Impact of the Electron Acceptor Nature on the Durability and Nanomorphological Stability of Bulk Heterojunction Active Layers for Organic Solar Cells

A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB‐T) combined with state‐of‐the‐art fullerene (PC71BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acc...

Full description

Saved in:
Bibliographic Details
Published inSmall Vol. 17; no. 2; pp. e2004168 - n/a
Main Authors Vohra, Varun, Matsunaga, Yumi, Takada, Tomoaki, Kiyokawa, Ayumu, Barba, Luisa, Porzio, William
Format Journal Article
LanguageEnglish
Published Germany Wiley 01.01.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB‐T) combined with state‐of‐the‐art fullerene (PC71BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC71BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB‐T:PC71BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short‐circuit densities. Such detrimental demixing can also be seen for PBDB‐T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB‐T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization. Two degradation patterns are found for nonfullerene acceptors: small molecules like ITIC undergo a light‐mediated reversible degradation related to oxygen‐doping while polymer acceptors (N2200) are subject to permanent damage. Nevertheless, the chemical compatibility between the electron donor (PBDB‐T) and nonfullerene polymer acceptors results in an unprecedented morphological stability up to 200 °C.
AbstractList A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB-T) combined with state-of-the-art fullerene (PC71 BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC71 BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB-T:PC71 BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short-circuit densities. Such detrimental demixing can also be seen for PBDB-T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB-T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization.A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB-T) combined with state-of-the-art fullerene (PC71 BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC71 BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB-T:PC71 BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short-circuit densities. Such detrimental demixing can also be seen for PBDB-T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB-T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization.
A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB‐T) combined with state‐of‐the‐art fullerene (PC71BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC71BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB‐T:PC71BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short‐circuit densities. Such detrimental demixing can also be seen for PBDB‐T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB‐T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization.
A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB‐T) combined with state‐of‐the‐art fullerene (PC71BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC71BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB‐T:PC71BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short‐circuit densities. Such detrimental demixing can also be seen for PBDB‐T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB‐T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization. Two degradation patterns are found for nonfullerene acceptors: small molecules like ITIC undergo a light‐mediated reversible degradation related to oxygen‐doping while polymer acceptors (N2200) are subject to permanent damage. Nevertheless, the chemical compatibility between the electron donor (PBDB‐T) and nonfullerene polymer acceptors results in an unprecedented morphological stability up to 200 °C.
A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB-T) combined with state-of-the-art fullerene (PC BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB-T:PC BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short-circuit densities. Such detrimental demixing can also be seen for PBDB-T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB-T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization.
A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB‐T) combined with state‐of‐the‐art fullerene (PC 71 BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC 71 BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB‐T:PC 71 BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short‐circuit densities. Such detrimental demixing can also be seen for PBDB‐T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB‐T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization.
Author Yumi Matsunaga
Tomoaki Takada
Ayumu Kiyokawa
Luisa Barba
Varun Vohra
William Porzio
Author_xml – sequence: 1
  givenname: Varun
  orcidid: 0000-0001-9663-4195
  surname: Vohra
  fullname: Vohra, Varun
  email: varun.vohra@uec.ac.jp
  organization: The University of Electro‐Communications
– sequence: 2
  givenname: Yumi
  surname: Matsunaga
  fullname: Matsunaga, Yumi
  organization: The University of Electro‐Communications
– sequence: 3
  givenname: Tomoaki
  surname: Takada
  fullname: Takada, Tomoaki
  organization: The University of Electro‐Communications
– sequence: 4
  givenname: Ayumu
  surname: Kiyokawa
  fullname: Kiyokawa, Ayumu
  organization: The University of Electro‐Communications
– sequence: 5
  givenname: Luisa
  orcidid: 0000-0001-8832-7056
  surname: Barba
  fullname: Barba, Luisa
  organization: Istituto di Cristallografia del CNR – c/o Sincrotrone Elettra
– sequence: 6
  givenname: William
  orcidid: 0000-0001-6151-6199
  surname: Porzio
  fullname: Porzio, William
  organization: Institute of Chemical Sciences and Technologies “G.Natta” Consiglio Nazionale delle Ricerche (SCI‐TEC)
BackLink https://cir.nii.ac.jp/crid/1873961342348751232$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/33325643$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1UREvplSOyBIdedvFX4uyxLIVWCvSwcI4cZ9K6OHZqO1T7Q_i_OGy7QpUQF9uaed6Z0bx-iQ6cd4DQa0qWlBD2Pg7WLhlhhAhaVs_QES0pX5QVWx3s35QcopMYTUuo5JUUq-oFOuScs6IU_Aj9uhxGpRP2PU43gM8t6BS8w2daw5h8wF9VmgLgHJrzH6egWmNN2mLlupx0fvBhvPHWXxutLN6kx3yu-GGyP_AFJAj-dnI6mT-Fk_kJuFZbCBH3ucNVuFbOaLzxVgW8BmvjK_S8VzbCycN9jL5_Ov-2vljUV58v12f1QhdEVgsA3QnGurLooaJUVr2WvIOWAYGq5UVBCtULILzgfQdcdB3XkpVSiJ6RlpT8GJ3u6o7B300QUzOYqPMEyoGfYsOEJCWTRJCMvn2C3vopuDzdTEnBy2xCpt48UFM7QNeMwQwqbJvHhWdguQN08DEG6PcIJc1sajOb2uxNzQLxRKBNUvMqU1DG_lu22snujYXtf5o0my91_bf23U7rjMnd5pNWkq_yhxKMi0oWlHHGfwMLEcHS
CitedBy_id crossref_primary_10_1021_acsaelm_3c01372
crossref_primary_10_1002_smtd_202100585
crossref_primary_10_1016_j_ijleo_2023_170567
crossref_primary_10_1016_j_jpcs_2022_110999
crossref_primary_10_1039_D3CP00998J
crossref_primary_10_1002_smll_202102558
crossref_primary_10_1002_smll_202103537
crossref_primary_10_1007_s40242_021_1269_1
crossref_primary_10_1021_acsaem_2c03465
crossref_primary_10_1039_D3CP03038E
crossref_primary_10_1002_solr_202100661
crossref_primary_10_1002_adom_202402257
Cites_doi 10.1002/adma.201100792
10.1039/c4tc00003j
10.1021/acsami.8b20493
10.1039/D0TC00379D
10.1021/acsaem.8b02049
10.1016/j.eurpolymj.2014.10.005
10.1021/acs.jpcc.7b05849
10.1016/j.egypro.2013.05.072
10.1002/adma.201908205
10.1002/adma.201404535
10.1016/j.scib.2020.01.001
10.1021/acsaem.8b02144
10.1016/j.solmat.2012.02.019
10.1016/j.solmat.2018.03.031
10.1002/adma.201603940
10.1002/aenm.201902065
10.1038/s41467-018-04502-3
10.1038/nphoton.2015.84
10.1002/aenm.201800029
10.1002/adma.201603178
10.1002/adma.201601197
10.1016/j.nanoen.2014.12.027
10.1021/acsami.9b15753
10.7567/APEX.9.012301
10.1021/acs.chemmater.5b04346
10.1021/acs.jpcc.9b11072
10.1021/jp312600n
10.1016/j.solmat.2018.03.024
10.1016/j.orgel.2016.10.016
10.1021/acsami.6b16395
10.1038/s41467-019-10351-5
10.1016/j.joule.2018.09.001
10.1039/C8TA03343A
10.1063/1.3242006
10.1021/acsami.9b01729
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID RYH
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202004168
DatabaseName CiNii Complete
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 33325643
10_1002_smll_202004168
SMLL202004168
Genre article
Journal Article
GrantInformation_xml – fundername: NF Foundation
– fundername: Mayekawa Houonkai Foundation
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYH
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
A00
AEUQT
AFPWT
P4E
RWI
WYJ
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c5078-eecd422d65fe81178fc73deb2e0e8b35505af4e0353fde34dd3c726744f20b063
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 17:05:40 EDT 2025
Fri Jul 04 22:28:13 EDT 2025
Wed Feb 19 02:29:57 EST 2025
Thu Apr 24 23:09:04 EDT 2025
Tue Jul 01 02:10:59 EDT 2025
Wed Jan 22 16:30:43 EST 2025
Thu Jun 26 23:14:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords organic solar cells
PBDB-T
phase separation
energy of mixing
electron acceptors
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5078-eecd422d65fe81178fc73deb2e0e8b35505af4e0353fde34dd3c726744f20b063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8832-7056
0000-0001-9663-4195
0000-0001-6151-6199
PMID 33325643
PQID 2477436041
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2470627040
proquest_journals_2477436041
pubmed_primary_33325643
crossref_primary_10_1002_smll_202004168
crossref_citationtrail_10_1002_smll_202004168
wiley_primary_10_1002_smll_202004168_SMLL202004168
nii_cinii_1873961342348751232
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small
PublicationTitleAlternate Small
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2015; 12
2019; 9
2018; 182
2019; 3
2012; 101
2019; 2
2019; 11
2019; 10
2017; 29
2020; 124
2020; 32
2015; 9
2016; 39
2014; 61
2017; 9
2020; 8
2018; 6
2018; 9
2018; 8
2009; 95
2015; 27
2014; 2
2013; 33
2013; 117
2011; 23
2020; 65
2017; 121
2016; 28
2016; 9
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
References_xml – volume: 182
  start-page: 246
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 11
  start-page: 8310
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 117
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 4383
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 2
  start-page: 2534
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 124
  start-page: 9644
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 65
  start-page: 272
  year: 2020
  publication-title: Sci. Bull.
– volume: 95
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 3597
  year: 2011
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1943
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 28
  start-page: 876
  year: 2016
  publication-title: Chem. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 7162
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 7821
  year: 2016
  publication-title: Adv. Mater.
– volume: 28
  start-page: 9811
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 61
  start-page: 172
  year: 2014
  publication-title: Eur. Polym. J.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 10
  start-page: 2515
  year: 2019
  publication-title: Nat. Commun.
– volume: 9
  start-page: 403
  year: 2015
  publication-title: Nat. Photonics
– volume: 101
  start-page: 36
  year: 2012
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 9
  year: 2016
  publication-title: Appl. Phys. Express
– volume: 182
  start-page: 121
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 39
  start-page: 222
  year: 2016
  publication-title: Org. Electron.
– volume: 27
  start-page: 1035
  year: 2015
  publication-title: Adv. Mater.
– volume: 3
  start-page: 215
  year: 2019
  publication-title: Joule
– volume: 12
  start-page: 457
  year: 2015
  publication-title: Nano Energy
– volume: 9
  start-page: 2059
  year: 2018
  publication-title: Nat. Commun.
– volume: 33
  start-page: 311
  year: 2013
  publication-title: Energy Procedia
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201100792
– ident: e_1_2_7_2_1
  doi: 10.1039/c4tc00003j
– ident: e_1_2_7_24_1
  doi: 10.1021/acsami.8b20493
– ident: e_1_2_7_18_1
  doi: 10.1039/D0TC00379D
– ident: e_1_2_7_27_1
  doi: 10.1021/acsaem.8b02049
– ident: e_1_2_7_35_1
  doi: 10.1016/j.eurpolymj.2014.10.005
– ident: e_1_2_7_29_1
  doi: 10.1021/acs.jpcc.7b05849
– ident: e_1_2_7_33_1
  doi: 10.1016/j.egypro.2013.05.072
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201908205
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201404535
– ident: e_1_2_7_10_1
  doi: 10.1016/j.scib.2020.01.001
– ident: e_1_2_7_12_1
  doi: 10.1021/acsaem.8b02144
– ident: e_1_2_7_34_1
  doi: 10.1016/j.solmat.2012.02.019
– ident: e_1_2_7_22_1
  doi: 10.1016/j.solmat.2018.03.031
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.201603940
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.201902065
– ident: e_1_2_7_21_1
  doi: 10.1038/s41467-018-04502-3
– ident: e_1_2_7_7_1
  doi: 10.1038/nphoton.2015.84
– ident: e_1_2_7_20_1
  doi: 10.1002/aenm.201800029
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201603178
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201601197
– ident: e_1_2_7_16_1
  doi: 10.1016/j.nanoen.2014.12.027
– ident: e_1_2_7_26_1
  doi: 10.1021/acsami.9b15753
– ident: e_1_2_7_5_1
  doi: 10.7567/APEX.9.012301
– ident: e_1_2_7_25_1
  doi: 10.1021/acs.chemmater.5b04346
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.jpcc.9b11072
– ident: e_1_2_7_3_1
  doi: 10.1021/jp312600n
– ident: e_1_2_7_31_1
  doi: 10.1016/j.solmat.2018.03.024
– ident: e_1_2_7_30_1
  doi: 10.1016/j.orgel.2016.10.016
– ident: e_1_2_7_15_1
  doi: 10.1021/acsami.6b16395
– ident: e_1_2_7_11_1
  doi: 10.1038/s41467-019-10351-5
– ident: e_1_2_7_19_1
  doi: 10.1016/j.joule.2018.09.001
– ident: e_1_2_7_23_1
  doi: 10.1039/C8TA03343A
– ident: e_1_2_7_4_1
  doi: 10.1063/1.3242006
– ident: e_1_2_7_32_1
  doi: 10.1021/acsami.9b01729
SSID ssib017387498
ssib004908756
ssj0031247
ssib030664022
ssib022722846
Score 2.4111469
Snippet A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB‐T) combined with...
A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB-T) combined with...
SourceID proquest
pubmed
crossref
wiley
nii
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2004168
SubjectTerms Circuits
Commercialization
Demixing
Durability
electron acceptors
Electrons
energy of mixing
Exposure
Fullerenes
Heterojunctions
Nanotechnology
Organic chemistry
organic solar cells
Oxidation
Oxidation resistance
PBDB
PBDB‐T
phase separation
Photovoltaic cells
Polymers
Room temperature
Solar cells
Stability
T
Title Impact of the Electron Acceptor Nature on the Durability and Nanomorphological Stability of Bulk Heterojunction Active Layers for Organic Solar Cells
URI https://cir.nii.ac.jp/crid/1873961342348751232
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202004168
https://www.ncbi.nlm.nih.gov/pubmed/33325643
https://www.proquest.com/docview/2477436041
https://www.proquest.com/docview/2470627040
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZaTuXQ0lLalIdcCamnQNZ2nOwRKGhbLRxKkbhFfkpASKrdzaH9H_xfZpwHbEVVqb1Em7VjOfE8vklmPhOyK1XiVe5l7L1PY2FUEud6BIqnjQQw55mRWO98eiYnF-LrZXr5qIq_5YcYXrihZgR7jQqu9Hz_gTR0flvipwNc5ZHEal9M2EJU9G3gj-LgvMLuKuCzYiTe6lkbE7a_fPmSV3peXV09BTiX8WtwQCeviOqn3uad3Ow1C71nfv3G6vg_97ZGXnbolB604vSaPHPVG7L6iLNwndx9CXWVtPYUsCM97rbRoQcGE2TqGT0LVKEU_sL2z82sZQL_SVVlobGqb2tY297mUkC7XTuMeNiUN3SCGTr1NThcFBoYGC0ynSoMDihgbNrWjxp6jmE5PXJlOX9LLk6Ovx9N4m5vh9gAAs1j54wVjFmZeoe1rrk3GbcQ5rvE5Zpj3KS8cAlPubeOC2u5yZjMhPAs0YCrNshKVVfuPaE2MYrLsXH5WAudjfNUOPgFUNSkVic8InG_toXpiM9x_42yaCmbWYGPuxged0Q-Df1_tJQff-y5DaICg-JxlGd8DIIG-BSDQISqEdnqhajoTMO8AJEE1CZhgIh8HJpBqfFLjapc3YQ-SB8NBjYi71rhG6bCOQeYKuC2WBChv8yxOD-dToezD_9y0SZ5wTCTJ7x42iIri1njtgGKLfROULd79BQp2A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RcgAOvB-BFoyExCltNnac7LGUVlvI7oG2ErcofkmlaYJ2Nwf4H_xfZpwHLAIhwWW1u3YsJ57HN87MZ4BXsoxcmTkZOueSUOgyCjM1QcVTWiKYc7GWVO88X8jZuXj3MRmyCakWpuOHGDfcSDO8vSYFpw3p_R-soaurit4d0DJPZLYF1-lYbx9VfRgZpDi6L3--CnqtkKi3Bt7GKN7fvH7DL23VFxe_g5ybCNa7oOM7oIbJd5knl3vtWu3pr7_wOv7X3d2F2z1AZQedRN2Da7a-D7d-oi18AN9OfGklaxxD-MiO-pN02IGmHJlmyRaeLZThX9T-tl12ZOBfWFkbbKybqwaXdzC7DAFv344jvmmrSzajJJ3mE_pckhscmIwyy0uKDxjCbNaVkGp2SpE5O7RVtXoI58dHZ4ezsD_eIdQIQrPQWm1EHBuZOEvlrpnTKTcY6dvIZopT6FQ6YSOecGcsF8ZwncYyFcLFkUJo9Qi266a2T4CZSJdcTrXNpkqodJolwuI3RKM6MSriAYTD4ha65z6nIziqomNtjgt63MX4uAN4Pfb_3LF-_LHnLsoKDkqfkyzlU5Q0hKgUBxJaDWBnkKKitw6rAmUSgZvEAQJ4OTajXtPLmrK2Tev7EIM02tgAHnfSN06Fc45IVeBtxV6G_jLH4nSe5-Ovp_9y0Qu4MTub50V-snj_DG7GlNjj96F2YHu9bO0uIrO1eu517zuF5C3z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiE4tLwb2oKRkDilzcaO4z223a62sF0hSqXeosQPqTRNqt3NAf4H_7czedFFICS4REnsWE48j28cz2eAdzINXKqc9J1zkS90GvgqG6DiZVoimHOhlpTvfDqTk3Px4SK6uJPF3_BD9BNupBm1vSYFvzFu_ydp6OI6p18HNMoDqdbgvpCBIrkefe4JpDh6r3p7FXRaPjFvdbSNQbi_-vyKW1orLi9_hzhXAWztgcabkHZ9bxaeXO1Vy2xPf_-F1vF_Xu4xbLTwlB008vQE7tniKTy6Q1r4DH6c1ImVrHQMwSM7bvfRYQeaVsiUczaruUIZ3qLyUTVvqMC_sbQwWFiU1yUObmd0GcLdthxbPKzyKzahJTrlV_S4JDXYMJlkNk0pOmAIslmTQKrZGcXl7Mjm-eI5nI-PvxxN_HZzB18jBFW-tdqIMDQycpaSXZXTMTcY59vAqoxT4JQ6YQMecWcsF8ZwHYcyFsKFQYbA6gWsF2Vht4CZQKdcDrVVw0xk8VBFwuIZYlEdmSzgHvjd2Ca6ZT6nDTjypOFsDhP63En_uT1439e_aTg__lhzF0UFG6XjQMV8iIKGAJWiQMKqHux0QpS0tmGRoEgibJPYgAdv-2LUavpVkxa2rOo6xB-NFtaDl43w9V3hnCNOFfhaYS1Cf-ljcnY6nfZXr_7loTfw4NNonExPZh-34WFIq3rqSagdWF_OK7uLsGyZva417xbspyyr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+the+Electron+Acceptor+Nature+on+the+Durability+and+Nanomorphological+Stability+of+Bulk+Heterojunction+Active+Layers+for+Organic+Solar+Cells&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Vohra%2C+Varun&rft.au=Matsunaga%2C+Yumi&rft.au=Takada%2C+Tomoaki&rft.au=Kiyokawa%2C+Ayumu&rft.date=2021-01-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202004168&rft.externalDBID=10.1002%252Fsmll.202004168&rft.externalDocID=SMLL202004168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon