Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review

With the significant advancement of sensor and communication technology and the reliable application of obstacle detection techniques and algorithms, automated driving is becoming a pivotal technology that can revolutionize the future of transportation and mobility. Sensors are fundamental to the pe...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 6; p. 2140
Main Authors Yeong, De Jong, Velasco-Hernandez, Gustavo, Barry, John, Walsh, Joseph
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 18.03.2021
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the significant advancement of sensor and communication technology and the reliable application of obstacle detection techniques and algorithms, automated driving is becoming a pivotal technology that can revolutionize the future of transportation and mobility. Sensors are fundamental to the perception of vehicle surroundings in an automated driving system, and the use and performance of multiple integrated sensors can directly determine the safety and feasibility of automated driving vehicles. Sensor calibration is the foundation block of any autonomous system and its constituent sensors and must be performed correctly before sensor fusion and obstacle detection processes may be implemented. This paper evaluates the capabilities and the technical performance of sensors which are commonly employed in autonomous vehicles, primarily focusing on a large selection of vision cameras, LiDAR sensors, and radar sensors and the various conditions in which such sensors may operate in practice. We present an overview of the three primary categories of sensor calibration and review existing open-source calibration packages for multi-sensor calibration and their compatibility with numerous commercial sensors. We also summarize the three main approaches to sensor fusion and review current state-of-the-art multi-sensor fusion techniques and algorithms for object detection in autonomous driving applications. The current paper, therefore, provides an end-to-end review of the hardware and software methods required for sensor fusion object detection. We conclude by highlighting some of the challenges in the sensor fusion field and propose possible future research directions for automated driving systems.
AbstractList With the significant advancement of sensor and communication technology and the reliable application of obstacle detection techniques and algorithms, automated driving is becoming a pivotal technology that can revolutionize the future of transportation and mobility. Sensors are fundamental to the perception of vehicle surroundings in an automated driving system, and the use and performance of multiple integrated sensors can directly determine the safety and feasibility of automated driving vehicles. Sensor calibration is the foundation block of any autonomous system and its constituent sensors and must be performed correctly before sensor fusion and obstacle detection processes may be implemented. This paper evaluates the capabilities and the technical performance of sensors which are commonly employed in autonomous vehicles, primarily focusing on a large selection of vision cameras, LiDAR sensors, and radar sensors and the various conditions in which such sensors may operate in practice. We present an overview of the three primary categories of sensor calibration and review existing open-source calibration packages for multi-sensor calibration and their compatibility with numerous commercial sensors. We also summarize the three main approaches to sensor fusion and review current state-of-the-art multi-sensor fusion techniques and algorithms for object detection in autonomous driving applications. The current paper, therefore, provides an end-to-end review of the hardware and software methods required for sensor fusion object detection. We conclude by highlighting some of the challenges in the sensor fusion field and propose possible future research directions for automated driving systems.
With the significant advancement of sensor and communication technology and the reliable application of obstacle detection techniques and algorithms, automated driving is becoming a pivotal technology that can revolutionize the future of transportation and mobility. Sensors are fundamental to the perception of vehicle surroundings in an automated driving system, and the use and performance of multiple integrated sensors can directly determine the safety and feasibility of automated driving vehicles. Sensor calibration is the foundation block of any autonomous system and its constituent sensors and must be performed correctly before sensor fusion and obstacle detection processes may be implemented. This paper evaluates the capabilities and the technical performance of sensors which are commonly employed in autonomous vehicles, primarily focusing on a large selection of vision cameras, LiDAR sensors, and radar sensors and the various conditions in which such sensors may operate in practice. We present an overview of the three primary categories of sensor calibration and review existing open-source calibration packages for multi-sensor calibration and their compatibility with numerous commercial sensors. We also summarize the three main approaches to sensor fusion and review current state-of-the-art multi-sensor fusion techniques and algorithms for object detection in autonomous driving applications. The current paper, therefore, provides an end-to-end review of the hardware and software methods required for sensor fusion object detection. We conclude by highlighting some of the challenges in the sensor fusion field and propose possible future research directions for automated driving systems.With the significant advancement of sensor and communication technology and the reliable application of obstacle detection techniques and algorithms, automated driving is becoming a pivotal technology that can revolutionize the future of transportation and mobility. Sensors are fundamental to the perception of vehicle surroundings in an automated driving system, and the use and performance of multiple integrated sensors can directly determine the safety and feasibility of automated driving vehicles. Sensor calibration is the foundation block of any autonomous system and its constituent sensors and must be performed correctly before sensor fusion and obstacle detection processes may be implemented. This paper evaluates the capabilities and the technical performance of sensors which are commonly employed in autonomous vehicles, primarily focusing on a large selection of vision cameras, LiDAR sensors, and radar sensors and the various conditions in which such sensors may operate in practice. We present an overview of the three primary categories of sensor calibration and review existing open-source calibration packages for multi-sensor calibration and their compatibility with numerous commercial sensors. We also summarize the three main approaches to sensor fusion and review current state-of-the-art multi-sensor fusion techniques and algorithms for object detection in autonomous driving applications. The current paper, therefore, provides an end-to-end review of the hardware and software methods required for sensor fusion object detection. We conclude by highlighting some of the challenges in the sensor fusion field and propose possible future research directions for automated driving systems.
Author Yeong, De Jong
Velasco-Hernandez, Gustavo
Walsh, Joseph
Barry, John
AuthorAffiliation 2 School of Science Technology, Engineering and Mathematics, Munster Technological University, V92 CX88 Tralee, Ireland
1 IMaR Research Centre, Munster Technological University, V92 CX88 Tralee, Ireland; gustavo.velascohernandez@staff.ittralee.ie (G.V.-H.); john.barry@staff.ittralee.ie (J.B.); joseph.walsh@staff.ittralee.ie (J.W.)
3 Lero—Science Foundation Ireland Research Centre for Software, V92 NYD3 Limerick, Ireland
AuthorAffiliation_xml – name: 3 Lero—Science Foundation Ireland Research Centre for Software, V92 NYD3 Limerick, Ireland
– name: 2 School of Science Technology, Engineering and Mathematics, Munster Technological University, V92 CX88 Tralee, Ireland
– name: 1 IMaR Research Centre, Munster Technological University, V92 CX88 Tralee, Ireland; gustavo.velascohernandez@staff.ittralee.ie (G.V.-H.); john.barry@staff.ittralee.ie (J.B.); joseph.walsh@staff.ittralee.ie (J.W.)
Author_xml – sequence: 1
  givenname: De Jong
  orcidid: 0000-0002-4626-8040
  surname: Yeong
  fullname: Yeong, De Jong
– sequence: 2
  givenname: Gustavo
  orcidid: 0000-0002-2177-6348
  surname: Velasco-Hernandez
  fullname: Velasco-Hernandez, Gustavo
– sequence: 3
  givenname: John
  surname: Barry
  fullname: Barry, John
– sequence: 4
  givenname: Joseph
  orcidid: 0000-0002-6756-3700
  surname: Walsh
  fullname: Walsh, Joseph
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33803889$$D View this record in MEDLINE/PubMed
BookMark eNplkU1P3DAQhq0KVD4P_QNVjuWw3bEdx04PlVaUpUhISC1wtRxnsmuUtamdUPHvMeyC-LjYo_E7zzvyu0e2fPBIyBcK3zmvYZoYhYrREj6RXVqycqIYg61X9Q7ZS-kGgHHO1Weyk0_gStW75Ndf9CnEwvi22JTzMbngi0u0Sx_6sLgvnC9m4xB8WIUxFde4dLbH9KOYFX_wzuH_A7LdmT7h4ebeJ1fzk8vj35Pzi9Oz49n5xAqQwyQvmDdooBKqAzTUYkeFlFxWlLW0ZZ3lIDraCI6qBqqkxaZkspO0xsaYju-TszW3DeZG30a3MvFeB-P0UyPEhTZxeFxOQ1sayi2WmVdaJpWVQlWslMCl4q3IrJ9r1u3YrLC16Ido-jfQty_eLfUi3GkFwBmnGfBtA4jh34hp0CuXLPa98Zi_STMBSlSylixLv772ejF5jiELpmuBjSGliJ22bjBDjiFbu15T0I9B65eg88TRu4ln6EftAzg3pfo
CitedBy_id crossref_primary_10_1038_s41467_024_48526_4
crossref_primary_10_1007_s41315_024_00386_3
crossref_primary_10_2478_amns_2023_2_00555
crossref_primary_10_1016_j_trpro_2023_11_278
crossref_primary_10_1109_TRS_2025_3546001
crossref_primary_10_1177_16878132231183232
crossref_primary_10_1016_j_asoc_2024_111802
crossref_primary_10_1007_s10489_022_03576_3
crossref_primary_10_1016_j_jestch_2023_101457
crossref_primary_10_1007_s43154_023_00097_w
crossref_primary_10_1109_JSEN_2024_3379500
crossref_primary_10_1007_s42835_023_01567_z
crossref_primary_10_1109_ACCESS_2024_3429184
crossref_primary_10_1109_JSEN_2022_3166190
crossref_primary_10_1016_j_iot_2024_101194
crossref_primary_10_1109_ACCESS_2022_3197665
crossref_primary_10_1088_2631_8695_ad9db7
crossref_primary_10_1109_TIM_2024_3472860
crossref_primary_10_1016_j_techfore_2021_121414
crossref_primary_10_1109_JSEN_2024_3368198
crossref_primary_10_1109_TITS_2023_3327949
crossref_primary_10_4018_IJHISI_325220
crossref_primary_10_1007_s13177_024_00401_8
crossref_primary_10_1007_s11229_021_03408_w
crossref_primary_10_1016_j_asej_2025_103301
crossref_primary_10_1109_LRA_2023_3241807
crossref_primary_10_1016_j_cemconres_2024_107656
crossref_primary_10_3952_physics_2023_63_4_6
crossref_primary_10_1016_j_trb_2024_102946
crossref_primary_10_1109_TITS_2023_3270887
crossref_primary_10_1515_auto_2022_0157
crossref_primary_10_1109_TITS_2024_3422037
crossref_primary_10_1016_j_ijtst_2025_02_002
crossref_primary_10_1051_epjconf_202430500027
crossref_primary_10_21595_jve_2024_23947
crossref_primary_10_1109_COMST_2023_3295384
crossref_primary_10_47992_IJCSBE_2581_6942_0282
crossref_primary_10_12677_MOS_2023_124303
crossref_primary_10_26636_jtit_2021_155521
crossref_primary_10_1109_TVT_2022_3232135
crossref_primary_10_26599_JICV_2023_9210049
crossref_primary_10_1109_TITS_2024_3432634
crossref_primary_10_1007_s40725_023_00184_3
crossref_primary_10_1080_01431161_2024_2398823
crossref_primary_10_1109_TIM_2022_3200434
crossref_primary_10_1109_TNSRE_2023_3254151
crossref_primary_10_31127_tuje_1366248
crossref_primary_10_1007_s10462_023_10644_8
crossref_primary_10_1016_j_autcon_2024_105337
crossref_primary_10_1109_TVT_2023_3312574
crossref_primary_10_1016_j_asoc_2025_112971
crossref_primary_10_1109_ACCESS_2023_3272750
crossref_primary_10_1109_OJITS_2024_3481328
crossref_primary_10_1016_j_aei_2024_102864
crossref_primary_10_1007_s00521_025_11055_2
crossref_primary_10_1109_ACCESS_2024_3366548
crossref_primary_10_1016_j_geits_2023_100125
crossref_primary_10_1117_1_OE_62_3_031206
crossref_primary_10_1002_aisy_202100122
crossref_primary_10_1109_JIOT_2024_3416255
crossref_primary_10_1109_ACCESS_2022_3228735
crossref_primary_10_3390_s24061724
crossref_primary_10_1109_COMST_2024_3384132
crossref_primary_10_1016_j_treng_2021_100083
crossref_primary_10_1117_1_JEI_31_3_033023
crossref_primary_10_1016_j_isprsjprs_2022_12_021
crossref_primary_10_1016_j_rineng_2025_103995
crossref_primary_10_1108_SRT_05_2024_0005
crossref_primary_10_1109_TITS_2022_3160829
crossref_primary_10_1109_TTE_2024_3383091
crossref_primary_10_1016_j_sftr_2025_100564
crossref_primary_10_1007_s00138_024_01546_y
crossref_primary_10_1109_OJVT_2025_3542213
crossref_primary_10_1016_j_trip_2023_100964
crossref_primary_10_1126_scirobotics_ade4698
crossref_primary_10_4271_12_06_04_0026
crossref_primary_10_1109_ACCESS_2024_3430933
crossref_primary_10_35234_fumbd_1385541
crossref_primary_10_1109_TITS_2022_3160932
crossref_primary_10_1109_JSEN_2023_3274194
crossref_primary_10_1109_ACCESS_2022_3188990
crossref_primary_10_1109_JSEN_2023_3300957
crossref_primary_10_1109_TGRS_2023_3328929
crossref_primary_10_1088_1674_4926_23120037
crossref_primary_10_1109_JSEN_2024_3477309
crossref_primary_10_1109_ACCESS_2024_3456893
crossref_primary_10_1016_j_procs_2023_01_058
crossref_primary_10_37661_1816_0301_2024_21_3_48_62
crossref_primary_10_1016_j_robot_2023_104557
crossref_primary_10_1109_JLT_2025_3533911
crossref_primary_10_1109_ACCESS_2022_3145972
crossref_primary_10_1021_acsami_4c00470
crossref_primary_10_1109_TIV_2024_3380244
crossref_primary_10_1002_cae_22705
crossref_primary_10_32604_cmes_2024_056022
crossref_primary_10_1515_teme_2024_0004
crossref_primary_10_1016_j_trpro_2023_11_419
crossref_primary_10_1109_TIV_2023_3271624
crossref_primary_10_1109_TIV_2023_3264658
crossref_primary_10_1007_s12647_021_00500_x
crossref_primary_10_17482_uumfd_1392518
crossref_primary_10_1109_JSEN_2024_3481492
crossref_primary_10_1080_23311916_2024_2353498
crossref_primary_10_1145_3627160
crossref_primary_10_1371_journal_pone_0305933
crossref_primary_10_1109_TCCN_2024_3358545
crossref_primary_10_1016_j_adhoc_2023_103101
crossref_primary_10_1109_ACCESS_2022_3211267
crossref_primary_10_1109_JSTQE_2023_3304294
crossref_primary_10_3788_LOP220669
crossref_primary_10_1016_j_vlsi_2025_102370
crossref_primary_10_1109_TCAD_2024_3446709
crossref_primary_10_1109_TED_2022_3164370
crossref_primary_10_1080_0305215X_2023_2283606
crossref_primary_10_1109_JSEN_2025_3527222
crossref_primary_10_1016_j_procs_2024_06_012
crossref_primary_10_1016_j_compag_2024_109229
crossref_primary_10_25046_aj070632
crossref_primary_10_1038_s41598_024_53009_z
crossref_primary_10_1016_j_cscm_2025_e04430
crossref_primary_10_1016_j_trc_2024_104868
crossref_primary_10_1109_ACCESS_2024_3364050
crossref_primary_10_54097_hset_v9i_1868
crossref_primary_10_1109_TITS_2023_3266639
crossref_primary_10_1016_j_engappai_2024_108550
crossref_primary_10_1016_j_apm_2022_10_010
crossref_primary_10_2139_ssrn_4098793
crossref_primary_10_1515_auto_2021_0132
crossref_primary_10_1109_ACCESS_2024_3513714
crossref_primary_10_1109_ACCESS_2022_3186020
crossref_primary_10_1587_transele_2021CTI0002
crossref_primary_10_1186_s13634_024_01182_8
crossref_primary_10_1016_j_oceaneng_2022_113155
crossref_primary_10_4271_12_07_02_0010
crossref_primary_10_1109_LRA_2022_3192632
crossref_primary_10_1088_1402_4896_ace38f
crossref_primary_10_1016_j_trb_2023_06_001
crossref_primary_10_1016_j_asoc_2024_111873
crossref_primary_10_1109_ACCESS_2024_3522090
crossref_primary_10_1007_s11036_022_02056_9
crossref_primary_10_1109_TIV_2023_3234583
crossref_primary_10_1016_j_hspr_2023_01_001
crossref_primary_10_1007_s11276_023_03356_y
crossref_primary_10_1088_1742_6596_2692_1_012007
crossref_primary_10_1109_ACCESS_2023_3276821
crossref_primary_10_1109_TII_2024_3353845
crossref_primary_10_5507_tots_2022_011
crossref_primary_10_1016_j_dsm_2021_12_002
crossref_primary_10_1109_ACCESS_2024_3415381
crossref_primary_10_2197_ipsjjip_29_667
crossref_primary_10_1109_ACCESS_2024_3524501
crossref_primary_10_1109_TAI_2024_3435608
crossref_primary_10_1002_smll_202304001
crossref_primary_10_1021_acsami_4c19091
crossref_primary_10_1109_ACCESS_2024_3431437
crossref_primary_10_1016_j_ress_2023_109102
crossref_primary_10_1515_jag_2022_0022
crossref_primary_10_4271_12_08_01_0005
crossref_primary_10_1007_s41315_024_00418_y
crossref_primary_10_1016_j_tbench_2022_100075
crossref_primary_10_1016_j_rtbm_2024_101228
crossref_primary_10_1016_j_measurement_2024_115489
crossref_primary_10_1016_j_measurement_2022_111002
crossref_primary_10_2174_18744478_v16_e2209200
crossref_primary_10_1109_ACCESS_2022_3199691
crossref_primary_10_1007_s12239_024_00112_9
crossref_primary_10_1016_j_aap_2024_107692
crossref_primary_10_1016_j_autcon_2024_105850
crossref_primary_10_1007_s10668_024_04790_4
crossref_primary_10_1109_TITS_2022_3149370
crossref_primary_10_1109_OJSE_2023_3342572
crossref_primary_10_20935_AcadEng7339
crossref_primary_10_1002_ente_202300938
crossref_primary_10_1007_s41062_023_01232_4
crossref_primary_10_1016_j_biosystemseng_2023_06_002
crossref_primary_10_1155_abb_2451501
crossref_primary_10_1002_adc2_101
crossref_primary_10_1016_j_ifacol_2023_10_459
crossref_primary_10_1021_acs_nanolett_4c01187
crossref_primary_10_1109_TITS_2022_3206235
crossref_primary_10_1007_s10489_024_06213_3
crossref_primary_10_4018_IJSWIS_333056
crossref_primary_10_1016_j_aap_2022_106762
crossref_primary_10_1016_j_seta_2023_103579
crossref_primary_10_1016_j_ijdrr_2023_104094
crossref_primary_10_1109_ACCESS_2023_3311136
crossref_primary_10_1007_s12541_025_01244_3
crossref_primary_10_1145_3565973
crossref_primary_10_1016_j_inffus_2023_01_025
crossref_primary_10_1109_LSENS_2024_3357653
crossref_primary_10_1109_TITS_2022_3149763
crossref_primary_10_1364_OE_524531
crossref_primary_10_3233_KES_230036
crossref_primary_10_2139_ssrn_4087061
crossref_primary_10_1109_ACCESS_2024_3361829
crossref_primary_10_1109_JIOT_2024_3409781
crossref_primary_10_7467_KSAE_2024_32_7_583
crossref_primary_10_1109_TTE_2023_3299247
crossref_primary_10_1016_j_enbuild_2023_113020
crossref_primary_10_1002_adfm_202414876
crossref_primary_10_1038_s41598_023_47484_z
crossref_primary_10_1109_JSEN_2023_3260193
crossref_primary_10_1109_JSEN_2024_3349963
crossref_primary_10_1177_15501477211039134
crossref_primary_10_1109_ACCESS_2023_3321912
crossref_primary_10_1002_admt_202300316
crossref_primary_10_2174_2210327913666230824145823
crossref_primary_10_1109_JIOT_2022_3194716
crossref_primary_10_1109_OJITS_2023_3279264
crossref_primary_10_1109_TRS_2024_3408231
crossref_primary_10_1016_j_jfca_2025_107403
crossref_primary_10_1016_j_ceramint_2023_12_234
crossref_primary_10_1145_3520134
crossref_primary_10_1016_j_isci_2022_104703
crossref_primary_10_1049_itr2_12310
crossref_primary_10_2139_ssrn_4087711
crossref_primary_10_1016_j_procir_2024_02_026
crossref_primary_10_1109_TIV_2023_3289540
crossref_primary_10_3389_ffutr_2021_759125
crossref_primary_10_4271_10_07_03_0025
crossref_primary_10_1109_COMST_2024_3398004
crossref_primary_10_1109_OJITS_2022_3214094
crossref_primary_10_1080_10095020_2025_2465307
crossref_primary_10_1016_j_techsoc_2023_102288
crossref_primary_10_1038_s41598_024_58627_1
crossref_primary_10_32604_cmc_2025_061749
crossref_primary_10_1016_j_jobe_2024_108901
crossref_primary_10_1109_TIV_2022_3182218
crossref_primary_10_1364_OE_515140
crossref_primary_10_32604_cmc_2024_055575
crossref_primary_10_1364_OE_451907
crossref_primary_10_1109_TIV_2022_3223131
crossref_primary_10_33889_IJMEMS_2023_8_5_054
crossref_primary_10_1016_j_jmsy_2024_04_013
crossref_primary_10_1109_ACCESS_2022_3213843
crossref_primary_10_1109_ACCESS_2025_3545032
crossref_primary_10_1080_10447318_2023_2204274
crossref_primary_10_1016_j_jcis_2024_04_133
crossref_primary_10_62051_ijcsit_v2n3_09
crossref_primary_10_1109_TIM_2022_3232159
crossref_primary_10_1109_TIM_2023_3338722
crossref_primary_10_1109_TSMC_2023_3276218
crossref_primary_10_1109_ACCESS_2023_3322229
crossref_primary_10_2478_pead_2024_0026
Cites_doi 10.1007/978-3-642-28572-1_14
10.1109/SDF.2019.8916629
10.1016/B978-0-12-811453-7.00019-6
10.1109/ICCV.2019.00940
10.3390/s20154220
10.1109/ICRA.2019.8793949
10.1109/ICRA.2019.8794195
10.1109/IV47402.2020.9304681
10.1016/j.eng.2019.12.012
10.1109/ACCESS.2020.2983149
10.3390/s20164463
10.1109/CVPR.2018.00033
10.1109/ACCESS.2019.2962554
10.1364/OE.25.015269
10.1109/IV47402.2020.9304750
10.1109/IVS.2018.8500699
10.3390/rs12121925
10.1109/CVPR.2018.00472
10.1109/IROS45743.2020.9341715
10.1017/CBO9780511811685
10.2478/s11772-014-0190-2
10.1109/ICCP51029.2020.9266268
10.1002/9781119434610
10.1109/ICCV.2019.00772
10.1109/WACV48630.2021.00157
10.12720/jcm.13.1.8-14
10.1109/ITSC.2019.8917011
10.1016/j.patcog.2007.06.012
10.1007/978-3-030-17795-9_10
10.3390/app9204276
10.1109/TITS.2019.2962338
10.1109/TITS.2021.3054625
10.1016/j.robot.2018.11.023
10.1109/ACCESS.2020.2966400
10.1016/B978-0-12-417049-0.00005-5
10.3390/s20113241
10.1109/ICRA40945.2020.9196717
10.3390/s19061474
10.1109/34.888718
10.1109/CVPRW.2018.00190
10.3390/s20133694
10.1109/ITSC.2016.7795565
10.1109/MC.2017.3001256
10.3390/agronomy10111638
10.3390/s100302027
10.1109/TITS.2022.3155228
10.1109/SAS.2019.8706005
10.1109/TITS.2020.3013099
10.1109/ITSC.2019.8917366
10.1109/ACCESS.2020.3010734
10.1364/OE.381176
10.1109/ISSC.2019.8904920
10.3390/s16101668
10.1109/IROS.2010.5650579
10.1007/978-3-030-01057-7_59
10.3390/rs10010072
10.3390/rs2061610
10.1155/2013/704504
10.1109/ITSC.2017.8317829
10.1007/s11036-019-01378-5
10.1109/IVS.2007.4290104
10.1109/ISSC.2018.8585340
10.1109/ECMR.2017.8098688
10.1109/ITSC.2019.8917135
10.1007/978-3-030-58583-9_43
10.1109/IROS40897.2019.8968054
10.1109/ICSPCS47537.2019.9008742
10.1007/978-3-319-46448-0_2
10.1109/PLANS46316.2020.9109873
10.3390/s20113309
10.1109/ISSC49989.2020.9180186
10.3390/s19030648
10.1109/SSRR50563.2020.9292595
10.3390/app9194093
10.1109/ICRA.2019.8794186
10.1016/j.patcog.2020.107332
10.3390/s20082350
10.1109/SBR-LARS-R.2017.8215269
10.3390/s18040957
10.1016/j.promfg.2020.01.134
10.1109/CVPR.2016.91
10.3390/s19071624
10.1002/rob.21697
10.1109/LRA.2019.2921648
10.1631/FITEE.1900518
10.3390/s19204357
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/s21062140
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_0d4a13ce4f1b4c278c758624703783d5
PMC8003231
33803889
10_3390_s21062140
Genre Journal Article
Review
GrantInformation_xml – fundername: Science Foundation Ireland
  grantid: 13/RC/2094_P2
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7X8
PPXIY
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c507t-140023b0658f0ea1cef157737612d1d2fc305f1b53e890187ceb427f719ebaaf3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 00:24:47 EDT 2025
Thu Aug 21 18:20:47 EDT 2025
Fri Jul 11 04:27:38 EDT 2025
Wed Feb 19 02:27:57 EST 2025
Thu Apr 24 22:53:58 EDT 2025
Tue Jul 01 03:56:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords autonomous vehicles
radar
obstacle detection
sensor fusion
lidar
camera
calibration
perception
self-driving cars
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c507t-140023b0658f0ea1cef157737612d1d2fc305f1b53e890187ceb427f719ebaaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2177-6348
0000-0002-6756-3700
0000-0002-4626-8040
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21062140
PMID 33803889
PQID 2508567972
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0d4a13ce4f1b4c278c758624703783d5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8003231
proquest_miscellaneous_2508567972
pubmed_primary_33803889
crossref_citationtrail_10_3390_s21062140
crossref_primary_10_3390_s21062140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210318
PublicationDateYYYYMMDD 2021-03-18
PublicationDate_xml – month: 3
  year: 2021
  text: 20210318
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References ref_94
ref_137
ref_93
ref_136
ref_92
ref_139
ref_91
ref_138
ref_90
Khatib (ref_166) 2014; Volume 79
ref_131
(ref_148) 2019; 114
ref_99
ref_130
ref_98
Glennie (ref_129) 2010; 2
ref_133
ref_97
ref_132
ref_96
ref_135
ref_95
ref_134
ref_125
ref_128
ref_127
Kodors (ref_62) 2017; 5
ref_120
ref_122
ref_121
ref_123
Velas (ref_143) 2014; 2014
Huang (ref_152) 2020; 8
ref_72
ref_159
ref_71
ref_158
ref_70
ref_151
ref_79
ref_150
ref_78
ref_153
ref_77
ref_76
ref_155
ref_75
ref_154
ref_74
ref_157
ref_73
ref_156
ref_160
Kuutti (ref_25) 2021; 22
ref_83
ref_82
ref_147
ref_81
ref_80
ref_149
ref_140
ref_89
ref_88
ref_87
ref_144
ref_86
ref_85
ref_146
ref_84
Joglekar (ref_33) 2011; 2
ref_214
ref_215
ref_210
ref_212
ref_203
ref_202
ref_205
ref_204
ref_207
ref_206
ref_209
ref_208
Yurtsever (ref_213) 2020; 8
Castanedo (ref_24) 2013; 2013
Liu (ref_126) 2017; 25
ref_201
ref_200
ref_115
ref_114
ref_117
ref_116
ref_119
Ren (ref_211) 2020; 6
ref_110
ref_113
ref_112
ref_104
ref_103
ref_106
ref_105
ref_108
ref_107
ref_109
ref_100
ref_102
ref_101
ref_14
ref_13
ref_12
ref_11
ref_10
Wojtanowski (ref_59) 2014; 22
ref_19
ref_18
ref_17
ref_16
ref_15
ref_22
ref_20
ref_29
Wang (ref_21) 2019; 8
ref_28
ref_27
An (ref_145) 2020; 28
Zhang (ref_141) 2000; 22
Knabe (ref_43) 2017; 34
Harapanahalli (ref_38) 2019; 38
ref_50
ref_58
ref_173
ref_57
ref_172
ref_56
ref_175
ref_55
Bouain (ref_118) 2018; 13
ref_174
ref_54
ref_177
ref_53
ref_176
ref_52
ref_179
ref_51
ref_178
Wang (ref_142) 2008; 41
ref_180
ref_182
ref_181
Hu (ref_26) 2020; 21
ref_61
ref_60
ref_169
ref_69
ref_162
ref_68
ref_161
ref_67
ref_164
ref_66
ref_163
ref_65
ref_64
Armingol (ref_124) 2010; 10
ref_165
ref_63
ref_168
ref_167
ref_171
ref_170
ref_36
ref_195
ref_35
Xu (ref_111) 2020; 25
ref_194
ref_34
ref_197
ref_196
ref_32
ref_199
ref_31
ref_198
Jusoh (ref_23) 2020; 8
ref_30
ref_39
ref_37
ref_47
ref_184
ref_46
ref_183
ref_45
ref_186
ref_44
ref_185
ref_188
ref_42
ref_187
ref_41
ref_40
ref_189
ref_1
ref_3
ref_2
ref_191
ref_190
ref_49
ref_193
ref_48
ref_192
ref_9
ref_8
ref_5
ref_4
ref_7
ref_6
References_xml – volume: Volume 79
  start-page: 195
  year: 2014
  ident: ref_166
  article-title: A General Framework for Temporal Calibration of Multiple Proprioceptive and Exteroceptive Sensors
  publication-title: Experiment Robotics
  doi: 10.1007/978-3-642-28572-1_14
– ident: ref_9
– ident: ref_178
  doi: 10.1109/SDF.2019.8916629
– ident: ref_65
– ident: ref_88
– ident: ref_155
– ident: ref_115
  doi: 10.1016/B978-0-12-811453-7.00019-6
– ident: ref_108
– ident: ref_132
– ident: ref_42
– ident: ref_53
  doi: 10.1109/ICCV.2019.00940
– ident: ref_71
– ident: ref_19
  doi: 10.3390/s20154220
– ident: ref_54
  doi: 10.1109/ICRA.2019.8793949
– ident: ref_94
– ident: ref_77
– ident: ref_191
  doi: 10.1109/ICRA.2019.8794195
– ident: ref_114
– ident: ref_4
– ident: ref_31
– ident: ref_64
  doi: 10.1109/IV47402.2020.9304681
– ident: ref_172
– ident: ref_48
– ident: ref_83
– volume: 6
  start-page: 346
  year: 2020
  ident: ref_211
  article-title: Adversarial Attacks and Defenses in Deep Learning
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.12.012
– volume: 8
  start-page: 58443
  year: 2020
  ident: ref_213
  article-title: A Survey of Autonomous Driving: Common Practices and Emerging Technologies
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2983149
– ident: ref_103
– ident: ref_112
  doi: 10.3390/s20164463
– ident: ref_193
  doi: 10.1109/CVPR.2018.00033
– ident: ref_3
– ident: ref_121
– ident: ref_47
– volume: 8
  start-page: 2847
  year: 2019
  ident: ref_21
  article-title: Multi-Sensor Fusion in Automated Driving: A Survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962554
– volume: 25
  start-page: 15269
  year: 2017
  ident: ref_126
  article-title: Flexible and accurate camera calibration using grid spherical images
  publication-title: Opt. Express
  doi: 10.1364/OE.25.015269
– ident: ref_150
  doi: 10.1109/IV47402.2020.9304750
– ident: ref_180
  doi: 10.1109/IVS.2018.8500699
– ident: ref_159
  doi: 10.3390/rs12121925
– ident: ref_192
  doi: 10.1109/CVPR.2018.00472
– ident: ref_137
– ident: ref_179
– ident: ref_89
– ident: ref_173
  doi: 10.1109/IROS45743.2020.9341715
– ident: ref_136
  doi: 10.1017/CBO9780511811685
– ident: ref_160
– volume: 22
  start-page: 183
  year: 2014
  ident: ref_59
  article-title: Comparison of 905nm and 1550nm semiconductor laser rangefinders’ performance deterioration due to adverse environmental conditions
  publication-title: Opto-Electron. Rev.
  doi: 10.2478/s11772-014-0190-2
– ident: ref_95
– volume: 2
  start-page: 1758
  year: 2011
  ident: ref_33
  article-title: Depth Estimation Using Monocular Camera
  publication-title: IJCSIT
– ident: ref_109
– ident: ref_15
  doi: 10.1109/ICCP51029.2020.9266268
– ident: ref_49
– ident: ref_29
  doi: 10.1002/9781119434610
– ident: ref_32
– ident: ref_35
  doi: 10.1109/ICCV.2019.00772
– ident: ref_201
  doi: 10.1109/WACV48630.2021.00157
– volume: 13
  start-page: 8
  year: 2018
  ident: ref_118
  article-title: An Embedded Multi-Sensor Data Fusion Design for Vehicle Perception Tasks
  publication-title: J. Commun.
  doi: 10.12720/jcm.13.1.8-14
– ident: ref_70
  doi: 10.1109/ITSC.2019.8917011
– ident: ref_194
– volume: 41
  start-page: 607
  year: 2008
  ident: ref_142
  article-title: A new calibration model for lens distortion
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.06.012
– ident: ref_61
– ident: ref_104
– ident: ref_198
  doi: 10.1007/978-3-030-17795-9_10
– ident: ref_98
– ident: ref_8
– ident: ref_87
– ident: ref_156
– ident: ref_200
  doi: 10.3390/app9204276
– ident: ref_110
– ident: ref_72
– ident: ref_93
– ident: ref_162
– volume: 22
  start-page: 712
  year: 2021
  ident: ref_25
  article-title: A Survey of Deep Learning Applications to Autonomous Vehicle Control
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2962338
– ident: ref_183
– ident: ref_7
– ident: ref_215
  doi: 10.1109/TITS.2021.3054625
– ident: ref_82
– ident: ref_138
– volume: 114
  start-page: 217
  year: 2019
  ident: ref_148
  article-title: Extrinsic 6DoF calibration of a radar-LiDAR-camera system enhanced by radar cross section estimates evaluation
  publication-title: Rob. Auton. Syst.
  doi: 10.1016/j.robot.2018.11.023
– volume: 8
  start-page: 14424
  year: 2020
  ident: ref_23
  article-title: A Systematic Review on Fusion Techniques and Approaches Used in Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966400
– ident: ref_37
– ident: ref_209
– ident: ref_120
  doi: 10.1016/B978-0-12-417049-0.00005-5
– ident: ref_140
  doi: 10.3390/s20113241
– ident: ref_176
  doi: 10.1109/ICRA40945.2020.9196717
– ident: ref_167
– ident: ref_116
– ident: ref_189
– ident: ref_69
  doi: 10.3390/s19061474
– ident: ref_122
– ident: ref_2
– ident: ref_210
– ident: ref_133
– volume: 22
  start-page: 1330
  year: 2000
  ident: ref_141
  article-title: A flexible new technique for camera calibration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.888718
– ident: ref_139
  doi: 10.1109/CVPRW.2018.00190
– ident: ref_186
  doi: 10.3390/s20133694
– ident: ref_60
  doi: 10.1109/ITSC.2016.7795565
– ident: ref_99
– ident: ref_117
– ident: ref_203
– ident: ref_74
– ident: ref_80
– ident: ref_100
– ident: ref_208
  doi: 10.1109/MC.2017.3001256
– ident: ref_68
– ident: ref_175
– ident: ref_14
  doi: 10.3390/agronomy10111638
– ident: ref_39
– volume: 10
  start-page: 2027
  year: 2010
  ident: ref_124
  article-title: Automatic Chessboard Detection for Intrinsic and Extrinsic Camera Parameter Calibration
  publication-title: Sensors
  doi: 10.3390/s100302027
– ident: ref_154
  doi: 10.1109/TITS.2022.3155228
– ident: ref_1
– ident: ref_123
– ident: ref_16
  doi: 10.1109/SAS.2019.8706005
– ident: ref_169
– ident: ref_13
  doi: 10.1109/TITS.2020.3013099
– ident: ref_56
– ident: ref_27
– ident: ref_135
– ident: ref_202
  doi: 10.1109/ITSC.2019.8917366
– ident: ref_10
– volume: 8
  start-page: 134101
  year: 2020
  ident: ref_152
  article-title: Improvements to Target-Based 3D LiDAR to Camera Calibration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010734
– ident: ref_128
– ident: ref_45
– volume: 28
  start-page: 2122
  year: 2020
  ident: ref_145
  article-title: Geometric calibration for LiDAR-camera system fusing 3D-2D and 3D-3D point correspondences
  publication-title: Opt. Express
  doi: 10.1364/OE.381176
– ident: ref_36
  doi: 10.1109/ISSC.2019.8904920
– ident: ref_97
– ident: ref_28
– ident: ref_204
  doi: 10.3390/s16101668
– ident: ref_168
  doi: 10.1109/IROS.2010.5650579
– ident: ref_55
  doi: 10.1007/978-3-030-01057-7_59
– ident: ref_134
– ident: ref_11
– ident: ref_86
– ident: ref_157
– ident: ref_206
  doi: 10.3390/rs10010072
– ident: ref_67
– ident: ref_92
– volume: 2
  start-page: 1610
  year: 2010
  ident: ref_129
  article-title: Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanning
  publication-title: Remote Sens.
  doi: 10.3390/rs2061610
– ident: ref_106
– ident: ref_44
– ident: ref_73
– ident: ref_163
– ident: ref_182
– ident: ref_6
– volume: 2013
  start-page: 19
  year: 2013
  ident: ref_24
  article-title: A Review of Data Fusion Techniques
  publication-title: Sci. World J.
  doi: 10.1155/2013/704504
– ident: ref_161
  doi: 10.1109/ITSC.2017.8317829
– ident: ref_75
– ident: ref_50
– ident: ref_81
– volume: 25
  start-page: 1496
  year: 2020
  ident: ref_111
  article-title: Road Boundaries Detection based on Modified Occupancy Grid Map Using Millimeter-wave Radar
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-019-01378-5
– ident: ref_199
– ident: ref_174
– ident: ref_205
  doi: 10.1109/IVS.2007.4290104
– ident: ref_20
  doi: 10.1109/ISSC.2018.8585340
– ident: ref_214
– ident: ref_101
– ident: ref_149
  doi: 10.1109/ECMR.2017.8098688
– ident: ref_144
  doi: 10.1109/ITSC.2019.8917135
– ident: ref_181
  doi: 10.1007/978-3-030-58583-9_43
– volume: 2014
  start-page: 135
  year: 2014
  ident: ref_143
  article-title: Calibration of RGB Camera with Velodyne LiDAR
  publication-title: J. WSCG
– ident: ref_177
  doi: 10.1109/IROS40897.2019.8968054
– ident: ref_165
– ident: ref_78
– ident: ref_5
– ident: ref_187
  doi: 10.1109/ICSPCS47537.2019.9008742
– ident: ref_113
– ident: ref_171
– ident: ref_84
– ident: ref_196
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_90
– volume: 5
  start-page: 362
  year: 2017
  ident: ref_62
  article-title: Point Distribution as True Quality of LiDAR Point Cloud
  publication-title: Balt. J. Mod. Comput.
– ident: ref_207
– ident: ref_58
– ident: ref_105
  doi: 10.1109/PLANS46316.2020.9109873
– ident: ref_76
  doi: 10.3390/s20113309
– ident: ref_22
  doi: 10.1109/ISSC49989.2020.9180186
– ident: ref_52
– ident: ref_197
– ident: ref_185
  doi: 10.3390/s19030648
– ident: ref_41
– ident: ref_66
  doi: 10.1109/SSRR50563.2020.9292595
– ident: ref_63
  doi: 10.3390/app9194093
– ident: ref_146
  doi: 10.1109/ICRA.2019.8794186
– ident: ref_212
  doi: 10.1016/j.patcog.2020.107332
– ident: ref_107
– ident: ref_17
– ident: ref_131
– ident: ref_184
  doi: 10.3390/s20082350
– ident: ref_119
– ident: ref_34
– ident: ref_51
  doi: 10.1109/SBR-LARS-R.2017.8215269
– ident: ref_190
  doi: 10.3390/s18040957
– volume: 38
  start-page: 1524
  year: 2019
  ident: ref_38
  article-title: Autonomous Navigation of mobile robots in factory environment
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.01.134
– ident: ref_188
  doi: 10.1109/CVPR.2016.91
– ident: ref_40
– ident: ref_153
– ident: ref_102
– ident: ref_125
– ident: ref_127
  doi: 10.3390/s19071624
– ident: ref_18
– ident: ref_130
– ident: ref_96
– volume: 34
  start-page: 1
  year: 2017
  ident: ref_43
  article-title: Team VALOR’s ESCHER: A Novel Electromechanical Biped for the DARPA Robotics Challenge
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21697
– ident: ref_79
– ident: ref_164
– ident: ref_46
– ident: ref_12
– ident: ref_85
– ident: ref_170
– ident: ref_151
  doi: 10.1109/LRA.2019.2921648
– ident: ref_158
– ident: ref_91
– ident: ref_147
– ident: ref_57
– volume: 21
  start-page: 675
  year: 2020
  ident: ref_26
  article-title: A Survey on multi-sensor fusion based obstacle detection for intelligent ground vehicles in off-road environments
  publication-title: Front. Inform. Technol. Electron. Eng.
  doi: 10.1631/FITEE.1900518
– ident: ref_30
  doi: 10.3390/s19204357
– ident: ref_195
  doi: 10.1109/CVPR.2016.90
SSID ssj0023338
Score 2.7165644
SecondaryResourceType review_article
Snippet With the significant advancement of sensor and communication technology and the reliable application of obstacle detection techniques and algorithms, automated...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2140
SubjectTerms autonomous vehicles
camera
lidar
perception
radar
Review
self-driving cars
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQb8JLBjGwRG1sJ3bYyqOqkGCBom6Rn2ollKKS_n_OSRpSVImFLUosxb6zc99nX75D6DoRxGjh4pClTIUsdiqUqXRhr2cUxAMI2MoTxeeXZDhiT-N43Cr15XPCKnngynDdnmEyotoyFymmCRcaEG5CGMxULqgp1Ush5i3JVE21KDCvSkeIAqnvfgGxSUjkdzha0acU6V-HLH8nSLYizmAHbddQEferLu6iDZvvoa2WgOA-engFFjqbY5kbXF8OFn7_C_9smeNpjvuLwv-8ACwfv9tJmQl3i_u4Ohg4QKPB49v9MKzrIoQa0FsRwjhghMqDB9ezMtLWRTHn8KmIiIkMcRoWMZgrplakvuietooR7niUWiWlo4eok89ye4ww19JooGyUSMVi8JQnGIomkrvYUsECdLO0V6Zr0XBfu-IjA_LgTZs1pg3QVdP0s1LKWNfozhu9aeDFrcsb4PKsdnn2l8sDdLl0WQaLwZ9wyNyCCTPAcyJOeMpJgI4qFzavghnhlW_SAPEV5670ZfVJPp2UgtsAqing4JP_6Pwp2iQ-LcanBIoz1CnmC3sOuKZQF-UU_gbbVfRQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review
URI https://www.ncbi.nlm.nih.gov/pubmed/33803889
https://www.proquest.com/docview/2508567972
https://pubmed.ncbi.nlm.nih.gov/PMC8003231
https://doaj.org/article/0d4a13ce4f1b4c278c758624703783d5
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB71cYED4k0KrAziwCWw8SN2kBDaQpcKqRUCFu0tsh2bVqqydLsrwb9nJsmGBu2RSxQlI8We8Xjms51vAF7khlfeRJXKQrpUquhSW9iYjseVw3iAAdsRUDw5zY9n8tNczXdgU2OzU-DVVmhH9aRmy4tXvy5_v0OHf0uIEyH76yuELTlHpLAL-xiQNBUyOJH9ZgIXCMNaUqGh-CAUNYz929LMf09LXgs_09twq8sb2aQ19B3YCfVduHmNTfAefPiKkHSxZLauWHc7XdNiGPu7fs7OazZZr-hPBoT87Hs4a47FvWET1u4S3IfZ9Ojb--O0K5KQekzlVin2A3voKJOI42AzH2KmtMZ5I-NVVvHo0aNj5pQIpqAKfD44yXXUWRGctVE8gL16UYdHwLS3lUf8Jrh1UqHZCG04kVsdVRBGJvByo6_SdwziVMjiokQkQaote9Um8LwX_dnSZmwTOiSl9wLEdN08WCx_lJ3jlONK2kz4ILEP0nNtPCKcnEucqbQRlUrg2cZkJXoGbXfYOqAKS0zujMp1oXkCD1sT9p_CEUE0OEUCemDcQVuGb-rzs4Z9GzNsgUnxwf9o_GO4wemMDJ0PNE9gb7Vch6eY5KzcCHb1XOPVTD-OYP_w6PTzl1GzYDBqBvcf8X3_Dw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor+and+Sensor+Fusion+Technology+in+Autonomous+Vehicles%3A+A+Review&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=De+Jong+Yeong&rft.au=Gustavo+Velasco-Hernandez&rft.au=John+Barry&rft.au=Joseph+Walsh&rft.date=2021-03-18&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=6&rft.spage=2140&rft_id=info:doi/10.3390%2Fs21062140&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0d4a13ce4f1b4c278c758624703783d5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon