The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration
ABSTRACT Purpose To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip fracture assuming a true mortality reduction of < 15% and no effect on hip fracture. Methods We compared seniors initiati...
Saved in:
Published in | Pharmacoepidemiology and drug safety Vol. 20; no. 6; pp. 551 - 559 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.06.2011
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Purpose
To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip fracture assuming a true mortality reduction of < 15% and no effect on hip fracture.
Methods
We compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence > 5%, PS variable selection strategies included none, a priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios (HRs) for statin initiation on mortality and hip fracture from Cox models controlling for various PSs.
Results
During 1 year follow‐up, 2693 of 55 610 study subjects died and 496 suffered a hip fracture. The crude HR for statin initiators was 0.64 for mortality and 0.46 for hip fracture. Adjusting for the non‐parsimonious PS yielded effect estimates of 0.83 (95%CI:0.75–0.93) and 0.72 (95%CI:0.56–0.93). Including in the PS only covariates associated with a greater than 20% increase or reduction in outcome rates yielded effect estimates of 0.84 (95%CI:0.75–0.94) and 0.76 (95%CI:0.61–0.95), which were closest to the effects predicted from randomized trials.
Conclusion
Due to the difficulty of pre‐specifying all potential confounders of an exposure‐outcome association, data‐driven approaches to PS variable selection may be useful. Selecting covariates strongly associated with exposure but unrelated to outcome should be avoided, because this may increase bias. Selecting variables for PS based on their association with the outcome may help to reduce such bias. Copyright © 2011 John Wiley & Sons, Ltd. |
---|---|
AbstractList | To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip fracture assuming a true mortality reduction of < 15% and no effect on hip fracture.
We compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence > 5%, PS variable selection strategies included none, a priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios (HRs) for statin initiation on mortality and hip fracture from Cox models controlling for various PSs.
During 1 year follow-up, 2693 of 55,610 study subjects died and 496 suffered a hip fracture. The crude HR for statin initiators was 0.64 for mortality and 0.46 for hip fracture. Adjusting for the non-parsimonious PS yielded effect estimates of 0.83 (95%CI:0.75-0.93) and 0.72 (95%CI:0.56-0.93). Including in the PS only covariates associated with a greater than 20% increase or reduction in outcome rates yielded effect estimates of 0.84 (95%CI:0.75-0.94) and 0.76 (95%CI:0.61-0.95), which were closest to the effects predicted from randomized trials.
Due to the difficulty of pre-specifying all potential confounders of an exposure-outcome association, data-driven approaches to PS variable selection may be useful. Selecting covariates strongly associated with exposure but unrelated to outcome should be avoided, because this may increase bias. Selecting variables for PS based on their association with the outcome may help to reduce such bias. Purpose To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip fracture assuming a true mortality reduction of <15% and no effect on hip fracture. Methods We compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence>5%, PS variable selection strategies included none, a priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios (HRs) for statin initiation on mortality and hip fracture from Cox models controlling for various PSs. Results During 1 year follow-up, 2693 of 55610 study subjects died and 496 suffered a hip fracture. The crude HR for statin initiators was 0.64 for mortality and 0.46 for hip fracture. Adjusting for the non-parsimonious PS yielded effect estimates of 0.83 (95%CI:0.75-0.93) and 0.72 (95%CI:0.56-0.93). Including in the PS only covariates associated with a greater than 20% increase or reduction in outcome rates yielded effect estimates of 0.84 (95%CI:0.75-0.94) and 0.76 (95%CI:0.61-0.95), which were closest to the effects predicted from randomized trials. Conclusion Due to the difficulty of pre-specifying all potential confounders of an exposure-outcome association, data-driven approaches to PS variable selection may be useful. Selecting covariates strongly associated with exposure but unrelated to outcome should be avoided, because this may increase bias. Selecting variables for PS based on their association with the outcome may help to reduce such bias. Copyright © 2011 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT] ABSTRACT Purpose To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip fracture assuming a true mortality reduction of < 15% and no effect on hip fracture. Methods We compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence > 5%, PS variable selection strategies included none, a priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios (HRs) for statin initiation on mortality and hip fracture from Cox models controlling for various PSs. Results During 1 year follow‐up, 2693 of 55 610 study subjects died and 496 suffered a hip fracture. The crude HR for statin initiators was 0.64 for mortality and 0.46 for hip fracture. Adjusting for the non‐parsimonious PS yielded effect estimates of 0.83 (95%CI:0.75–0.93) and 0.72 (95%CI:0.56–0.93). Including in the PS only covariates associated with a greater than 20% increase or reduction in outcome rates yielded effect estimates of 0.84 (95%CI:0.75–0.94) and 0.76 (95%CI:0.61–0.95), which were closest to the effects predicted from randomized trials. Conclusion Due to the difficulty of pre‐specifying all potential confounders of an exposure‐outcome association, data‐driven approaches to PS variable selection may be useful. Selecting covariates strongly associated with exposure but unrelated to outcome should be avoided, because this may increase bias. Selecting variables for PS based on their association with the outcome may help to reduce such bias. Copyright © 2011 John Wiley & Sons, Ltd. To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip fracture assuming a true mortality reduction of < 15% and no effect on hip fracture.PURPOSETo examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip fracture assuming a true mortality reduction of < 15% and no effect on hip fracture.We compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence > 5%, PS variable selection strategies included none, a priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios (HRs) for statin initiation on mortality and hip fracture from Cox models controlling for various PSs.METHODSWe compared seniors initiating statins with seniors initiating glaucoma medications. Out of 202 covariates with a prevalence > 5%, PS variable selection strategies included none, a priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios (HRs) for statin initiation on mortality and hip fracture from Cox models controlling for various PSs.During 1 year follow-up, 2693 of 55,610 study subjects died and 496 suffered a hip fracture. The crude HR for statin initiators was 0.64 for mortality and 0.46 for hip fracture. Adjusting for the non-parsimonious PS yielded effect estimates of 0.83 (95%CI:0.75-0.93) and 0.72 (95%CI:0.56-0.93). Including in the PS only covariates associated with a greater than 20% increase or reduction in outcome rates yielded effect estimates of 0.84 (95%CI:0.75-0.94) and 0.76 (95%CI:0.61-0.95), which were closest to the effects predicted from randomized trials.RESULTSDuring 1 year follow-up, 2693 of 55,610 study subjects died and 496 suffered a hip fracture. The crude HR for statin initiators was 0.64 for mortality and 0.46 for hip fracture. Adjusting for the non-parsimonious PS yielded effect estimates of 0.83 (95%CI:0.75-0.93) and 0.72 (95%CI:0.56-0.93). Including in the PS only covariates associated with a greater than 20% increase or reduction in outcome rates yielded effect estimates of 0.84 (95%CI:0.75-0.94) and 0.76 (95%CI:0.61-0.95), which were closest to the effects predicted from randomized trials.Due to the difficulty of pre-specifying all potential confounders of an exposure-outcome association, data-driven approaches to PS variable selection may be useful. Selecting covariates strongly associated with exposure but unrelated to outcome should be avoided, because this may increase bias. Selecting variables for PS based on their association with the outcome may help to reduce such bias.CONCLUSIONDue to the difficulty of pre-specifying all potential confounders of an exposure-outcome association, data-driven approaches to PS variable selection may be useful. Selecting covariates strongly associated with exposure but unrelated to outcome should be avoided, because this may increase bias. Selecting variables for PS based on their association with the outcome may help to reduce such bias. |
Author | Patrick, Amanda R. Avorn, Jerry Brookhart, M. Alan Glynn, Robert J. Stürmer, Til Schneeweiss, Sebastian Rothman, Kenneth J. |
AuthorAffiliation | 3 Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 2 Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina 4 RTI Health Solutions, Research Triangle Park, NC 1 Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States |
AuthorAffiliation_xml | – name: 1 Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States – name: 3 Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts – name: 4 RTI Health Solutions, Research Triangle Park, NC – name: 2 Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina |
Author_xml | – sequence: 1 givenname: Amanda R. surname: Patrick fullname: Patrick, Amanda R. email: arpatrick@partners.org organization: Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA – sequence: 2 givenname: Sebastian surname: Schneeweiss fullname: Schneeweiss, Sebastian organization: Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA – sequence: 3 givenname: M. Alan surname: Brookhart fullname: Brookhart, M. Alan organization: Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC, USA – sequence: 4 givenname: Robert J. surname: Glynn fullname: Glynn, Robert J. organization: Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA – sequence: 5 givenname: Kenneth J. surname: Rothman fullname: Rothman, Kenneth J. organization: RTI Health Solutions, Research Triangle Park, NC, USA – sequence: 6 givenname: Jerry surname: Avorn fullname: Avorn, Jerry organization: Division of Pharmacoepidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA – sequence: 7 givenname: Til surname: Stürmer fullname: Stürmer, Til organization: Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21394812$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kd1rFDEUxYNU7IeCf4EEfNCXWfMx2Ux8EKTWKixVsSL0JWQyd3ZTM5MxmWnd_95sty626FMC93cO99xziPb60ANCTymZUULYq6FJM0ZU9QAdUKJUQYWQe5u_4EUl5mofHaZ0SUieqfIR2meUq7Ki7ABN5yvArhu8s2Z0oU84tHiIYYA-uXGNkw0R8JWJztQecAIPdsPhNEYzwtJBwq7Hw8rEztgAg2ugc8GH5fo1Nj2GbnAxe3vsvJ9uRFn9GD1sjU_w5PY9Qt_en5wffygWn04_Hr9dFFYQWRWVok3LQM0NU0pyAZIRUZNayHJuTFPNVUVBtNQqUqtWcmhYRRrCKAFDjaX8CL3Z-g5T3UFjoc8LeD1E15m41sE4fXfSu5VehivNKeMlk9ngxa1BDD8nSKPuXLLgvekhTElXkksiCC8z-fweeRmm2Od0mopSUCmpJJl69vdCu03-FJKBl1vAxpBShHaHUKI3Xevctd50ndHZPdS68ea8OYrz_xIUW8G187D-r7H-_O7rXd6lEX7teBN_6HnOLfT3s1N9Vl58UYvFhWb8N8GxzA4 |
CitedBy_id | crossref_primary_10_1186_s12874_020_00994_0 crossref_primary_10_1192_bjp_bp_113_138685 crossref_primary_10_1002_hep_29505 crossref_primary_10_3390_pharmaceutics14061266 crossref_primary_10_3393_ac_2022_01060_0151 crossref_primary_10_1016_j_gie_2019_04_236 crossref_primary_10_1111_dom_13589 crossref_primary_10_21031_epod_993571 crossref_primary_10_1002_pds_5403 crossref_primary_10_1002_pds_3506 crossref_primary_10_1136_bmjqs_2018_008087 crossref_primary_10_1016_j_jmva_2023_105207 crossref_primary_10_1093_aje_kwx214 crossref_primary_10_1088_2632_072X_ada861 crossref_primary_10_1093_aje_kwr352 crossref_primary_10_1016_j_medin_2018_01_002 crossref_primary_10_1371_journal_pone_0064790 crossref_primary_10_1097_MAJ_0000000000000527 crossref_primary_10_1111_jsm_12736 crossref_primary_10_1016_j_medine_2018_01_010 crossref_primary_10_1186_s12913_020_05778_2 crossref_primary_10_1002_pds_3574 crossref_primary_10_1002_sim_8866 crossref_primary_10_1016_j_spl_2023_109933 crossref_primary_10_1016_j_cgh_2020_10_003 crossref_primary_10_1371_journal_pone_0223603 crossref_primary_10_1186_s12874_017_0318_4 crossref_primary_10_1016_j_csda_2023_107780 crossref_primary_10_1186_s12874_022_01563_3 crossref_primary_10_1371_journal_pone_0048095 crossref_primary_10_1002_art_42015 crossref_primary_10_1111_apt_15921 crossref_primary_10_1093_aje_kwr364 crossref_primary_10_1097_EDE_0000000000000068 crossref_primary_10_1093_ptj_pzab310 crossref_primary_10_1097_JCP_0000000000000738 crossref_primary_10_1002_pam_22268 crossref_primary_10_1111_sltb_12768 crossref_primary_10_3945_ajcn_115_125914 crossref_primary_10_1111_acem_12212 crossref_primary_10_1371_journal_pone_0167268 crossref_primary_10_1016_j_jspi_2022_04_004 crossref_primary_10_1016_j_ejso_2019_03_040 crossref_primary_10_1016_j_ecresq_2023_05_004 crossref_primary_10_1080_10485252_2022_2061483 crossref_primary_10_1111_joim_12964 crossref_primary_10_1002_pds_3590 crossref_primary_10_1007_s40471_016_0090_8 crossref_primary_10_1002_pds_5412 crossref_primary_10_1371_journal_pone_0124287 crossref_primary_10_1007_s11162_017_9466_y crossref_primary_10_1371_journal_pone_0119931 crossref_primary_10_1002_sim_6185 crossref_primary_10_1016_j_diabres_2015_05_009 crossref_primary_10_1186_1471_2318_13_19 crossref_primary_10_1002_bimj_201800190 crossref_primary_10_15406_jdmdc_2023_10_00267 crossref_primary_10_1007_s11162_024_09788_5 crossref_primary_10_12688_f1000research_4801_1 crossref_primary_10_12688_f1000research_4801_2 crossref_primary_10_1097_EDE_0000000000000241 crossref_primary_10_1186_s12874_015_0100_4 crossref_primary_10_2522_ptj_20110475 crossref_primary_10_1136_bmjopen_2020_047121 crossref_primary_10_1515_jci_2017_0010 crossref_primary_10_1002_pds_5566 crossref_primary_10_1097_SLA_0000000000004217 crossref_primary_10_1080_00031305_2024_2368794 crossref_primary_10_1177_0895904818813301 crossref_primary_10_1016_j_rpsp_2015_06_007 crossref_primary_10_1080_00220973_2021_1891010 crossref_primary_10_1016_j_jclinepi_2013_01_013 crossref_primary_10_1002_sim_8549 crossref_primary_10_1177_0962280220934847 crossref_primary_10_1016_j_jclinepi_2013_01_015 crossref_primary_10_1002_sim_6123 crossref_primary_10_1214_24_STS945 crossref_primary_10_1002_sim_5795 crossref_primary_10_1016_j_csda_2024_108079 crossref_primary_10_1093_bja_aet290 crossref_primary_10_1517_14740338_2013_779667 crossref_primary_10_1177_1479973118815694 crossref_primary_10_1007_s10734_017_0191_4 crossref_primary_10_1016_j_jclinepi_2014_08_011 crossref_primary_10_1161_JAHA_118_011640 crossref_primary_10_1111_jgs_14253 crossref_primary_10_1007_s40290_018_00265_w crossref_primary_10_1111_joim_12197 crossref_primary_10_1007_s00362_022_01296_x crossref_primary_10_1007_s11606_020_05777_3 crossref_primary_10_1007_s00277_013_1900_4 crossref_primary_10_1080_03610918_2021_2001655 crossref_primary_10_1002_pds_3683 crossref_primary_10_1007_s11239_024_02970_7 crossref_primary_10_1007_s40471_018_0155_y crossref_primary_10_1038_clpt_2012_50 crossref_primary_10_1002_pds_3602 crossref_primary_10_1161_CIRCOUTCOMES_113_000359 crossref_primary_10_3389_fphar_2019_00973 crossref_primary_10_1093_cid_ciaa169 crossref_primary_10_1007_s00198_012_2013_y crossref_primary_10_1111_biom_12679 crossref_primary_10_3390_antibiotics13030287 crossref_primary_10_1186_s12874_024_02350_y crossref_primary_10_1007_s11096_011_9597_8 crossref_primary_10_1080_13557858_2016_1246430 crossref_primary_10_1111_rssb_12354 crossref_primary_10_1017_S2040174421000714 crossref_primary_10_1111_1475_6773_12452 |
Cites_doi | 10.1016/S0140-6736(00)02400-4 10.1093/oxfordjournals.aje.a116813 10.2307/2533160 10.1093/gerona/62.8.879 10.1093/aje/kwi106 10.1093/oxfordjournals.aje.a112408 10.2307/2532266 10.1002/pds.1363 10.1093/ije/dyl147 10.7326/0003-4819-139-2-200307150-00009 10.1016/j.jclinepi.2005.12.012 10.1016/j.jclinepi.2005.07.004 10.1097/01.ede.0000193606.58671.c5 10.1093/aje/kwj149 10.1002/pds.969 10.1002/pds.986 10.1002/sim.2739 10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0.CO;2-B 10.1097/00001648-200111000-00017 10.3386/t0343 10.1016/0021-9681(87)90171-8 10.1177/0962280208092347 10.2307/2532304 10.1093/biomet/70.1.41 10.1093/biomet/asn004 10.1016/j.jclinepi.2004.10.016 10.1097/MLR.0b013e318070c08e 10.1093/oxfordjournals.aje.a010011 10.1097/MLR.0b013e3181dbebe3 10.1093/aje/kwg231 |
ContentType | Journal Article |
Copyright | Copyright © 2011 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2011 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 5PM |
DOI | 10.1002/pds.2098 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1099-1557 |
EndPage | 559 |
ExternalDocumentID | PMC3123427 3373503711 21394812 10_1002_pds_2098 PDS2098 ark_67375_WNG_N4ZQ9LLZ_2 |
Genre | article Journal Article Comparative Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01AG018833 – fundername: NIA NIH HHS grantid: R01 AG023178 – fundername: NIA NIH HHS grantid: R01 AG018833 – fundername: National Institute on Aging : NIA grantid: R01 AG023178-01A2 || AG – fundername: National Institute on Aging : NIA grantid: R01 AG018833-01A2 || AG |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA GWYGA H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LSO LUTES LW6 LYRES M6Q MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WWP WXI WXSBR XG1 XV2 YCJ ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5078-891df2e96a299735e7205b0b5746aad86981e5f1c90b9f73ed280d0210ea1ac13 |
IEDL.DBID | DR2 |
ISSN | 1053-8569 1099-1557 |
IngestDate | Thu Aug 21 18:22:46 EDT 2025 Fri Jul 11 01:26:59 EDT 2025 Fri Jul 25 10:44:42 EDT 2025 Mon Jul 21 06:03:59 EDT 2025 Thu Apr 24 22:55:47 EDT 2025 Tue Jul 01 04:21:43 EDT 2025 Wed Jan 22 16:29:20 EST 2025 Wed Oct 30 09:53:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2011 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5078-891df2e96a299735e7205b0b5746aad86981e5f1c90b9f73ed280d0210ea1ac13 |
Notes | ark:/67375/WNG-N4ZQ9LLZ-2 ArticleID:PDS2098 istex:8EFC7851A7CA38C75D16BE0AF1DB83AE488EE37B ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 21394812 |
PQID | 1545177170 |
PQPubID | 105383 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3123427 proquest_miscellaneous_873705034 proquest_journals_1545177170 pubmed_primary_21394812 crossref_primary_10_1002_pds_2098 crossref_citationtrail_10_1002_pds_2098 wiley_primary_10_1002_pds_2098_PDS2098 istex_primary_ark_67375_WNG_N4ZQ9LLZ_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2011 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: June 2011 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England – name: Bethesda |
PublicationTitle | Pharmacoepidemiology and drug safety |
PublicationTitleAlternate | Pharmacoepidem. Drug Safe |
PublicationYear | 2011 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | Arbogast PG, Ray WA.Use of disease risk scores in pharmacoepidemiologic studies.Stat Methods Med Res2009;18(1):67-80. Glynn RJ, Knight EL, Levin R, Avorn J.Paradoxical relations of drug treatment with mortality in older persons.Epidemiology2001;12(6):682-689. Rosenbaum P, Rubin D.The central role of the propensity score in observational studies for causal effects.Biometrika1983;70:41-55. Brookhart MA, Schneeweiss S, Rothman KJ, Avorn J, Stürmer T.Variable selection in propensity score models.Am J Epidemiol2006;163(12):1149-1156. Joffe MM, Rosenbaum PR.Invited commentary: propensity scores.Am J Epidemiol1999;150(4):327-333. Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V.Weaknesses of goodness-of-fit tests for evaluating propensity score models: the case of the omitted confounder.Pharmacoepidemiol Drug Saf2005;14(4):227-238. Copeland KT, Checkoway H, McMichael AJ, Holbrock RH.Bias due to misclassification in the estimation of relative risk.Am J Epidemiol1977;105:488-495. Strom BL. (ed).Pharmacoepidemiology (4th edn).John Wiley & Sons Ltd.: Hoboken, NJ,2005. LaCroix AZ, Cauley JA, Pettinger M, et al.Statin use, clinical fracture, and bone density in postmenopausal women: results from the Women's Health Initiative Observational Study.Ann Intern Med2003;139(2):97-104. Stürmer T, Schneeweiss S, Brookhart MA, Rothman KJ, Avorn J, Glynn RJ.Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: nonsteroidal antiinflammatory drugs and short-term mortality in the elderly.Am J Epidemiol2005;161(9):891-898. Schneeweiss S, Patrick AR, Stürmer T, et al.Increasing levels of restriction in pharmacoepidemiologic database studies of elderly and comparison with randomized trial results.Med Care2007;45 (10 Supl 2):S131-S142. de Vries F, de Vries C, Cooper C, Leufkens B, van Staa TP.Reanalysis of two studies with contrasting results on the association between statin use and fracture risk: the General Practice Research Database.Int J Epidemiol2006;35(5):1301-1308. Drake C.Effects of misspecification of the propensity score on estimators of treatment effect.Biometrics1993;48:1231-1236. Charlson ME, Pompei P, Ales KL, MacKenzie CR.A new method of classifying prognostic comorbidity in longitudinal studies: development and validation.J Chron Dis1987;40:373-383. Shah BR, Laupacis A, Hux JE, Austin PC.Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review.J Clin Epidemiol2005;58(6):550-559. Rubin DR, Thomas N.Matching using estimated propensity score: relating theory to practice.Biometrics1996;52:249-264. Hansen BB.The prognostic analogue of the propensity score.Biometrika2008;95(2):481-488. Brookhart MA, Wang PS, Solomon DH, Schneeweiss S.Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable.Epidemiology2006; (3):268-275. Ray WA.Evaluating medication effects outside of clinical trials: new-user designs.Am J Epidemiol2003;158(9):915-920. Rubin DB.The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials.Stat Med2007;26(1):20-36. Brookhart MA, Stürmer T, Glynn RJ, Rassen J, Schneeweiss S.Confounding control in healthcare database research: challenges and potential approaches.Med Care2010;48 (6 Suppl):S114-S120. Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V.Principles for modeling propensity scores in medical research: a systematic literature review.Pharmacoepidemiol Drug Saf2004;13(12):841-853. Chan KA, Andrade SE, Boles M, et al.Inhibitors of hydroxymethylglutaryl-coenzyme A reductase and risk of fracture among older women.Lancet2000;355(9222):2185-2188. Baron JA, Lu-Yao G, Barrett J, McLerran D, Fisher ES.Internal validation of medicare claims data.Epidemiology1994;5(5):541-544. Glynn RJ, Schneeweiss S, Wang PS, Levin R, Avorn J.Selective prescribing led to overestimation of the benefits of lipid-lowering drugs.J Clin Epidemiol2006;59(8):819-828. Roberts CGP, Guallar E, Rodriguez A.Efficacy and safety of statin monotherapy in older adults: a meta-analysis.J Gerontol A Biol Sci Med Sci2007;62:879-887. Toh S, Hernández-Díaz S.Statins and fracture risk: a systematic review.Pharmacoepidemiol Drug Saf2007;16(6):627-640. D'Agostino RB Jr.Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group.Stat Med1998;17(19):2265-2281. Maldonado G, Greenland S.Simulation study of confounder-selection strategies.Am J Epidemiol1993;138(11):923-936. Robins JM, Mark SD, Newey WK.Estimating exposure effects by modelling the expectation of exposure conditional on confounders.Biometrics1992;48(2):479-495. Stürmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S.A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods.J Clin Epidemiol2006;59:437-447. 1993; 48 2003; 139 2000; 355 2006; 35 1999; 150 2006; 59 1996; 52 2007 2006 2005 1977; 105 1983; 70 2003; 158 2008; 95 2007; 16 1998; 17 2005; 161 2010; 48 1987; 40 2004; 13 2006; 163 2007; 62 1992; 48 2001; 12 1993; 138 2007; 45 1994; 5 2007; 26 2009; 18 2005; 58 2005; 14 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 Strom BL (e_1_2_7_22_2) 2005 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 Baron JA (e_1_2_7_18_2) 1994; 5 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 |
References_xml | – reference: Baron JA, Lu-Yao G, Barrett J, McLerran D, Fisher ES.Internal validation of medicare claims data.Epidemiology1994;5(5):541-544. – reference: Toh S, Hernández-Díaz S.Statins and fracture risk: a systematic review.Pharmacoepidemiol Drug Saf2007;16(6):627-640. – reference: Brookhart MA, Schneeweiss S, Rothman KJ, Avorn J, Stürmer T.Variable selection in propensity score models.Am J Epidemiol2006;163(12):1149-1156. – reference: Copeland KT, Checkoway H, McMichael AJ, Holbrock RH.Bias due to misclassification in the estimation of relative risk.Am J Epidemiol1977;105:488-495. – reference: Shah BR, Laupacis A, Hux JE, Austin PC.Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review.J Clin Epidemiol2005;58(6):550-559. – reference: Rubin DR, Thomas N.Matching using estimated propensity score: relating theory to practice.Biometrics1996;52:249-264. – reference: de Vries F, de Vries C, Cooper C, Leufkens B, van Staa TP.Reanalysis of two studies with contrasting results on the association between statin use and fracture risk: the General Practice Research Database.Int J Epidemiol2006;35(5):1301-1308. – reference: Charlson ME, Pompei P, Ales KL, MacKenzie CR.A new method of classifying prognostic comorbidity in longitudinal studies: development and validation.J Chron Dis1987;40:373-383. – reference: D'Agostino RB Jr.Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group.Stat Med1998;17(19):2265-2281. – reference: Glynn RJ, Schneeweiss S, Wang PS, Levin R, Avorn J.Selective prescribing led to overestimation of the benefits of lipid-lowering drugs.J Clin Epidemiol2006;59(8):819-828. – reference: Rubin DB.The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials.Stat Med2007;26(1):20-36. – reference: Roberts CGP, Guallar E, Rodriguez A.Efficacy and safety of statin monotherapy in older adults: a meta-analysis.J Gerontol A Biol Sci Med Sci2007;62:879-887. – reference: Rosenbaum P, Rubin D.The central role of the propensity score in observational studies for causal effects.Biometrika1983;70:41-55. – reference: Strom BL. (ed).Pharmacoepidemiology (4th edn).John Wiley & Sons Ltd.: Hoboken, NJ,2005. – reference: Brookhart MA, Stürmer T, Glynn RJ, Rassen J, Schneeweiss S.Confounding control in healthcare database research: challenges and potential approaches.Med Care2010;48 (6 Suppl):S114-S120. – reference: Ray WA.Evaluating medication effects outside of clinical trials: new-user designs.Am J Epidemiol2003;158(9):915-920. – reference: Arbogast PG, Ray WA.Use of disease risk scores in pharmacoepidemiologic studies.Stat Methods Med Res2009;18(1):67-80. – reference: Stürmer T, Schneeweiss S, Brookhart MA, Rothman KJ, Avorn J, Glynn RJ.Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: nonsteroidal antiinflammatory drugs and short-term mortality in the elderly.Am J Epidemiol2005;161(9):891-898. – reference: LaCroix AZ, Cauley JA, Pettinger M, et al.Statin use, clinical fracture, and bone density in postmenopausal women: results from the Women's Health Initiative Observational Study.Ann Intern Med2003;139(2):97-104. – reference: Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V.Principles for modeling propensity scores in medical research: a systematic literature review.Pharmacoepidemiol Drug Saf2004;13(12):841-853. – reference: Glynn RJ, Knight EL, Levin R, Avorn J.Paradoxical relations of drug treatment with mortality in older persons.Epidemiology2001;12(6):682-689. – reference: Drake C.Effects of misspecification of the propensity score on estimators of treatment effect.Biometrics1993;48:1231-1236. – reference: Stürmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S.A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods.J Clin Epidemiol2006;59:437-447. – reference: Schneeweiss S, Patrick AR, Stürmer T, et al.Increasing levels of restriction in pharmacoepidemiologic database studies of elderly and comparison with randomized trial results.Med Care2007;45 (10 Supl 2):S131-S142. – reference: Chan KA, Andrade SE, Boles M, et al.Inhibitors of hydroxymethylglutaryl-coenzyme A reductase and risk of fracture among older women.Lancet2000;355(9222):2185-2188. – reference: Joffe MM, Rosenbaum PR.Invited commentary: propensity scores.Am J Epidemiol1999;150(4):327-333. – reference: Robins JM, Mark SD, Newey WK.Estimating exposure effects by modelling the expectation of exposure conditional on confounders.Biometrics1992;48(2):479-495. – reference: Maldonado G, Greenland S.Simulation study of confounder-selection strategies.Am J Epidemiol1993;138(11):923-936. – reference: Hansen BB.The prognostic analogue of the propensity score.Biometrika2008;95(2):481-488. – reference: Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V.Weaknesses of goodness-of-fit tests for evaluating propensity score models: the case of the omitted confounder.Pharmacoepidemiol Drug Saf2005;14(4):227-238. – reference: Brookhart MA, Wang PS, Solomon DH, Schneeweiss S.Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable.Epidemiology2006; (3):268-275. – volume: 355 start-page: 2185 issue: 9222 year: 2000 end-page: 2188 article-title: Inhibitors of hydroxymethylglutaryl‐coenzyme A reductase and risk of fracture among older women publication-title: Lancet – volume: 139 start-page: 97 issue: 2 year: 2003 end-page: 104 article-title: Statin use, clinical fracture, and bone density in postmenopausal women: results from the Women's Health Initiative Observational Study publication-title: Ann Intern Med – volume: 16 start-page: 627 issue: 6 year: 2007 end-page: 640 article-title: Statins and fracture risk: a systematic review publication-title: Pharmacoepidemiol Drug Saf – year: 2005 – year: 2007 – volume: 14 start-page: 227 issue: 4 year: 2005 end-page: 238 article-title: Weaknesses of goodness‐of‐fit tests for evaluating propensity score models: the case of the omitted confounder publication-title: Pharmacoepidemiol Drug Saf – volume: 52 start-page: 249 year: 1996 end-page: 264 article-title: Matching using estimated propensity score: relating theory to practice publication-title: Biometrics – volume: 13 start-page: 841 issue: 12 year: 2004 end-page: 853 article-title: Principles for modeling propensity scores in medical research: a systematic literature review publication-title: Pharmacoepidemiol Drug Saf – volume: 45 start-page: S131 year: 2007 end-page: S142 article-title: Increasing levels of restriction in pharmacoepidemiologic database studies of elderly and comparison with randomized trial results publication-title: Med Care – volume: 158 start-page: 915 issue: 9 year: 2003 end-page: 920 article-title: Evaluating medication effects outside of clinical trials: new‐user designs publication-title: Am J Epidemiol – volume: 70 start-page: 41 year: 1983 end-page: 55 article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika – volume: 95 start-page: 481 issue: 2 year: 2008 end-page: 488 article-title: The prognostic analogue of the propensity score publication-title: Biometrika – volume: 138 start-page: 923 issue: 11 year: 1993 end-page: 936 article-title: Simulation study of confounder‐selection strategies publication-title: Am J Epidemiol – volume: 58 start-page: 550 issue: 6 year: 2005 end-page: 559 article-title: Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review publication-title: J Clin Epidemiol – volume: 59 start-page: 437 year: 2006 end-page: 447 article-title: A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods publication-title: J Clin Epidemiol – volume: 150 start-page: 327 issue: 4 year: 1999 end-page: 333 article-title: Invited commentary: propensity scores publication-title: Am J Epidemiol – volume: 163 start-page: 1149 issue: 12 year: 2006 end-page: 1156 article-title: Variable selection in propensity score models publication-title: Am J Epidemiol – volume: 48 start-page: 1231 year: 1993 end-page: 1236 article-title: Effects of misspecification of the propensity score on estimators of treatment effect publication-title: Biometrics – volume: 17 start-page: 2265 issue: 19 year: 1998 end-page: 2281 article-title: Propensity score methods for bias reduction in the comparison of a treatment to a non‐randomized control group publication-title: Stat Med – volume: 48 start-page: S114 year: 2010 end-page: S120 article-title: Confounding control in healthcare database research: challenges and potential approaches publication-title: Med Care – volume: 40 start-page: 373 year: 1987 end-page: 383 article-title: A new method of classifying prognostic comorbidity in longitudinal studies: development and validation publication-title: J Chron Dis – volume: 48 start-page: 479 issue: 2 year: 1992 end-page: 495 article-title: Estimating exposure effects by modelling the expectation of exposure conditional on confounders publication-title: Biometrics – volume: 5 start-page: 541 issue: 5 year: 1994 end-page: 544 article-title: Internal validation of medicare claims data publication-title: Epidemiology – start-page: 268 issue: 3 year: 2006 end-page: 275 article-title: Evaluating short‐term drug effects using a physician‐specific prescribing preference as an instrumental variable publication-title: Epidemiology – volume: 26 start-page: 20 issue: 1 year: 2007 end-page: 36 article-title: The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials publication-title: Stat Med – volume: 105 start-page: 488 year: 1977 end-page: 495 article-title: Bias due to misclassification in the estimation of relative risk publication-title: Am J Epidemiol – volume: 12 start-page: 682 issue: 6 year: 2001 end-page: 689 article-title: Paradoxical relations of drug treatment with mortality in older persons publication-title: Epidemiology – volume: 62 start-page: 879 year: 2007 end-page: 887 article-title: Efficacy and safety of statin monotherapy in older adults: a meta‐analysis publication-title: J Gerontol A Biol Sci Med Sci – volume: 35 start-page: 1301 issue: 5 year: 2006 end-page: 1308 article-title: Reanalysis of two studies with contrasting results on the association between statin use and fracture risk: the General Practice Research Database publication-title: Int J Epidemiol – volume: 18 start-page: 67 issue: 1 year: 2009 end-page: 80 article-title: Use of disease risk scores in pharmacoepidemiologic studies publication-title: Stat Methods Med Res – volume: 161 start-page: 891 issue: 9 year: 2005 end-page: 898 article-title: Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: nonsteroidal antiinflammatory drugs and short‐term mortality in the elderly publication-title: Am J Epidemiol – volume: 59 start-page: 819 issue: 8 year: 2006 end-page: 828 article-title: Selective prescribing led to overestimation of the benefits of lipid‐lowering drugs publication-title: J Clin Epidemiol – ident: e_1_2_7_28_2 doi: 10.1016/S0140-6736(00)02400-4 – ident: e_1_2_7_7_2 doi: 10.1093/oxfordjournals.aje.a116813 – ident: e_1_2_7_9_2 doi: 10.2307/2533160 – ident: e_1_2_7_20_2 doi: 10.1093/gerona/62.8.879 – ident: e_1_2_7_6_2 doi: 10.1093/aje/kwi106 – ident: e_1_2_7_19_2 doi: 10.1093/oxfordjournals.aje.a112408 – ident: e_1_2_7_8_2 doi: 10.2307/2532266 – ident: e_1_2_7_21_2 doi: 10.1002/pds.1363 – ident: e_1_2_7_27_2 doi: 10.1093/ije/dyl147 – ident: e_1_2_7_29_2 doi: 10.7326/0003-4819-139-2-200307150-00009 – ident: e_1_2_7_15_2 doi: 10.1016/j.jclinepi.2005.12.012 – ident: e_1_2_7_4_2 doi: 10.1016/j.jclinepi.2005.07.004 – ident: e_1_2_7_26_2 doi: 10.1097/01.ede.0000193606.58671.c5 – ident: e_1_2_7_10_2 doi: 10.1093/aje/kwj149 – ident: e_1_2_7_12_2 doi: 10.1002/pds.969 – ident: e_1_2_7_23_2 doi: 10.1002/pds.986 – ident: e_1_2_7_30_2 doi: 10.1002/sim.2739 – ident: e_1_2_7_5_2 doi: 10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0.CO;2-B – ident: e_1_2_7_13_2 doi: 10.1097/00001648-200111000-00017 – ident: e_1_2_7_11_2 doi: 10.3386/t0343 – ident: e_1_2_7_17_2 doi: 10.1016/0021-9681(87)90171-8 – ident: e_1_2_7_32_2 doi: 10.1177/0962280208092347 – ident: e_1_2_7_24_2 doi: 10.2307/2532304 – volume: 5 start-page: 541 issue: 5 year: 1994 ident: e_1_2_7_18_2 article-title: Internal validation of medicare claims data publication-title: Epidemiology – ident: e_1_2_7_2_2 doi: 10.1093/biomet/70.1.41 – ident: e_1_2_7_31_2 doi: 10.1093/biomet/asn004 – ident: e_1_2_7_3_2 doi: 10.1016/j.jclinepi.2004.10.016 – ident: e_1_2_7_14_2 doi: 10.1097/MLR.0b013e318070c08e – volume-title: Pharmacoepidemiology year: 2005 ident: e_1_2_7_22_2 – ident: e_1_2_7_25_2 doi: 10.1093/oxfordjournals.aje.a010011 – ident: e_1_2_7_33_2 doi: 10.1097/MLR.0b013e3181dbebe3 – ident: e_1_2_7_16_2 doi: 10.1093/aje/kwg231 |
SSID | ssj0009994 |
Score | 2.3287563 |
Snippet | ABSTRACT
Purpose
To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation,... To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality, and hip... Purpose To examine the effect of variable selection strategies on the performance of propensity score (PS) methods in a study of statin initiation, mortality,... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 551 |
SubjectTerms | Aged Aged, 80 and over Bias confounding factors Confounding Factors, Epidemiologic Epidemiologic Methods Female Follow-Up Studies Glaucoma - drug therapy Hip Fractures - epidemiology Humans hydroxymethylglutaryl-CoA reductase inhibitors Hydroxymethylglutaryl-CoA Reductase Inhibitors - therapeutic use Male pharmacoepidemiology Pharmacoepidemiology - methods Propensity Score Proportional Hazards Models Randomized Controlled Trials as Topic |
Title | The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration |
URI | https://api.istex.fr/ark:/67375/WNG-N4ZQ9LLZ-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpds.2098 https://www.ncbi.nlm.nih.gov/pubmed/21394812 https://www.proquest.com/docview/1545177170 https://www.proquest.com/docview/873705034 https://pubmed.ncbi.nlm.nih.gov/PMC3123427 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bb9MwFIctNF544X4JDGQkVF6WLXESX3hDwJjQqApsYhoPlp04IlpJq6VBlL-ec3JdYUiIp1byqRs7x_HvOMefCXmWccMTE8W-lYr7MbPSt8IoXyQW4o0sdCHH3cjvp_zgOH53kpx0WZW4F6blQwwLbjgymuc1DnBjq70RGrrMkLatcJ8vpmqhHvo4kqNA9zQvlMHHfJlw1XNnA7bX_3BjJrqKnfrjMpn5Z7bkRRXbTEP7N8iXvgFt9snZbr2yu-nP39iO_9fCm-R6p07py9adbpErrrxNJrMWb73eoUfjbq1qh07obARfr--QGoppcSFFnS5yusTV_hIzP2iFyEz6HaJz3K9Fq-YIHrCj1aoHVtCipMuuUjceXrt-QU1J3bdl0RBNaDGf1z3w9y453n9z9OrA74518FMQn9KXKsxy5hQ3MBWKKHGCBYkNbCJibkwmuZKhS_IwVYFVuYhcxmSQYWzqTGjSMLpHtspF6R4QmqYyNyzjWWwdhG6pNBZqNbmNuIMvgUee97dYpx3zHI_emOuW1sw09LHGPvbI08Fy2XI-LrGZNF4yGJjzM8yLE4n-PH2rp_HpB3V4eKqZR7Z7N9LdI6HSqFVDAdEzXBUdimEw4xsaU7pFXWkJlSGgJ_bI_dbphv9iINVjUGMeERvuOBggJ3yzpCy-NrzwCNRJzARcfuNtf22fnr3-hJ8P_9XwEbnWLrHjotQ22Vqd1-4xaLSVfdKMxl-hmT3S |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4AL70eggJHQcmnaPB0HTggoC2xXC2zVqkKy7MQRUZfsqtkgll_PjPPqQpEQp0TyxLGdcfzNePwNIU9TJlko_cBWPGZ24Cluq0jGdhQqsDdSV7sMTyMfjNnwMHh_HB5vkBftWZiaH6JzuOHMMP9rnODokN7rWUMXKdJtx_wS2cKE3sae-tRzRwHyMVvKoGU2D1ncMs863l775NpatIXD-uMioPlnvOR5HGsWov1r5EvbhTr-5HS3Wqrd5Odv7I7_2cfr5GoDUOnLWqNukA1d3CSDSc1wvdqh0_7AVrlDB3TSc1-vbpEKiml-LkqdzjO6QId_gcEftETWTPodDHQ8skVLk4UH5Gi5bDkraF7QRVOp7vPXrp5TWVD9bZEbUhOaz2ZVy_l7mxzuv5m-GtpNZgc7AfzJbR67aebpmElYDSM_1JHnhMpRYRQwKVPOYu7qMHOT2FFxFvk69biTonmqpSsT179DNot5oe8RmiQ8k17K0kBpsN4SLhXUKjPlMw03jkWetd9YJA3tOWbfmImasNkTMMYCx9giTzrJRU31cYHMwKhJJyDPTjE0LgrF0fitGAcnH-PR6ER4Ftlu9Ug0f4VSIFx1IzCgoVW0K4b5jJs0stDzqhQcKkOOnsAid2ut697lAVoPAJBZJFrTx04AqcLXS4r8q6EM9wGgBF4EzTfq9tf-icnrz3i9_6-Cj8nl4fRgJEbvxh8ekCu1xx19VNtkc3lW6YcA2ZbqkZmavwA_CUHt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bb9MwFIct2CTEC_dLYICRUHlZtlxthzdEKQNKVWDTpvFg2YmjRevSaGkQ5a_nnNy6wpAQT63kUzd2juPfcY4_E_IiYYqFyg9sLSJmB54WtuYqsnmoId5IXOMy3I38acL2DoIPR-FRm1WJe2EaPkS_4IYjo35e4wAvknR3BQ0tEqRtR-Iq2QyYI9Cjh19W6CgQPvUbZXAyW4Qs6sCzjrfb_XJtKtrEXv1xmc78M13yooyt56HRTfKta0GTfnK6Uy30TvzzN7jj_zXxFrnRylP6uvGn2-SKye-QwbThWy-36f5qu1a5TQd0uiJfL--SCoppdiFHnc5TWuByf46pH7REZib9DuE5btiiZX0GD9jRctERK2iW06Kt1KxOr12-oiqn5qzIaqQJzWazqiP-3iMHo7f7b_bs9lwHOwb1KWwRuUnqmYgpmAu5HxruOaF2dMgDplQiWCRcE6ZuHDk6SrlvEk84CQanRrkqdv37ZCOf5-YhoXEsUuUlLAm0gdgtFkpDrSrVPjPwxbHIy-4Wy7iFnuPZGzPZ4Jo9CX0ssY8t8ry3LBrQxyU2g9pLegN1foqJcTyUh5N3chIcf47G42PpWWSrcyPZPhNKiWLV5RA-w1XRvhhGM76iUbmZV6UUUBkSegKLPGicrv8vD7R6AHLMInzNHXsDBIWvl-TZSQ0M90GeBB6Hy6-97a_tk9PhV_x89K-Gz8i16XAkx-8nHx-T681yOy5QbZGNxXllnoBeW-in9cD8BXu0QKU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+implications+of+propensity+score+variable+selection+strategies+in+pharmacoepidemiology%3A+an+empirical+illustration&rft.jtitle=Pharmacoepidemiology+and+drug+safety&rft.au=Patrick%2C+Amanda+R&rft.au=Schneeweiss%2C+Sebastian&rft.au=Brookhart%2C+M+Alan&rft.au=Glynn%2C+Robert+J&rft.date=2011-06-01&rft.eissn=1099-1557&rft.volume=20&rft.issue=6&rft.spage=551&rft_id=info:doi/10.1002%2Fpds.2098&rft_id=info%3Apmid%2F21394812&rft.externalDocID=21394812 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8569&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8569&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8569&client=summon |