Mind the gap: The impact of missing data on the calculation of phytoplankton phenology metrics
Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval surviv...
Saved in:
Published in | Journal of Geophysical Research: Oceans Vol. 117; no. C8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.08.2012
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval survival with knock‐on effects at higher trophic levels. Interannual variability in phytoplankton bloom timing may also be used to monitor changes in the pelagic ecosystem that are either naturally or anthropogenically forced. Seasonality metrics that use satellite ocean color data have been developed to quantify the timing of phenological events which allow for objective comparisons between different regions and over long periods of time. However, satellite data sets are subject to frequent gaps due to clouds and atmospheric aerosols, or persistent data gaps in winter due to low sun angle. Here we quantify the impact of these gaps on determining the start and peak timing of phytoplankton blooms. We use the NASA Ocean Biogeochemical Model that assimilates SeaWiFS data as a gap‐free time series and derive an empirical relationship between the percentage of missing data and error in the phenology metric. Applied globally, we find that the majority of subpolar regions have typical errors of 30 days for the bloom initiation date and 15 days for the peak date. The errors introduced by intermittent data must be taken into account in phenological studies.
Key Points
Global maps of seasonality metrics and the associated uncertainty are presented
Bloom start and peak date errors are 30 and 15 days respectively in most regions
The error in bloom start date has a directional bias that changes with latitude |
---|---|
AbstractList | Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval survival with knock‐on effects at higher trophic levels. Interannual variability in phytoplankton bloom timing may also be used to monitor changes in the pelagic ecosystem that are either naturally or anthropogenically forced. Seasonality metrics that use satellite ocean color data have been developed to quantify the timing of phenological events which allow for objective comparisons between different regions and over long periods of time. However, satellite data sets are subject to frequent gaps due to clouds and atmospheric aerosols, or persistent data gaps in winter due to low sun angle. Here we quantify the impact of these gaps on determining the start and peak timing of phytoplankton blooms. We use the NASA Ocean Biogeochemical Model that assimilates SeaWiFS data as a gap‐free time series and derive an empirical relationship between the percentage of missing data and error in the phenology metric. Applied globally, we find that the majority of subpolar regions have typical errors of 30 days for the bloom initiation date and 15 days for the peak date. The errors introduced by intermittent data must be taken into account in phenological studies.
Key Points
Global maps of seasonality metrics and the associated uncertainty are presented
Bloom start and peak date errors are 30 and 15 days respectively in most regions
The error in bloom start date has a directional bias that changes with latitude Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval survival with knock-on effects at higher trophic levels. Interannual variability in phytoplankton bloom timing may also be used to monitor changes in the pelagic ecosystem that are either naturally or anthropogenically forced. Seasonality metrics that use satellite ocean color data have been developed to quantify the timing of phenological events which allow for objective comparisons between different regions and over long periods of time. However, satellite data sets are subject to frequent gaps due to clouds and atmospheric aerosols, or persistent data gaps in winter due to low sun angle. Here we quantify the impact of these gaps on determining the start and peak timing of phytoplankton blooms. We use the NASA Ocean Biogeochemical Model that assimilates SeaWiFS data as a gap-free time series and derive an empirical relationship between the percentage of missing data and error in the phenology metric. Applied globally, we find that the majority of subpolar regions have typical errors of 30 days for the bloom initiation date and 15 days for the peak date. The errors introduced by intermittent data must be taken into account in phenological studies. Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval survival with knock-on effects at higher trophic levels. Interannual variability in phytoplankton bloom timing may also be used to monitor changes in the pelagic ecosystem that are either naturally or anthropogenically forced. Seasonality metrics that use satellite ocean color data have been developed to quantify the timing of phenological events which allow for objective comparisons between different regions and over long periods of time. However, satellite data sets are subject to frequent gaps due to clouds and atmospheric aerosols, or persistent data gaps in winter due to low sun angle. Here we quantify the impact of these gaps on determining the start and peak timing of phytoplankton blooms. We use the NASA Ocean Biogeochemical Model that assimilates SeaWiFS data as a gap-free time series and derive an empirical relationship between the percentage of missing data and error in the phenology metric. Applied globally, we find that the majority of subpolar regions have typical errors of 30 days for the bloom initiation date and 15 days for the peak date. The errors introduced by intermittent data must be taken into account in phenological studies. Key Points * Global maps of seasonality metrics and the associated uncertainty are presented * Bloom start and peak date errors are 30 and 15 days respectively in most regions * The error in bloom start date has a directional bias that changes with latitude Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval survival with knock‐on effects at higher trophic levels. Interannual variability in phytoplankton bloom timing may also be used to monitor changes in the pelagic ecosystem that are either naturally or anthropogenically forced. Seasonality metrics that use satellite ocean color data have been developed to quantify the timing of phenological events which allow for objective comparisons between different regions and over long periods of time. However, satellite data sets are subject to frequent gaps due to clouds and atmospheric aerosols, or persistent data gaps in winter due to low sun angle. Here we quantify the impact of these gaps on determining the start and peak timing of phytoplankton blooms. We use the NASA Ocean Biogeochemical Model that assimilates SeaWiFS data as a gap‐free time series and derive an empirical relationship between the percentage of missing data and error in the phenology metric. Applied globally, we find that the majority of subpolar regions have typical errors of 30 days for the bloom initiation date and 15 days for the peak date. The errors introduced by intermittent data must be taken into account in phenological studies. Global maps of seasonality metrics and the associated uncertainty are presented Bloom start and peak date errors are 30 and 15 days respectively in most regions The error in bloom start date has a directional bias that changes with latitude |
Author | Henson, Stephanie Yool, Andrew Martin, Adrian Cole, Harriet |
Author_xml | – sequence: 1 givenname: Harriet surname: Cole fullname: Cole, Harriet email: harriet.cole@noc.soton.ac.uk, harriet.cole@noc.soton.ac.uk organization: Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK – sequence: 2 givenname: Stephanie surname: Henson fullname: Henson, Stephanie organization: National Oceanography Centre, University of Southampton, Southampton, UK – sequence: 3 givenname: Adrian surname: Martin fullname: Martin, Adrian organization: National Oceanography Centre, University of Southampton, Southampton, UK – sequence: 4 givenname: Andrew surname: Yool fullname: Yool, Andrew organization: National Oceanography Centre, University of Southampton, Southampton, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26370360$$DView record in Pascal Francis |
BookMark | eNqFkV1vFCEUhompiWvtnT9gEmPihWPhwEDxzkx0--VHmpp6JWEY2KWdHUZg0-6_l3arMU3Uc8OBPO85h_c8RTtjGC1Czwl-QzDIfcAEjluMD4DJR2gGpOE1AIYdNMOEHdQYQDxBeyld4hKs4QyTGfr-0Y99lZe2WujpbXVeEr-atMlVcNXKp-THRdXrrKsw3mFGD2Y96OzLvSDTcpPDNOjxKpeHaWnHMITFplrZHL1Jz9Bjp4dk9-7PXfT1w_vz9rA-_Tw_at-d1qbBgteScgtCSNf33DLGjGbW0a4XsgPrOhDOdRI0aYTDWPSk6yy2WDLBBWGmc3QXvdrWnWL4sbYpqzK7sUMZzIZ1UkQSKTmIBv6PYi6Ll4TLgr54gF6GdRzLRxQp1nICUuJCvbyndCruuKhH45Oaol_puFHAqcCU33Kw5UwMKUXrlPH5zsgctR9KY3W7SPXnIovo9QPRr7p_wekWv_aD3fyTVcfzs5ZAI3hR1VuVT9ne_FbpeKW4oKJRF5_m6uKEfvlGaKvO6E8dybwC |
CitedBy_id | crossref_primary_10_5194_os_17_1527_2021 crossref_primary_10_1080_07900627_2023_2279961 crossref_primary_10_3390_rs12162662 crossref_primary_10_1109_JSTARS_2016_2625813 crossref_primary_10_1016_j_dsr_2014_05_009 crossref_primary_10_1016_j_hal_2017_05_005 crossref_primary_10_5194_bg_18_25_2021 crossref_primary_10_7780_kjrs_2025_41_1_5 crossref_primary_10_1134_S0001437024700929 crossref_primary_10_3389_fmars_2021_623856 crossref_primary_10_1016_j_pocean_2023_103176 crossref_primary_10_5194_bg_10_4357_2013 crossref_primary_10_1002_2014GB004919 crossref_primary_10_1002_2014JC010323 crossref_primary_10_1016_j_rse_2015_01_019 crossref_primary_10_5194_bg_15_4431_2018 crossref_primary_10_1016_j_scitotenv_2023_163421 crossref_primary_10_3354_meps13276 crossref_primary_10_1016_j_oceano_2016_04_004 crossref_primary_10_3389_fmars_2022_912865 crossref_primary_10_1002_jgrc_20167 crossref_primary_10_1002_2014GL059707 crossref_primary_10_3389_frsen_2022_882418 crossref_primary_10_1016_j_rse_2017_06_011 crossref_primary_10_1016_j_scitotenv_2022_154255 crossref_primary_10_1029_2019JC015331 crossref_primary_10_1038_s41467_024_50381_2 crossref_primary_10_1093_icesjms_fsv069 crossref_primary_10_1029_2020JC016387 crossref_primary_10_1016_j_atmosres_2019_104812 crossref_primary_10_5194_bg_12_3641_2015 crossref_primary_10_1016_j_ecolind_2013_10_008 crossref_primary_10_5194_bg_13_4959_2016 crossref_primary_10_1016_j_csr_2022_104685 crossref_primary_10_1016_j_pocean_2018_06_010 crossref_primary_10_1038_s41598_022_22087_2 crossref_primary_10_1007_s00300_017_2095_2 crossref_primary_10_3389_fmars_2022_968470 crossref_primary_10_1016_j_rse_2014_11_021 crossref_primary_10_1093_mollus_eyu093 crossref_primary_10_3389_fmars_2021_669951 crossref_primary_10_3390_rs13142727 crossref_primary_10_1016_j_pocean_2024_103315 crossref_primary_10_1016_j_scitotenv_2021_151253 crossref_primary_10_1093_icesjms_fsv016 crossref_primary_10_5194_bg_20_4165_2023 crossref_primary_10_1029_2018GL079968 crossref_primary_10_1016_j_rse_2014_05_016 crossref_primary_10_1007_s00484_015_1036_4 crossref_primary_10_2139_ssrn_4107527 crossref_primary_10_1038_s41467_024_52673_z crossref_primary_10_1021_acs_est_8b06887 crossref_primary_10_3390_rs15030687 crossref_primary_10_5194_essd_14_2639_2022 crossref_primary_10_1016_j_jag_2024_104270 crossref_primary_10_1016_j_rse_2023_113885 crossref_primary_10_3389_fmars_2020_00209 crossref_primary_10_1002_2014GL059608 crossref_primary_10_1525_elementa_240 crossref_primary_10_1016_j_pocean_2021_102655 crossref_primary_10_1111_gcb_13886 crossref_primary_10_1093_icesjms_fsv006 crossref_primary_10_1002_jgrd_50541 crossref_primary_10_1016_j_ecolind_2022_109435 crossref_primary_10_1093_icesjms_fsu239 crossref_primary_10_1111_geb_12717 crossref_primary_10_3390_rs13204035 crossref_primary_10_3390_rs13040675 crossref_primary_10_1016_j_rse_2013_12_019 crossref_primary_10_18307_2025_0101 crossref_primary_10_1002_2014JC010330 crossref_primary_10_1002_2017GL074359 crossref_primary_10_5194_bg_15_613_2018 crossref_primary_10_1016_j_ecss_2020_107070 crossref_primary_10_1002_2015JC011167 crossref_primary_10_1111_gcb_12352 crossref_primary_10_3390_environments7100077 |
Cites_doi | 10.1126/science.1170987 10.1029/2011GL048299 10.1029/2005GL024792 10.1016/j.dsr2.2003.07.018 10.1016/j.jmarsys.2007.09.007 10.1016/j.ecolind.2011.07.010 10.1098/rstb.2010.0125 10.1111/j.1365‐2419.2006.00402.x 10.1029/2010JC006836 10.1126/science.1069174 10.5194/bg‐7‐979‐2010 10.1029/2001JC000843 10.1111/j.1365‐2486.2010.02312.x 10.1016/j.ecolmodel.2008.11.022 10.1029/2008JC005139 10.5194/bg‐8‐2849‐2011 10.1126/science.1210288 10.1016/j.pocean.2008.03.004 10.1038/423398b 10.1029/2006JC003706 10.1016/j.dsr.2006.07.009 10.1038/nature02808 10.1016/S0065‐2881(08)60202‐3 10.1016/j.rse.2007.10.016 10.1029/2003GB002134 10.1029/1999GB001256 10.1029/2006JC003960 10.1016/0198‐0149(86)90120‐2 10.1038/nature05317 10.1007/s12237‐009‐9161‐0 |
ContentType | Journal Article |
Copyright | 2012. American Geophysical Union. All Rights Reserved. 2015 INIST-CNRS Copyright American Geophysical Union 2012 |
Copyright_xml | – notice: 2012. American Geophysical Union. All Rights Reserved. – notice: 2015 INIST-CNRS – notice: Copyright American Geophysical Union 2012 |
DBID | BSCLL AAYXX CITATION IQODW 3V. 7TG 7TN 7XB 88I 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U H95 M7N |
DOI | 10.1029/2012JC008249 |
DatabaseName | Istex CrossRef Pascal-Francis ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-9291 |
EndPage | n/a |
ExternalDocumentID | 2827313441 26370360 10_1029_2012JC008249 JGRC12576 ark_67375_WNG_WK3PX13C_R |
Genre | article Feature |
GrantInformation_xml | – fundername: Natural Environment Research Council funderid: NE/I528626/1; NE/G013055/1 |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION IQODW 05W 0R~ 33P 3V. 50Y 52M 702 7TG 7TN 7XB 8-1 8CJ 8FK AAESR AASGY AAZKR ABPVW ACGOD ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AEUYN AEYWJ AFKRA AFRAH AIURR ALVPJ ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BMXJE CCPQU D1J D1K DPXWK F1W FEDTE H96 HGLYW HVGLF HZ~ K6- KL. L.G LEEKS LK5 M7R MY~ O9- P2W PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PROAC PYCSY Q9U R.K SUPJJ WBKPD H95 M7N |
ID | FETCH-LOGICAL-c5076-936e2779fdd6e444ca4ef3bd79b2efb27ffb92a157f007d1bbe0e09476714cbf3 |
IEDL.DBID | BENPR |
ISSN | 0148-0227 2169-9275 |
IngestDate | Fri Jul 11 01:49:21 EDT 2025 Fri Jul 11 05:51:17 EDT 2025 Mon Jun 30 15:24:20 EDT 2025 Mon Jul 21 09:14:25 EDT 2025 Tue Jul 01 01:55:55 EDT 2025 Thu Apr 24 22:57:46 EDT 2025 Wed Jan 22 16:27:46 EST 2025 Wed Oct 30 09:49:22 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C8 |
Keywords | color aerosols clouds annual variations Winter Trophic level carbon phytoplankton plankton export models NASA Time series zooplankton Satellite observation Subpolar zone Sun Interannual variation Missing data Phenology ecosystems Timing SeaStar satellite seasonal variations errors Comparative study |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5076-936e2779fdd6e444ca4ef3bd79b2efb27ffb92a157f007d1bbe0e09476714cbf3 |
Notes | istex:65BFED0D87423B96943AC24DB65E26FDE5126B9D ArticleID:2012JC008249 ark:/67375/WNG-WK3PX13C-R Natural Environment Research Council - No. NE/I528626/1; No. NE/G013055/1 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1220612990 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1919962752 proquest_miscellaneous_1069201169 proquest_journals_1220612990 pascalfrancis_primary_26370360 crossref_citationtrail_10_1029_2012JC008249 crossref_primary_10_1029_2012JC008249 wiley_primary_10_1029_2012JC008249_JGRC12576 istex_primary_ark_67375_WNG_WK3PX13C_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2012 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: August 2012 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: Washington |
PublicationTitle | Journal of Geophysical Research: Oceans |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Yamada, K., and J. Ishizaka (2006), Estimation of interdecadal change of spring bloom timing, in the case of the Japan Sea, Geophys. Res. Lett., 33, L02608, doi:10.1029/2005GL024792. Henson, S. A., J. P. Dunne, and J. L. Sarmiento (2009), Decadal variability in North Atlantic phytoplankton blooms, J. Geophys. Res., 114, C04013, doi:10.1029/2008JC005139. Platt, T., G. N. White, L. Zhai, S. Sathyendranath, and S. Roy (2009), The phenology of phytoplankton blooms: Ecosystem indicators from remote sensing, Ecol. Modell., 220(21), 3057-3069, doi:10.1016/j.ecolmodel.2008.11.022. Steinacher, M., et al. (2010), Projected 21st century decrease in marine productivity: A multi-model analysis, Biogeosciences, 7(3), 979-1005, doi:10.5194/bg-7-979-2010. Henson, S. A., I. Robinson, J. T. Allen, and J. J. Waniek (2006), Effect of meteorological conditions on interannual variability in timing and magnitude of the spring bloom in the Irminger Basin, North Atlantic, Deep Sea Res., Part I, 53(10), 1601-1615, doi:10.1016/j.dsr.2006.07.009. Platt, T., C. Fuentes-Yaco, and K. T. Frank (2003), Marine ecology: Spring algal bloom and larval fish survival, Nature, 423(6938), 398-399, doi:10.1038/423398b. Lutz, M. J., K. Caldeira, R. B. Dunbar, and M. J. Behrenfeld (2007), Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean, J. Geophys. Res., 112, C10011, doi:10.1029/2006JC003706. Thomalla, S. J., N. Fauchereau, S. Swart, and P. M. S. Monteiro (2011), Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean, Biogeosciences, 8(10), 2849-2866, doi:10.5194/bg-8-2849-2011. Platt, T., and S. Sathyendranath (2008), Ecological indicators for the pelagic zone of the ocean from remote sensing, Remote Sens. Environ., 112(8), 3426-3436, doi:10.1016/j.rse.2007.10.016. Kahru, M., V. Brotas, M. Manzano-Sarabia, and B. G. Mitchell (2011), Are phytoplankton blooms occurring earlier in the Arctic?, Global Change Biol., 17, 1733-1739, doi:10.1111/j.1365-2486.2010.02312.x. Fuentes-Yaco, C., P. A. Koeller, S. Sathyendranath, and T. Platt (2007), Shrimp (Pandalus borealis) growth and timing of the spring phytoplankton bloom on the Newfoundland-Labrador Shelf, Fish. Oceanogr., 16(2), 116-129, doi:10.1111/j.1365-2419.2006.00402.x. Sasaoka, K., S. Chiba, and T. Saino (2011), Climatic forcing and phytoplankton phenology over the subarctic North Pacific from 1998 to 2006, as observed from ocean color data, Geophys. Res. Lett., 38, L15609, doi:10.1029/2011GL048299. Dandonneau, Y., P. Y. Deschamps, J. M. Nicolas, H. Loisel, J. Blanchot, Y. Montel, F. Thieuleux, and G. Bécu (2004), Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific, Deep Sea Res., Part II, 51(1-3), 303-318, doi:10.1016/j.dsr2.2003.07.018. Deuser, W. G. (1986), Seasonal and interannual variations in deep-water particle fluxes in the Sargasso Sea and their relation to surface hydrography, Deep Sea Res., Part A, 33(2), 225-246, doi:10.1016/0198-0149(86)90120-2. Platt, T., S. Sathyendranath, G. N. White III, C. Fuentes-Yaco, L. Zhai, E. Devred, and C. Tang (2010), Diagnostic properties of phytoplankton time series from remote sensing, Estuaries Coasts, 33, 428-439, doi:10.1007/s12237-009-9161-0. Henson, S. A., and A. C. Thomas (2007), Interannual variability in timing of bloom initiation in the California Current System, J. Geophys. Res., 112, C08007, doi:10.1029/2006JC003960. Sarmiento, J. L., et al. (2004), Response of ocean ecosystems to climate warming, Global Biogeochem. Cycles, 18(3), GB3003, doi:10.1029/2003GB002134. Bopp, L., P. Monfray, O. Aumont, J. L. Dufresne, H. Le Treut, G. Madec, L. Terray, and J. C. Orr (2001), Potential impact of climate change on marine export production, Global Biogeochem. Cycles, 15(1), 81-99, doi:10.1029/1999GB001256. Cushing, D. H. (1990), Plankton production and year-class strength in fish populations: An update of the match mismatch hypothesis, Adv. Mar. Biol., 26, 249-293, doi:10.1016/S0065-2881(08)60202-3. Doney, S. C., D. M. Glover, S. J. McCue, and M. Fuentes (2003), Mesoscale variability of Sea-viewing Wide Field-of-view Sensor(SeaWiFS) satellite ocean color: Global patterns and spatial scales, J. Geophys. Res., 108(C2), 3024, doi:10.1029/2001JC000843. Nerger, L., and W. W. Gregg (2008), Improving assimilation of SeaWiFS data by the application of bias correction with a local SEIK filter, J. Mar. Syst., 73(1-2), 87-102, doi:10.1016/j.jmarsys.2007.09.007. Behrenfeld, M. J., R. T. O'Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss (2006), Climate-driven trends in contemporary ocean productivity, Nature, 444(7120), 752-755, doi:10.1038/nature05317. Winder, M., and J. E. Cloern (2010), The annual cycles of phytoplankton biomass, Philos. Trans. R. Soc. B, 365(1555), 3215-3226, doi:10.1098/rstb.2010.0125. Burrows, M. T., et al. (2011), The pace of shifting climate in marine and terrestrial ecosystems, Science, 334(6056), 652-655, doi:10.1126/science.1210288. Martinez, E., D. Antoine, F. D'Ortenzio, and C. deBoyer Montégut (2011), Phytoplankton spring and fall blooms in the North Atlantic in the 1980s and 2000s, J. Geophys. Res., 116, C11029, doi:10.1029/2010JC006836. Siegel, D. A., S. C. Doney, and J. A. Yoder (2002), The North Atlantic spring phytoplankton bloom and Sverdrup's critical depth hypothesis, Science, 296(5568), 730-733, doi:10.1126/science.1069174. Chiba, S., M. N. Aita, K. Tadokoro, T. Saino, H. Sugisaki, and K. Nakata (2008), From climate regime shifts to lower-trophic level phenology: Synthesis of recent progress in retrospective studies of the western North Pacific, Prog. Oceanogr., 77(2-3), 112-126, doi:10.1016/j.pocean.2008.03.004. Koeller, P., et al. (2009), Basin-scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean, Science, 324(5928), 791-793, doi:10.1126/science.1170987. Racault, M.-F., C. Le Quéré, E. Buitenhuis, S. Sathyendranath, and T. Platt (2012), Phytoplankton phenology in the global ocean, Ecol. Indic., 14(1), 152-163, doi:10.1016/j.ecolind.2011.07.010. Edwards, M., and A. J. Richardson (2004), Impact of climate change on marine pelagic phenology and trophic mismatch, Nature, 430(7002), 881-884, doi:10.1038/nature02808. 2011; 116 2010; 33 2011; 334 2006; 53 2002; 296 1986; 33 2006; 33 2010; 365 2008; 77 2011; 17 2012; 14 2008; 73 2011; 38 2009; 114 2011; 8 2007; 16 2004; 430 2007; 112 2003; 108 2004; 51 1990; 26 2004; 18 2009; 220 2001; 15 2008; 112 2003; 423 2010; 7 2009; 324 2006; 444 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Bopp, L., P. Monfray, O. Aumont, J. L. Dufresne, H. Le Treut, G. Madec, L. Terray, and J. C. Orr (2001), Potential impact of climate change on marine export production, Global Biogeochem. Cycles, 15(1), 81-99, doi:10.1029/1999GB001256. – reference: Koeller, P., et al. (2009), Basin-scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean, Science, 324(5928), 791-793, doi:10.1126/science.1170987. – reference: Henson, S. A., I. Robinson, J. T. Allen, and J. J. Waniek (2006), Effect of meteorological conditions on interannual variability in timing and magnitude of the spring bloom in the Irminger Basin, North Atlantic, Deep Sea Res., Part I, 53(10), 1601-1615, doi:10.1016/j.dsr.2006.07.009. – reference: Racault, M.-F., C. Le Quéré, E. Buitenhuis, S. Sathyendranath, and T. Platt (2012), Phytoplankton phenology in the global ocean, Ecol. Indic., 14(1), 152-163, doi:10.1016/j.ecolind.2011.07.010. – reference: Henson, S. A., and A. C. Thomas (2007), Interannual variability in timing of bloom initiation in the California Current System, J. Geophys. Res., 112, C08007, doi:10.1029/2006JC003960. – reference: Dandonneau, Y., P. Y. Deschamps, J. M. Nicolas, H. Loisel, J. Blanchot, Y. Montel, F. Thieuleux, and G. Bécu (2004), Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific, Deep Sea Res., Part II, 51(1-3), 303-318, doi:10.1016/j.dsr2.2003.07.018. – reference: Cushing, D. H. (1990), Plankton production and year-class strength in fish populations: An update of the match mismatch hypothesis, Adv. Mar. Biol., 26, 249-293, doi:10.1016/S0065-2881(08)60202-3. – reference: Lutz, M. J., K. Caldeira, R. B. Dunbar, and M. J. Behrenfeld (2007), Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean, J. Geophys. Res., 112, C10011, doi:10.1029/2006JC003706. – reference: Platt, T., G. N. White, L. Zhai, S. Sathyendranath, and S. Roy (2009), The phenology of phytoplankton blooms: Ecosystem indicators from remote sensing, Ecol. Modell., 220(21), 3057-3069, doi:10.1016/j.ecolmodel.2008.11.022. – reference: Deuser, W. G. (1986), Seasonal and interannual variations in deep-water particle fluxes in the Sargasso Sea and their relation to surface hydrography, Deep Sea Res., Part A, 33(2), 225-246, doi:10.1016/0198-0149(86)90120-2. – reference: Doney, S. C., D. M. Glover, S. J. McCue, and M. Fuentes (2003), Mesoscale variability of Sea-viewing Wide Field-of-view Sensor(SeaWiFS) satellite ocean color: Global patterns and spatial scales, J. Geophys. Res., 108(C2), 3024, doi:10.1029/2001JC000843. – reference: Henson, S. A., J. P. Dunne, and J. L. Sarmiento (2009), Decadal variability in North Atlantic phytoplankton blooms, J. Geophys. Res., 114, C04013, doi:10.1029/2008JC005139. – reference: Nerger, L., and W. W. Gregg (2008), Improving assimilation of SeaWiFS data by the application of bias correction with a local SEIK filter, J. Mar. Syst., 73(1-2), 87-102, doi:10.1016/j.jmarsys.2007.09.007. – reference: Fuentes-Yaco, C., P. A. Koeller, S. Sathyendranath, and T. Platt (2007), Shrimp (Pandalus borealis) growth and timing of the spring phytoplankton bloom on the Newfoundland-Labrador Shelf, Fish. Oceanogr., 16(2), 116-129, doi:10.1111/j.1365-2419.2006.00402.x. – reference: Platt, T., and S. Sathyendranath (2008), Ecological indicators for the pelagic zone of the ocean from remote sensing, Remote Sens. Environ., 112(8), 3426-3436, doi:10.1016/j.rse.2007.10.016. – reference: Platt, T., C. Fuentes-Yaco, and K. T. Frank (2003), Marine ecology: Spring algal bloom and larval fish survival, Nature, 423(6938), 398-399, doi:10.1038/423398b. – reference: Thomalla, S. J., N. Fauchereau, S. Swart, and P. M. S. Monteiro (2011), Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean, Biogeosciences, 8(10), 2849-2866, doi:10.5194/bg-8-2849-2011. – reference: Chiba, S., M. N. Aita, K. Tadokoro, T. Saino, H. Sugisaki, and K. Nakata (2008), From climate regime shifts to lower-trophic level phenology: Synthesis of recent progress in retrospective studies of the western North Pacific, Prog. Oceanogr., 77(2-3), 112-126, doi:10.1016/j.pocean.2008.03.004. – reference: Sarmiento, J. L., et al. (2004), Response of ocean ecosystems to climate warming, Global Biogeochem. Cycles, 18(3), GB3003, doi:10.1029/2003GB002134. – reference: Kahru, M., V. Brotas, M. Manzano-Sarabia, and B. G. Mitchell (2011), Are phytoplankton blooms occurring earlier in the Arctic?, Global Change Biol., 17, 1733-1739, doi:10.1111/j.1365-2486.2010.02312.x. – reference: Yamada, K., and J. Ishizaka (2006), Estimation of interdecadal change of spring bloom timing, in the case of the Japan Sea, Geophys. Res. Lett., 33, L02608, doi:10.1029/2005GL024792. – reference: Behrenfeld, M. J., R. T. O'Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss (2006), Climate-driven trends in contemporary ocean productivity, Nature, 444(7120), 752-755, doi:10.1038/nature05317. – reference: Edwards, M., and A. J. Richardson (2004), Impact of climate change on marine pelagic phenology and trophic mismatch, Nature, 430(7002), 881-884, doi:10.1038/nature02808. – reference: Martinez, E., D. Antoine, F. D'Ortenzio, and C. deBoyer Montégut (2011), Phytoplankton spring and fall blooms in the North Atlantic in the 1980s and 2000s, J. Geophys. Res., 116, C11029, doi:10.1029/2010JC006836. – reference: Steinacher, M., et al. (2010), Projected 21st century decrease in marine productivity: A multi-model analysis, Biogeosciences, 7(3), 979-1005, doi:10.5194/bg-7-979-2010. – reference: Burrows, M. T., et al. (2011), The pace of shifting climate in marine and terrestrial ecosystems, Science, 334(6056), 652-655, doi:10.1126/science.1210288. – reference: Sasaoka, K., S. Chiba, and T. Saino (2011), Climatic forcing and phytoplankton phenology over the subarctic North Pacific from 1998 to 2006, as observed from ocean color data, Geophys. Res. Lett., 38, L15609, doi:10.1029/2011GL048299. – reference: Winder, M., and J. E. Cloern (2010), The annual cycles of phytoplankton biomass, Philos. Trans. R. Soc. B, 365(1555), 3215-3226, doi:10.1098/rstb.2010.0125. – reference: Platt, T., S. Sathyendranath, G. N. White III, C. Fuentes-Yaco, L. Zhai, E. Devred, and C. Tang (2010), Diagnostic properties of phytoplankton time series from remote sensing, Estuaries Coasts, 33, 428-439, doi:10.1007/s12237-009-9161-0. – reference: Siegel, D. A., S. C. Doney, and J. A. Yoder (2002), The North Atlantic spring phytoplankton bloom and Sverdrup's critical depth hypothesis, Science, 296(5568), 730-733, doi:10.1126/science.1069174. – volume: 114 year: 2009 article-title: Decadal variability in North Atlantic phytoplankton blooms publication-title: J. Geophys. Res. – volume: 296 start-page: 730 issue: 5568 year: 2002 end-page: 733 article-title: The North Atlantic spring phytoplankton bloom and Sverdrup's critical depth hypothesis publication-title: Science – volume: 15 start-page: 81 issue: 1 year: 2001 end-page: 99 article-title: Potential impact of climate change on marine export production publication-title: Global Biogeochem. Cycles – volume: 365 start-page: 3215 issue: 1555 year: 2010 end-page: 3226 article-title: The annual cycles of phytoplankton biomass publication-title: Philos. Trans. R. Soc. B – volume: 116 year: 2011 article-title: Phytoplankton spring and fall blooms in the North Atlantic in the 1980s and 2000s publication-title: J. Geophys. Res. – volume: 108 issue: C2 year: 2003 article-title: Mesoscale variability of Sea‐viewing Wide Field‐of‐view Sensor(SeaWiFS) satellite ocean color: Global patterns and spatial scales publication-title: J. Geophys. Res. – volume: 77 start-page: 112 issue: 2–3 year: 2008 end-page: 126 article-title: From climate regime shifts to lower‐trophic level phenology: Synthesis of recent progress in retrospective studies of the western North Pacific publication-title: Prog. Oceanogr. – volume: 112 year: 2007 article-title: Interannual variability in timing of bloom initiation in the California Current System publication-title: J. Geophys. Res. – volume: 33 start-page: 225 issue: 2 year: 1986 end-page: 246 article-title: Seasonal and interannual variations in deep‐water particle fluxes in the Sargasso Sea and their relation to surface hydrography publication-title: Deep Sea Res., Part A – volume: 8 start-page: 2849 issue: 10 year: 2011 end-page: 2866 article-title: Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean publication-title: Biogeosciences – volume: 423 start-page: 398 issue: 6938 year: 2003 end-page: 399 article-title: Marine ecology: Spring algal bloom and larval fish survival publication-title: Nature – volume: 33 year: 2006 article-title: Estimation of interdecadal change of spring bloom timing, in the case of the Japan Sea publication-title: Geophys. Res. Lett. – volume: 33 start-page: 428 year: 2010 end-page: 439 article-title: Diagnostic properties of phytoplankton time series from remote sensing publication-title: Estuaries Coasts – volume: 38 year: 2011 article-title: Climatic forcing and phytoplankton phenology over the subarctic North Pacific from 1998 to 2006, as observed from ocean color data publication-title: Geophys. Res. Lett. – volume: 16 start-page: 116 issue: 2 year: 2007 end-page: 129 article-title: Shrimp (Pandalus borealis) growth and timing of the spring phytoplankton bloom on the Newfoundland‐Labrador Shelf publication-title: Fish. Oceanogr. – volume: 14 start-page: 152 issue: 1 year: 2012 end-page: 163 article-title: Phytoplankton phenology in the global ocean publication-title: Ecol. Indic. – volume: 51 start-page: 303 issue: 1–3 year: 2004 end-page: 318 article-title: Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific publication-title: Deep Sea Res., Part II – volume: 26 start-page: 249 year: 1990 end-page: 293 article-title: Plankton production and year‐class strength in fish populations: An update of the match mismatch hypothesis publication-title: Adv. Mar. Biol. – volume: 7 start-page: 979 issue: 3 year: 2010 end-page: 1005 article-title: Projected 21st century decrease in marine productivity: A multi‐model analysis publication-title: Biogeosciences – volume: 18 issue: 3 year: 2004 article-title: Response of ocean ecosystems to climate warming publication-title: Global Biogeochem. Cycles – volume: 17 start-page: 1733 year: 2011 end-page: 1739 article-title: Are phytoplankton blooms occurring earlier in the Arctic? publication-title: Global Change Biol. – volume: 430 start-page: 881 issue: 7002 year: 2004 end-page: 884 article-title: Impact of climate change on marine pelagic phenology and trophic mismatch publication-title: Nature – volume: 334 start-page: 652 issue: 6056 year: 2011 end-page: 655 article-title: The pace of shifting climate in marine and terrestrial ecosystems publication-title: Science – volume: 324 start-page: 791 issue: 5928 year: 2009 end-page: 793 article-title: Basin‐scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean publication-title: Science – volume: 73 start-page: 87 issue: 1–2 year: 2008 end-page: 102 article-title: Improving assimilation of SeaWiFS data by the application of bias correction with a local SEIK filter publication-title: J. Mar. Syst. – volume: 112 year: 2007 article-title: Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean publication-title: J. Geophys. Res. – volume: 112 start-page: 3426 issue: 8 year: 2008 end-page: 3436 article-title: Ecological indicators for the pelagic zone of the ocean from remote sensing publication-title: Remote Sens. Environ. – volume: 444 start-page: 752 issue: 7120 year: 2006 end-page: 755 article-title: Climate‐driven trends in contemporary ocean productivity publication-title: Nature – volume: 220 start-page: 3057 issue: 21 year: 2009 end-page: 3069 article-title: The phenology of phytoplankton blooms: Ecosystem indicators from remote sensing publication-title: Ecol. Modell. – volume: 53 start-page: 1601 issue: 10 year: 2006 end-page: 1615 article-title: Effect of meteorological conditions on interannual variability in timing and magnitude of the spring bloom in the Irminger Basin, North Atlantic publication-title: Deep Sea Res., Part I – ident: e_1_2_6_16_1 doi: 10.1126/science.1170987 – ident: e_1_2_6_26_1 doi: 10.1029/2011GL048299 – ident: e_1_2_6_31_1 doi: 10.1029/2005GL024792 – ident: e_1_2_6_7_1 doi: 10.1016/j.dsr2.2003.07.018 – ident: e_1_2_6_19_1 doi: 10.1016/j.jmarsys.2007.09.007 – ident: e_1_2_6_24_1 doi: 10.1016/j.ecolind.2011.07.010 – ident: e_1_2_6_30_1 doi: 10.1098/rstb.2010.0125 – ident: e_1_2_6_11_1 doi: 10.1111/j.1365‐2419.2006.00402.x – ident: e_1_2_6_18_1 doi: 10.1029/2010JC006836 – ident: e_1_2_6_27_1 doi: 10.1126/science.1069174 – ident: e_1_2_6_28_1 doi: 10.5194/bg‐7‐979‐2010 – ident: e_1_2_6_9_1 doi: 10.1029/2001JC000843 – ident: e_1_2_6_15_1 doi: 10.1111/j.1365‐2486.2010.02312.x – ident: e_1_2_6_22_1 doi: 10.1016/j.ecolmodel.2008.11.022 – ident: e_1_2_6_14_1 doi: 10.1029/2008JC005139 – ident: e_1_2_6_29_1 doi: 10.5194/bg‐8‐2849‐2011 – ident: e_1_2_6_4_1 doi: 10.1126/science.1210288 – ident: e_1_2_6_5_1 doi: 10.1016/j.pocean.2008.03.004 – ident: e_1_2_6_21_1 doi: 10.1038/423398b – ident: e_1_2_6_17_1 doi: 10.1029/2006JC003706 – ident: e_1_2_6_13_1 doi: 10.1016/j.dsr.2006.07.009 – ident: e_1_2_6_10_1 doi: 10.1038/nature02808 – ident: e_1_2_6_6_1 doi: 10.1016/S0065‐2881(08)60202‐3 – ident: e_1_2_6_20_1 doi: 10.1016/j.rse.2007.10.016 – ident: e_1_2_6_25_1 doi: 10.1029/2003GB002134 – ident: e_1_2_6_3_1 doi: 10.1029/1999GB001256 – ident: e_1_2_6_12_1 doi: 10.1029/2006JC003960 – ident: e_1_2_6_8_1 doi: 10.1016/0198‐0149(86)90120‐2 – ident: e_1_2_6_2_1 doi: 10.1038/nature05317 – ident: e_1_2_6_23_1 doi: 10.1007/s12237‐009‐9161‐0 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000818449 |
Score | 2.3748982 |
Snippet | Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Anthropogenic factors biogeochemical model Biological oceanography Chemical oceanography Data processing Earth sciences Earth, ocean, space Exact sciences and technology Geobiology Geophysics Marine Marine ecosystems NOBM ocean color remote sensing Oceanography Phenology Phytoplankton phytoplankton phenology Pneumoviridae Remote sensing Seasonal variations seasonality metrics spring bloom Trophic levels Zooplankton |
Title | Mind the gap: The impact of missing data on the calculation of phytoplankton phenology metrics |
URI | https://api.istex.fr/ark:/67375/WNG-WK3PX13C-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JC008249 https://www.proquest.com/docview/1220612990 https://www.proquest.com/docview/1069201169 https://www.proquest.com/docview/1919962752 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgfUFIaHyJsDEZCXiBiNpx7JmXaVT7UNHKVDGtT1i2Y_OwkXRrJ_Hnc5e4oXugzzlHzt3l7nfn8x0h75T2QShf5S5itkpHkYOXC7lW2G-NBWsVXhQ-m8jTCzGelbOUcFukssqVTWwNddV4zJF_ZpyjNwbjeTC_yXFqFJ6uphEaD8kATPA-BF-Dr0eT82mfZcGGbaLFwJxJnWuuylT9PuQaAn_GxyP0gthKc80vDZDFf7BO0i6AVbGbcXEPhK5D2dYXHW-TJwlE0sNO6k_Jg1A_I4-_-2Dr1IH6Ofl5BtE2BXhHf9n5FwrqQLsbkbSJFISLOQKK9aG0qVsy2IFPs7yQBF6ybObXtr4CdEixEqxNwNPfOILLL16Qi-OjH6PTPA1TyD1APpnrQgaulI5VJYMQwlsRYuEqpR0P0XEVo9PcslJFgA0Vcy4MA8R-SiomvIvFS7JVN3V4RaizUgNQkNaXBYRn0UYIspz0otJCV1pm5OOKlcanTuM48OLatCfeXJt1xmfkfU897zps_IfuQyuVnsjeXmFVmirN5eTEXH4rzmesGJlpRvbuia1fwGWB7caGGdldydGkP3Zh_ulXRt72j0EceIBi69DcAc1QagRMUm-g0VjXDXrGM_Kp1ZGNX2XGJ9MRw6jv9eZd7ZBHuK6rPdwlW8vbu_AG8NDS7SWl_ws_TAUH |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N9gGEhPgpAmMYifEC0RrHsWUkhKBs69q1TNWm9YngODYPG0lZOwH_FH8jd0laugf6tudcrMR39n13_nwH8FJp64SyeZh5ylZpL0L0ci7UiuqtRc4YRReFhyPZOxH9STLZgD-LuzBEq1zsidVGnZeWcuQ7EefkjXHzfD_9EVLXKDpdXbTQqM1i4H7_xJBt9u7gE-p3m_O93eNuL2y6CoQWsY8MdSwdV0r7PJdOCGGNcD7OcqUz7nzGlfeZ5iZKlEf_mUdZ5joOgyAlVSRs5mMc9wa0RYyhTAvaH3dHR-NlVocKxIkKc_NI6lBzlTRs-w7XO-hseb9LXpdKd674wTap9BfxMs0MVePrnhpXQO8qdK58395duNOAVvahtrJ7sOGK-3D7s3WmaCpeP4AvQ4zuGcJJ9s1M3zI0P1bfwGSlZ2hMlJNgxEdlZVGJ4RfYpncYieAg83J6boozRKOMmGdVwp99p5ZfdvYQTq5lmh9BqygL9xhYZqRGYCKNTWIMB73xGNRl0opcC51rGcDrxVSmtqlsTg02ztPqhJ3rdHXiA9heSk_rih7_kXtVaWUpZC7OiAWnkvR0tJ-eDuKjSRR303EAW1fUtnyBy5jKm3UC2FzoMW12iFn6z54DeLF8jOqgAxtTuPISZTpSE0CTeo2MJh452hkP4E1lI2v_Ku3vj7sRRZlP1n_Vc7jZOx4epocHo8FTuEVj1LzHTWjNLy7dM8Ri82yrWQAMvl73mvsL079Cyg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NVkIICfFTZIxhJMYLRG0c15aREIJu3dayUlVM69OC49g8bEvK2gn41_jruEvS0j3Qtz3nYiW-s--78-c7gFdKWyeUzcLUU7ZKexGil3OhVlRvLXLGKLoofDSUB8eiP-lMNuDP4i4M0SoXe2K5UWeFpRx5K-KcvDFuni1f0yJGu70P0x8hdZCik9ZFO43KRAbu908M32bvD3dR1zuc9_a-dg_CusNAaBEHyVDH0nGltM8y6YQQ1gjn4zRTOuXOp1x5n2puoo7y6EuzKE1d22FApKSKhE19jOPegqbCqKjdgOanveFovMzwULE4UeJvHkkdaq46NfO-zXULHS_vd8kDUxnPFZ_YJPX-Io6mmaGafNVf4xoAXoXRpR_s3Yd7NYBlHyuLewAbLn8Id79YZ_K6-vUjOD3CSJ8htGTfzfQdQ1Nk1W1MVniGhkX5CUbcVFbkpRh-ga37iJEIDjIvpucmP0NkyoiFVib_2QW1_7Kzx3B8I9P8BBp5kbunwFIjNYIUaWwnxtDQG48BXiqtyLTQmZYBvFlMZWLrKufUbOM8KU_buU5WJz6AnaX0tKru8R-516VWlkLm8owYcaqTnAz3k5NBPJpEcTcZB7B9TW3LF7iMqdRZO4CthR6TereYJf9sO4CXy8eoDjq8MbkrrlCmLTWBNanXyGjilKOd8QDeljay9q-S_v64G1HEubn-q17AbVxryefD4eAZ3KEhKgrkFjTml1fuOcKyebpd2z-Dbze95P4CBqxG_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mind+the+gap%3A+The+impact+of+missing+data+on+the+calculation+of+phytoplankton+phenology+metrics&rft.jtitle=Journal+of+Geophysical+Research%3A+Oceans&rft.au=Cole%2C+Harriet&rft.au=Henson%2C+Stephanie&rft.au=Martin%2C+Adrian&rft.au=Yool%2C+Andrew&rft.date=2012-08-01&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=117&rft.issue=C8&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2012JC008249&rft.externalDBID=10.1029%252F2012JC008249&rft.externalDocID=JGRC12576 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |