The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration

ABSTRACT Purpose To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip fracture assuming a true mortality reduction of < 15% and no effect on hip fracture. Methods We compared seniors initiati...

Full description

Saved in:
Bibliographic Details
Published inPharmacoepidemiology and drug safety Vol. 20; no. 6; pp. 551 - 559
Main Authors Patrick, Amanda R., Schneeweiss, Sebastian, Brookhart, M. Alan, Glynn, Robert J., Rothman, Kenneth J., Avorn, Jerry, Stürmer, Til
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.06.2011
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Purpose To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip fracture assuming a true mortality reduction of < 15% and no effect on hip fracture. Methods We compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence > 5%, PS variable selection strategies included none, a priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios (HRs) for statin initiation on mortality and hip fracture from Cox models controlling for various PSs. Results During 1 year follow‐up, 2693 of 55 610 study subjects died and 496 suffered a hip fracture. The crude HR for statin initiators was 0.64 for mortality and 0.46 for hip fracture. Adjusting for the non‐parsimonious PS yielded effect estimates of 0.83 (95%CI:0.75–0.93) and 0.72 (95%CI:0.56–0.93). Including in the PS only covariates associated with a greater than 20% increase or reduction in outcome rates yielded effect estimates of 0.84 (95%CI:0.75–0.94) and 0.76 (95%CI:0.61–0.95), which were closest to the effects predicted from randomized trials. Conclusion Due to the difficulty of pre‐specifying all potential confounders of an exposure‐outcome association, data‐driven approaches to PS variable selection may be useful. Selecting covariates strongly associated with exposure but unrelated to outcome should be avoided, because this may increase bias. Selecting variables for PS based on their association with the outcome may help to reduce such bias. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip fracture assuming a true mortality reduction of < 15% and no effect on hip fracture. We compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence > 5%, PS variable selection strategies included none, a priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios (HRs) for statin initiation on mortality and hip fracture from Cox models controlling for various PSs. During 1 year follow-up, 2693 of 55,610 study subjects died and 496 suffered a hip fracture. The crude HR for statin initiators was 0.64 for mortality and 0.46 for hip fracture. Adjusting for the non-parsimonious PS yielded effect estimates of 0.83 (95%CI:0.75-0.93) and 0.72 (95%CI:0.56-0.93). Including in the PS only covariates associated with a greater than 20% increase or reduction in outcome rates yielded effect estimates of 0.84 (95%CI:0.75-0.94) and 0.76 (95%CI:0.61-0.95), which were closest to the effects predicted from randomized trials. Due to the difficulty of pre-specifying all potential confounders of an exposure-outcome association, data-driven approaches to PS variable selection may be useful. Selecting covariates strongly associated with exposure but unrelated to outcome should be avoided, because this may increase bias. Selecting variables for PS based on their association with the outcome may help to reduce such bias.
Purpose To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip fracture assuming a true mortality reduction of <15% and no effect on hip fracture. Methods We compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence>5%, PS variable selection strategies included none, a priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios (HRs) for statin initiation on mortality and hip fracture from Cox models controlling for various PSs. Results During 1 year follow-up, 2693 of 55610 study subjects died and 496 suffered a hip fracture. The crude HR for statin initiators was 0.64 for mortality and 0.46 for hip fracture. Adjusting for the non-parsimonious PS yielded effect estimates of 0.83 (95%CI:0.75-0.93) and 0.72 (95%CI:0.56-0.93). Including in the PS only covariates associated with a greater than 20% increase or reduction in outcome rates yielded effect estimates of 0.84 (95%CI:0.75-0.94) and 0.76 (95%CI:0.61-0.95), which were closest to the effects predicted from randomized trials. Conclusion Due to the difficulty of pre-specifying all potential confounders of an exposure-outcome association, data-driven approaches to PS variable selection may be useful. Selecting covariates strongly associated with exposure but unrelated to outcome should be avoided, because this may increase bias. Selecting variables for PS based on their association with the outcome may help to reduce such bias. Copyright © 2011 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
ABSTRACT Purpose To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip fracture assuming a true mortality reduction of < 15% and no effect on hip fracture. Methods We compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence > 5%, PS variable selection strategies included none, a priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios (HRs) for statin initiation on mortality and hip fracture from Cox models controlling for various PSs. Results During 1 year follow‐up, 2693 of 55 610 study subjects died and 496 suffered a hip fracture. The crude HR for statin initiators was 0.64 for mortality and 0.46 for hip fracture. Adjusting for the non‐parsimonious PS yielded effect estimates of 0.83 (95%CI:0.75–0.93) and 0.72 (95%CI:0.56–0.93). Including in the PS only covariates associated with a greater than 20% increase or reduction in outcome rates yielded effect estimates of 0.84 (95%CI:0.75–0.94) and 0.76 (95%CI:0.61–0.95), which were closest to the effects predicted from randomized trials. Conclusion Due to the difficulty of pre‐specifying all potential confounders of an exposure‐outcome association, data‐driven approaches to PS variable selection may be useful. Selecting covariates strongly associated with exposure but unrelated to outcome should be avoided, because this may increase bias. Selecting variables for PS based on their association with the outcome may help to reduce such bias. Copyright © 2011 John Wiley & Sons, Ltd.
To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip fracture assuming a true mortality reduction of < 15% and no effect on hip fracture.PURPOSETo examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip fracture assuming a true mortality reduction of < 15% and no effect on hip fracture.We compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence > 5%, PS variable selection strategies included none, a priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios (HRs) for statin initiation on mortality and hip fracture from Cox models controlling for various PSs.METHODSWe compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence > 5%, PS variable selection strategies included none, a priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios (HRs) for statin initiation on mortality and hip fracture from Cox models controlling for various PSs.During 1 year follow-up, 2693 of 55,610 study subjects died and 496 suffered a hip fracture. The crude HR for statin initiators was 0.64 for mortality and 0.46 for hip fracture. Adjusting for the non-parsimonious PS yielded effect estimates of 0.83 (95%CI:0.75-0.93) and 0.72 (95%CI:0.56-0.93). Including in the PS only covariates associated with a greater than 20% increase or reduction in outcome rates yielded effect estimates of 0.84 (95%CI:0.75-0.94) and 0.76 (95%CI:0.61-0.95), which were closest to the effects predicted from randomized trials.RESULTSDuring 1 year follow-up, 2693 of 55,610 study subjects died and 496 suffered a hip fracture. The crude HR for statin initiators was 0.64 for mortality and 0.46 for hip fracture. Adjusting for the non-parsimonious PS yielded effect estimates of 0.83 (95%CI:0.75-0.93) and 0.72 (95%CI:0.56-0.93). Including in the PS only covariates associated with a greater than 20% increase or reduction in outcome rates yielded effect estimates of 0.84 (95%CI:0.75-0.94) and 0.76 (95%CI:0.61-0.95), which were closest to the effects predicted from randomized trials.Due to the difficulty of pre-specifying all potential confounders of an exposure-outcome association, data-driven approaches to PS variable selection may be useful. Selecting covariates strongly associated with exposure but unrelated to outcome should be avoided, because this may increase bias. Selecting variables for PS based on their association with the outcome may help to reduce such bias.CONCLUSIONDue to the difficulty of pre-specifying all potential confounders of an exposure-outcome association, data-driven approaches to PS variable selection may be useful. Selecting covariates strongly associated with exposure but unrelated to outcome should be avoided, because this may increase bias. Selecting variables for PS based on their association with the outcome may help to reduce such bias.
Author Patrick, Amanda R.
Avorn, Jerry
Brookhart, M. Alan
Glynn, Robert J.
Stürmer, Til
Schneeweiss, Sebastian
Rothman, Kenneth J.
AuthorAffiliation 3 Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
2 Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina
4 RTI Health Solutions, Research Triangle Park, NC
1 Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
AuthorAffiliation_xml – name: 1 Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
– name: 3 Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
– name: 4 RTI Health Solutions, Research Triangle Park, NC
– name: 2 Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina
Author_xml – sequence: 1
  givenname: Amanda R.
  surname: Patrick
  fullname: Patrick, Amanda R.
  email: arpatrick@partners.org
  organization: Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
– sequence: 2
  givenname: Sebastian
  surname: Schneeweiss
  fullname: Schneeweiss, Sebastian
  organization: Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
– sequence: 3
  givenname: M. Alan
  surname: Brookhart
  fullname: Brookhart, M. Alan
  organization: Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
– sequence: 4
  givenname: Robert J.
  surname: Glynn
  fullname: Glynn, Robert J.
  organization: Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
– sequence: 5
  givenname: Kenneth J.
  surname: Rothman
  fullname: Rothman, Kenneth J.
  organization: RTI Health Solutions, Research Triangle Park, NC, USA
– sequence: 6
  givenname: Jerry
  surname: Avorn
  fullname: Avorn, Jerry
  organization: Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
– sequence: 7
  givenname: Til
  surname: Stürmer
  fullname: Stürmer, Til
  organization: Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21394812$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1rFDEUxYNU7IeCf4EEfNCXWfMx2Ux8EKTWKixVsSL0JWQyd3ZTM5MxmWnd_95sty626FMC93cO99xziPb60ANCTymZUULYq6FJM0ZU9QAdUKJUQYWQe5u_4EUl5mofHaZ0SUieqfIR2meUq7Ki7ABN5yvArhu8s2Z0oU84tHiIYYA-uXGNkw0R8JWJztQecAIPdsPhNEYzwtJBwq7Hw8rEztgAg2ugc8GH5fo1Nj2GbnAxe3vsvJ9uRFn9GD1sjU_w5PY9Qt_en5wffygWn04_Hr9dFFYQWRWVok3LQM0NU0pyAZIRUZNayHJuTFPNVUVBtNQqUqtWcmhYRRrCKAFDjaX8CL3Z-g5T3UFjoc8LeD1E15m41sE4fXfSu5VehivNKeMlk9ngxa1BDD8nSKPuXLLgvekhTElXkksiCC8z-fweeRmm2Od0mopSUCmpJJl69vdCu03-FJKBl1vAxpBShHaHUKI3Xevctd50ndHZPdS68ea8OYrz_xIUW8G187D-r7H-_O7rXd6lEX7teBN_6HnOLfT3s1N9Vl58UYvFhWb8N8GxzA4
CitedBy_id crossref_primary_10_1186_s12874_020_00994_0
crossref_primary_10_1192_bjp_bp_113_138685
crossref_primary_10_1002_hep_29505
crossref_primary_10_3390_pharmaceutics14061266
crossref_primary_10_3393_ac_2022_01060_0151
crossref_primary_10_1016_j_gie_2019_04_236
crossref_primary_10_1111_dom_13589
crossref_primary_10_21031_epod_993571
crossref_primary_10_1002_pds_5403
crossref_primary_10_1002_pds_3506
crossref_primary_10_1136_bmjqs_2018_008087
crossref_primary_10_1016_j_jmva_2023_105207
crossref_primary_10_1093_aje_kwx214
crossref_primary_10_1088_2632_072X_ada861
crossref_primary_10_1093_aje_kwr352
crossref_primary_10_1016_j_medin_2018_01_002
crossref_primary_10_1371_journal_pone_0064790
crossref_primary_10_1097_MAJ_0000000000000527
crossref_primary_10_1111_jsm_12736
crossref_primary_10_1016_j_medine_2018_01_010
crossref_primary_10_1186_s12913_020_05778_2
crossref_primary_10_1002_pds_3574
crossref_primary_10_1002_sim_8866
crossref_primary_10_1016_j_spl_2023_109933
crossref_primary_10_1016_j_cgh_2020_10_003
crossref_primary_10_1371_journal_pone_0223603
crossref_primary_10_1186_s12874_017_0318_4
crossref_primary_10_1016_j_csda_2023_107780
crossref_primary_10_1186_s12874_022_01563_3
crossref_primary_10_1371_journal_pone_0048095
crossref_primary_10_1002_art_42015
crossref_primary_10_1111_apt_15921
crossref_primary_10_1093_aje_kwr364
crossref_primary_10_1097_EDE_0000000000000068
crossref_primary_10_1093_ptj_pzab310
crossref_primary_10_1097_JCP_0000000000000738
crossref_primary_10_1002_pam_22268
crossref_primary_10_1111_sltb_12768
crossref_primary_10_3945_ajcn_115_125914
crossref_primary_10_1111_acem_12212
crossref_primary_10_1371_journal_pone_0167268
crossref_primary_10_1016_j_jspi_2022_04_004
crossref_primary_10_1016_j_ejso_2019_03_040
crossref_primary_10_1016_j_ecresq_2023_05_004
crossref_primary_10_1080_10485252_2022_2061483
crossref_primary_10_1111_joim_12964
crossref_primary_10_1002_pds_3590
crossref_primary_10_1007_s40471_016_0090_8
crossref_primary_10_1002_pds_5412
crossref_primary_10_1371_journal_pone_0124287
crossref_primary_10_1007_s11162_017_9466_y
crossref_primary_10_1371_journal_pone_0119931
crossref_primary_10_1002_sim_6185
crossref_primary_10_1016_j_diabres_2015_05_009
crossref_primary_10_1186_1471_2318_13_19
crossref_primary_10_1002_bimj_201800190
crossref_primary_10_15406_jdmdc_2023_10_00267
crossref_primary_10_1007_s11162_024_09788_5
crossref_primary_10_12688_f1000research_4801_1
crossref_primary_10_12688_f1000research_4801_2
crossref_primary_10_1097_EDE_0000000000000241
crossref_primary_10_1186_s12874_015_0100_4
crossref_primary_10_2522_ptj_20110475
crossref_primary_10_1136_bmjopen_2020_047121
crossref_primary_10_1515_jci_2017_0010
crossref_primary_10_1002_pds_5566
crossref_primary_10_1097_SLA_0000000000004217
crossref_primary_10_1080_00031305_2024_2368794
crossref_primary_10_1177_0895904818813301
crossref_primary_10_1016_j_rpsp_2015_06_007
crossref_primary_10_1080_00220973_2021_1891010
crossref_primary_10_1016_j_jclinepi_2013_01_013
crossref_primary_10_1002_sim_8549
crossref_primary_10_1177_0962280220934847
crossref_primary_10_1016_j_jclinepi_2013_01_015
crossref_primary_10_1002_sim_6123
crossref_primary_10_1214_24_STS945
crossref_primary_10_1002_sim_5795
crossref_primary_10_1016_j_csda_2024_108079
crossref_primary_10_1093_bja_aet290
crossref_primary_10_1517_14740338_2013_779667
crossref_primary_10_1177_1479973118815694
crossref_primary_10_1007_s10734_017_0191_4
crossref_primary_10_1016_j_jclinepi_2014_08_011
crossref_primary_10_1161_JAHA_118_011640
crossref_primary_10_1111_jgs_14253
crossref_primary_10_1007_s40290_018_00265_w
crossref_primary_10_1111_joim_12197
crossref_primary_10_1007_s00362_022_01296_x
crossref_primary_10_1007_s11606_020_05777_3
crossref_primary_10_1007_s00277_013_1900_4
crossref_primary_10_1080_03610918_2021_2001655
crossref_primary_10_1002_pds_3683
crossref_primary_10_1007_s11239_024_02970_7
crossref_primary_10_1007_s40471_018_0155_y
crossref_primary_10_1038_clpt_2012_50
crossref_primary_10_1002_pds_3602
crossref_primary_10_1161_CIRCOUTCOMES_113_000359
crossref_primary_10_3389_fphar_2019_00973
crossref_primary_10_1093_cid_ciaa169
crossref_primary_10_1007_s00198_012_2013_y
crossref_primary_10_1111_biom_12679
crossref_primary_10_3390_antibiotics13030287
crossref_primary_10_1186_s12874_024_02350_y
crossref_primary_10_1007_s11096_011_9597_8
crossref_primary_10_1080_13557858_2016_1246430
crossref_primary_10_1111_rssb_12354
crossref_primary_10_1017_S2040174421000714
crossref_primary_10_1111_1475_6773_12452
Cites_doi 10.1016/S0140-6736(00)02400-4
10.1093/oxfordjournals.aje.a116813
10.2307/2533160
10.1093/gerona/62.8.879
10.1093/aje/kwi106
10.1093/oxfordjournals.aje.a112408
10.2307/2532266
10.1002/pds.1363
10.1093/ije/dyl147
10.7326/0003-4819-139-2-200307150-00009
10.1016/j.jclinepi.2005.12.012
10.1016/j.jclinepi.2005.07.004
10.1097/01.ede.0000193606.58671.c5
10.1093/aje/kwj149
10.1002/pds.969
10.1002/pds.986
10.1002/sim.2739
10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0.CO;2-B
10.1097/00001648-200111000-00017
10.3386/t0343
10.1016/0021-9681(87)90171-8
10.1177/0962280208092347
10.2307/2532304
10.1093/biomet/70.1.41
10.1093/biomet/asn004
10.1016/j.jclinepi.2004.10.016
10.1097/MLR.0b013e318070c08e
10.1093/oxfordjournals.aje.a010011
10.1097/MLR.0b013e3181dbebe3
10.1093/aje/kwg231
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
DOI 10.1002/pds.2098
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1099-1557
EndPage 559
ExternalDocumentID PMC3123427
3373503711
21394812
10_1002_pds_2098
PDS2098
ark_67375_WNG_N4ZQ9LLZ_2
Genre article
Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R01AG018833
– fundername: NIA NIH HHS
  grantid: R01 AG023178
– fundername: NIA NIH HHS
  grantid: R01 AG018833
– fundername: National Institute on Aging : NIA
  grantid: R01 AG023178-01A2 || AG
– fundername: National Institute on Aging : NIA
  grantid: R01 AG018833-01A2 || AG
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GWYGA
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
M6Q
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWP
WXI
WXSBR
XG1
XV2
YCJ
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
ID FETCH-LOGICAL-c5078-891df2e96a299735e7205b0b5746aad86981e5f1c90b9f73ed280d0210ea1ac13
IEDL.DBID DR2
ISSN 1053-8569
1099-1557
IngestDate Thu Aug 21 18:22:46 EDT 2025
Fri Jul 11 01:26:59 EDT 2025
Fri Jul 25 10:44:42 EDT 2025
Mon Jul 21 06:03:59 EDT 2025
Thu Apr 24 22:55:47 EDT 2025
Tue Jul 01 04:21:43 EDT 2025
Wed Jan 22 16:29:20 EST 2025
Wed Oct 30 09:53:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2011 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5078-891df2e96a299735e7205b0b5746aad86981e5f1c90b9f73ed280d0210ea1ac13
Notes ark:/67375/WNG-N4ZQ9LLZ-2
ArticleID:PDS2098
istex:8EFC7851A7CA38C75D16BE0AF1DB83AE488EE37B
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 21394812
PQID 1545177170
PQPubID 105383
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3123427
proquest_miscellaneous_873705034
proquest_journals_1545177170
pubmed_primary_21394812
crossref_primary_10_1002_pds_2098
crossref_citationtrail_10_1002_pds_2098
wiley_primary_10_1002_pds_2098_PDS2098
istex_primary_ark_67375_WNG_N4ZQ9LLZ_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2011
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: June 2011
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: Bethesda
PublicationTitle Pharmacoepidemiology and drug safety
PublicationTitleAlternate Pharmacoepidem. Drug Safe
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Arbogast PG, Ray WA.Use of disease risk scores in pharmacoepidemiologic studies.Stat Methods Med Res2009;18(1):67-80.
Glynn RJ, Knight EL, Levin R, Avorn J.Paradoxical relations of drug treatment with mortality in older persons.Epidemiology2001;12(6):682-689.
Rosenbaum P, Rubin D.The central role of the propensity score in observational studies for causal effects.Biometrika1983;70:41-55.
Brookhart MA, Schneeweiss S, Rothman KJ, Avorn J, Stürmer T.Variable selection in propensity score models.Am J Epidemiol2006;163(12):1149-1156.
Joffe MM, Rosenbaum PR.Invited commentary: propensity scores.Am J Epidemiol1999;150(4):327-333.
Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V.Weaknesses of goodness-of-fit tests for evaluating propensity score models: the case of the omitted confounder.Pharmacoepidemiol Drug Saf2005;14(4):227-238.
Copeland KT, Checkoway H, McMichael AJ, Holbrock RH.Bias due to misclassification in the estimation of relative risk.Am J Epidemiol1977;105:488-495.
Strom BL. (ed).Pharmacoepidemiology (4th edn).John Wiley & Sons Ltd.: Hoboken, NJ,2005.
LaCroix AZ, Cauley JA, Pettinger M, et al.Statin use, clinical fracture, and bone density in postmenopausal women: results from the Women's Health Initiative Observational Study.Ann Intern Med2003;139(2):97-104.
Stürmer T, Schneeweiss S, Brookhart MA, Rothman KJ, Avorn J, Glynn RJ.Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: nonsteroidal antiinflammatory drugs and short-term mortality in the elderly.Am J Epidemiol2005;161(9):891-898.
Schneeweiss S, Patrick AR, Stürmer T, et al.Increasing levels of restriction in pharmacoepidemiologic database studies of elderly and comparison with randomized trial results.Med Care2007;45 (10 Supl 2):S131-S142.
de Vries F, de Vries C, Cooper C, Leufkens B, van Staa TP.Reanalysis of two studies with contrasting results on the association between statin use and fracture risk: the General Practice Research Database.Int J Epidemiol2006;35(5):1301-1308.
Drake C.Effects of misspecification of the propensity score on estimators of treatment effect.Biometrics1993;48:1231-1236.
Charlson ME, Pompei P, Ales KL, MacKenzie CR.A new method of classifying prognostic comorbidity in longitudinal studies: development and validation.J Chron Dis1987;40:373-383.
Shah BR, Laupacis A, Hux JE, Austin PC.Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review.J Clin Epidemiol2005;58(6):550-559.
Rubin DR, Thomas N.Matching using estimated propensity score: relating theory to practice.Biometrics1996;52:249-264.
Hansen BB.The prognostic analogue of the propensity score.Biometrika2008;95(2):481-488.
Brookhart MA, Wang PS, Solomon DH, Schneeweiss S.Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable.Epidemiology2006; (3):268-275.
Ray WA.Evaluating medication effects outside of clinical trials: new-user designs.Am J Epidemiol2003;158(9):915-920.
Rubin DB.The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials.Stat Med2007;26(1):20-36.
Brookhart MA, Stürmer T, Glynn RJ, Rassen J, Schneeweiss S.Confounding control in healthcare database research: challenges and potential approaches.Med Care2010;48 (6 Suppl):S114-S120.
Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V.Principles for modeling propensity scores in medical research: a systematic literature review.Pharmacoepidemiol Drug Saf2004;13(12):841-853.
Chan KA, Andrade SE, Boles M, et al.Inhibitors of hydroxymethylglutaryl-coenzyme A reductase and risk of fracture among older women.Lancet2000;355(9222):2185-2188.
Baron JA, Lu-Yao G, Barrett J, McLerran D, Fisher ES.Internal validation of medicare claims data.Epidemiology1994;5(5):541-544.
Glynn RJ, Schneeweiss S, Wang PS, Levin R, Avorn J.Selective prescribing led to overestimation of the benefits of lipid-lowering drugs.J Clin Epidemiol2006;59(8):819-828.
Roberts CGP, Guallar E, Rodriguez A.Efficacy and safety of statin monotherapy in older adults: a meta-analysis.J Gerontol A Biol Sci Med Sci2007;62:879-887.
Toh S, Hernández-Díaz S.Statins and fracture risk: a systematic review.Pharmacoepidemiol Drug Saf2007;16(6):627-640.
D'Agostino RB Jr.Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group.Stat Med1998;17(19):2265-2281.
Maldonado G, Greenland S.Simulation study of confounder-selection strategies.Am J Epidemiol1993;138(11):923-936.
Robins JM, Mark SD, Newey WK.Estimating exposure effects by modelling the expectation of exposure conditional on confounders.Biometrics1992;48(2):479-495.
Stürmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S.A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods.J Clin Epidemiol2006;59:437-447.
1993; 48
2003; 139
2000; 355
2006; 35
1999; 150
2006; 59
1996; 52
2007
2006
2005
1977; 105
1983; 70
2003; 158
2008; 95
2007; 16
1998; 17
2005; 161
2010; 48
1987; 40
2004; 13
2006; 163
2007; 62
1992; 48
2001; 12
1993; 138
2007; 45
1994; 5
2007; 26
2009; 18
2005; 58
2005; 14
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
Strom BL (e_1_2_7_22_2) 2005
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
Baron JA (e_1_2_7_18_2) 1994; 5
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
References_xml – reference: Baron JA, Lu-Yao G, Barrett J, McLerran D, Fisher ES.Internal validation of medicare claims data.Epidemiology1994;5(5):541-544.
– reference: Toh S, Hernández-Díaz S.Statins and fracture risk: a systematic review.Pharmacoepidemiol Drug Saf2007;16(6):627-640.
– reference: Brookhart MA, Schneeweiss S, Rothman KJ, Avorn J, Stürmer T.Variable selection in propensity score models.Am J Epidemiol2006;163(12):1149-1156.
– reference: Copeland KT, Checkoway H, McMichael AJ, Holbrock RH.Bias due to misclassification in the estimation of relative risk.Am J Epidemiol1977;105:488-495.
– reference: Shah BR, Laupacis A, Hux JE, Austin PC.Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review.J Clin Epidemiol2005;58(6):550-559.
– reference: Rubin DR, Thomas N.Matching using estimated propensity score: relating theory to practice.Biometrics1996;52:249-264.
– reference: de Vries F, de Vries C, Cooper C, Leufkens B, van Staa TP.Reanalysis of two studies with contrasting results on the association between statin use and fracture risk: the General Practice Research Database.Int J Epidemiol2006;35(5):1301-1308.
– reference: Charlson ME, Pompei P, Ales KL, MacKenzie CR.A new method of classifying prognostic comorbidity in longitudinal studies: development and validation.J Chron Dis1987;40:373-383.
– reference: D'Agostino RB Jr.Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group.Stat Med1998;17(19):2265-2281.
– reference: Glynn RJ, Schneeweiss S, Wang PS, Levin R, Avorn J.Selective prescribing led to overestimation of the benefits of lipid-lowering drugs.J Clin Epidemiol2006;59(8):819-828.
– reference: Rubin DB.The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials.Stat Med2007;26(1):20-36.
– reference: Roberts CGP, Guallar E, Rodriguez A.Efficacy and safety of statin monotherapy in older adults: a meta-analysis.J Gerontol A Biol Sci Med Sci2007;62:879-887.
– reference: Rosenbaum P, Rubin D.The central role of the propensity score in observational studies for causal effects.Biometrika1983;70:41-55.
– reference: Strom BL. (ed).Pharmacoepidemiology (4th edn).John Wiley & Sons Ltd.: Hoboken, NJ,2005.
– reference: Brookhart MA, Stürmer T, Glynn RJ, Rassen J, Schneeweiss S.Confounding control in healthcare database research: challenges and potential approaches.Med Care2010;48 (6 Suppl):S114-S120.
– reference: Ray WA.Evaluating medication effects outside of clinical trials: new-user designs.Am J Epidemiol2003;158(9):915-920.
– reference: Arbogast PG, Ray WA.Use of disease risk scores in pharmacoepidemiologic studies.Stat Methods Med Res2009;18(1):67-80.
– reference: Stürmer T, Schneeweiss S, Brookhart MA, Rothman KJ, Avorn J, Glynn RJ.Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: nonsteroidal antiinflammatory drugs and short-term mortality in the elderly.Am J Epidemiol2005;161(9):891-898.
– reference: LaCroix AZ, Cauley JA, Pettinger M, et al.Statin use, clinical fracture, and bone density in postmenopausal women: results from the Women's Health Initiative Observational Study.Ann Intern Med2003;139(2):97-104.
– reference: Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V.Principles for modeling propensity scores in medical research: a systematic literature review.Pharmacoepidemiol Drug Saf2004;13(12):841-853.
– reference: Glynn RJ, Knight EL, Levin R, Avorn J.Paradoxical relations of drug treatment with mortality in older persons.Epidemiology2001;12(6):682-689.
– reference: Drake C.Effects of misspecification of the propensity score on estimators of treatment effect.Biometrics1993;48:1231-1236.
– reference: Stürmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S.A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods.J Clin Epidemiol2006;59:437-447.
– reference: Schneeweiss S, Patrick AR, Stürmer T, et al.Increasing levels of restriction in pharmacoepidemiologic database studies of elderly and comparison with randomized trial results.Med Care2007;45 (10 Supl 2):S131-S142.
– reference: Chan KA, Andrade SE, Boles M, et al.Inhibitors of hydroxymethylglutaryl-coenzyme A reductase and risk of fracture among older women.Lancet2000;355(9222):2185-2188.
– reference: Joffe MM, Rosenbaum PR.Invited commentary: propensity scores.Am J Epidemiol1999;150(4):327-333.
– reference: Robins JM, Mark SD, Newey WK.Estimating exposure effects by modelling the expectation of exposure conditional on confounders.Biometrics1992;48(2):479-495.
– reference: Maldonado G, Greenland S.Simulation study of confounder-selection strategies.Am J Epidemiol1993;138(11):923-936.
– reference: Hansen BB.The prognostic analogue of the propensity score.Biometrika2008;95(2):481-488.
– reference: Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V.Weaknesses of goodness-of-fit tests for evaluating propensity score models: the case of the omitted confounder.Pharmacoepidemiol Drug Saf2005;14(4):227-238.
– reference: Brookhart MA, Wang PS, Solomon DH, Schneeweiss S.Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable.Epidemiology2006; (3):268-275.
– volume: 355
  start-page: 2185
  issue: 9222
  year: 2000
  end-page: 2188
  article-title: Inhibitors of hydroxymethylglutaryl‐coenzyme A reductase and risk of fracture among older women
  publication-title: Lancet
– volume: 139
  start-page: 97
  issue: 2
  year: 2003
  end-page: 104
  article-title: Statin use, clinical fracture, and bone density in postmenopausal women: results from the Women's Health Initiative Observational Study
  publication-title: Ann Intern Med
– volume: 16
  start-page: 627
  issue: 6
  year: 2007
  end-page: 640
  article-title: Statins and fracture risk: a systematic review
  publication-title: Pharmacoepidemiol Drug Saf
– year: 2005
– year: 2007
– volume: 14
  start-page: 227
  issue: 4
  year: 2005
  end-page: 238
  article-title: Weaknesses of goodness‐of‐fit tests for evaluating propensity score models: the case of the omitted confounder
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 52
  start-page: 249
  year: 1996
  end-page: 264
  article-title: Matching using estimated propensity score: relating theory to practice
  publication-title: Biometrics
– volume: 13
  start-page: 841
  issue: 12
  year: 2004
  end-page: 853
  article-title: Principles for modeling propensity scores in medical research: a systematic literature review
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 45
  start-page: S131
  year: 2007
  end-page: S142
  article-title: Increasing levels of restriction in pharmacoepidemiologic database studies of elderly and comparison with randomized trial results
  publication-title: Med Care
– volume: 158
  start-page: 915
  issue: 9
  year: 2003
  end-page: 920
  article-title: Evaluating medication effects outside of clinical trials: new‐user designs
  publication-title: Am J Epidemiol
– volume: 70
  start-page: 41
  year: 1983
  end-page: 55
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
– volume: 95
  start-page: 481
  issue: 2
  year: 2008
  end-page: 488
  article-title: The prognostic analogue of the propensity score
  publication-title: Biometrika
– volume: 138
  start-page: 923
  issue: 11
  year: 1993
  end-page: 936
  article-title: Simulation study of confounder‐selection strategies
  publication-title: Am J Epidemiol
– volume: 58
  start-page: 550
  issue: 6
  year: 2005
  end-page: 559
  article-title: Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review
  publication-title: J Clin Epidemiol
– volume: 59
  start-page: 437
  year: 2006
  end-page: 447
  article-title: A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods
  publication-title: J Clin Epidemiol
– volume: 150
  start-page: 327
  issue: 4
  year: 1999
  end-page: 333
  article-title: Invited commentary: propensity scores
  publication-title: Am J Epidemiol
– volume: 163
  start-page: 1149
  issue: 12
  year: 2006
  end-page: 1156
  article-title: Variable selection in propensity score models
  publication-title: Am J Epidemiol
– volume: 48
  start-page: 1231
  year: 1993
  end-page: 1236
  article-title: Effects of misspecification of the propensity score on estimators of treatment effect
  publication-title: Biometrics
– volume: 17
  start-page: 2265
  issue: 19
  year: 1998
  end-page: 2281
  article-title: Propensity score methods for bias reduction in the comparison of a treatment to a non‐randomized control group
  publication-title: Stat Med
– volume: 48
  start-page: S114
  year: 2010
  end-page: S120
  article-title: Confounding control in healthcare database research: challenges and potential approaches
  publication-title: Med Care
– volume: 40
  start-page: 373
  year: 1987
  end-page: 383
  article-title: A new method of classifying prognostic comorbidity in longitudinal studies: development and validation
  publication-title: J Chron Dis
– volume: 48
  start-page: 479
  issue: 2
  year: 1992
  end-page: 495
  article-title: Estimating exposure effects by modelling the expectation of exposure conditional on confounders
  publication-title: Biometrics
– volume: 5
  start-page: 541
  issue: 5
  year: 1994
  end-page: 544
  article-title: Internal validation of medicare claims data
  publication-title: Epidemiology
– start-page: 268
  issue: 3
  year: 2006
  end-page: 275
  article-title: Evaluating short‐term drug effects using a physician‐specific prescribing preference as an instrumental variable
  publication-title: Epidemiology
– volume: 26
  start-page: 20
  issue: 1
  year: 2007
  end-page: 36
  article-title: The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials
  publication-title: Stat Med
– volume: 105
  start-page: 488
  year: 1977
  end-page: 495
  article-title: Bias due to misclassification in the estimation of relative risk
  publication-title: Am J Epidemiol
– volume: 12
  start-page: 682
  issue: 6
  year: 2001
  end-page: 689
  article-title: Paradoxical relations of drug treatment with mortality in older persons
  publication-title: Epidemiology
– volume: 62
  start-page: 879
  year: 2007
  end-page: 887
  article-title: Efficacy and safety of statin monotherapy in older adults: a meta‐analysis
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 35
  start-page: 1301
  issue: 5
  year: 2006
  end-page: 1308
  article-title: Reanalysis of two studies with contrasting results on the association between statin use and fracture risk: the General Practice Research Database
  publication-title: Int J Epidemiol
– volume: 18
  start-page: 67
  issue: 1
  year: 2009
  end-page: 80
  article-title: Use of disease risk scores in pharmacoepidemiologic studies
  publication-title: Stat Methods Med Res
– volume: 161
  start-page: 891
  issue: 9
  year: 2005
  end-page: 898
  article-title: Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: nonsteroidal antiinflammatory drugs and short‐term mortality in the elderly
  publication-title: Am J Epidemiol
– volume: 59
  start-page: 819
  issue: 8
  year: 2006
  end-page: 828
  article-title: Selective prescribing led to overestimation of the benefits of lipid‐lowering drugs
  publication-title: J Clin Epidemiol
– ident: e_1_2_7_28_2
  doi: 10.1016/S0140-6736(00)02400-4
– ident: e_1_2_7_7_2
  doi: 10.1093/oxfordjournals.aje.a116813
– ident: e_1_2_7_9_2
  doi: 10.2307/2533160
– ident: e_1_2_7_20_2
  doi: 10.1093/gerona/62.8.879
– ident: e_1_2_7_6_2
  doi: 10.1093/aje/kwi106
– ident: e_1_2_7_19_2
  doi: 10.1093/oxfordjournals.aje.a112408
– ident: e_1_2_7_8_2
  doi: 10.2307/2532266
– ident: e_1_2_7_21_2
  doi: 10.1002/pds.1363
– ident: e_1_2_7_27_2
  doi: 10.1093/ije/dyl147
– ident: e_1_2_7_29_2
  doi: 10.7326/0003-4819-139-2-200307150-00009
– ident: e_1_2_7_15_2
  doi: 10.1016/j.jclinepi.2005.12.012
– ident: e_1_2_7_4_2
  doi: 10.1016/j.jclinepi.2005.07.004
– ident: e_1_2_7_26_2
  doi: 10.1097/01.ede.0000193606.58671.c5
– ident: e_1_2_7_10_2
  doi: 10.1093/aje/kwj149
– ident: e_1_2_7_12_2
  doi: 10.1002/pds.969
– ident: e_1_2_7_23_2
  doi: 10.1002/pds.986
– ident: e_1_2_7_30_2
  doi: 10.1002/sim.2739
– ident: e_1_2_7_5_2
  doi: 10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0.CO;2-B
– ident: e_1_2_7_13_2
  doi: 10.1097/00001648-200111000-00017
– ident: e_1_2_7_11_2
  doi: 10.3386/t0343
– ident: e_1_2_7_17_2
  doi: 10.1016/0021-9681(87)90171-8
– ident: e_1_2_7_32_2
  doi: 10.1177/0962280208092347
– ident: e_1_2_7_24_2
  doi: 10.2307/2532304
– volume: 5
  start-page: 541
  issue: 5
  year: 1994
  ident: e_1_2_7_18_2
  article-title: Internal validation of medicare claims data
  publication-title: Epidemiology
– ident: e_1_2_7_2_2
  doi: 10.1093/biomet/70.1.41
– ident: e_1_2_7_31_2
  doi: 10.1093/biomet/asn004
– ident: e_1_2_7_3_2
  doi: 10.1016/j.jclinepi.2004.10.016
– ident: e_1_2_7_14_2
  doi: 10.1097/MLR.0b013e318070c08e
– volume-title: Pharmacoepidemiology
  year: 2005
  ident: e_1_2_7_22_2
– ident: e_1_2_7_25_2
  doi: 10.1093/oxfordjournals.aje.a010011
– ident: e_1_2_7_33_2
  doi: 10.1097/MLR.0b013e3181dbebe3
– ident: e_1_2_7_16_2
  doi: 10.1093/aje/kwg231
SSID ssj0009994
Score 2.3287563
Snippet ABSTRACT Purpose To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation,...
To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip...
Purpose To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 551
SubjectTerms Aged
Aged, 80 and over
Bias
confounding factors
Confounding Factors, Epidemiologic
Epidemiologic Methods
Female
Follow-Up Studies
Glaucoma - drug therapy
Hip Fractures - epidemiology
Humans
hydroxymethylglutaryl-CoA reductase inhibitors
Hydroxymethylglutaryl-CoA Reductase Inhibitors - therapeutic use
Male
pharmacoepidemiology
Pharmacoepidemiology - methods
Propensity Score
Proportional Hazards Models
Randomized Controlled Trials as Topic
Title The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration
URI https://api.istex.fr/ark:/67375/WNG-N4ZQ9LLZ-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpds.2098
https://www.ncbi.nlm.nih.gov/pubmed/21394812
https://www.proquest.com/docview/1545177170
https://www.proquest.com/docview/873705034
https://pubmed.ncbi.nlm.nih.gov/PMC3123427
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bb9MwFIctNF544X4JDGQkVF6WLXESX3hDwJjQqApsYhoPlp04IlpJq6VBlL-ec3JdYUiIp1byqRs7x_HvOMefCXmWccMTE8W-lYr7MbPSt8IoXyQW4o0sdCHH3cjvp_zgOH53kpx0WZW4F6blQwwLbjgymuc1DnBjq70RGrrMkLatcJ8vpmqhHvo4kqNA9zQvlMHHfJlw1XNnA7bX_3BjJrqKnfrjMpn5Z7bkRRXbTEP7N8iXvgFt9snZbr2yu-nP39iO_9fCm-R6p07py9adbpErrrxNJrMWb73eoUfjbq1qh07obARfr--QGoppcSFFnS5yusTV_hIzP2iFyEz6HaJz3K9Fq-YIHrCj1aoHVtCipMuuUjceXrt-QU1J3bdl0RBNaDGf1z3w9y453n9z9OrA74518FMQn9KXKsxy5hQ3MBWKKHGCBYkNbCJibkwmuZKhS_IwVYFVuYhcxmSQYWzqTGjSMLpHtspF6R4QmqYyNyzjWWwdhG6pNBZqNbmNuIMvgUee97dYpx3zHI_emOuW1sw09LHGPvbI08Fy2XI-LrGZNF4yGJjzM8yLE4n-PH2rp_HpB3V4eKqZR7Z7N9LdI6HSqFVDAdEzXBUdimEw4xsaU7pFXWkJlSGgJ_bI_dbphv9iINVjUGMeERvuOBggJ3yzpCy-NrzwCNRJzARcfuNtf22fnr3-hJ8P_9XwEbnWLrHjotQ22Vqd1-4xaLSVfdKMxl-hmT3S
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4AL70eggJHQcmnaPB0HTggoC2xXC2zVqkKy7MQRUZfsqtkgll_PjPPqQpEQp0TyxLGdcfzNePwNIU9TJlko_cBWPGZ24Cluq0jGdhQqsDdSV7sMTyMfjNnwMHh_HB5vkBftWZiaH6JzuOHMMP9rnODokN7rWUMXKdJtx_wS2cKE3sae-tRzRwHyMVvKoGU2D1ncMs863l775NpatIXD-uMioPlnvOR5HGsWov1r5EvbhTr-5HS3Wqrd5Odv7I7_2cfr5GoDUOnLWqNukA1d3CSDSc1wvdqh0_7AVrlDB3TSc1-vbpEKiml-LkqdzjO6QId_gcEftETWTPodDHQ8skVLk4UH5Gi5bDkraF7QRVOp7vPXrp5TWVD9bZEbUhOaz2ZVy_l7mxzuv5m-GtpNZgc7AfzJbR67aebpmElYDSM_1JHnhMpRYRQwKVPOYu7qMHOT2FFxFvk69biTonmqpSsT179DNot5oe8RmiQ8k17K0kBpsN4SLhXUKjPlMw03jkWetd9YJA3tOWbfmImasNkTMMYCx9giTzrJRU31cYHMwKhJJyDPTjE0LgrF0fitGAcnH-PR6ER4Ftlu9Ug0f4VSIFx1IzCgoVW0K4b5jJs0stDzqhQcKkOOnsAid2ut697lAVoPAJBZJFrTx04AqcLXS4r8q6EM9wGgBF4EzTfq9tf-icnrz3i9_6-Cj8nl4fRgJEbvxh8ekCu1xx19VNtkc3lW6YcA2ZbqkZmavwA_CUHt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bb9MwFIct2CTEC_dLYICRUHlZtlxthzdEKQNKVWDTpvFg2YmjRevSaGkQ5a_nnNy6wpAQT63kUzd2juPfcY4_E_IiYYqFyg9sLSJmB54WtuYqsnmoId5IXOMy3I38acL2DoIPR-FRm1WJe2EaPkS_4IYjo35e4wAvknR3BQ0tEqRtR-Iq2QyYI9Cjh19W6CgQPvUbZXAyW4Qs6sCzjrfb_XJtKtrEXv1xmc78M13yooyt56HRTfKta0GTfnK6Uy30TvzzN7jj_zXxFrnRylP6uvGn2-SKye-QwbThWy-36f5qu1a5TQd0uiJfL--SCoppdiFHnc5TWuByf46pH7REZib9DuE5btiiZX0GD9jRctERK2iW06Kt1KxOr12-oiqn5qzIaqQJzWazqiP-3iMHo7f7b_bs9lwHOwb1KWwRuUnqmYgpmAu5HxruOaF2dMgDplQiWCRcE6ZuHDk6SrlvEk84CQanRrkqdv37ZCOf5-YhoXEsUuUlLAm0gdgtFkpDrSrVPjPwxbHIy-4Wy7iFnuPZGzPZ4Jo9CX0ssY8t8ry3LBrQxyU2g9pLegN1foqJcTyUh5N3chIcf47G42PpWWSrcyPZPhNKiWLV5RA-w1XRvhhGM76iUbmZV6UUUBkSegKLPGicrv8vD7R6AHLMInzNHXsDBIWvl-TZSQ0M90GeBB6Hy6-97a_tk9PhV_x89K-Gz8i16XAkx-8nHx-T681yOy5QbZGNxXllnoBeW-in9cD8BXu0QKU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+implications+of+propensity+score+variable+selection+strategies+in+pharmacoepidemiology%3A+an+empirical+illustration&rft.jtitle=Pharmacoepidemiology+and+drug+safety&rft.au=Patrick%2C+Amanda+R&rft.au=Schneeweiss%2C+Sebastian&rft.au=Brookhart%2C+M+Alan&rft.au=Glynn%2C+Robert+J&rft.date=2011-06-01&rft.eissn=1099-1557&rft.volume=20&rft.issue=6&rft.spage=551&rft_id=info:doi/10.1002%2Fpds.2098&rft_id=info%3Apmid%2F21394812&rft.externalDocID=21394812
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8569&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8569&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8569&client=summon