Dynamic regulation of Pif1 acetylation is crucial to the maintenance of genome stability
PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of P...
Saved in:
Published in | Current genetics Vol. 67; no. 1; pp. 85 - 92 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0172-8083 1432-0983 1432-0983 |
DOI | 10.1007/s00294-020-01116-5 |
Cover
Loading…
Abstract | PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in
Saccharomyces cerevisiae
is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of
S. cerevisiae
Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell. |
---|---|
AbstractList | PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in
Saccharomyces cerevisiae
is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation
in vivo
to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of
S. cerevisiae
Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation
in vitro
, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many
in vivo
functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell. PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell.PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell. PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell. PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell. |
Author | Bochman, Matthew L. Sausen, Christopher W. Balakrishnan, Lata Ononye, Onyekachi E. |
AuthorAffiliation | 2 Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA 1 Department of Biology, School of Science, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA |
AuthorAffiliation_xml | – name: 2 Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA – name: 1 Department of Biology, School of Science, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA |
Author_xml | – sequence: 1 givenname: Onyekachi E. surname: Ononye fullname: Ononye, Onyekachi E. organization: Department of Biology, School of Science, Indiana University Purdue University Indianapolis – sequence: 2 givenname: Christopher W. surname: Sausen fullname: Sausen, Christopher W. organization: Molecular and Cellular Biochemistry Department, Indiana University – sequence: 3 givenname: Matthew L. orcidid: 0000-0002-2807-0452 surname: Bochman fullname: Bochman, Matthew L. email: bochman@indiana.edu organization: Molecular and Cellular Biochemistry Department, Indiana University – sequence: 4 givenname: Lata orcidid: 0000-0003-0285-9559 surname: Balakrishnan fullname: Balakrishnan, Lata email: latabala@iupui.edu organization: Department of Biology, School of Science, Indiana University Purdue University Indianapolis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33079209$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9vFSEUxYmpsa_VL-DCkLhxM3phmAE2Jqb-TZroQhN3hGHuvNLMQAXG5H17ad-zahd1Awn8zuVw7zkhRyEGJOQpg5cMQL7KAFyLBjg0wBjrm-4B2TDR8ga0ao_IBpjkjQLVHpOTnC8BGFdaPiLHbQtSc9Ab8v3tLtjFO5pwu862-BhonOgXPzFqHZbd4cxn6tLqvJ1pibRcIF2sDwWDDQ6vFVsMcUGaix387MvuMXk42Tnjk8N-Sr69f_f17GNz_vnDp7M3543rQJaGjZxrbgW6Tk7W9UIyxfveWdQTSKc6iYOexCD6TqECPk6atWNvB2aVG6VuT8nrfd2rdVhwdBhKsrO5Sn6xaWei9ebfm-AvzDb-NFIpCa2qBV4cCqT4Y8VczOKzw3m2AeOaDe86pkWvpfg_KjpefyU0VPT5HfQyrinUTlRKaQ2qLpV69rf5W9e_51MBvgdcijknnG4RBuY6BGYfAlNDYG5CYLoqUndEzpebMdYG-Pl-abuX5vpO2GL6Y_se1S_XUcXz |
CitedBy_id | crossref_primary_10_3390_cells11020254 crossref_primary_10_1007_s12010_024_05161_5 crossref_primary_10_1016_j_ymeth_2022_04_014 crossref_primary_10_1093_nar_gkae265 crossref_primary_10_3390_ijms23073736 |
Cites_doi | 10.1007/s00294-020-01106-7 10.3390/genes10060411 10.1021/bi500746v 10.1074/jbc.M113.470013 10.1038/ncb1985 10.1074/jbc.M109.086397 10.1073/pnas.80.17.5345 10.3390/genes10020095 10.1074/jbc.R115.695056 10.1074/jbc.RA118.004092 10.1016/j.celrep.2014.07.036 10.3390/genes11020224 10.1093/nar/gkm613 10.1038/nature04091 10.1038/s41467-019-13414-9 10.1128/mcb.23.24.9178-9188.2003 10.1074/jbc.M115.688648 10.1038/nature12149 10.1016/j.cell.2009.02.024 10.1093/nar/gkz028 10.1158/0008-5472.can-10-4404 10.1007/s10522-014-9506-3 10.1016/j.molcel.2019.01.040 10.18632/oncotarget.2501 10.1093/nar/gkp671 10.1128/MCB.26.7.2490-2500.2006 10.1093/nar/gky1065 10.1093/nar/gky1242 10.1046/j.1365-2443.1996.d01-256.x 10.1371/journal.pcbi.1000316 10.1126/scisignal.2001497 10.1101/gad.184663.111 10.1093/nar/gkw033 10.1371/journal.pone.0203101 10.1074/jbc.M804550200 10.1016/j.lfs.2020.117820 10.1371/journal.pone.0030748 10.1093/nar/gkaa524 10.1371/journal.pgen.1005186 10.1091/mbc.E11-01-0045 10.1093/nar/gkx1217 10.1016/j.cell.2011.04.015 10.1074/jbc.M109.023325 10.1016/j.dnarep.2010.01.008 10.1074/jbc.M800856200 10.1016/0092-8674(94)90179-1 10.1016/j.cell.2012.04.017 10.1002/j.1460-2075.1991.tb08034.x 10.1093/nar/gkl029 10.1074/jbc.M805965200 10.1093/nar/gkw181 10.1074/jbc.M209801200 10.1074/jbc.M110.146894 10.1016/j.gde.2013.05.007 10.1074/mcp.O112.027094 10.1038/srep40293 10.1042/BJ20100612 10.1016/s0092-8674(00)80683-2 10.1038/srep42865 10.1093/nar/gky654 10.1021/ja1038165 10.1039/C7RA06666J 10.1371/journal.pone.0001918 10.1074/jbc.RA120.015164 10.1016/j.mito.2016.02.005 10.1016/j.celrep.2017.10.079 10.1016/j.celrep.2016.02.008 10.7554/eLife.02190 10.1016/j.celrep.2013.12.037 10.1016/S0021-9258(19)74294-X 10.1021/acs.biochem.7b01233 10.1093/nar/gkz608 10.1038/ncomms15025 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SS 7TK 7TM 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 7S9 L.6 5PM |
DOI | 10.1007/s00294-020-01116-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1432-0983 |
EndPage | 92 |
ExternalDocumentID | PMC7887038 33079209 10_1007_s00294_020_01116_5 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: American Cancer Society grantid: RSG-16-180-01-DMC funderid: http://dx.doi.org/10.13039/100000048 – fundername: National Science Foundation grantid: 1929346 funderid: http://dx.doi.org/10.13039/501100008982 – fundername: National Institutes of Health grantid: 1R35GM133437 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Science Foundation grantid: 1929346 – fundername: NIH HHS grantid: 1R35GM133437 – fundername: NIGMS NIH HHS grantid: R35 GM133437 – fundername: American Cancer Society grantid: RSG-16-180-01-DMC |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D0L DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0L M1P M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PF- PKN PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7U Z7V Z7W Z83 Z8O Z8P Z8Q Z8W ZGI ZMTXR ZOVNA ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7SS 7TK 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. M7N P64 PKEHL PQEST PQUKI RC3 7X8 7S9 L.6 PUEGO 5PM |
ID | FETCH-LOGICAL-c507t-1d2292a4ec57fac64718266cae9f07c857eb9f4b4658e802df913d6ab1a8cd793 |
IEDL.DBID | U2A |
ISSN | 0172-8083 1432-0983 |
IngestDate | Thu Aug 21 13:13:20 EDT 2025 Sun Aug 24 03:35:36 EDT 2025 Thu Jul 10 23:27:52 EDT 2025 Fri Jul 25 19:23:12 EDT 2025 Mon Jul 21 05:58:35 EDT 2025 Tue Jul 01 01:44:35 EDT 2025 Thu Apr 24 22:52:45 EDT 2025 Fri Feb 21 02:49:31 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | G4 resolvase DNA replication Lysine acetylation Rpd3 Pif1 helicase DNA repair NuA4 (Esa1) |
Language | English |
License | Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. https://www.springer.com/aam-terms-v1 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c507t-1d2292a4ec57fac64718266cae9f07c857eb9f4b4658e802df913d6ab1a8cd793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Author contributions: All authors participating in the writing and editing of this manuscript. |
ORCID | 0000-0003-0285-9559 0000-0002-2807-0452 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7887038 |
PMID | 33079209 |
PQID | 2489908899 |
PQPubID | 54061 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7887038 proquest_miscellaneous_2551946974 proquest_miscellaneous_2452507490 proquest_journals_2489908899 pubmed_primary_33079209 crossref_primary_10_1007_s00294_020_01116_5 crossref_citationtrail_10_1007_s00294_020_01116_5 springer_journals_10_1007_s00294_020_01116_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Berlin |
PublicationSubtitle | Microorganisms and Organelles |
PublicationTitle | Current genetics |
PublicationTitleAbbrev | Curr Genet |
PublicationTitleAlternate | Curr Genet |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Bannwarth, Berg-Alonso, Auge, Fragaki, Kolesar, Lespinasse, Lacas-Gervais, Burel-Vandenbos, Villa, Belmonte, Michiels, Ricci, Gherardi, Harrington, Kaufman, Paquis-Flucklinger (CR6) 2016; 30 Su, Byrd, Bharath, Yang, Jia, Tang, Ha, Raney, Song (CR65) 2019; 10 Lahaye, Leterme, Foury (CR36) 1993; 268 Foury, Kolodynski (CR25) 1983; 80 Ramanagoudr-Bhojappa, Byrd, Dahl, Raney (CR56) 2014; 53 Ramanagoudr-Bhojappa, Chib, Byrd, Aarattuthodiyil, Pandey, Patel, Raney (CR57) 2013; 288 Wong, Shao (CR70) 2017; 7 Chen, Dai, Duan, Liu, Shi, Li, Li, Dou, Dong, Rety, Xi (CR17) 2016; 44 Phillips, Chan, Paeschke, Zakian (CR53) 2015; 11 Schulz, Zakian (CR60) 1994; 76 Gagou, Ganesh, Phear, Robinson, Petermann, Cox, Meuth (CR26) 2014; 5 Luo, Solimini, Elledge (CR42) 2009; 136 Chib, Byrd, Raney (CR18) 2016; 291 Dahan, Tsirkas, Dovrat, Sparks, Singh, Galletto, Aharoni (CR20) 2018; 46 Boule, Zakian (CR13) 2007; 35 Chen, Hua, Gong, Tan, Zhang, Li, Chen, Zhang, Li (CR16) 2020; 256 Fong, Shoemaker, Garbuzynskiy, Lobanov, Galzitskaya, Panchenko (CR24) 2009; 5 Zhang, Zhou, Huang, Xu, Zhou (CR71) 2006; 34 Ivessa, Zhou, Zakian (CR29) 2000; 100 Kettenbach, Schweppe, Faherty, Pechenick, Pletnev, Gerber (CR32) 2011 Chisholm, Aubert, Freese, Zakian, King, Welcsh (CR19) 2012; 7 Liu, Chen, Xue, Hao, Tan (CR39) 2010; 132 Sanders (CR59) 2010 Sharma, D'Souza, Tyanova, Schaab, Wisniewski, Cox, Mann (CR61) 2014; 8 Bah, Forman-Kay (CR4) 2016; 291 Buzovetsky, Kwon, Pham, Kim, Ira, Sung, Xiong (CR15) 2017; 21 Falquet, Olmezer, Enkner, Klein, Challa, Appanah, Gasser, Rass (CR23) 2020; 48 Bochman, Paeschke, Chan, Zakian (CR10) 2014; 6 Malkova, Ira (CR44) 2013; 23 Paeschke, Capra, Zakian (CR52) 2011; 145 Deegan, Baxter, Ortiz Bazan, Yeeles, Labib (CR21) 2019; 74 George, Wen, Griffiths, Ganesh, Meuth, Sanders (CR28) 2009; 37 Makovets, Blackburn (CR43) 2009; 11 Muellner, Schmidt (CR46) 2020 Dehghani-Tafti, Levdikov, Antson, Bax, Sanders (CR22) 2019; 47 Bartos, Willmott, Binz, Wold, Bambara (CR7) 2008; 283 Ononye, Sausen, Balakrishnan, Bochman (CR50) 2020 Zhou, Zhang, Bochman, Zakian, Ha (CR72) 2014; 3 Ayyagari, Gomes, Gordenin, Burgers (CR3) 2003; 278 Tran, Pohl, Chen, Chan, Pott, Zakian (CR66) 2017; 8 Paeschke, Bochman, Garcia, Cejka, Friedman, Kowalczykowski, Zakian (CR51) 2013; 497 Nickens, Sausen, Bochman (CR49) 2019 Appanah, Jones, Falquet, Rass (CR2) 2020 Steinacher, Osman, Dalgaard, Lorenz, Whitby (CR63) 2012; 26 Wang, J. (CR68) 2017; 7 Wei, Zhang, Bazeille, Yu, Liu, Rene, Mauffret, Xi (CR69) 2017; 7 Kahli, Osmundson, Yeung, Smith (CR30) 2019; 47 Boule, Vega, Zakian (CR12) 2005; 438 Kato, Han, Xie, Shi, Du, Wu, Mirzaei, Goldsmith, Longgood, Pei, Grishin, Frantz, Schneider, Chen, Li, Sawaya, Eisenberg, Tycko, McKnight (CR31) 2012; 149 Gagou, Ganesh, Thompson, Phear, Sanders, Meuth (CR27) 2011; 71 Lu, Chen, Rety, Liu, Wu, Dai, Li, Ma, Dou, Xi (CR41) 2018; 46 Nickens, Rogers, Bochman (CR48) 2018; 293 Lerner, Sale (CR38) 2019 Balakrishnan, Stewart, Polaczek, Campbell, Bambara (CR5) 2010; 285 Pike, Henry, Burgers, Campbell, Bambara (CR55) 2010; 285 Bochman, Judge, Zakian (CR9) 2011; 22 Lozada, Yi, Luo, Orren (CR40) 2014; 15 Muftuoglu, Kusumoto, Speina, Beck, Cheng, Bohr (CR47) 2008; 3 Pike, Burgers, Campbell, Bambara (CR54) 2009; 284 Kobayashi (CR33) 2003; 23 Lahaye, Stahl, Thines-Sempoux, Foury (CR37) 1991; 10 Udeshi, Svinkina, Mertins, Kuhn, Mani, Qiao, Carr (CR67) 2013; 12 Bochman, Sabouri, Zakian (CR11) 2010; 9 Mohammad, Wallgren, Sabouri (CR45) 2018; 46 Stewart, Miller, Campbell, Bambara (CR64) 2008; 283 Rossi, Pike, Wang, Burgers, Campbell, Bambara (CR58) 2008; 283 Zhou, Ren, Bharath, Tang, He, Chen, Liu, Li, Song (CR73) 2016; 14 Belmonte, Dedousis, Sipula, Desai, Singhi, Chu, Zhang, Bannwarth, Paquis-Flucklinger, Harrington, Shiva, Jurczak, O'Doherty, Kaufman (CR8) 2019; 14 Budd, Reis, Smith, Myung, Campbell (CR14) 2006; 26 Kobayashi, Horiuchi (CR34) 1996; 1 Sparks, Singh, Burgers, Galletto (CR62) 2019; 47 Koc, Singh, Stodola, Burgers, Galletto (CR35) 2016; 44 Andis, Sausen, Alladin, Bochman (CR1) 2018; 57 KM Chisholm (1116_CR19) 2012; 7 M Kahli (1116_CR30) 2019; 47 R Ayyagari (1116_CR3) 2003; 278 XB Wei (1116_CR69) 2017; 7 J Luo (1116_CR42) 2009; 136 JE Pike (1116_CR55) 2010; 285 JR Wong (1116_CR70) 2017; 7 VP Schulz (1116_CR60) 1994; 76 K Paeschke (1116_CR52) 2011; 145 R Ramanagoudr-Bhojappa (1116_CR57) 2013; 288 AS Ivessa (1116_CR29) 2000; 100 R Appanah (1116_CR2) 2020 ML Bochman (1116_CR11) 2010; 9 K Paeschke (1116_CR51) 2013; 497 JA Stewart (1116_CR64) 2008; 283 KN Koc (1116_CR35) 2016; 44 S Chib (1116_CR18) 2016; 291 YL Wang (1116_CR68) 2017; 7 LK Lerner (1116_CR38) 2019 B Chen (1116_CR16) 2020; 256 JB Mohammad (1116_CR45) 2018; 46 ML Rossi (1116_CR58) 2008; 283 WF Chen (1116_CR17) 2016; 44 A Bah (1116_CR4) 2016; 291 A Lahaye (1116_CR37) 1991; 10 ML Bochman (1116_CR10) 2014; 6 B Falquet (1116_CR23) 2020; 48 T George (1116_CR28) 2009; 37 A Lahaye (1116_CR36) 1993; 268 R Ramanagoudr-Bhojappa (1116_CR56) 2014; 53 CM Sanders (1116_CR59) 2010 AN Kettenbach (1116_CR32) 2011 J Muellner (1116_CR46) 2020 ME Gagou (1116_CR27) 2011; 71 JA Phillips (1116_CR53) 2015; 11 T Kobayashi (1116_CR33) 2003; 23 JD Bartos (1116_CR7) 2008; 283 DG Nickens (1116_CR48) 2018; 293 A Malkova (1116_CR44) 2013; 23 N Su (1116_CR65) 2019; 10 JE Pike (1116_CR54) 2009; 284 M Kato (1116_CR31) 2012; 149 S Makovets (1116_CR43) 2009; 11 JB Boule (1116_CR13) 2007; 35 T Kobayashi (1116_CR34) 1996; 1 DH Zhang (1116_CR71) 2006; 34 MA Sparks (1116_CR62) 2019; 47 F Foury (1116_CR25) 1983; 80 JH Fong (1116_CR24) 2009; 5 JB Boule (1116_CR12) 2005; 438 R Zhou (1116_CR72) 2014; 3 L Balakrishnan (1116_CR5) 2010; 285 JQ Liu (1116_CR39) 2010; 132 KY Lu (1116_CR41) 2018; 46 NM Andis (1116_CR1) 2018; 57 ML Bochman (1116_CR9) 2011; 22 ME Budd (1116_CR14) 2006; 26 M Muftuoglu (1116_CR47) 2008; 3 PLT Tran (1116_CR66) 2017; 8 D Dahan (1116_CR20) 2018; 46 TD Deegan (1116_CR21) 2019; 74 X Zhou (1116_CR73) 2016; 14 S Bannwarth (1116_CR6) 2016; 30 FR Belmonte (1116_CR8) 2019; 14 S Dehghani-Tafti (1116_CR22) 2019; 47 O Buzovetsky (1116_CR15) 2017; 21 E Lozada (1116_CR40) 2014; 15 DG Nickens (1116_CR49) 2019 OE Ononye (1116_CR50) 2020 K Sharma (1116_CR61) 2014; 8 ME Gagou (1116_CR26) 2014; 5 R Steinacher (1116_CR63) 2012; 26 ND Udeshi (1116_CR67) 2013; 12 |
References_xml | – year: 2020 ident: CR2 article-title: Limiting homologous recombination at stalled replication forks is essential for cell viability: DNA2 to the rescue publication-title: Curr Genet doi: 10.1007/s00294-020-01106-7 – year: 2019 ident: CR49 article-title: The Biochemical Activities of the Saccharomyces cerevisiae Pif1 Helicase Are Regulated by Its N-Terminal Domain publication-title: Genes (Basel) doi: 10.3390/genes10060411 – volume: 53 start-page: 7659 year: 2014 end-page: 7669 ident: CR56 article-title: Yeast Pif1 accelerates annealing of complementary DNA strands publication-title: Biochemistry doi: 10.1021/bi500746v – volume: 288 start-page: 16185 year: 2013 end-page: 16195 ident: CR57 article-title: Yeast Pif1 helicase exhibits a one-base-pair stepping mechanism for unwinding duplex DNA publication-title: J Biol Chem doi: 10.1074/jbc.M113.470013 – volume: 11 start-page: 1383 year: 2009 end-page: 1386 ident: CR43 article-title: DNA damage signalling prevents deleterious telomere addition at DNA breaks publication-title: Nat Cell Biol doi: 10.1038/ncb1985 – volume: 285 start-page: 4398 year: 2010 end-page: 4404 ident: CR5 article-title: Acetylation of Dna2 endonuclease/helicase and flap endonuclease 1 by p300 promotes DNA stability by creating long flap intermediates publication-title: J Biol Chem doi: 10.1074/jbc.M109.086397 – volume: 80 start-page: 5345 year: 1983 end-page: 5349 ident: CR25 article-title: pif mutation blocks recombination between mitochondrial rho+ and rho- genomes having tandemly arrayed repeat units in publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.80.17.5345 – year: 2019 ident: CR38 article-title: Replication of G Quadruplex DNA publication-title: Genes (Basel) doi: 10.3390/genes10020095 – volume: 291 start-page: 6696 year: 2016 end-page: 6705 ident: CR4 article-title: Modulation of intrinsically disordered protein function by post-translational modifications publication-title: J Biol Chem doi: 10.1074/jbc.R115.695056 – volume: 293 start-page: 14481 year: 2018 end-page: 14496 ident: CR48 article-title: The Saccharomyces cerevisiae Hrq1 and Pif1 DNA helicases synergistically modulate telomerase activity in vitro publication-title: J Biol Chem doi: 10.1074/jbc.RA118.004092 – volume: 8 start-page: 1583 year: 2014 end-page: 1594 ident: CR61 article-title: Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling publication-title: Cell Rep doi: 10.1016/j.celrep.2014.07.036 – year: 2020 ident: CR46 article-title: Yeast Genome Maintenance by the Multifunctional PIF1 DNA Helicase Family publication-title: Genes (Basel) doi: 10.3390/genes11020224 – volume: 35 start-page: 5809 year: 2007 end-page: 5818 ident: CR13 article-title: The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm613 – volume: 438 start-page: 57 year: 2005 end-page: 61 ident: CR12 article-title: The yeast Pif1p helicase removes telomerase from telomeric DNA publication-title: Nature doi: 10.1038/nature04091 – volume: 10 start-page: 5375 year: 2019 ident: CR65 article-title: Structural basis for DNA unwinding at forked dsDNA by two coordinating Pif1 helicases publication-title: Nat Commun doi: 10.1038/s41467-019-13414-9 – volume: 23 start-page: 9178 year: 2003 end-page: 9188 ident: CR33 article-title: The replication fork barrier site forms a unique structure with Fob1p and inhibits the replication fork publication-title: Mol Cell Biol doi: 10.1128/mcb.23.24.9178-9188.2003 – volume: 291 start-page: 5889 year: 2016 end-page: 5901 ident: CR18 article-title: Yeast helicase Pif1 unwinds RNA:DNA hybrids with higher processivity than DNA:DNA duplexes publication-title: J Biol Chem doi: 10.1074/jbc.M115.688648 – volume: 497 start-page: 458 year: 2013 end-page: 462 ident: CR51 article-title: Pif1 family helicases suppress genome instability at G-quadruplex motifs publication-title: Nature doi: 10.1038/nature12149 – volume: 136 start-page: 823 year: 2009 end-page: 837 ident: CR42 article-title: Principles of cancer therapy: oncogene and non-oncogene addiction publication-title: Cell doi: 10.1016/j.cell.2009.02.024 – volume: 47 start-page: 3208 year: 2019 end-page: 3222 ident: CR22 article-title: Structural and functional analysis of the nucleotide and DNA binding activities of the human PIF1 helicase publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz028 – volume: 71 start-page: 4998 year: 2011 end-page: 5008 ident: CR27 article-title: Suppression of apoptosis by PIF1 helicase in human tumor cells publication-title: Can Res doi: 10.1158/0008-5472.can-10-4404 – volume: 15 start-page: 347 year: 2014 end-page: 366 ident: CR40 article-title: Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities publication-title: Biogerontology doi: 10.1007/s10522-014-9506-3 – volume: 74 start-page: e239 issue: 231–244 year: 2019 ident: CR21 article-title: Pif1-family helicases support fork convergence during DNA replication termination in eukaryotes publication-title: Mol Cell doi: 10.1016/j.molcel.2019.01.040 – volume: 5 start-page: 11381 year: 2014 end-page: 11398 ident: CR26 article-title: Human PIF1 helicase supports DNA replication and cell growth under oncogenic-stress publication-title: Oncotarget doi: 10.18632/oncotarget.2501 – volume: 37 start-page: 6491 year: 2009 end-page: 6502 ident: CR28 article-title: Human Pif1 helicase unwinds synthetic DNA structures resembling stalled DNA replication forks publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp671 – volume: 26 start-page: 2490 year: 2006 end-page: 2500 ident: CR14 article-title: Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta publication-title: Mol Cell Biol doi: 10.1128/MCB.26.7.2490-2500.2006 – volume: 46 start-page: 11847 year: 2018 end-page: 11857 ident: CR20 article-title: Pif1 is essential for efficient replisome progression through lagging strand G-quadruplex DNA secondary structures publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1065 – volume: 47 start-page: 1814 year: 2019 end-page: 1822 ident: CR30 article-title: Processing of eukaryotic Okazaki fragments by redundant nucleases can be uncoupled from ongoing DNA replication in vivo publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1242 – volume: 1 start-page: 465 year: 1996 end-page: 474 ident: CR34 article-title: A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities publication-title: Genes Cells doi: 10.1046/j.1365-2443.1996.d01-256.x – volume: 5 start-page: e1000316 year: 2009 ident: CR24 article-title: Intrinsic disorder in protein interactions: insights from a comprehensive structural analysis publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000316 – year: 2011 ident: CR32 article-title: Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells publication-title: Sci Signal doi: 10.1126/scisignal.2001497 – volume: 26 start-page: 594 year: 2012 end-page: 602 ident: CR63 article-title: The DNA helicase Pfh1 promotes fork merging at replication termination sites to ensure genome stability publication-title: Genes Dev doi: 10.1101/gad.184663.111 – volume: 44 start-page: 2949 year: 2016 end-page: 2961 ident: CR17 article-title: Crystal structures of the BsPif1 helicase reveal that a major movement of the 2B SH3 domain is required for DNA unwinding publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw033 – volume: 14 start-page: e0203101 year: 2019 ident: CR8 article-title: Petite Integration Factor 1 (PIF1) helicase deficiency increases weight gain in Western diet-fed female mice without increased inflammatory markers or decreased glucose clearance publication-title: PLoS ONE doi: 10.1371/journal.pone.0203101 – volume: 283 start-page: 27483 year: 2008 end-page: 27493 ident: CR58 article-title: Pif1 helicase directs eukaryotic Okazaki fragments toward the two-nuclease cleavage pathway for primer removal publication-title: J Biol Chem doi: 10.1074/jbc.M804550200 – volume: 256 start-page: 117820 year: 2020 ident: CR16 article-title: Downregulation of PIF1, a potential new target of MYCN, induces apoptosis and inhibits cell migration in neuroblastoma cells publication-title: Life Sci doi: 10.1016/j.lfs.2020.117820 – volume: 7 start-page: 10 year: 2012 ident: CR19 article-title: A genomewide screen for suppressors of Alu-mediated rearrangements reveals a role for PIF1 publication-title: PLoS ONE doi: 10.1371/journal.pone.0030748 – volume: 48 start-page: 7265 year: 2020 end-page: 7278 ident: CR23 article-title: Disease-associated DNA2 nuclease-helicase protects cells from lethal chromosome under-replication publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa524 – volume: 11 start-page: e1005186 year: 2015 ident: CR53 article-title: The pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005186 – volume: 22 start-page: 1955 year: 2011 end-page: 1959 ident: CR9 article-title: The Pif1 family in prokaryotes: what are our helicases doing in your bacteria? publication-title: Mol Biol Cell doi: 10.1091/mbc.E11-01-0045 – volume: 46 start-page: 1486 year: 2018 end-page: 1500 ident: CR41 article-title: Insights into the structural and mechanistic basis of multifunctional Pif1p helicase publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1217 – volume: 145 start-page: 678 year: 2011 end-page: 691 ident: CR52 article-title: DNA Replication through G-Quadruplex motifs is promoted by the Pif1 DNA helicase publication-title: Cell doi: 10.1016/j.cell.2011.04.015 – volume: 284 start-page: 25170 year: 2009 end-page: 25180 ident: CR54 article-title: Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway publication-title: J Biol Chem doi: 10.1074/jbc.M109.023325 – volume: 9 start-page: 237 year: 2010 end-page: 249 ident: CR11 article-title: Unwinding the functions of the Pif1 family helicases publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2010.01.008 – volume: 283 start-page: 21758 year: 2008 end-page: 21768 ident: CR7 article-title: Catalysis of strand annealing by replication protein A derives from its strand melting properties publication-title: J Biol Chem doi: 10.1074/jbc.M800856200 – volume: 76 start-page: 145 year: 1994 end-page: 155 ident: CR60 article-title: The DNA helicase inhibits telomere elongation and telomere formation publication-title: Cell doi: 10.1016/0092-8674(94)90179-1 – volume: 149 start-page: 753 year: 2012 end-page: 767 ident: CR31 article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels publication-title: Cell doi: 10.1016/j.cell.2012.04.017 – volume: 10 start-page: 997 year: 1991 end-page: 1007 ident: CR37 article-title: PIF1: a DNA helicase in yeast mitochondria publication-title: EMBO J doi: 10.1002/j.1460-2075.1991.tb08034.x – volume: 34 start-page: 1393 year: 2006 end-page: 1404 ident: CR71 article-title: The human Pif1 helicase, a potential RecD homologue, inhibits telomerase activity publication-title: Nucl Acids Res doi: 10.1093/nar/gkl029 – volume: 283 start-page: 31356 year: 2008 end-page: 31365 ident: CR64 article-title: Dynamic removal of replication protein A by Dna2 facilitates primer cleavage during Okazaki fragment processing in publication-title: J Biol Chem doi: 10.1074/jbc.M805965200 – volume: 44 start-page: 3811 year: 2016 end-page: 3819 ident: CR35 article-title: Pif1 removes a Rap1-dependent barrier to the strand displacement activity of DNA polymerase delta publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw181 – volume: 278 start-page: 1618 year: 2003 end-page: 1625 ident: CR3 article-title: Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2 publication-title: J Biol Chem doi: 10.1074/jbc.M209801200 – volume: 285 start-page: 41712 year: 2010 end-page: 41723 ident: CR55 article-title: An alternative pathway for Okazaki fragment processing: resolution of fold-back flaps by Pif1 helicase publication-title: J Biol Chem doi: 10.1074/jbc.M110.146894 – volume: 23 start-page: 271 year: 2013 end-page: 279 ident: CR44 article-title: Break-induced replication: functions and molecular mechanism publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2013.05.007 – volume: 12 start-page: 825 year: 2013 end-page: 831 ident: CR67 article-title: Refined preparation and use of anti-diglycine remnant (K-epsilon-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments publication-title: Mol Cell Proteomics doi: 10.1074/mcp.O112.027094 – volume: 7 start-page: 40293 year: 2017 ident: CR70 article-title: Hole Transport in A-form DNA/RNA Hybrid Duplexes publication-title: Sci Rep doi: 10.1038/srep40293 – year: 2010 ident: CR59 article-title: Human Pif1 helicase is a G-quadruplex DNA binding protein with G-quadruplex DNA unwinding activity publication-title: Biochem J doi: 10.1042/BJ20100612 – volume: 100 start-page: 479 year: 2000 end-page: 489 ident: CR29 article-title: The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA publication-title: Cell doi: 10.1016/s0092-8674(00)80683-2 – volume: 7 start-page: 42865 year: 2017 ident: CR69 article-title: A 3'-5' exonuclease activity embedded in the helicase core domain of Candida albicans Pif1 helicase publication-title: Sci Rep doi: 10.1038/srep42865 – volume: 46 start-page: 8516 year: 2018 end-page: 8531 ident: CR45 article-title: The Pif1 signature motif of Pfh1 is necessary for both protein displacement and helicase unwinding activities, but is dispensable for strand-annealing activity publication-title: Nucleic Acids Res doi: 10.1093/nar/gky654 – volume: 132 start-page: 10521 year: 2010 end-page: 10527 ident: CR39 article-title: G-quadruplex hinders translocation of BLM helicase on DNA: a real-time fluorescence spectroscopic unwinding study and comparison with duplex substrates publication-title: J Am Chem Soc doi: 10.1021/ja1038165 – volume: 7 start-page: 55301 year: 2017 end-page: 55308 ident: CR68 article-title: Acetylation of BLM protein regulates its function in response to DNA damage publication-title: RSC Advances doi: 10.1039/C7RA06666J – volume: 3 start-page: e1918 year: 2008 ident: CR47 article-title: Acetylation regulates WRN catalytic activities and affects base excision DNA repair publication-title: PLoS ONE doi: 10.1371/journal.pone.0001918 – year: 2020 ident: CR50 article-title: Lysine Acetylation Regulates the Activity of Nuclear Pif1 publication-title: J Biol Chem doi: 10.1074/jbc.RA120.015164 – volume: 30 start-page: 126 year: 2016 end-page: 137 ident: CR6 article-title: Inactivation of Pif1 helicase causes a mitochondrial myopathy in mice publication-title: Mitochondrion doi: 10.1016/j.mito.2016.02.005 – volume: 21 start-page: 1707 year: 2017 end-page: 1714 ident: CR15 article-title: Role of the Pif1-PCNA complex in Pol delta-dependent strand displacement DNA synthesis and break-induced replication publication-title: Cell Rep doi: 10.1016/j.celrep.2017.10.079 – volume: 14 start-page: 2030 year: 2016 end-page: 2039 ident: CR73 article-title: Structural and Functional insights into the unwinding mechanism of bacteroides sp Pif1 publication-title: Cell Rep doi: 10.1016/j.celrep.2016.02.008 – volume: 3 start-page: e02190 year: 2014 ident: CR72 article-title: Periodic DNA patrolling underlies diverse functions of Pif1 on R-loops and G-rich DNA publication-title: Elife doi: 10.7554/eLife.02190 – volume: 6 start-page: 346 year: 2014 end-page: 356 ident: CR10 article-title: Hrq1, a homolog of the human RecQ4 helicase, acts catalytically and structurally to promote genome integrity publication-title: Cell Rep doi: 10.1016/j.celrep.2013.12.037 – volume: 268 start-page: 26155 year: 1993 end-page: 26161 ident: CR36 article-title: PIF1 DNA helicase from . Biochemical characterization of the enzyme publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)74294-X – volume: 57 start-page: 1108 year: 2018 end-page: 1118 ident: CR1 article-title: The WYL domain of the PIF1 helicase from the thermophilic bacterium is an accessory single-stranded DNA binding module publication-title: Biochemistry doi: 10.1021/acs.biochem.7b01233 – volume: 47 start-page: 8595 year: 2019 end-page: 8605 ident: CR62 article-title: Complementary roles of Pif1 helicase and single stranded DNA binding proteins in stimulating DNA replication through G-quadruplexes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz608 – volume: 8 start-page: 15025 year: 2017 ident: CR66 article-title: PIF1 family DNA helicases suppress R-loop mediated genome instability at tRNA genes publication-title: Nat Commun doi: 10.1038/ncomms15025 – volume: 497 start-page: 458 year: 2013 ident: 1116_CR51 publication-title: Nature doi: 10.1038/nature12149 – volume: 8 start-page: 1583 year: 2014 ident: 1116_CR61 publication-title: Cell Rep doi: 10.1016/j.celrep.2014.07.036 – volume: 57 start-page: 1108 year: 2018 ident: 1116_CR1 publication-title: Biochemistry doi: 10.1021/acs.biochem.7b01233 – volume: 23 start-page: 271 year: 2013 ident: 1116_CR44 publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2013.05.007 – volume: 256 start-page: 117820 year: 2020 ident: 1116_CR16 publication-title: Life Sci doi: 10.1016/j.lfs.2020.117820 – volume: 47 start-page: 1814 year: 2019 ident: 1116_CR30 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1242 – volume: 291 start-page: 5889 year: 2016 ident: 1116_CR18 publication-title: J Biol Chem doi: 10.1074/jbc.M115.688648 – volume: 37 start-page: 6491 year: 2009 ident: 1116_CR28 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp671 – year: 2019 ident: 1116_CR38 publication-title: Genes (Basel) doi: 10.3390/genes10020095 – year: 2020 ident: 1116_CR46 publication-title: Genes (Basel) doi: 10.3390/genes11020224 – volume: 34 start-page: 1393 year: 2006 ident: 1116_CR71 publication-title: Nucl Acids Res doi: 10.1093/nar/gkl029 – volume: 35 start-page: 5809 year: 2007 ident: 1116_CR13 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm613 – volume: 288 start-page: 16185 year: 2013 ident: 1116_CR57 publication-title: J Biol Chem doi: 10.1074/jbc.M113.470013 – volume: 268 start-page: 26155 year: 1993 ident: 1116_CR36 publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)74294-X – volume: 283 start-page: 21758 year: 2008 ident: 1116_CR7 publication-title: J Biol Chem doi: 10.1074/jbc.M800856200 – volume: 44 start-page: 2949 year: 2016 ident: 1116_CR17 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw033 – volume: 291 start-page: 6696 year: 2016 ident: 1116_CR4 publication-title: J Biol Chem doi: 10.1074/jbc.R115.695056 – volume: 14 start-page: 2030 year: 2016 ident: 1116_CR73 publication-title: Cell Rep doi: 10.1016/j.celrep.2016.02.008 – volume: 1 start-page: 465 year: 1996 ident: 1116_CR34 publication-title: Genes Cells doi: 10.1046/j.1365-2443.1996.d01-256.x – year: 2011 ident: 1116_CR32 publication-title: Sci Signal doi: 10.1126/scisignal.2001497 – volume: 53 start-page: 7659 year: 2014 ident: 1116_CR56 publication-title: Biochemistry doi: 10.1021/bi500746v – volume: 12 start-page: 825 year: 2013 ident: 1116_CR67 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.O112.027094 – volume: 71 start-page: 4998 year: 2011 ident: 1116_CR27 publication-title: Can Res doi: 10.1158/0008-5472.can-10-4404 – volume: 136 start-page: 823 year: 2009 ident: 1116_CR42 publication-title: Cell doi: 10.1016/j.cell.2009.02.024 – volume: 5 start-page: 11381 year: 2014 ident: 1116_CR26 publication-title: Oncotarget doi: 10.18632/oncotarget.2501 – year: 2020 ident: 1116_CR50 publication-title: J Biol Chem doi: 10.1074/jbc.RA120.015164 – volume: 3 start-page: e02190 year: 2014 ident: 1116_CR72 publication-title: Elife doi: 10.7554/eLife.02190 – volume: 44 start-page: 3811 year: 2016 ident: 1116_CR35 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw181 – volume: 438 start-page: 57 year: 2005 ident: 1116_CR12 publication-title: Nature doi: 10.1038/nature04091 – volume: 47 start-page: 3208 year: 2019 ident: 1116_CR22 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz028 – year: 2019 ident: 1116_CR49 publication-title: Genes (Basel) doi: 10.3390/genes10060411 – volume: 3 start-page: e1918 year: 2008 ident: 1116_CR47 publication-title: PLoS ONE doi: 10.1371/journal.pone.0001918 – volume: 80 start-page: 5345 year: 1983 ident: 1116_CR25 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.80.17.5345 – volume: 74 start-page: e239 issue: 231–244 year: 2019 ident: 1116_CR21 publication-title: Mol Cell doi: 10.1016/j.molcel.2019.01.040 – volume: 26 start-page: 594 year: 2012 ident: 1116_CR63 publication-title: Genes Dev doi: 10.1101/gad.184663.111 – volume: 7 start-page: 55301 year: 2017 ident: 1116_CR68 publication-title: RSC Advances doi: 10.1039/C7RA06666J – volume: 293 start-page: 14481 year: 2018 ident: 1116_CR48 publication-title: J Biol Chem doi: 10.1074/jbc.RA118.004092 – volume: 15 start-page: 347 year: 2014 ident: 1116_CR40 publication-title: Biogerontology doi: 10.1007/s10522-014-9506-3 – volume: 47 start-page: 8595 year: 2019 ident: 1116_CR62 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz608 – volume: 10 start-page: 997 year: 1991 ident: 1116_CR37 publication-title: EMBO J doi: 10.1002/j.1460-2075.1991.tb08034.x – volume: 285 start-page: 41712 year: 2010 ident: 1116_CR55 publication-title: J Biol Chem doi: 10.1074/jbc.M110.146894 – volume: 283 start-page: 31356 year: 2008 ident: 1116_CR64 publication-title: J Biol Chem doi: 10.1074/jbc.M805965200 – volume: 21 start-page: 1707 year: 2017 ident: 1116_CR15 publication-title: Cell Rep doi: 10.1016/j.celrep.2017.10.079 – volume: 7 start-page: 10 year: 2012 ident: 1116_CR19 publication-title: PLoS ONE doi: 10.1371/journal.pone.0030748 – volume: 284 start-page: 25170 year: 2009 ident: 1116_CR54 publication-title: J Biol Chem doi: 10.1074/jbc.M109.023325 – volume: 7 start-page: 42865 year: 2017 ident: 1116_CR69 publication-title: Sci Rep doi: 10.1038/srep42865 – volume: 283 start-page: 27483 year: 2008 ident: 1116_CR58 publication-title: J Biol Chem doi: 10.1074/jbc.M804550200 – volume: 48 start-page: 7265 year: 2020 ident: 1116_CR23 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa524 – volume: 132 start-page: 10521 year: 2010 ident: 1116_CR39 publication-title: J Am Chem Soc doi: 10.1021/ja1038165 – volume: 149 start-page: 753 year: 2012 ident: 1116_CR31 publication-title: Cell doi: 10.1016/j.cell.2012.04.017 – volume: 14 start-page: e0203101 year: 2019 ident: 1116_CR8 publication-title: PLoS ONE doi: 10.1371/journal.pone.0203101 – volume: 26 start-page: 2490 year: 2006 ident: 1116_CR14 publication-title: Mol Cell Biol doi: 10.1128/MCB.26.7.2490-2500.2006 – volume: 9 start-page: 237 year: 2010 ident: 1116_CR11 publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2010.01.008 – volume: 145 start-page: 678 year: 2011 ident: 1116_CR52 publication-title: Cell doi: 10.1016/j.cell.2011.04.015 – volume: 11 start-page: 1383 year: 2009 ident: 1116_CR43 publication-title: Nat Cell Biol doi: 10.1038/ncb1985 – volume: 76 start-page: 145 year: 1994 ident: 1116_CR60 publication-title: Cell doi: 10.1016/0092-8674(94)90179-1 – volume: 30 start-page: 126 year: 2016 ident: 1116_CR6 publication-title: Mitochondrion doi: 10.1016/j.mito.2016.02.005 – volume: 11 start-page: e1005186 year: 2015 ident: 1116_CR53 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005186 – volume: 10 start-page: 5375 year: 2019 ident: 1116_CR65 publication-title: Nat Commun doi: 10.1038/s41467-019-13414-9 – year: 2020 ident: 1116_CR2 publication-title: Curr Genet doi: 10.1007/s00294-020-01106-7 – volume: 23 start-page: 9178 year: 2003 ident: 1116_CR33 publication-title: Mol Cell Biol doi: 10.1128/mcb.23.24.9178-9188.2003 – volume: 46 start-page: 1486 year: 2018 ident: 1116_CR41 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1217 – volume: 100 start-page: 479 year: 2000 ident: 1116_CR29 publication-title: Cell doi: 10.1016/s0092-8674(00)80683-2 – volume: 5 start-page: e1000316 year: 2009 ident: 1116_CR24 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000316 – volume: 278 start-page: 1618 year: 2003 ident: 1116_CR3 publication-title: J Biol Chem doi: 10.1074/jbc.M209801200 – volume: 46 start-page: 11847 year: 2018 ident: 1116_CR20 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1065 – volume: 7 start-page: 40293 year: 2017 ident: 1116_CR70 publication-title: Sci Rep doi: 10.1038/srep40293 – volume: 22 start-page: 1955 year: 2011 ident: 1116_CR9 publication-title: Mol Biol Cell doi: 10.1091/mbc.E11-01-0045 – volume: 285 start-page: 4398 year: 2010 ident: 1116_CR5 publication-title: J Biol Chem doi: 10.1074/jbc.M109.086397 – volume: 8 start-page: 15025 year: 2017 ident: 1116_CR66 publication-title: Nat Commun doi: 10.1038/ncomms15025 – year: 2010 ident: 1116_CR59 publication-title: Biochem J doi: 10.1042/BJ20100612 – volume: 6 start-page: 346 year: 2014 ident: 1116_CR10 publication-title: Cell Rep doi: 10.1016/j.celrep.2013.12.037 – volume: 46 start-page: 8516 year: 2018 ident: 1116_CR45 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky654 |
SSID | ssj0012897 |
Score | 2.3226635 |
SecondaryResourceType | review_article |
Snippet | PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 85 |
SubjectTerms | Acetylation Acetyltransferase Adenosine triphosphatase adenosinetriphosphatase Biochemistry Biocompatibility Biomedical and Life Sciences Cell Biology cell growth Deoxyribonucleic acid DNA DNA biosynthesis DNA helicase DNA Helicases - genetics DNA repair DNA Repair - genetics DNA replication DNA Replication - genetics Domains Eukaryotes eukaryotic cells Gene Expression Regulation, Fungal - genetics genome Genomes Genomic Instability - genetics Histone Acetyltransferases - genetics Histone Deacetylases - genetics Humans Life Sciences Lysine lysine N-acetyltransferase Maintenance Microbial Genetics and Genomics Microbiology Mini-Review Mutation neoplasm cells Neoplasms - genetics Neoplasms - metabolism Overexpression Phosphorylation Plant Sciences Prokaryotes prokaryotic cells Proteins Proteomics Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Telomere - genetics Telomere Homeostasis - genetics Telomeres Toxicity Unwinding Yeast |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-ELyIb9cXEbxpsMmmj5xEfCCC4kFhbyVJU1zQVt162H_vTJqtrOLeSpvSdpJJvq8z-YaQ46RvhS6kYVopyySQCma0A9aqI26EdJpnuMH5_iG5fZZ3g3gQfriNQlrlZE70E3VRW_xHfiYkMAPMyVHn7x8Mq0ZhdDWU0JgniyhdhuQrHXSEC6Ze1W6XTsHrAWuETTN-6xyGoyRD8oTV1hMWTy9Mf9Dm36TJX5FTvyDdrJKVgCTpRdv1a2TOVetkqa0tOd4gg6u21jz9bKvNg_1pXdLHYcmptq4Zh3PDEbXQvzAMaVNTgIP0TaOGBApxOLwDVVzfHAUU6fNox5vk-eb66fKWhTIKzALYaxgvhFBCS2fjtNQ2weUIlmWrnSqj1GZx6owqpZEARlwWiaJUvF8k2nCd2QL8d4ssVHXldggFNJQVhkeaOyudscoBgwbCFPMk03DYI3xiw9wGjXEsdfGad-rI3u452D33ds_jHjnp7nlvFTZmtt6fdE0evG2U_4yNHjnqLoOfYPBDV67-wjYYwE2lima0AfioZAIUq0e2297uXqkPk6ESETwhnRoHXQPU6Z6-Ug1fvF43JmxGfTDO6WTE_Lz6_1-6O_tL98iywPQan0C-Txaazy93APioMYfeCb4BXUALfQ priority: 102 providerName: ProQuest |
Title | Dynamic regulation of Pif1 acetylation is crucial to the maintenance of genome stability |
URI | https://link.springer.com/article/10.1007/s00294-020-01116-5 https://www.ncbi.nlm.nih.gov/pubmed/33079209 https://www.proquest.com/docview/2489908899 https://www.proquest.com/docview/2452507490 https://www.proquest.com/docview/2551946974 https://pubmed.ncbi.nlm.nih.gov/PMC7887038 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5im0IvoU36cOKaDeSWCLTr1WOPbmvXJDSEEIN7ErurFTU0comVg_99ZvQqrlNDTxLS6DW7o_0-5gVwHo6s0Kk0nlbKehJJhWe0Q9aqfW6EdJrHlOD8_SaczeXVIljUSWHrJtq9cUmWf-o22Y0cSNIjukP90UMv6EAvQO5O83ouxq3vAClElSQdoa0jwqhTZV6-x_ZytIMxd0Ml__KXlsvQ9A0c1viRjasBfwsHLj-CV1VHyc0xLL5WHebZY9VjHrXOVhm7XWacaeuKTX1suWYWRxUnHytWDEEge9BUOYLKbzi6gmq3PjiG2LGMnt28g_l0cv9l5tXNEzyLEK_weCqEElo6G0SZtiEtQrgYW-1U5kc2DiJnVCaNRAjiYl-kmeKjNNSG69imaLXvoZuvcvcRGGKgODXc19xZ6YxVDnkz0qSAh7HG3T7wRoeJrSuLU4OLX0lbE7nUe4J6T0q9J0EfLtprfld1NfZKD5qhSWobWydCIlekKC3Vh7P2NFoHuTx07lZPJENu20gqf48MgkYlQyRWffhQjXb7SiP8BSrh4xOirXnQClB17u0z-fJnWaWbwjT9ESrnspkxf17931968n_ip_BaUJBNGUY-gG7x-OQ-IUoqzBA60SIaQm_87cf1BLefJze3d8PSVJ4BXRoMLQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrRBcUHlvW8BIcAKL2Os8fEAIUaotfYhDK-0t2I4jVqJJ201V7Z_iNzLjPKqlYm-9rTaONhmPZ77ZmfkG4G0ydtIUynKjteMKgwpujceo1UTCSuWNyKjB-eg4mZyq79N4ugZ_-l4YKqvsbWIw1EXt6D_yj1JhZEA1Ofrz-QWnqVGUXe1HaLRqceAX1xiyzT_t7-L-vpNy79vJ1wnvpgpwh9in4aKQUkujvIvT0riErDN6KWe8LqPUZXHqrS6VVeibfRbJotRiXCTGCpO5IiXyJTT5G-h4IyohTKdDgIemXrft2SlaGcQ2XZNOaNWj9JfiFKzRdPeEx8uO8Ba6vV2k-U-mNjjAvU142CFX9qVVtUew5qvHcK-dZbl4AtPddrY9u2yn2-N-s7pkP2alYMb5ZtF9N5szh_qEas-amiH8ZGeGOCuI-MPTHcQae-YZotZQt7t4Cqd3IuBnsF7VlX8BDNFXVlgRGeGd8tZpjxE7BmixSDKDH0cgehnmruM0p9Eav_OBjTnIPUe550HueTyC98M95y2jx8rVO_3W5N3pnuc3ujiCN8NlPJeUbDGVr69oDSWMU6WjFWsQrmqVYEg3guftbg-PNEbjq2WEv5Au6cGwgHjBl69Us1-BH5wKRKMxCudDrzE3j_7_N91a_aav4f7k5OgwP9w_PtiGB5JKe0Lx-g6sN5dX_iVis8a-CgeCwc-7PoF_AX6KSKo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRSAuiHcXChgJTmA1dpw4PiCEWFYthaoHKu0tOI4jVqJJ6aZC-9f4dcw4j2qp2FtvUeIoyXheX-YF8CqNnbSlKrg1xnGFoIIX1iNqtZEopPJWZFTg_PUo3T9Rn-fJfAv-DLUwlFY56MSgqMvG0T_yPakQGVBOjtmr-rSI4-ns_dkvThOkKNI6jNPoWOTQr34jfFu-O5jiXr-Wcvbp28d93k8Y4A79oJaLUkojrfIu0ZV1KWlqtFjOelNF2mWJ9oWpVKHQTvsskmVlRFymthA2c6WmRkyo_m_oGM0mypKej2AP1b7pSrU1ahz0c_qCnVC2R6EwxQm40aT3lCfrRvGKp3s1YfOfqG0whrO7cKf3YtmHju3uwZav78PNbq7l6gHMp92ce3beTbrHvWdNxY4XlWDW-XbVn1ssmUPeQhFgbcPQFWWnlvpXUBMQT3dQB9lTz9CDDTm8q4dwci0EfgTbdVP7HWDoiWVlISIrvFO-cMYjekewlog0s3g4ATHQMHd9f3Mas_EzHzszB7rnSPc80D1PJvBmvOes6-6xcfXusDV5L-nL_JIvJ_ByvIwySoEXW_vmgtZQ8FgrE21Yg66rUSnCuwk87nZ7fKUYFbGRET5Br_HBuIB6hK9fqRc_Qq9wShaNYiTO24FjLl_9_1_6ZPOXvoBbKHv5l4Ojw6dwW1KWT8hj34Xt9vzCP0M3rS2eB3lg8P26BfAv8Y1M4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+regulation+of+Pif1+acetylation+is+crucial+to+the+maintenance+of+genome+stability&rft.jtitle=Current+genetics&rft.au=Ononye%2C+Onyekachi+E.&rft.au=Sausen%2C+Christopher+W.&rft.au=Bochman%2C+Matthew+L.&rft.au=Balakrishnan%2C+Lata&rft.date=2021-02-01&rft.issn=0172-8083&rft.eissn=1432-0983&rft.volume=67&rft.issue=1&rft.spage=85&rft.epage=92&rft_id=info:doi/10.1007%2Fs00294-020-01116-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00294_020_01116_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0172-8083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0172-8083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0172-8083&client=summon |