Impact of the Electron Acceptor Nature on the Durability and Nanomorphological Stability of Bulk Heterojunction Active Layers for Organic Solar Cells
A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB‐T) combined with state‐of‐the‐art fullerene (PC71BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acc...
Saved in:
Published in | Small Vol. 17; no. 2; pp. e2004168 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley
01.01.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB‐T) combined with state‐of‐the‐art fullerene (PC71BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC71BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB‐T:PC71BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short‐circuit densities. Such detrimental demixing can also be seen for PBDB‐T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB‐T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization.
Two degradation patterns are found for nonfullerene acceptors: small molecules like ITIC undergo a light‐mediated reversible degradation related to oxygen‐doping while polymer acceptors (N2200) are subject to permanent damage. Nevertheless, the chemical compatibility between the electron donor (PBDB‐T) and nonfullerene polymer acceptors results in an unprecedented morphological stability up to 200 °C. |
---|---|
AbstractList | A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB-T) combined with state-of-the-art fullerene (PC71 BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC71 BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB-T:PC71 BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short-circuit densities. Such detrimental demixing can also be seen for PBDB-T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB-T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization.A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB-T) combined with state-of-the-art fullerene (PC71 BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC71 BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB-T:PC71 BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short-circuit densities. Such detrimental demixing can also be seen for PBDB-T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB-T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization. A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB‐T) combined with state‐of‐the‐art fullerene (PC71BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC71BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB‐T:PC71BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short‐circuit densities. Such detrimental demixing can also be seen for PBDB‐T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB‐T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization. A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB‐T) combined with state‐of‐the‐art fullerene (PC71BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC71BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB‐T:PC71BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short‐circuit densities. Such detrimental demixing can also be seen for PBDB‐T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB‐T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization. Two degradation patterns are found for nonfullerene acceptors: small molecules like ITIC undergo a light‐mediated reversible degradation related to oxygen‐doping while polymer acceptors (N2200) are subject to permanent damage. Nevertheless, the chemical compatibility between the electron donor (PBDB‐T) and nonfullerene polymer acceptors results in an unprecedented morphological stability up to 200 °C. A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB-T) combined with state-of-the-art fullerene (PC BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB-T:PC BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short-circuit densities. Such detrimental demixing can also be seen for PBDB-T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB-T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization. A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB‐T) combined with state‐of‐the‐art fullerene (PC 71 BM), nonfullerene (ITIC), and polymer (N2200) electron acceptors. The impact of the chemical nature of the acceptor on the durability of organic solar cells (OSCs) is elucidated by monitoring their photovoltaic performances under light exposure or dark conditions in the presence of oxygen. PC 71 BM molecules exhibit a higher resistance toward oxidation compared to nonfullerene acceptors. Unencapsulated PBDB‐T:PC 71 BM OSCs display relatively stable performances at room temperature when stored in air for 3 months. However, when exposed to temperatures above 80 °C, their active materials demix causing notable reductions in the short‐circuit densities. Such detrimental demixing can also be seen for PBDB‐T:ITIC active layers above 120 °C. Although N2200 chains irreversibly degrade when exposed to air, thermally induced demixing does not occur in PBDB‐T:N2200 active layers annealed up to 200 °C. In summary, fullerene OSCs may be the best currently available choice for unencapsulated room temperature applications but if oxidation of the polymer acceptors can be avoided, all polymer active layers should enable the fabrication of highly durable OSCs with lifetimes matching the requirements for OSC commercialization. |
Author | Yumi Matsunaga Tomoaki Takada Ayumu Kiyokawa Luisa Barba Varun Vohra William Porzio |
Author_xml | – sequence: 1 givenname: Varun orcidid: 0000-0001-9663-4195 surname: Vohra fullname: Vohra, Varun email: varun.vohra@uec.ac.jp organization: The University of Electro‐Communications – sequence: 2 givenname: Yumi surname: Matsunaga fullname: Matsunaga, Yumi organization: The University of Electro‐Communications – sequence: 3 givenname: Tomoaki surname: Takada fullname: Takada, Tomoaki organization: The University of Electro‐Communications – sequence: 4 givenname: Ayumu surname: Kiyokawa fullname: Kiyokawa, Ayumu organization: The University of Electro‐Communications – sequence: 5 givenname: Luisa orcidid: 0000-0001-8832-7056 surname: Barba fullname: Barba, Luisa organization: Istituto di Cristallografia del CNR – c/o Sincrotrone Elettra – sequence: 6 givenname: William orcidid: 0000-0001-6151-6199 surname: Porzio fullname: Porzio, William organization: Institute of Chemical Sciences and Technologies “G.Natta” Consiglio Nazionale delle Ricerche (SCI‐TEC) |
BackLink | https://cir.nii.ac.jp/crid/1873961342348751232$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/33325643$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1UREvplSOyBIdedvFX4uyxLIVWCvSwcI4cZ9K6OHZqO1T7Q_i_OGy7QpUQF9uaed6Z0bx-iQ6cd4DQa0qWlBD2Pg7WLhlhhAhaVs_QES0pX5QVWx3s35QcopMYTUuo5JUUq-oFOuScs6IU_Aj9uhxGpRP2PU43gM8t6BS8w2daw5h8wF9VmgLgHJrzH6egWmNN2mLlupx0fvBhvPHWXxutLN6kx3yu-GGyP_AFJAj-dnI6mT-Fk_kJuFZbCBH3ucNVuFbOaLzxVgW8BmvjK_S8VzbCycN9jL5_Ov-2vljUV58v12f1QhdEVgsA3QnGurLooaJUVr2WvIOWAYGq5UVBCtULILzgfQdcdB3XkpVSiJ6RlpT8GJ3u6o7B300QUzOYqPMEyoGfYsOEJCWTRJCMvn2C3vopuDzdTEnBy2xCpt48UFM7QNeMwQwqbJvHhWdguQN08DEG6PcIJc1sajOb2uxNzQLxRKBNUvMqU1DG_lu22snujYXtf5o0my91_bf23U7rjMnd5pNWkq_yhxKMi0oWlHHGfwMLEcHS |
CitedBy_id | crossref_primary_10_1021_acsaelm_3c01372 crossref_primary_10_1002_smtd_202100585 crossref_primary_10_1016_j_ijleo_2023_170567 crossref_primary_10_1016_j_jpcs_2022_110999 crossref_primary_10_1039_D3CP00998J crossref_primary_10_1002_smll_202102558 crossref_primary_10_1002_smll_202103537 crossref_primary_10_1007_s40242_021_1269_1 crossref_primary_10_1021_acsaem_2c03465 crossref_primary_10_1039_D3CP03038E crossref_primary_10_1002_solr_202100661 crossref_primary_10_1002_adom_202402257 |
Cites_doi | 10.1002/adma.201100792 10.1039/c4tc00003j 10.1021/acsami.8b20493 10.1039/D0TC00379D 10.1021/acsaem.8b02049 10.1016/j.eurpolymj.2014.10.005 10.1021/acs.jpcc.7b05849 10.1016/j.egypro.2013.05.072 10.1002/adma.201908205 10.1002/adma.201404535 10.1016/j.scib.2020.01.001 10.1021/acsaem.8b02144 10.1016/j.solmat.2012.02.019 10.1016/j.solmat.2018.03.031 10.1002/adma.201603940 10.1002/aenm.201902065 10.1038/s41467-018-04502-3 10.1038/nphoton.2015.84 10.1002/aenm.201800029 10.1002/adma.201603178 10.1002/adma.201601197 10.1016/j.nanoen.2014.12.027 10.1021/acsami.9b15753 10.7567/APEX.9.012301 10.1021/acs.chemmater.5b04346 10.1021/acs.jpcc.9b11072 10.1021/jp312600n 10.1016/j.solmat.2018.03.024 10.1016/j.orgel.2016.10.016 10.1021/acsami.6b16395 10.1038/s41467-019-10351-5 10.1016/j.joule.2018.09.001 10.1039/C8TA03343A 10.1063/1.3242006 10.1021/acsami.9b01729 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | RYH AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202004168 |
DatabaseName | CiNii Complete CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 33325643 10_1002_smll_202004168 SMLL202004168 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NF Foundation – fundername: Mayekawa Houonkai Foundation |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYH RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- A00 AEUQT AFPWT P4E RWI WYJ 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c5078-eecd422d65fe81178fc73deb2e0e8b35505af4e0353fde34dd3c726744f20b063 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 17:05:40 EDT 2025 Fri Jul 04 22:28:13 EDT 2025 Wed Feb 19 02:29:57 EST 2025 Thu Apr 24 23:09:04 EDT 2025 Tue Jul 01 02:10:59 EDT 2025 Wed Jan 22 16:30:43 EST 2025 Thu Jun 26 23:14:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | organic solar cells PBDB-T phase separation energy of mixing electron acceptors |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5078-eecd422d65fe81178fc73deb2e0e8b35505af4e0353fde34dd3c726744f20b063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8832-7056 0000-0001-9663-4195 0000-0001-6151-6199 |
PMID | 33325643 |
PQID | 2477436041 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2470627040 proquest_journals_2477436041 pubmed_primary_33325643 crossref_primary_10_1002_smll_202004168 crossref_citationtrail_10_1002_smll_202004168 wiley_primary_10_1002_smll_202004168_SMLL202004168 nii_cinii_1873961342348751232 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small |
PublicationTitleAlternate | Small |
PublicationYear | 2021 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2015; 12 2019; 9 2018; 182 2019; 3 2012; 101 2019; 2 2019; 11 2019; 10 2017; 29 2020; 124 2020; 32 2015; 9 2016; 39 2014; 61 2017; 9 2020; 8 2018; 6 2018; 9 2018; 8 2009; 95 2015; 27 2014; 2 2013; 33 2013; 117 2011; 23 2020; 65 2017; 121 2016; 28 2016; 9 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 |
References_xml | – volume: 182 start-page: 246 year: 2018 publication-title: Sol. Energy Mater. Sol. Cells – volume: 11 start-page: 8310 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 117 year: 2013 publication-title: J. Phys. Chem. C – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 2 start-page: 4383 year: 2014 publication-title: J. Mater. Chem. C – volume: 2 start-page: 2534 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 124 start-page: 9644 year: 2020 publication-title: J. Phys. Chem. C – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 65 start-page: 272 year: 2020 publication-title: Sci. Bull. – volume: 95 year: 2009 publication-title: Appl. Phys. Lett. – volume: 23 start-page: 3597 year: 2011 publication-title: Adv. Mater. – volume: 2 start-page: 1943 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 28 start-page: 876 year: 2016 publication-title: Chem. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 8 start-page: 7162 year: 2020 publication-title: J. Mater. Chem. C – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 7821 year: 2016 publication-title: Adv. Mater. – volume: 28 start-page: 9811 year: 2016 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 61 start-page: 172 year: 2014 publication-title: Eur. Polym. J. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 10 start-page: 2515 year: 2019 publication-title: Nat. Commun. – volume: 9 start-page: 403 year: 2015 publication-title: Nat. Photonics – volume: 101 start-page: 36 year: 2012 publication-title: Sol. Energy Mater. Sol. Cells – volume: 9 year: 2016 publication-title: Appl. Phys. Express – volume: 182 start-page: 121 year: 2018 publication-title: Sol. Energy Mater. Sol. Cells – volume: 39 start-page: 222 year: 2016 publication-title: Org. Electron. – volume: 27 start-page: 1035 year: 2015 publication-title: Adv. Mater. – volume: 3 start-page: 215 year: 2019 publication-title: Joule – volume: 12 start-page: 457 year: 2015 publication-title: Nano Energy – volume: 9 start-page: 2059 year: 2018 publication-title: Nat. Commun. – volume: 33 start-page: 311 year: 2013 publication-title: Energy Procedia – ident: e_1_2_7_1_1 doi: 10.1002/adma.201100792 – ident: e_1_2_7_2_1 doi: 10.1039/c4tc00003j – ident: e_1_2_7_24_1 doi: 10.1021/acsami.8b20493 – ident: e_1_2_7_18_1 doi: 10.1039/D0TC00379D – ident: e_1_2_7_27_1 doi: 10.1021/acsaem.8b02049 – ident: e_1_2_7_35_1 doi: 10.1016/j.eurpolymj.2014.10.005 – ident: e_1_2_7_29_1 doi: 10.1021/acs.jpcc.7b05849 – ident: e_1_2_7_33_1 doi: 10.1016/j.egypro.2013.05.072 – ident: e_1_2_7_9_1 doi: 10.1002/adma.201908205 – ident: e_1_2_7_8_1 doi: 10.1002/adma.201404535 – ident: e_1_2_7_10_1 doi: 10.1016/j.scib.2020.01.001 – ident: e_1_2_7_12_1 doi: 10.1021/acsaem.8b02144 – ident: e_1_2_7_34_1 doi: 10.1016/j.solmat.2012.02.019 – ident: e_1_2_7_22_1 doi: 10.1016/j.solmat.2018.03.031 – ident: e_1_2_7_28_1 doi: 10.1002/adma.201603940 – ident: e_1_2_7_13_1 doi: 10.1002/aenm.201902065 – ident: e_1_2_7_21_1 doi: 10.1038/s41467-018-04502-3 – ident: e_1_2_7_7_1 doi: 10.1038/nphoton.2015.84 – ident: e_1_2_7_20_1 doi: 10.1002/aenm.201800029 – ident: e_1_2_7_6_1 doi: 10.1002/adma.201603178 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201601197 – ident: e_1_2_7_16_1 doi: 10.1016/j.nanoen.2014.12.027 – ident: e_1_2_7_26_1 doi: 10.1021/acsami.9b15753 – ident: e_1_2_7_5_1 doi: 10.7567/APEX.9.012301 – ident: e_1_2_7_25_1 doi: 10.1021/acs.chemmater.5b04346 – ident: e_1_2_7_17_1 doi: 10.1021/acs.jpcc.9b11072 – ident: e_1_2_7_3_1 doi: 10.1021/jp312600n – ident: e_1_2_7_31_1 doi: 10.1016/j.solmat.2018.03.024 – ident: e_1_2_7_30_1 doi: 10.1016/j.orgel.2016.10.016 – ident: e_1_2_7_15_1 doi: 10.1021/acsami.6b16395 – ident: e_1_2_7_11_1 doi: 10.1038/s41467-019-10351-5 – ident: e_1_2_7_19_1 doi: 10.1016/j.joule.2018.09.001 – ident: e_1_2_7_23_1 doi: 10.1039/C8TA03343A – ident: e_1_2_7_4_1 doi: 10.1063/1.3242006 – ident: e_1_2_7_32_1 doi: 10.1021/acsami.9b01729 |
SSID | ssib017387498 ssib004908756 ssj0031247 ssib030664022 ssib022722846 |
Score | 2.4111469 |
Snippet | A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB‐T) combined with... A systematic study is conducted to compare the performances and stability of active layers employing a high performance electron donor (PBDB-T) combined with... |
SourceID | proquest pubmed crossref wiley nii |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2004168 |
SubjectTerms | Circuits Commercialization Demixing Durability electron acceptors Electrons energy of mixing Exposure Fullerenes Heterojunctions Nanotechnology Organic chemistry organic solar cells Oxidation Oxidation resistance PBDB PBDB‐T phase separation Photovoltaic cells Polymers Room temperature Solar cells Stability T |
Title | Impact of the Electron Acceptor Nature on the Durability and Nanomorphological Stability of Bulk Heterojunction Active Layers for Organic Solar Cells |
URI | https://cir.nii.ac.jp/crid/1873961342348751232 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202004168 https://www.ncbi.nlm.nih.gov/pubmed/33325643 https://www.proquest.com/docview/2477436041 https://www.proquest.com/docview/2470627040 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZaTuXQ0lLalIdcCamnQNZ2nOwRKGhbLRxKkbhFfkpASKrdzaH9H_xfZpwHbEVVqb1Em7VjOfE8vklmPhOyK1XiVe5l7L1PY2FUEud6BIqnjQQw55mRWO98eiYnF-LrZXr5qIq_5YcYXrihZgR7jQqu9Hz_gTR0flvipwNc5ZHEal9M2EJU9G3gj-LgvMLuKuCzYiTe6lkbE7a_fPmSV3peXV09BTiX8WtwQCeviOqn3uad3Ow1C71nfv3G6vg_97ZGXnbolB604vSaPHPVG7L6iLNwndx9CXWVtPYUsCM97rbRoQcGE2TqGT0LVKEU_sL2z82sZQL_SVVlobGqb2tY297mUkC7XTuMeNiUN3SCGTr1NThcFBoYGC0ynSoMDihgbNrWjxp6jmE5PXJlOX9LLk6Ovx9N4m5vh9gAAs1j54wVjFmZeoe1rrk3GbcQ5rvE5Zpj3KS8cAlPubeOC2u5yZjMhPAs0YCrNshKVVfuPaE2MYrLsXH5WAudjfNUOPgFUNSkVic8InG_toXpiM9x_42yaCmbWYGPuxged0Q-Df1_tJQff-y5DaICg-JxlGd8DIIG-BSDQISqEdnqhajoTMO8AJEE1CZhgIh8HJpBqfFLjapc3YQ-SB8NBjYi71rhG6bCOQeYKuC2WBChv8yxOD-dToezD_9y0SZ5wTCTJ7x42iIri1njtgGKLfROULd79BQp2A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RcgAOvB-BFoyExCltNnac7LGUVlvI7oG2ErcofkmlaYJ2Nwf4H_xfZpwHLAIhwWW1u3YsJ57HN87MZ4BXsoxcmTkZOueSUOgyCjM1QcVTWiKYc7GWVO88X8jZuXj3MRmyCakWpuOHGDfcSDO8vSYFpw3p_R-soaurit4d0DJPZLYF1-lYbx9VfRgZpDi6L3--CnqtkKi3Bt7GKN7fvH7DL23VFxe_g5ybCNa7oOM7oIbJd5knl3vtWu3pr7_wOv7X3d2F2z1AZQedRN2Da7a-D7d-oi18AN9OfGklaxxD-MiO-pN02IGmHJlmyRaeLZThX9T-tl12ZOBfWFkbbKybqwaXdzC7DAFv344jvmmrSzajJJ3mE_pckhscmIwyy0uKDxjCbNaVkGp2SpE5O7RVtXoI58dHZ4ezsD_eIdQIQrPQWm1EHBuZOEvlrpnTKTcY6dvIZopT6FQ6YSOecGcsF8ZwncYyFcLFkUJo9Qi266a2T4CZSJdcTrXNpkqodJolwuI3RKM6MSriAYTD4ha65z6nIziqomNtjgt63MX4uAN4Pfb_3LF-_LHnLsoKDkqfkyzlU5Q0hKgUBxJaDWBnkKKitw6rAmUSgZvEAQJ4OTajXtPLmrK2Tev7EIM02tgAHnfSN06Fc45IVeBtxV6G_jLH4nSe5-Ovp_9y0Qu4MTub50V-snj_DG7GlNjj96F2YHu9bO0uIrO1eu517zuF5C3z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiE4tLwb2oKRkDilzcaO4z223a62sF0hSqXeosQPqTRNqt3NAf4H_7czedFFICS4REnsWE48j28cz2eAdzINXKqc9J1zkS90GvgqG6DiZVoimHOhlpTvfDqTk3Px4SK6uJPF3_BD9BNupBm1vSYFvzFu_ydp6OI6p18HNMoDqdbgvpCBIrkefe4JpDh6r3p7FXRaPjFvdbSNQbi_-vyKW1orLi9_hzhXAWztgcabkHZ9bxaeXO1Vy2xPf_-F1vF_Xu4xbLTwlB008vQE7tniKTy6Q1r4DH6c1ImVrHQMwSM7bvfRYQeaVsiUczaruUIZ3qLyUTVvqMC_sbQwWFiU1yUObmd0GcLdthxbPKzyKzahJTrlV_S4JDXYMJlkNk0pOmAIslmTQKrZGcXl7Mjm-eI5nI-PvxxN_HZzB18jBFW-tdqIMDQycpaSXZXTMTcY59vAqoxT4JQ6YQMecWcsF8ZwHYcyFsKFQYbA6gWsF2Vht4CZQKdcDrVVw0xk8VBFwuIZYlEdmSzgHvjd2Ca6ZT6nDTjypOFsDhP63En_uT1439e_aTg__lhzF0UFG6XjQMV8iIKGAJWiQMKqHux0QpS0tmGRoEgibJPYgAdv-2LUavpVkxa2rOo6xB-NFtaDl43w9V3hnCNOFfhaYS1Cf-ljcnY6nfZXr_7loTfw4NNonExPZh-34WFIq3rqSagdWF_OK7uLsGyZva417xbspyyr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+the+Electron+Acceptor+Nature+on+the+Durability+and+Nanomorphological+Stability+of+Bulk+Heterojunction+Active+Layers+for+Organic+Solar+Cells&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Vohra%2C+Varun&rft.au=Matsunaga%2C+Yumi&rft.au=Takada%2C+Tomoaki&rft.au=Kiyokawa%2C+Ayumu&rft.date=2021-01-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202004168&rft.externalDBID=10.1002%252Fsmll.202004168&rft.externalDocID=SMLL202004168 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |