Dynamic regulation of Pif1 acetylation is crucial to the maintenance of genome stability

PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of P...

Full description

Saved in:
Bibliographic Details
Published inCurrent genetics Vol. 67; no. 1; pp. 85 - 92
Main Authors Ononye, Onyekachi E., Sausen, Christopher W., Bochman, Matthew L., Balakrishnan, Lata
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0172-8083
1432-0983
1432-0983
DOI10.1007/s00294-020-01116-5

Cover

Loading…
Abstract PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell.
AbstractList PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro , and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell.
PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell.PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell.
PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell.
PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell.
Author Bochman, Matthew L.
Sausen, Christopher W.
Balakrishnan, Lata
Ononye, Onyekachi E.
AuthorAffiliation 2 Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
1 Department of Biology, School of Science, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
AuthorAffiliation_xml – name: 2 Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
– name: 1 Department of Biology, School of Science, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
Author_xml – sequence: 1
  givenname: Onyekachi E.
  surname: Ononye
  fullname: Ononye, Onyekachi E.
  organization: Department of Biology, School of Science, Indiana University Purdue University Indianapolis
– sequence: 2
  givenname: Christopher W.
  surname: Sausen
  fullname: Sausen, Christopher W.
  organization: Molecular and Cellular Biochemistry Department, Indiana University
– sequence: 3
  givenname: Matthew L.
  orcidid: 0000-0002-2807-0452
  surname: Bochman
  fullname: Bochman, Matthew L.
  email: bochman@indiana.edu
  organization: Molecular and Cellular Biochemistry Department, Indiana University
– sequence: 4
  givenname: Lata
  orcidid: 0000-0003-0285-9559
  surname: Balakrishnan
  fullname: Balakrishnan, Lata
  email: latabala@iupui.edu
  organization: Department of Biology, School of Science, Indiana University Purdue University Indianapolis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33079209$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9vFSEUxYmpsa_VL-DCkLhxM3phmAE2Jqb-TZroQhN3hGHuvNLMQAXG5H17ad-zahd1Awn8zuVw7zkhRyEGJOQpg5cMQL7KAFyLBjg0wBjrm-4B2TDR8ga0ao_IBpjkjQLVHpOTnC8BGFdaPiLHbQtSc9Ab8v3tLtjFO5pwu862-BhonOgXPzFqHZbd4cxn6tLqvJ1pibRcIF2sDwWDDQ6vFVsMcUGaix387MvuMXk42Tnjk8N-Sr69f_f17GNz_vnDp7M3543rQJaGjZxrbgW6Tk7W9UIyxfveWdQTSKc6iYOexCD6TqECPk6atWNvB2aVG6VuT8nrfd2rdVhwdBhKsrO5Sn6xaWei9ebfm-AvzDb-NFIpCa2qBV4cCqT4Y8VczOKzw3m2AeOaDe86pkWvpfg_KjpefyU0VPT5HfQyrinUTlRKaQ2qLpV69rf5W9e_51MBvgdcijknnG4RBuY6BGYfAlNDYG5CYLoqUndEzpebMdYG-Pl-abuX5vpO2GL6Y_se1S_XUcXz
CitedBy_id crossref_primary_10_3390_cells11020254
crossref_primary_10_1007_s12010_024_05161_5
crossref_primary_10_1016_j_ymeth_2022_04_014
crossref_primary_10_1093_nar_gkae265
crossref_primary_10_3390_ijms23073736
Cites_doi 10.1007/s00294-020-01106-7
10.3390/genes10060411
10.1021/bi500746v
10.1074/jbc.M113.470013
10.1038/ncb1985
10.1074/jbc.M109.086397
10.1073/pnas.80.17.5345
10.3390/genes10020095
10.1074/jbc.R115.695056
10.1074/jbc.RA118.004092
10.1016/j.celrep.2014.07.036
10.3390/genes11020224
10.1093/nar/gkm613
10.1038/nature04091
10.1038/s41467-019-13414-9
10.1128/mcb.23.24.9178-9188.2003
10.1074/jbc.M115.688648
10.1038/nature12149
10.1016/j.cell.2009.02.024
10.1093/nar/gkz028
10.1158/0008-5472.can-10-4404
10.1007/s10522-014-9506-3
10.1016/j.molcel.2019.01.040
10.18632/oncotarget.2501
10.1093/nar/gkp671
10.1128/MCB.26.7.2490-2500.2006
10.1093/nar/gky1065
10.1093/nar/gky1242
10.1046/j.1365-2443.1996.d01-256.x
10.1371/journal.pcbi.1000316
10.1126/scisignal.2001497
10.1101/gad.184663.111
10.1093/nar/gkw033
10.1371/journal.pone.0203101
10.1074/jbc.M804550200
10.1016/j.lfs.2020.117820
10.1371/journal.pone.0030748
10.1093/nar/gkaa524
10.1371/journal.pgen.1005186
10.1091/mbc.E11-01-0045
10.1093/nar/gkx1217
10.1016/j.cell.2011.04.015
10.1074/jbc.M109.023325
10.1016/j.dnarep.2010.01.008
10.1074/jbc.M800856200
10.1016/0092-8674(94)90179-1
10.1016/j.cell.2012.04.017
10.1002/j.1460-2075.1991.tb08034.x
10.1093/nar/gkl029
10.1074/jbc.M805965200
10.1093/nar/gkw181
10.1074/jbc.M209801200
10.1074/jbc.M110.146894
10.1016/j.gde.2013.05.007
10.1074/mcp.O112.027094
10.1038/srep40293
10.1042/BJ20100612
10.1016/s0092-8674(00)80683-2
10.1038/srep42865
10.1093/nar/gky654
10.1021/ja1038165
10.1039/C7RA06666J
10.1371/journal.pone.0001918
10.1074/jbc.RA120.015164
10.1016/j.mito.2016.02.005
10.1016/j.celrep.2017.10.079
10.1016/j.celrep.2016.02.008
10.7554/eLife.02190
10.1016/j.celrep.2013.12.037
10.1016/S0021-9258(19)74294-X
10.1021/acs.biochem.7b01233
10.1093/nar/gkz608
10.1038/ncomms15025
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SS
7TK
7TM
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
7S9
L.6
5PM
DOI 10.1007/s00294-020-01116-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Central Student
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1432-0983
EndPage 92
ExternalDocumentID PMC7887038
33079209
10_1007_s00294_020_01116_5
Genre Journal Article
Review
GrantInformation_xml – fundername: American Cancer Society
  grantid: RSG-16-180-01-DMC
  funderid: http://dx.doi.org/10.13039/100000048
– fundername: National Science Foundation
  grantid: 1929346
  funderid: http://dx.doi.org/10.13039/501100008982
– fundername: National Institutes of Health
  grantid: 1R35GM133437
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: National Science Foundation
  grantid: 1929346
– fundername: NIH HHS
  grantid: 1R35GM133437
– fundername: NIGMS NIH HHS
  grantid: R35 GM133437
– fundername: American Cancer Society
  grantid: RSG-16-180-01-DMC
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D0L
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PF-
PKN
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z83
Z8O
Z8P
Z8Q
Z8W
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QL
7SS
7TK
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
7S9
L.6
PUEGO
5PM
ID FETCH-LOGICAL-c507t-1d2292a4ec57fac64718266cae9f07c857eb9f4b4658e802df913d6ab1a8cd793
IEDL.DBID U2A
ISSN 0172-8083
1432-0983
IngestDate Thu Aug 21 13:13:20 EDT 2025
Sun Aug 24 03:35:36 EDT 2025
Thu Jul 10 23:27:52 EDT 2025
Fri Jul 25 19:23:12 EDT 2025
Mon Jul 21 05:58:35 EDT 2025
Tue Jul 01 01:44:35 EDT 2025
Thu Apr 24 22:52:45 EDT 2025
Fri Feb 21 02:49:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords G4 resolvase
DNA replication
Lysine acetylation
Rpd3
Pif1 helicase
DNA repair
NuA4 (Esa1)
Language English
License Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. https://www.springer.com/aam-terms-v1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-1d2292a4ec57fac64718266cae9f07c857eb9f4b4658e802df913d6ab1a8cd793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Author contributions: All authors participating in the writing and editing of this manuscript.
ORCID 0000-0003-0285-9559
0000-0002-2807-0452
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7887038
PMID 33079209
PQID 2489908899
PQPubID 54061
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7887038
proquest_miscellaneous_2551946974
proquest_miscellaneous_2452507490
proquest_journals_2489908899
pubmed_primary_33079209
crossref_primary_10_1007_s00294_020_01116_5
crossref_citationtrail_10_1007_s00294_020_01116_5
springer_journals_10_1007_s00294_020_01116_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Berlin
PublicationSubtitle Microorganisms and Organelles
PublicationTitle Current genetics
PublicationTitleAbbrev Curr Genet
PublicationTitleAlternate Curr Genet
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Bannwarth, Berg-Alonso, Auge, Fragaki, Kolesar, Lespinasse, Lacas-Gervais, Burel-Vandenbos, Villa, Belmonte, Michiels, Ricci, Gherardi, Harrington, Kaufman, Paquis-Flucklinger (CR6) 2016; 30
Su, Byrd, Bharath, Yang, Jia, Tang, Ha, Raney, Song (CR65) 2019; 10
Lahaye, Leterme, Foury (CR36) 1993; 268
Foury, Kolodynski (CR25) 1983; 80
Ramanagoudr-Bhojappa, Byrd, Dahl, Raney (CR56) 2014; 53
Ramanagoudr-Bhojappa, Chib, Byrd, Aarattuthodiyil, Pandey, Patel, Raney (CR57) 2013; 288
Wong, Shao (CR70) 2017; 7
Chen, Dai, Duan, Liu, Shi, Li, Li, Dou, Dong, Rety, Xi (CR17) 2016; 44
Phillips, Chan, Paeschke, Zakian (CR53) 2015; 11
Schulz, Zakian (CR60) 1994; 76
Gagou, Ganesh, Phear, Robinson, Petermann, Cox, Meuth (CR26) 2014; 5
Luo, Solimini, Elledge (CR42) 2009; 136
Chib, Byrd, Raney (CR18) 2016; 291
Dahan, Tsirkas, Dovrat, Sparks, Singh, Galletto, Aharoni (CR20) 2018; 46
Boule, Zakian (CR13) 2007; 35
Chen, Hua, Gong, Tan, Zhang, Li, Chen, Zhang, Li (CR16) 2020; 256
Fong, Shoemaker, Garbuzynskiy, Lobanov, Galzitskaya, Panchenko (CR24) 2009; 5
Zhang, Zhou, Huang, Xu, Zhou (CR71) 2006; 34
Ivessa, Zhou, Zakian (CR29) 2000; 100
Kettenbach, Schweppe, Faherty, Pechenick, Pletnev, Gerber (CR32) 2011
Chisholm, Aubert, Freese, Zakian, King, Welcsh (CR19) 2012; 7
Liu, Chen, Xue, Hao, Tan (CR39) 2010; 132
Sanders (CR59) 2010
Sharma, D'Souza, Tyanova, Schaab, Wisniewski, Cox, Mann (CR61) 2014; 8
Bah, Forman-Kay (CR4) 2016; 291
Buzovetsky, Kwon, Pham, Kim, Ira, Sung, Xiong (CR15) 2017; 21
Falquet, Olmezer, Enkner, Klein, Challa, Appanah, Gasser, Rass (CR23) 2020; 48
Bochman, Paeschke, Chan, Zakian (CR10) 2014; 6
Malkova, Ira (CR44) 2013; 23
Paeschke, Capra, Zakian (CR52) 2011; 145
Deegan, Baxter, Ortiz Bazan, Yeeles, Labib (CR21) 2019; 74
George, Wen, Griffiths, Ganesh, Meuth, Sanders (CR28) 2009; 37
Makovets, Blackburn (CR43) 2009; 11
Muellner, Schmidt (CR46) 2020
Dehghani-Tafti, Levdikov, Antson, Bax, Sanders (CR22) 2019; 47
Bartos, Willmott, Binz, Wold, Bambara (CR7) 2008; 283
Ononye, Sausen, Balakrishnan, Bochman (CR50) 2020
Zhou, Zhang, Bochman, Zakian, Ha (CR72) 2014; 3
Ayyagari, Gomes, Gordenin, Burgers (CR3) 2003; 278
Tran, Pohl, Chen, Chan, Pott, Zakian (CR66) 2017; 8
Paeschke, Bochman, Garcia, Cejka, Friedman, Kowalczykowski, Zakian (CR51) 2013; 497
Nickens, Sausen, Bochman (CR49) 2019
Appanah, Jones, Falquet, Rass (CR2) 2020
Steinacher, Osman, Dalgaard, Lorenz, Whitby (CR63) 2012; 26
Wang, J. (CR68) 2017; 7
Wei, Zhang, Bazeille, Yu, Liu, Rene, Mauffret, Xi (CR69) 2017; 7
Kahli, Osmundson, Yeung, Smith (CR30) 2019; 47
Boule, Vega, Zakian (CR12) 2005; 438
Kato, Han, Xie, Shi, Du, Wu, Mirzaei, Goldsmith, Longgood, Pei, Grishin, Frantz, Schneider, Chen, Li, Sawaya, Eisenberg, Tycko, McKnight (CR31) 2012; 149
Gagou, Ganesh, Thompson, Phear, Sanders, Meuth (CR27) 2011; 71
Lu, Chen, Rety, Liu, Wu, Dai, Li, Ma, Dou, Xi (CR41) 2018; 46
Nickens, Rogers, Bochman (CR48) 2018; 293
Lerner, Sale (CR38) 2019
Balakrishnan, Stewart, Polaczek, Campbell, Bambara (CR5) 2010; 285
Pike, Henry, Burgers, Campbell, Bambara (CR55) 2010; 285
Bochman, Judge, Zakian (CR9) 2011; 22
Lozada, Yi, Luo, Orren (CR40) 2014; 15
Muftuoglu, Kusumoto, Speina, Beck, Cheng, Bohr (CR47) 2008; 3
Pike, Burgers, Campbell, Bambara (CR54) 2009; 284
Kobayashi (CR33) 2003; 23
Lahaye, Stahl, Thines-Sempoux, Foury (CR37) 1991; 10
Udeshi, Svinkina, Mertins, Kuhn, Mani, Qiao, Carr (CR67) 2013; 12
Bochman, Sabouri, Zakian (CR11) 2010; 9
Mohammad, Wallgren, Sabouri (CR45) 2018; 46
Stewart, Miller, Campbell, Bambara (CR64) 2008; 283
Rossi, Pike, Wang, Burgers, Campbell, Bambara (CR58) 2008; 283
Zhou, Ren, Bharath, Tang, He, Chen, Liu, Li, Song (CR73) 2016; 14
Belmonte, Dedousis, Sipula, Desai, Singhi, Chu, Zhang, Bannwarth, Paquis-Flucklinger, Harrington, Shiva, Jurczak, O'Doherty, Kaufman (CR8) 2019; 14
Budd, Reis, Smith, Myung, Campbell (CR14) 2006; 26
Kobayashi, Horiuchi (CR34) 1996; 1
Sparks, Singh, Burgers, Galletto (CR62) 2019; 47
Koc, Singh, Stodola, Burgers, Galletto (CR35) 2016; 44
Andis, Sausen, Alladin, Bochman (CR1) 2018; 57
KM Chisholm (1116_CR19) 2012; 7
M Kahli (1116_CR30) 2019; 47
R Ayyagari (1116_CR3) 2003; 278
XB Wei (1116_CR69) 2017; 7
J Luo (1116_CR42) 2009; 136
JE Pike (1116_CR55) 2010; 285
JR Wong (1116_CR70) 2017; 7
VP Schulz (1116_CR60) 1994; 76
K Paeschke (1116_CR52) 2011; 145
R Ramanagoudr-Bhojappa (1116_CR57) 2013; 288
AS Ivessa (1116_CR29) 2000; 100
R Appanah (1116_CR2) 2020
ML Bochman (1116_CR11) 2010; 9
K Paeschke (1116_CR51) 2013; 497
JA Stewart (1116_CR64) 2008; 283
KN Koc (1116_CR35) 2016; 44
S Chib (1116_CR18) 2016; 291
YL Wang (1116_CR68) 2017; 7
LK Lerner (1116_CR38) 2019
B Chen (1116_CR16) 2020; 256
JB Mohammad (1116_CR45) 2018; 46
ML Rossi (1116_CR58) 2008; 283
WF Chen (1116_CR17) 2016; 44
A Bah (1116_CR4) 2016; 291
A Lahaye (1116_CR37) 1991; 10
ML Bochman (1116_CR10) 2014; 6
B Falquet (1116_CR23) 2020; 48
T George (1116_CR28) 2009; 37
A Lahaye (1116_CR36) 1993; 268
R Ramanagoudr-Bhojappa (1116_CR56) 2014; 53
CM Sanders (1116_CR59) 2010
AN Kettenbach (1116_CR32) 2011
J Muellner (1116_CR46) 2020
ME Gagou (1116_CR27) 2011; 71
JA Phillips (1116_CR53) 2015; 11
T Kobayashi (1116_CR33) 2003; 23
JD Bartos (1116_CR7) 2008; 283
DG Nickens (1116_CR48) 2018; 293
A Malkova (1116_CR44) 2013; 23
N Su (1116_CR65) 2019; 10
JE Pike (1116_CR54) 2009; 284
M Kato (1116_CR31) 2012; 149
S Makovets (1116_CR43) 2009; 11
JB Boule (1116_CR13) 2007; 35
T Kobayashi (1116_CR34) 1996; 1
DH Zhang (1116_CR71) 2006; 34
MA Sparks (1116_CR62) 2019; 47
F Foury (1116_CR25) 1983; 80
JH Fong (1116_CR24) 2009; 5
JB Boule (1116_CR12) 2005; 438
R Zhou (1116_CR72) 2014; 3
L Balakrishnan (1116_CR5) 2010; 285
JQ Liu (1116_CR39) 2010; 132
KY Lu (1116_CR41) 2018; 46
NM Andis (1116_CR1) 2018; 57
ML Bochman (1116_CR9) 2011; 22
ME Budd (1116_CR14) 2006; 26
M Muftuoglu (1116_CR47) 2008; 3
PLT Tran (1116_CR66) 2017; 8
D Dahan (1116_CR20) 2018; 46
TD Deegan (1116_CR21) 2019; 74
X Zhou (1116_CR73) 2016; 14
S Bannwarth (1116_CR6) 2016; 30
FR Belmonte (1116_CR8) 2019; 14
S Dehghani-Tafti (1116_CR22) 2019; 47
O Buzovetsky (1116_CR15) 2017; 21
E Lozada (1116_CR40) 2014; 15
DG Nickens (1116_CR49) 2019
OE Ononye (1116_CR50) 2020
K Sharma (1116_CR61) 2014; 8
ME Gagou (1116_CR26) 2014; 5
R Steinacher (1116_CR63) 2012; 26
ND Udeshi (1116_CR67) 2013; 12
References_xml – year: 2020
  ident: CR2
  article-title: Limiting homologous recombination at stalled replication forks is essential for cell viability: DNA2 to the rescue
  publication-title: Curr Genet
  doi: 10.1007/s00294-020-01106-7
– year: 2019
  ident: CR49
  article-title: The Biochemical Activities of the Saccharomyces cerevisiae Pif1 Helicase Are Regulated by Its N-Terminal Domain
  publication-title: Genes (Basel)
  doi: 10.3390/genes10060411
– volume: 53
  start-page: 7659
  year: 2014
  end-page: 7669
  ident: CR56
  article-title: Yeast Pif1 accelerates annealing of complementary DNA strands
  publication-title: Biochemistry
  doi: 10.1021/bi500746v
– volume: 288
  start-page: 16185
  year: 2013
  end-page: 16195
  ident: CR57
  article-title: Yeast Pif1 helicase exhibits a one-base-pair stepping mechanism for unwinding duplex DNA
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.470013
– volume: 11
  start-page: 1383
  year: 2009
  end-page: 1386
  ident: CR43
  article-title: DNA damage signalling prevents deleterious telomere addition at DNA breaks
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1985
– volume: 285
  start-page: 4398
  year: 2010
  end-page: 4404
  ident: CR5
  article-title: Acetylation of Dna2 endonuclease/helicase and flap endonuclease 1 by p300 promotes DNA stability by creating long flap intermediates
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.086397
– volume: 80
  start-page: 5345
  year: 1983
  end-page: 5349
  ident: CR25
  article-title: pif mutation blocks recombination between mitochondrial rho+ and rho- genomes having tandemly arrayed repeat units in
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.80.17.5345
– year: 2019
  ident: CR38
  article-title: Replication of G Quadruplex DNA
  publication-title: Genes (Basel)
  doi: 10.3390/genes10020095
– volume: 291
  start-page: 6696
  year: 2016
  end-page: 6705
  ident: CR4
  article-title: Modulation of intrinsically disordered protein function by post-translational modifications
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R115.695056
– volume: 293
  start-page: 14481
  year: 2018
  end-page: 14496
  ident: CR48
  article-title: The Saccharomyces cerevisiae Hrq1 and Pif1 DNA helicases synergistically modulate telomerase activity in vitro
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA118.004092
– volume: 8
  start-page: 1583
  year: 2014
  end-page: 1594
  ident: CR61
  article-title: Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.07.036
– year: 2020
  ident: CR46
  article-title: Yeast Genome Maintenance by the Multifunctional PIF1 DNA Helicase Family
  publication-title: Genes (Basel)
  doi: 10.3390/genes11020224
– volume: 35
  start-page: 5809
  year: 2007
  end-page: 5818
  ident: CR13
  article-title: The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm613
– volume: 438
  start-page: 57
  year: 2005
  end-page: 61
  ident: CR12
  article-title: The yeast Pif1p helicase removes telomerase from telomeric DNA
  publication-title: Nature
  doi: 10.1038/nature04091
– volume: 10
  start-page: 5375
  year: 2019
  ident: CR65
  article-title: Structural basis for DNA unwinding at forked dsDNA by two coordinating Pif1 helicases
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13414-9
– volume: 23
  start-page: 9178
  year: 2003
  end-page: 9188
  ident: CR33
  article-title: The replication fork barrier site forms a unique structure with Fob1p and inhibits the replication fork
  publication-title: Mol Cell Biol
  doi: 10.1128/mcb.23.24.9178-9188.2003
– volume: 291
  start-page: 5889
  year: 2016
  end-page: 5901
  ident: CR18
  article-title: Yeast helicase Pif1 unwinds RNA:DNA hybrids with higher processivity than DNA:DNA duplexes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M115.688648
– volume: 497
  start-page: 458
  year: 2013
  end-page: 462
  ident: CR51
  article-title: Pif1 family helicases suppress genome instability at G-quadruplex motifs
  publication-title: Nature
  doi: 10.1038/nature12149
– volume: 136
  start-page: 823
  year: 2009
  end-page: 837
  ident: CR42
  article-title: Principles of cancer therapy: oncogene and non-oncogene addiction
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.024
– volume: 47
  start-page: 3208
  year: 2019
  end-page: 3222
  ident: CR22
  article-title: Structural and functional analysis of the nucleotide and DNA binding activities of the human PIF1 helicase
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz028
– volume: 71
  start-page: 4998
  year: 2011
  end-page: 5008
  ident: CR27
  article-title: Suppression of apoptosis by PIF1 helicase in human tumor cells
  publication-title: Can Res
  doi: 10.1158/0008-5472.can-10-4404
– volume: 15
  start-page: 347
  year: 2014
  end-page: 366
  ident: CR40
  article-title: Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities
  publication-title: Biogerontology
  doi: 10.1007/s10522-014-9506-3
– volume: 74
  start-page: e239
  issue: 231–244
  year: 2019
  ident: CR21
  article-title: Pif1-family helicases support fork convergence during DNA replication termination in eukaryotes
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2019.01.040
– volume: 5
  start-page: 11381
  year: 2014
  end-page: 11398
  ident: CR26
  article-title: Human PIF1 helicase supports DNA replication and cell growth under oncogenic-stress
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.2501
– volume: 37
  start-page: 6491
  year: 2009
  end-page: 6502
  ident: CR28
  article-title: Human Pif1 helicase unwinds synthetic DNA structures resembling stalled DNA replication forks
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp671
– volume: 26
  start-page: 2490
  year: 2006
  end-page: 2500
  ident: CR14
  article-title: Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.26.7.2490-2500.2006
– volume: 46
  start-page: 11847
  year: 2018
  end-page: 11857
  ident: CR20
  article-title: Pif1 is essential for efficient replisome progression through lagging strand G-quadruplex DNA secondary structures
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1065
– volume: 47
  start-page: 1814
  year: 2019
  end-page: 1822
  ident: CR30
  article-title: Processing of eukaryotic Okazaki fragments by redundant nucleases can be uncoupled from ongoing DNA replication in vivo
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1242
– volume: 1
  start-page: 465
  year: 1996
  end-page: 474
  ident: CR34
  article-title: A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.1996.d01-256.x
– volume: 5
  start-page: e1000316
  year: 2009
  ident: CR24
  article-title: Intrinsic disorder in protein interactions: insights from a comprehensive structural analysis
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000316
– year: 2011
  ident: CR32
  article-title: Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2001497
– volume: 26
  start-page: 594
  year: 2012
  end-page: 602
  ident: CR63
  article-title: The DNA helicase Pfh1 promotes fork merging at replication termination sites to ensure genome stability
  publication-title: Genes Dev
  doi: 10.1101/gad.184663.111
– volume: 44
  start-page: 2949
  year: 2016
  end-page: 2961
  ident: CR17
  article-title: Crystal structures of the BsPif1 helicase reveal that a major movement of the 2B SH3 domain is required for DNA unwinding
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw033
– volume: 14
  start-page: e0203101
  year: 2019
  ident: CR8
  article-title: Petite Integration Factor 1 (PIF1) helicase deficiency increases weight gain in Western diet-fed female mice without increased inflammatory markers or decreased glucose clearance
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0203101
– volume: 283
  start-page: 27483
  year: 2008
  end-page: 27493
  ident: CR58
  article-title: Pif1 helicase directs eukaryotic Okazaki fragments toward the two-nuclease cleavage pathway for primer removal
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M804550200
– volume: 256
  start-page: 117820
  year: 2020
  ident: CR16
  article-title: Downregulation of PIF1, a potential new target of MYCN, induces apoptosis and inhibits cell migration in neuroblastoma cells
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2020.117820
– volume: 7
  start-page: 10
  year: 2012
  ident: CR19
  article-title: A genomewide screen for suppressors of Alu-mediated rearrangements reveals a role for PIF1
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030748
– volume: 48
  start-page: 7265
  year: 2020
  end-page: 7278
  ident: CR23
  article-title: Disease-associated DNA2 nuclease-helicase protects cells from lethal chromosome under-replication
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa524
– volume: 11
  start-page: e1005186
  year: 2015
  ident: CR53
  article-title: The pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005186
– volume: 22
  start-page: 1955
  year: 2011
  end-page: 1959
  ident: CR9
  article-title: The Pif1 family in prokaryotes: what are our helicases doing in your bacteria?
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E11-01-0045
– volume: 46
  start-page: 1486
  year: 2018
  end-page: 1500
  ident: CR41
  article-title: Insights into the structural and mechanistic basis of multifunctional Pif1p helicase
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1217
– volume: 145
  start-page: 678
  year: 2011
  end-page: 691
  ident: CR52
  article-title: DNA Replication through G-Quadruplex motifs is promoted by the Pif1 DNA helicase
  publication-title: Cell
  doi: 10.1016/j.cell.2011.04.015
– volume: 284
  start-page: 25170
  year: 2009
  end-page: 25180
  ident: CR54
  article-title: Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.023325
– volume: 9
  start-page: 237
  year: 2010
  end-page: 249
  ident: CR11
  article-title: Unwinding the functions of the Pif1 family helicases
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2010.01.008
– volume: 283
  start-page: 21758
  year: 2008
  end-page: 21768
  ident: CR7
  article-title: Catalysis of strand annealing by replication protein A derives from its strand melting properties
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M800856200
– volume: 76
  start-page: 145
  year: 1994
  end-page: 155
  ident: CR60
  article-title: The DNA helicase inhibits telomere elongation and telomere formation
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90179-1
– volume: 149
  start-page: 753
  year: 2012
  end-page: 767
  ident: CR31
  article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.017
– volume: 10
  start-page: 997
  year: 1991
  end-page: 1007
  ident: CR37
  article-title: PIF1: a DNA helicase in yeast mitochondria
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1991.tb08034.x
– volume: 34
  start-page: 1393
  year: 2006
  end-page: 1404
  ident: CR71
  article-title: The human Pif1 helicase, a potential RecD homologue, inhibits telomerase activity
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkl029
– volume: 283
  start-page: 31356
  year: 2008
  end-page: 31365
  ident: CR64
  article-title: Dynamic removal of replication protein A by Dna2 facilitates primer cleavage during Okazaki fragment processing in
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M805965200
– volume: 44
  start-page: 3811
  year: 2016
  end-page: 3819
  ident: CR35
  article-title: Pif1 removes a Rap1-dependent barrier to the strand displacement activity of DNA polymerase delta
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw181
– volume: 278
  start-page: 1618
  year: 2003
  end-page: 1625
  ident: CR3
  article-title: Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M209801200
– volume: 285
  start-page: 41712
  year: 2010
  end-page: 41723
  ident: CR55
  article-title: An alternative pathway for Okazaki fragment processing: resolution of fold-back flaps by Pif1 helicase
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.146894
– volume: 23
  start-page: 271
  year: 2013
  end-page: 279
  ident: CR44
  article-title: Break-induced replication: functions and molecular mechanism
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2013.05.007
– volume: 12
  start-page: 825
  year: 2013
  end-page: 831
  ident: CR67
  article-title: Refined preparation and use of anti-diglycine remnant (K-epsilon-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.O112.027094
– volume: 7
  start-page: 40293
  year: 2017
  ident: CR70
  article-title: Hole Transport in A-form DNA/RNA Hybrid Duplexes
  publication-title: Sci Rep
  doi: 10.1038/srep40293
– year: 2010
  ident: CR59
  article-title: Human Pif1 helicase is a G-quadruplex DNA binding protein with G-quadruplex DNA unwinding activity
  publication-title: Biochem J
  doi: 10.1042/BJ20100612
– volume: 100
  start-page: 479
  year: 2000
  end-page: 489
  ident: CR29
  article-title: The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA
  publication-title: Cell
  doi: 10.1016/s0092-8674(00)80683-2
– volume: 7
  start-page: 42865
  year: 2017
  ident: CR69
  article-title: A 3'-5' exonuclease activity embedded in the helicase core domain of Candida albicans Pif1 helicase
  publication-title: Sci Rep
  doi: 10.1038/srep42865
– volume: 46
  start-page: 8516
  year: 2018
  end-page: 8531
  ident: CR45
  article-title: The Pif1 signature motif of Pfh1 is necessary for both protein displacement and helicase unwinding activities, but is dispensable for strand-annealing activity
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky654
– volume: 132
  start-page: 10521
  year: 2010
  end-page: 10527
  ident: CR39
  article-title: G-quadruplex hinders translocation of BLM helicase on DNA: a real-time fluorescence spectroscopic unwinding study and comparison with duplex substrates
  publication-title: J Am Chem Soc
  doi: 10.1021/ja1038165
– volume: 7
  start-page: 55301
  year: 2017
  end-page: 55308
  ident: CR68
  article-title: Acetylation of BLM protein regulates its function in response to DNA damage
  publication-title: RSC Advances
  doi: 10.1039/C7RA06666J
– volume: 3
  start-page: e1918
  year: 2008
  ident: CR47
  article-title: Acetylation regulates WRN catalytic activities and affects base excision DNA repair
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0001918
– year: 2020
  ident: CR50
  article-title: Lysine Acetylation Regulates the Activity of Nuclear Pif1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA120.015164
– volume: 30
  start-page: 126
  year: 2016
  end-page: 137
  ident: CR6
  article-title: Inactivation of Pif1 helicase causes a mitochondrial myopathy in mice
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2016.02.005
– volume: 21
  start-page: 1707
  year: 2017
  end-page: 1714
  ident: CR15
  article-title: Role of the Pif1-PCNA complex in Pol delta-dependent strand displacement DNA synthesis and break-induced replication
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.10.079
– volume: 14
  start-page: 2030
  year: 2016
  end-page: 2039
  ident: CR73
  article-title: Structural and Functional insights into the unwinding mechanism of bacteroides sp Pif1
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.02.008
– volume: 3
  start-page: e02190
  year: 2014
  ident: CR72
  article-title: Periodic DNA patrolling underlies diverse functions of Pif1 on R-loops and G-rich DNA
  publication-title: Elife
  doi: 10.7554/eLife.02190
– volume: 6
  start-page: 346
  year: 2014
  end-page: 356
  ident: CR10
  article-title: Hrq1, a homolog of the human RecQ4 helicase, acts catalytically and structurally to promote genome integrity
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.12.037
– volume: 268
  start-page: 26155
  year: 1993
  end-page: 26161
  ident: CR36
  article-title: PIF1 DNA helicase from . Biochemical characterization of the enzyme
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)74294-X
– volume: 57
  start-page: 1108
  year: 2018
  end-page: 1118
  ident: CR1
  article-title: The WYL domain of the PIF1 helicase from the thermophilic bacterium is an accessory single-stranded DNA binding module
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.7b01233
– volume: 47
  start-page: 8595
  year: 2019
  end-page: 8605
  ident: CR62
  article-title: Complementary roles of Pif1 helicase and single stranded DNA binding proteins in stimulating DNA replication through G-quadruplexes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz608
– volume: 8
  start-page: 15025
  year: 2017
  ident: CR66
  article-title: PIF1 family DNA helicases suppress R-loop mediated genome instability at tRNA genes
  publication-title: Nat Commun
  doi: 10.1038/ncomms15025
– volume: 497
  start-page: 458
  year: 2013
  ident: 1116_CR51
  publication-title: Nature
  doi: 10.1038/nature12149
– volume: 8
  start-page: 1583
  year: 2014
  ident: 1116_CR61
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.07.036
– volume: 57
  start-page: 1108
  year: 2018
  ident: 1116_CR1
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.7b01233
– volume: 23
  start-page: 271
  year: 2013
  ident: 1116_CR44
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2013.05.007
– volume: 256
  start-page: 117820
  year: 2020
  ident: 1116_CR16
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2020.117820
– volume: 47
  start-page: 1814
  year: 2019
  ident: 1116_CR30
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1242
– volume: 291
  start-page: 5889
  year: 2016
  ident: 1116_CR18
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M115.688648
– volume: 37
  start-page: 6491
  year: 2009
  ident: 1116_CR28
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp671
– year: 2019
  ident: 1116_CR38
  publication-title: Genes (Basel)
  doi: 10.3390/genes10020095
– year: 2020
  ident: 1116_CR46
  publication-title: Genes (Basel)
  doi: 10.3390/genes11020224
– volume: 34
  start-page: 1393
  year: 2006
  ident: 1116_CR71
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkl029
– volume: 35
  start-page: 5809
  year: 2007
  ident: 1116_CR13
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm613
– volume: 288
  start-page: 16185
  year: 2013
  ident: 1116_CR57
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.470013
– volume: 268
  start-page: 26155
  year: 1993
  ident: 1116_CR36
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)74294-X
– volume: 283
  start-page: 21758
  year: 2008
  ident: 1116_CR7
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M800856200
– volume: 44
  start-page: 2949
  year: 2016
  ident: 1116_CR17
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw033
– volume: 291
  start-page: 6696
  year: 2016
  ident: 1116_CR4
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R115.695056
– volume: 14
  start-page: 2030
  year: 2016
  ident: 1116_CR73
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.02.008
– volume: 1
  start-page: 465
  year: 1996
  ident: 1116_CR34
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.1996.d01-256.x
– year: 2011
  ident: 1116_CR32
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2001497
– volume: 53
  start-page: 7659
  year: 2014
  ident: 1116_CR56
  publication-title: Biochemistry
  doi: 10.1021/bi500746v
– volume: 12
  start-page: 825
  year: 2013
  ident: 1116_CR67
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.O112.027094
– volume: 71
  start-page: 4998
  year: 2011
  ident: 1116_CR27
  publication-title: Can Res
  doi: 10.1158/0008-5472.can-10-4404
– volume: 136
  start-page: 823
  year: 2009
  ident: 1116_CR42
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.024
– volume: 5
  start-page: 11381
  year: 2014
  ident: 1116_CR26
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.2501
– year: 2020
  ident: 1116_CR50
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA120.015164
– volume: 3
  start-page: e02190
  year: 2014
  ident: 1116_CR72
  publication-title: Elife
  doi: 10.7554/eLife.02190
– volume: 44
  start-page: 3811
  year: 2016
  ident: 1116_CR35
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw181
– volume: 438
  start-page: 57
  year: 2005
  ident: 1116_CR12
  publication-title: Nature
  doi: 10.1038/nature04091
– volume: 47
  start-page: 3208
  year: 2019
  ident: 1116_CR22
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz028
– year: 2019
  ident: 1116_CR49
  publication-title: Genes (Basel)
  doi: 10.3390/genes10060411
– volume: 3
  start-page: e1918
  year: 2008
  ident: 1116_CR47
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0001918
– volume: 80
  start-page: 5345
  year: 1983
  ident: 1116_CR25
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.80.17.5345
– volume: 74
  start-page: e239
  issue: 231–244
  year: 2019
  ident: 1116_CR21
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2019.01.040
– volume: 26
  start-page: 594
  year: 2012
  ident: 1116_CR63
  publication-title: Genes Dev
  doi: 10.1101/gad.184663.111
– volume: 7
  start-page: 55301
  year: 2017
  ident: 1116_CR68
  publication-title: RSC Advances
  doi: 10.1039/C7RA06666J
– volume: 293
  start-page: 14481
  year: 2018
  ident: 1116_CR48
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA118.004092
– volume: 15
  start-page: 347
  year: 2014
  ident: 1116_CR40
  publication-title: Biogerontology
  doi: 10.1007/s10522-014-9506-3
– volume: 47
  start-page: 8595
  year: 2019
  ident: 1116_CR62
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz608
– volume: 10
  start-page: 997
  year: 1991
  ident: 1116_CR37
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1991.tb08034.x
– volume: 285
  start-page: 41712
  year: 2010
  ident: 1116_CR55
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.146894
– volume: 283
  start-page: 31356
  year: 2008
  ident: 1116_CR64
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M805965200
– volume: 21
  start-page: 1707
  year: 2017
  ident: 1116_CR15
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.10.079
– volume: 7
  start-page: 10
  year: 2012
  ident: 1116_CR19
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030748
– volume: 284
  start-page: 25170
  year: 2009
  ident: 1116_CR54
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.023325
– volume: 7
  start-page: 42865
  year: 2017
  ident: 1116_CR69
  publication-title: Sci Rep
  doi: 10.1038/srep42865
– volume: 283
  start-page: 27483
  year: 2008
  ident: 1116_CR58
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M804550200
– volume: 48
  start-page: 7265
  year: 2020
  ident: 1116_CR23
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa524
– volume: 132
  start-page: 10521
  year: 2010
  ident: 1116_CR39
  publication-title: J Am Chem Soc
  doi: 10.1021/ja1038165
– volume: 149
  start-page: 753
  year: 2012
  ident: 1116_CR31
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.017
– volume: 14
  start-page: e0203101
  year: 2019
  ident: 1116_CR8
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0203101
– volume: 26
  start-page: 2490
  year: 2006
  ident: 1116_CR14
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.26.7.2490-2500.2006
– volume: 9
  start-page: 237
  year: 2010
  ident: 1116_CR11
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2010.01.008
– volume: 145
  start-page: 678
  year: 2011
  ident: 1116_CR52
  publication-title: Cell
  doi: 10.1016/j.cell.2011.04.015
– volume: 11
  start-page: 1383
  year: 2009
  ident: 1116_CR43
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1985
– volume: 76
  start-page: 145
  year: 1994
  ident: 1116_CR60
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90179-1
– volume: 30
  start-page: 126
  year: 2016
  ident: 1116_CR6
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2016.02.005
– volume: 11
  start-page: e1005186
  year: 2015
  ident: 1116_CR53
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005186
– volume: 10
  start-page: 5375
  year: 2019
  ident: 1116_CR65
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13414-9
– year: 2020
  ident: 1116_CR2
  publication-title: Curr Genet
  doi: 10.1007/s00294-020-01106-7
– volume: 23
  start-page: 9178
  year: 2003
  ident: 1116_CR33
  publication-title: Mol Cell Biol
  doi: 10.1128/mcb.23.24.9178-9188.2003
– volume: 46
  start-page: 1486
  year: 2018
  ident: 1116_CR41
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1217
– volume: 100
  start-page: 479
  year: 2000
  ident: 1116_CR29
  publication-title: Cell
  doi: 10.1016/s0092-8674(00)80683-2
– volume: 5
  start-page: e1000316
  year: 2009
  ident: 1116_CR24
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000316
– volume: 278
  start-page: 1618
  year: 2003
  ident: 1116_CR3
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M209801200
– volume: 46
  start-page: 11847
  year: 2018
  ident: 1116_CR20
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1065
– volume: 7
  start-page: 40293
  year: 2017
  ident: 1116_CR70
  publication-title: Sci Rep
  doi: 10.1038/srep40293
– volume: 22
  start-page: 1955
  year: 2011
  ident: 1116_CR9
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E11-01-0045
– volume: 285
  start-page: 4398
  year: 2010
  ident: 1116_CR5
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.086397
– volume: 8
  start-page: 15025
  year: 2017
  ident: 1116_CR66
  publication-title: Nat Commun
  doi: 10.1038/ncomms15025
– year: 2010
  ident: 1116_CR59
  publication-title: Biochem J
  doi: 10.1042/BJ20100612
– volume: 6
  start-page: 346
  year: 2014
  ident: 1116_CR10
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.12.037
– volume: 46
  start-page: 8516
  year: 2018
  ident: 1116_CR45
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky654
SSID ssj0012897
Score 2.3226635
SecondaryResourceType review_article
Snippet PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 85
SubjectTerms Acetylation
Acetyltransferase
Adenosine triphosphatase
adenosinetriphosphatase
Biochemistry
Biocompatibility
Biomedical and Life Sciences
Cell Biology
cell growth
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA helicase
DNA Helicases - genetics
DNA repair
DNA Repair - genetics
DNA replication
DNA Replication - genetics
Domains
Eukaryotes
eukaryotic cells
Gene Expression Regulation, Fungal - genetics
genome
Genomes
Genomic Instability - genetics
Histone Acetyltransferases - genetics
Histone Deacetylases - genetics
Humans
Life Sciences
Lysine
lysine N-acetyltransferase
Maintenance
Microbial Genetics and Genomics
Microbiology
Mini-Review
Mutation
neoplasm cells
Neoplasms - genetics
Neoplasms - metabolism
Overexpression
Phosphorylation
Plant Sciences
Prokaryotes
prokaryotic cells
Proteins
Proteomics
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Telomere - genetics
Telomere Homeostasis - genetics
Telomeres
Toxicity
Unwinding
Yeast
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-ELyIb9cXEbxpsMmmj5xEfCCC4kFhbyVJU1zQVt162H_vTJqtrOLeSpvSdpJJvq8z-YaQ46RvhS6kYVopyySQCma0A9aqI26EdJpnuMH5_iG5fZZ3g3gQfriNQlrlZE70E3VRW_xHfiYkMAPMyVHn7x8Mq0ZhdDWU0JgniyhdhuQrHXSEC6Ze1W6XTsHrAWuETTN-6xyGoyRD8oTV1hMWTy9Mf9Dm36TJX5FTvyDdrJKVgCTpRdv1a2TOVetkqa0tOd4gg6u21jz9bKvNg_1pXdLHYcmptq4Zh3PDEbXQvzAMaVNTgIP0TaOGBApxOLwDVVzfHAUU6fNox5vk-eb66fKWhTIKzALYaxgvhFBCS2fjtNQ2weUIlmWrnSqj1GZx6owqpZEARlwWiaJUvF8k2nCd2QL8d4ssVHXldggFNJQVhkeaOyudscoBgwbCFPMk03DYI3xiw9wGjXEsdfGad-rI3u452D33ds_jHjnp7nlvFTZmtt6fdE0evG2U_4yNHjnqLoOfYPBDV67-wjYYwE2lima0AfioZAIUq0e2297uXqkPk6ESETwhnRoHXQPU6Z6-Ug1fvF43JmxGfTDO6WTE_Lz6_1-6O_tL98iywPQan0C-Txaazy93APioMYfeCb4BXUALfQ
  priority: 102
  providerName: ProQuest
Title Dynamic regulation of Pif1 acetylation is crucial to the maintenance of genome stability
URI https://link.springer.com/article/10.1007/s00294-020-01116-5
https://www.ncbi.nlm.nih.gov/pubmed/33079209
https://www.proquest.com/docview/2489908899
https://www.proquest.com/docview/2452507490
https://www.proquest.com/docview/2551946974
https://pubmed.ncbi.nlm.nih.gov/PMC7887038
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5im0IvoU36cOKaDeSWCLTr1WOPbmvXJDSEEIN7ErurFTU0comVg_99ZvQqrlNDTxLS6DW7o_0-5gVwHo6s0Kk0nlbKehJJhWe0Q9aqfW6EdJrHlOD8_SaczeXVIljUSWHrJtq9cUmWf-o22Y0cSNIjukP90UMv6EAvQO5O83ouxq3vAClElSQdoa0jwqhTZV6-x_ZytIMxd0Ml__KXlsvQ9A0c1viRjasBfwsHLj-CV1VHyc0xLL5WHebZY9VjHrXOVhm7XWacaeuKTX1suWYWRxUnHytWDEEge9BUOYLKbzi6gmq3PjiG2LGMnt28g_l0cv9l5tXNEzyLEK_weCqEElo6G0SZtiEtQrgYW-1U5kc2DiJnVCaNRAjiYl-kmeKjNNSG69imaLXvoZuvcvcRGGKgODXc19xZ6YxVDnkz0qSAh7HG3T7wRoeJrSuLU4OLX0lbE7nUe4J6T0q9J0EfLtprfld1NfZKD5qhSWobWydCIlekKC3Vh7P2NFoHuTx07lZPJENu20gqf48MgkYlQyRWffhQjXb7SiP8BSrh4xOirXnQClB17u0z-fJnWaWbwjT9ESrnspkxf17931968n_ip_BaUJBNGUY-gG7x-OQ-IUoqzBA60SIaQm_87cf1BLefJze3d8PSVJ4BXRoMLQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrRBcUHlvW8BIcAKL2Os8fEAIUaotfYhDK-0t2I4jVqJJ201V7Z_iNzLjPKqlYm-9rTaONhmPZ77ZmfkG4G0ydtIUynKjteMKgwpujceo1UTCSuWNyKjB-eg4mZyq79N4ugZ_-l4YKqvsbWIw1EXt6D_yj1JhZEA1Ofrz-QWnqVGUXe1HaLRqceAX1xiyzT_t7-L-vpNy79vJ1wnvpgpwh9in4aKQUkujvIvT0riErDN6KWe8LqPUZXHqrS6VVeibfRbJotRiXCTGCpO5IiXyJTT5G-h4IyohTKdDgIemXrft2SlaGcQ2XZNOaNWj9JfiFKzRdPeEx8uO8Ba6vV2k-U-mNjjAvU142CFX9qVVtUew5qvHcK-dZbl4AtPddrY9u2yn2-N-s7pkP2alYMb5ZtF9N5szh_qEas-amiH8ZGeGOCuI-MPTHcQae-YZotZQt7t4Cqd3IuBnsF7VlX8BDNFXVlgRGeGd8tZpjxE7BmixSDKDH0cgehnmruM0p9Eav_OBjTnIPUe550HueTyC98M95y2jx8rVO_3W5N3pnuc3ujiCN8NlPJeUbDGVr69oDSWMU6WjFWsQrmqVYEg3guftbg-PNEbjq2WEv5Au6cGwgHjBl69Us1-BH5wKRKMxCudDrzE3j_7_N91a_aav4f7k5OgwP9w_PtiGB5JKe0Lx-g6sN5dX_iVis8a-CgeCwc-7PoF_AX6KSKo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRSAuiHcXChgJTmA1dpw4PiCEWFYthaoHKu0tOI4jVqJJ6aZC-9f4dcw4j2qp2FtvUeIoyXheX-YF8CqNnbSlKrg1xnGFoIIX1iNqtZEopPJWZFTg_PUo3T9Rn-fJfAv-DLUwlFY56MSgqMvG0T_yPakQGVBOjtmr-rSI4-ns_dkvThOkKNI6jNPoWOTQr34jfFu-O5jiXr-Wcvbp28d93k8Y4A79oJaLUkojrfIu0ZV1KWlqtFjOelNF2mWJ9oWpVKHQTvsskmVlRFymthA2c6WmRkyo_m_oGM0mypKej2AP1b7pSrU1ahz0c_qCnVC2R6EwxQm40aT3lCfrRvGKp3s1YfOfqG0whrO7cKf3YtmHju3uwZav78PNbq7l6gHMp92ce3beTbrHvWdNxY4XlWDW-XbVn1ssmUPeQhFgbcPQFWWnlvpXUBMQT3dQB9lTz9CDDTm8q4dwci0EfgTbdVP7HWDoiWVlISIrvFO-cMYjekewlog0s3g4ATHQMHd9f3Mas_EzHzszB7rnSPc80D1PJvBmvOes6-6xcfXusDV5L-nL_JIvJ_ByvIwySoEXW_vmgtZQ8FgrE21Yg66rUSnCuwk87nZ7fKUYFbGRET5Br_HBuIB6hK9fqRc_Qq9wShaNYiTO24FjLl_9_1_6ZPOXvoBbKHv5l4Ojw6dwW1KWT8hj34Xt9vzCP0M3rS2eB3lg8P26BfAv8Y1M4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+regulation+of+Pif1+acetylation+is+crucial+to+the+maintenance+of+genome+stability&rft.jtitle=Current+genetics&rft.au=Ononye%2C+Onyekachi+E.&rft.au=Sausen%2C+Christopher+W.&rft.au=Bochman%2C+Matthew+L.&rft.au=Balakrishnan%2C+Lata&rft.date=2021-02-01&rft.issn=0172-8083&rft.eissn=1432-0983&rft.volume=67&rft.issue=1&rft.spage=85&rft.epage=92&rft_id=info:doi/10.1007%2Fs00294-020-01116-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00294_020_01116_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0172-8083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0172-8083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0172-8083&client=summon