gad.212548.112 – volume: 29 start-page: 192 year: 2019 ident: 10.1016/j.molcel.2019.04.009_bib26 article-title: Leucine signals to mTORC1 via its metabolite acetyl-coenzyme A publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.08.013 – volume: 289 start-page: 2126 year: 2000 ident: 10.1016/j.molcel.2019.04.009_bib15 article-title: Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae publication-title: Science doi: 10.1126/science.289.5487.2126 – volume: 7 start-page: 10258 year: 2016 ident: 10.1016/j.molcel.2019.04.009_bib19 article-title: The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival publication-title: Nat. Commun. doi: 10.1038/ncomms10258 – volume: 31 start-page: 18 year: 2017 ident: 10.1016/j.molcel.2019.04.009_bib6 article-title: Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma publication-title: Genes Dev. doi: 10.1101/gad.290940.116 – volume: 8 start-page: 15522 year: 2017 ident: 10.1016/j.molcel.2019.04.009_bib31 article-title: Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A-SF3b complex publication-title: Nat. Commun. doi: 10.1038/ncomms15522 – volume: 3 start-page: 1228 year: 2013 ident: 10.1016/j.molcel.2019.04.009_bib39 article-title: Misregulation of pre-mRNA alternative splicing in cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-13-0253 – volume: 327 start-page: 1000 year: 2010 ident: 10.1016/j.molcel.2019.04.009_bib40 article-title: Regulation of cellular metabolism by protein lysine acetylation publication-title: Science doi: 10.1126/science.1179689 – volume: 293 start-page: 816 year: 2002 ident: 10.1016/j.molcel.2019.04.009_bib32 article-title: Identification and characterization of a novel murine multigene family containing a PHD-finger-like motif publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(02)00277-2 – volume: 11 start-page: 426 year: 2010 ident: 10.1016/j.molcel.2019.04.009_bib33 article-title: Inducible gene expression: diverse regulatory mechanisms publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2781 – volume: 33 start-page: 125 year: 2015 ident: 10.1016/j.molcel.2019.04.009_bib25 article-title: Acetyl-CoA and the regulation of metabolism: mechanisms and consequences publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2015.02.003 – volume: 213 start-page: 513 year: 1970 ident: 10.1016/j.molcel.2019.04.009_bib21 article-title: Nonenzymatic acetylation of histones with acetyl-CoA publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2787(70)90058-4 – volume: 18 start-page: 1127 year: 2016 ident: 10.1016/j.molcel.2019.04.009_bib28 article-title: Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a publication-title: Nat. Cell Biol. doi: 10.1038/ncb3424 – volume: 458 start-page: 757 year: 2009 ident: 10.1016/j.molcel.2019.04.009_bib30 article-title: Role of Jhdm2a in regulating metabolic gene expression and obesity resistance publication-title: Nature doi: 10.1038/nature07777 – volume: 283 start-page: 36542 year: 2008 ident: 10.1016/j.molcel.2019.04.009_bib1 article-title: The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF publication-title: J. Biol. Chem. doi: 10.1074/jbc.M804578200 – volume: 30 start-page: 510 year: 2011 ident: 10.1016/j.molcel.2019.04.009_bib5 article-title: Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin publication-title: EMBO J. doi: 10.1038/emboj.2010.333 – volume: 53 start-page: 710 year: 2014 ident: 10.1016/j.molcel.2019.04.009_bib17 article-title: Regulation of autophagy by cytosolic acetyl-coenzyme A publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.01.016 – volume: 136 start-page: 731 year: 2009 ident: 10.1016/j.molcel.2019.04.009_bib27 article-title: Regulation of translation initiation in eukaryotes: mechanisms and biological targets publication-title: Cell doi: 10.1016/j.cell.2009.01.042 – volume: 37 start-page: 65 year: 2018 ident: 10.1016/j.molcel.2019.04.009_bib38 article-title: PHD-finger domain protein 5A functions as a novel oncoprotein in lung adenocarcinoma publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-018-0736-0 – volume: 109 start-page: 16 year: 2014 ident: 10.1016/j.molcel.2019.04.009_bib10 article-title: Decreasing the amount of trypsin in in-gel digestion leads to diminished chemical noise and improved protein identifications publication-title: J. Proteomics doi: 10.1016/j.jprot.2014.06.017 – volume: 23 start-page: 607 year: 2006 ident: 10.1016/j.molcel.2019.04.009_bib12 article-title: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.06.026 – volume: 3 start-page: a003707 year: 2011 ident: 10.1016/j.molcel.2019.04.009_bib34 article-title: Spliceosome structure and function publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a003707 – volume: 8 start-page: 15146 year: 2017 ident: 10.1016/j.molcel.2019.04.009_bib13 article-title: KDM3 epigenetically controls tumorigenic potentials of human colorectal cancer stem cells through Wnt/β-catenin signalling publication-title: Nat. Commun. doi: 10.1038/ncomms15146 – volume: 11 start-page: 1650 year: 2016 ident: 10.1016/j.molcel.2019.04.009_bib23 article-title: Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.095 – volume: 76 start-page: 51 year: 2007 ident: 10.1016/j.molcel.2019.04.009_bib3 article-title: The nonsense-mediated decay RNA surveillance pathway publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.76.050106.093909 – volume: 64 start-page: 307 year: 2016 ident: 10.1016/j.molcel.2019.04.009_bib4 article-title: Molecular architecture of SF3b and structural consequences of its cancer-related mutations publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.08.036 – volume: 125 start-page: 483 year: 2006 ident: 10.1016/j.molcel.2019.04.009_bib35 article-title: JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor publication-title: Cell doi: 10.1016/j.cell.2006.03.027 – volume: 78 start-page: 372 year: 2018 ident: 10.1016/j.molcel.2019.04.009_bib37 article-title: SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-1912 |
SSID | ssj0014589 |
Score | 2.5423508 |
Snippet | Alternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1250 |
SubjectTerms | acetyl coenzyme A Acetyl Coenzyme A - deficiency Acetylation Alternative Splicing Animals carcinogenesis Carcinogenesis - genetics Carcinogenesis - metabolism Carcinogenesis - pathology Cell Movement Cell Proliferation cellular stress colon colorectal cancer colorectal neoplasms Colorectal Neoplasms - diagnosis Colorectal Neoplasms - genetics Colorectal Neoplasms - mortality Colorectal Neoplasms - pathology gene expression Gene Expression Regulation, Neoplastic HCT116 Cells HDAC6 Humans Jumonji Domain-Containing Histone Demethylases - antagonists & inhibitors Jumonji Domain-Containing Histone Demethylases - genetics Jumonji Domain-Containing Histone Demethylases - metabolism KDM3A lysine Male MCF-7 Cells messenger RNA Mice Mice, Nude neoplasm cells p300 p300-CBP Transcription Factors - genetics p300-CBP Transcription Factors - metabolism phenotype PHF5A Prognosis protein synthesis proteins Ribonucleoprotein, U2 Small Nuclear - genetics Ribonucleoprotein, U2 Small Nuclear - metabolism RNA stability RNA, Small Interfering - genetics RNA, Small Interfering - metabolism RNA-Binding Proteins - antagonists & inhibitors RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism Signal Transduction spliceosome starvation stress response stress tolerance Survival Analysis Trans-Activators - antagonists & inhibitors Trans-Activators - genetics Trans-Activators - metabolism Xenograft Model Antitumor Assays |
Title | Acetylation of PHF5A Modulates Stress Responses and Colorectal Carcinogenesis through Alternative Splicing-Mediated Upregulation of KDM3A |
URI | https://dx.doi.org/10.1016/j.molcel.2019.04.009 https://www.ncbi.nlm.nih.gov/pubmed/31054974 https://www.proquest.com/docview/2232108333 https://www.proquest.com/docview/2286859609 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBalZbCXsfuyrUWDvYrUlhzJj17aEBYyRrOwvAnr4pGS2aFJB_0J-9c7R5IDg22FPdpIttCRzvmkc_kIeQ9mwJhRnTFAwzkD_K-YwWAaZ5WTDfelNXgPOf80mi7Fx1WxOiLjPhcGwyqT7o86PWjr9GaYZnO4Xa-HC_Sd5nKEEATOViUmmnOhQhLf6sPBkyCKQIOHjRm27tPnQozX925jPTogsjIUPMWwxD-bp7_Bz2CGJo_Jo4QfaRWH-IQc-fYpeRAZJe-ekZ-V9fu7GN9Gu4Z-nk6Kis47hyxdfkcXITWEXsXIWHhRt46OoTNOAnx3jNRCbfcNNeB6RxOLD6026d7wh6cL9HiDwWPzwPLhHV1ubyKjffrp7GLOq-dkObn8Mp6yxLbALGDCPcuasoHjoJeZFy43wvNMOJsDAPS2MLWU0lrLnQGEpwC0mAYEy0uTOcdRpp6_IMdt1_pXhHqbZVaYWpQGKcxlmTcKkVltVMNdnQ8I7ydZ21SKHBkxNrqPObvWUTQaRaPPhQbRDAg79NrGUhz3tJe9_PRvS0qDtbin57te3Bp2G7pQ6tZ3tzsNYArOyIpz_q82aqQKrOQ3IC_jWjmMF8A0HMileP3fY3tDHuITRqvl52_J8f7m1p8CLtqbM3JSza6-zs7CBvgFBz4ORw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcY07S9TLDPbsCMxKtVEjt18pgVqjIImiiV-mbFH0GduqSiZRJ_wv7r3cVOpUkwpL0m58Ty2Xe_8539I-QI3IDWgzJigIZjBvg_ZRqLaaxJray4y4zGfcjicjCeim-zZLZFht1ZGCyrDLbf2_TWWocn_TCa_eV83p9g7jSWA4QgEFtlyTPyHNCARP6Gs9nXTSpBJC0PHkozFO_Oz7VFXj-bhXGYgYiy9sZTrEt82D89hj9bPzTaIa8DgKS57-Mu2XL1G_LCU0revyW_c-PW977AjTYV_T4eJTktGos0XW5FJ-3ZEHrlS2PhQVlbOoTGOArw3SFyC9XNDZrA-YoGGh-aL8LG4S9HJ5jyBo_Hipbmw1k6Xd56Svvw0_OTgufvyHR0ej0cs0C3wAyAwjWLqqyCeNDJyAkba-F4JKyJAQE6k-hSSmmM4VYDxEsBtegKNMszHVnLUamOvyfbdVO7j4Q6E0VG6FJkGjnMZRZXKUKzUqcVt2XcI7wbZGXCXeRIibFQXdHZD-VVo1A16lgoUE2PsE2rpb-L4wl52elP_TWnFLiLJ1oedupWsNwwh1LWrrlbKUBTECSnnPN_yaSDNMGr_Hrkg58rm_4CmoaIXIpP_923L-Tl-Lq4UBdnl-efySt8g6Vr8fEe2V7f3rl9AElrfdAugj8Yfw_D |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acetylation+of+PHF5A+Modulates+Stress+Responses+and+Colorectal+Carcinogenesis+through+Alternative+Splicing-Mediated+Upregulation+of+KDM3A&rft.jtitle=Molecular+cell&rft.au=Wang%2C+Zhe&rft.au=Yang%2C+Xin&rft.au=Liu%2C+Cheng&rft.au=Li%2C+Xin&rft.date=2019-06-20&rft.issn=1097-4164&rft.eissn=1097-4164&rft.volume=74&rft.issue=6&rft.spage=1250&rft_id=info:doi/10.1016%2Fj.molcel.2019.04.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |