Mind the gap: The impact of missing data on the calculation of phytoplankton phenology metrics

Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval surviv...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Oceans Vol. 117; no. C8
Main Authors Cole, Harriet, Henson, Stephanie, Martin, Adrian, Yool, Andrew
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.08.2012
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval survival with knock‐on effects at higher trophic levels. Interannual variability in phytoplankton bloom timing may also be used to monitor changes in the pelagic ecosystem that are either naturally or anthropogenically forced. Seasonality metrics that use satellite ocean color data have been developed to quantify the timing of phenological events which allow for objective comparisons between different regions and over long periods of time. However, satellite data sets are subject to frequent gaps due to clouds and atmospheric aerosols, or persistent data gaps in winter due to low sun angle. Here we quantify the impact of these gaps on determining the start and peak timing of phytoplankton blooms. We use the NASA Ocean Biogeochemical Model that assimilates SeaWiFS data as a gap‐free time series and derive an empirical relationship between the percentage of missing data and error in the phenology metric. Applied globally, we find that the majority of subpolar regions have typical errors of 30 days for the bloom initiation date and 15 days for the peak date. The errors introduced by intermittent data must be taken into account in phenological studies. Key Points Global maps of seasonality metrics and the associated uncertainty are presented Bloom start and peak date errors are 30 and 15 days respectively in most regions The error in bloom start date has a directional bias that changes with latitude
AbstractList Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval survival with knock‐on effects at higher trophic levels. Interannual variability in phytoplankton bloom timing may also be used to monitor changes in the pelagic ecosystem that are either naturally or anthropogenically forced. Seasonality metrics that use satellite ocean color data have been developed to quantify the timing of phenological events which allow for objective comparisons between different regions and over long periods of time. However, satellite data sets are subject to frequent gaps due to clouds and atmospheric aerosols, or persistent data gaps in winter due to low sun angle. Here we quantify the impact of these gaps on determining the start and peak timing of phytoplankton blooms. We use the NASA Ocean Biogeochemical Model that assimilates SeaWiFS data as a gap‐free time series and derive an empirical relationship between the percentage of missing data and error in the phenology metric. Applied globally, we find that the majority of subpolar regions have typical errors of 30 days for the bloom initiation date and 15 days for the peak date. The errors introduced by intermittent data must be taken into account in phenological studies. Key Points Global maps of seasonality metrics and the associated uncertainty are presented Bloom start and peak date errors are 30 and 15 days respectively in most regions The error in bloom start date has a directional bias that changes with latitude
Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval survival with knock-on effects at higher trophic levels. Interannual variability in phytoplankton bloom timing may also be used to monitor changes in the pelagic ecosystem that are either naturally or anthropogenically forced. Seasonality metrics that use satellite ocean color data have been developed to quantify the timing of phenological events which allow for objective comparisons between different regions and over long periods of time. However, satellite data sets are subject to frequent gaps due to clouds and atmospheric aerosols, or persistent data gaps in winter due to low sun angle. Here we quantify the impact of these gaps on determining the start and peak timing of phytoplankton blooms. We use the NASA Ocean Biogeochemical Model that assimilates SeaWiFS data as a gap-free time series and derive an empirical relationship between the percentage of missing data and error in the phenology metric. Applied globally, we find that the majority of subpolar regions have typical errors of 30 days for the bloom initiation date and 15 days for the peak date. The errors introduced by intermittent data must be taken into account in phenological studies.
Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval survival with knock-on effects at higher trophic levels. Interannual variability in phytoplankton bloom timing may also be used to monitor changes in the pelagic ecosystem that are either naturally or anthropogenically forced. Seasonality metrics that use satellite ocean color data have been developed to quantify the timing of phenological events which allow for objective comparisons between different regions and over long periods of time. However, satellite data sets are subject to frequent gaps due to clouds and atmospheric aerosols, or persistent data gaps in winter due to low sun angle. Here we quantify the impact of these gaps on determining the start and peak timing of phytoplankton blooms. We use the NASA Ocean Biogeochemical Model that assimilates SeaWiFS data as a gap-free time series and derive an empirical relationship between the percentage of missing data and error in the phenology metric. Applied globally, we find that the majority of subpolar regions have typical errors of 30 days for the bloom initiation date and 15 days for the peak date. The errors introduced by intermittent data must be taken into account in phenological studies. Key Points * Global maps of seasonality metrics and the associated uncertainty are presented * Bloom start and peak date errors are 30 and 15 days respectively in most regions * The error in bloom start date has a directional bias that changes with latitude
Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval survival with knock‐on effects at higher trophic levels. Interannual variability in phytoplankton bloom timing may also be used to monitor changes in the pelagic ecosystem that are either naturally or anthropogenically forced. Seasonality metrics that use satellite ocean color data have been developed to quantify the timing of phenological events which allow for objective comparisons between different regions and over long periods of time. However, satellite data sets are subject to frequent gaps due to clouds and atmospheric aerosols, or persistent data gaps in winter due to low sun angle. Here we quantify the impact of these gaps on determining the start and peak timing of phytoplankton blooms. We use the NASA Ocean Biogeochemical Model that assimilates SeaWiFS data as a gap‐free time series and derive an empirical relationship between the percentage of missing data and error in the phenology metric. Applied globally, we find that the majority of subpolar regions have typical errors of 30 days for the bloom initiation date and 15 days for the peak date. The errors introduced by intermittent data must be taken into account in phenological studies. Global maps of seasonality metrics and the associated uncertainty are presented Bloom start and peak date errors are 30 and 15 days respectively in most regions The error in bloom start date has a directional bias that changes with latitude
Author Henson, Stephanie
Yool, Andrew
Martin, Adrian
Cole, Harriet
Author_xml – sequence: 1
  givenname: Harriet
  surname: Cole
  fullname: Cole, Harriet
  email: harriet.cole@noc.soton.ac.uk, harriet.cole@noc.soton.ac.uk
  organization: Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
– sequence: 2
  givenname: Stephanie
  surname: Henson
  fullname: Henson, Stephanie
  organization: National Oceanography Centre, University of Southampton, Southampton, UK
– sequence: 3
  givenname: Adrian
  surname: Martin
  fullname: Martin, Adrian
  organization: National Oceanography Centre, University of Southampton, Southampton, UK
– sequence: 4
  givenname: Andrew
  surname: Yool
  fullname: Yool, Andrew
  organization: National Oceanography Centre, University of Southampton, Southampton, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26370360$$DView record in Pascal Francis
BookMark eNqFkV1vFCEUhompiWvtnT9gEmPihWPhwEDxzkx0--VHmpp6JWEY2KWdHUZg0-6_l3arMU3Uc8OBPO85h_c8RTtjGC1Czwl-QzDIfcAEjluMD4DJR2gGpOE1AIYdNMOEHdQYQDxBeyld4hKs4QyTGfr-0Y99lZe2WujpbXVeEr-atMlVcNXKp-THRdXrrKsw3mFGD2Y96OzLvSDTcpPDNOjxKpeHaWnHMITFplrZHL1Jz9Bjp4dk9-7PXfT1w_vz9rA-_Tw_at-d1qbBgteScgtCSNf33DLGjGbW0a4XsgPrOhDOdRI0aYTDWPSk6yy2WDLBBWGmc3QXvdrWnWL4sbYpqzK7sUMZzIZ1UkQSKTmIBv6PYi6Ll4TLgr54gF6GdRzLRxQp1nICUuJCvbyndCruuKhH45Oaol_puFHAqcCU33Kw5UwMKUXrlPH5zsgctR9KY3W7SPXnIovo9QPRr7p_wekWv_aD3fyTVcfzs5ZAI3hR1VuVT9ne_FbpeKW4oKJRF5_m6uKEfvlGaKvO6E8dybwC
CitedBy_id crossref_primary_10_5194_os_17_1527_2021
crossref_primary_10_1080_07900627_2023_2279961
crossref_primary_10_3390_rs12162662
crossref_primary_10_1109_JSTARS_2016_2625813
crossref_primary_10_1016_j_dsr_2014_05_009
crossref_primary_10_1016_j_hal_2017_05_005
crossref_primary_10_5194_bg_18_25_2021
crossref_primary_10_7780_kjrs_2025_41_1_5
crossref_primary_10_1134_S0001437024700929
crossref_primary_10_3389_fmars_2021_623856
crossref_primary_10_1016_j_pocean_2023_103176
crossref_primary_10_5194_bg_10_4357_2013
crossref_primary_10_1002_2014GB004919
crossref_primary_10_1002_2014JC010323
crossref_primary_10_1016_j_rse_2015_01_019
crossref_primary_10_5194_bg_15_4431_2018
crossref_primary_10_1016_j_scitotenv_2023_163421
crossref_primary_10_3354_meps13276
crossref_primary_10_1016_j_oceano_2016_04_004
crossref_primary_10_3389_fmars_2022_912865
crossref_primary_10_1002_jgrc_20167
crossref_primary_10_1002_2014GL059707
crossref_primary_10_3389_frsen_2022_882418
crossref_primary_10_1016_j_rse_2017_06_011
crossref_primary_10_1016_j_scitotenv_2022_154255
crossref_primary_10_1029_2019JC015331
crossref_primary_10_1038_s41467_024_50381_2
crossref_primary_10_1093_icesjms_fsv069
crossref_primary_10_1029_2020JC016387
crossref_primary_10_1016_j_atmosres_2019_104812
crossref_primary_10_5194_bg_12_3641_2015
crossref_primary_10_1016_j_ecolind_2013_10_008
crossref_primary_10_5194_bg_13_4959_2016
crossref_primary_10_1016_j_csr_2022_104685
crossref_primary_10_1016_j_pocean_2018_06_010
crossref_primary_10_1038_s41598_022_22087_2
crossref_primary_10_1007_s00300_017_2095_2
crossref_primary_10_3389_fmars_2022_968470
crossref_primary_10_1016_j_rse_2014_11_021
crossref_primary_10_1093_mollus_eyu093
crossref_primary_10_3389_fmars_2021_669951
crossref_primary_10_3390_rs13142727
crossref_primary_10_1016_j_pocean_2024_103315
crossref_primary_10_1016_j_scitotenv_2021_151253
crossref_primary_10_1093_icesjms_fsv016
crossref_primary_10_5194_bg_20_4165_2023
crossref_primary_10_1029_2018GL079968
crossref_primary_10_1016_j_rse_2014_05_016
crossref_primary_10_1007_s00484_015_1036_4
crossref_primary_10_2139_ssrn_4107527
crossref_primary_10_1038_s41467_024_52673_z
crossref_primary_10_1021_acs_est_8b06887
crossref_primary_10_3390_rs15030687
crossref_primary_10_5194_essd_14_2639_2022
crossref_primary_10_1016_j_jag_2024_104270
crossref_primary_10_1016_j_rse_2023_113885
crossref_primary_10_3389_fmars_2020_00209
crossref_primary_10_1002_2014GL059608
crossref_primary_10_1525_elementa_240
crossref_primary_10_1016_j_pocean_2021_102655
crossref_primary_10_1111_gcb_13886
crossref_primary_10_1093_icesjms_fsv006
crossref_primary_10_1002_jgrd_50541
crossref_primary_10_1016_j_ecolind_2022_109435
crossref_primary_10_1093_icesjms_fsu239
crossref_primary_10_1111_geb_12717
crossref_primary_10_3390_rs13204035
crossref_primary_10_3390_rs13040675
crossref_primary_10_1016_j_rse_2013_12_019
crossref_primary_10_18307_2025_0101
crossref_primary_10_1002_2014JC010330
crossref_primary_10_1002_2017GL074359
crossref_primary_10_5194_bg_15_613_2018
crossref_primary_10_1016_j_ecss_2020_107070
crossref_primary_10_1002_2015JC011167
crossref_primary_10_1111_gcb_12352
crossref_primary_10_3390_environments7100077
Cites_doi 10.1126/science.1170987
10.1029/2011GL048299
10.1029/2005GL024792
10.1016/j.dsr2.2003.07.018
10.1016/j.jmarsys.2007.09.007
10.1016/j.ecolind.2011.07.010
10.1098/rstb.2010.0125
10.1111/j.1365‐2419.2006.00402.x
10.1029/2010JC006836
10.1126/science.1069174
10.5194/bg‐7‐979‐2010
10.1029/2001JC000843
10.1111/j.1365‐2486.2010.02312.x
10.1016/j.ecolmodel.2008.11.022
10.1029/2008JC005139
10.5194/bg‐8‐2849‐2011
10.1126/science.1210288
10.1016/j.pocean.2008.03.004
10.1038/423398b
10.1029/2006JC003706
10.1016/j.dsr.2006.07.009
10.1038/nature02808
10.1016/S0065‐2881(08)60202‐3
10.1016/j.rse.2007.10.016
10.1029/2003GB002134
10.1029/1999GB001256
10.1029/2006JC003960
10.1016/0198‐0149(86)90120‐2
10.1038/nature05317
10.1007/s12237‐009‐9161‐0
ContentType Journal Article
Copyright 2012. American Geophysical Union. All Rights Reserved.
2015 INIST-CNRS
Copyright American Geophysical Union 2012
Copyright_xml – notice: 2012. American Geophysical Union. All Rights Reserved.
– notice: 2015 INIST-CNRS
– notice: Copyright American Geophysical Union 2012
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7TG
7TN
7XB
88I
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
H95
M7N
DOI 10.1029/2012JC008249
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9291
EndPage n/a
ExternalDocumentID 2827313441
26370360
10_1029_2012JC008249
JGRC12576
ark_67375_WNG_WK3PX13C_R
Genre article
Feature
GrantInformation_xml – fundername: Natural Environment Research Council
  funderid: NE/I528626/1; NE/G013055/1
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
IQODW
05W
0R~
33P
3V.
50Y
52M
702
7TG
7TN
7XB
8-1
8CJ
8FK
AAESR
AASGY
AAZKR
ABPVW
ACGOD
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEUYN
AEYWJ
AFKRA
AFRAH
AIURR
ALVPJ
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BMXJE
CCPQU
D1J
D1K
DPXWK
F1W
FEDTE
H96
HGLYW
HVGLF
HZ~
K6-
KL.
L.G
LEEKS
LK5
M7R
MY~
O9-
P2W
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PROAC
PYCSY
Q9U
R.K
SUPJJ
WBKPD
H95
M7N
ID FETCH-LOGICAL-c5076-936e2779fdd6e444ca4ef3bd79b2efb27ffb92a157f007d1bbe0e09476714cbf3
IEDL.DBID BENPR
ISSN 0148-0227
2169-9275
IngestDate Fri Jul 11 01:49:21 EDT 2025
Fri Jul 11 05:51:17 EDT 2025
Mon Jun 30 15:24:20 EDT 2025
Mon Jul 21 09:14:25 EDT 2025
Tue Jul 01 01:55:55 EDT 2025
Thu Apr 24 22:57:46 EDT 2025
Wed Jan 22 16:27:46 EST 2025
Wed Oct 30 09:49:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue C8
Keywords color
aerosols
clouds
annual variations
Winter
Trophic level
carbon
phytoplankton
plankton
export
models
NASA
Time series
zooplankton
Satellite observation
Subpolar zone
Sun
Interannual variation
Missing data
Phenology
ecosystems
Timing
SeaStar satellite
seasonal variations
errors
Comparative study
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5076-936e2779fdd6e444ca4ef3bd79b2efb27ffb92a157f007d1bbe0e09476714cbf3
Notes istex:65BFED0D87423B96943AC24DB65E26FDE5126B9D
ArticleID:2012JC008249
ark:/67375/WNG-WK3PX13C-R
Natural Environment Research Council - No. NE/I528626/1; No. NE/G013055/1
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1220612990
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_1919962752
proquest_miscellaneous_1069201169
proquest_journals_1220612990
pascalfrancis_primary_26370360
crossref_citationtrail_10_1029_2012JC008249
crossref_primary_10_1029_2012JC008249
wiley_primary_10_1029_2012JC008249_JGRC12576
istex_primary_ark_67375_WNG_WK3PX13C_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2012
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: August 2012
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research: Oceans
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Yamada, K., and J. Ishizaka (2006), Estimation of interdecadal change of spring bloom timing, in the case of the Japan Sea, Geophys. Res. Lett., 33, L02608, doi:10.1029/2005GL024792.
Henson, S. A., J. P. Dunne, and J. L. Sarmiento (2009), Decadal variability in North Atlantic phytoplankton blooms, J. Geophys. Res., 114, C04013, doi:10.1029/2008JC005139.
Platt, T., G. N. White, L. Zhai, S. Sathyendranath, and S. Roy (2009), The phenology of phytoplankton blooms: Ecosystem indicators from remote sensing, Ecol. Modell., 220(21), 3057-3069, doi:10.1016/j.ecolmodel.2008.11.022.
Steinacher, M., et al. (2010), Projected 21st century decrease in marine productivity: A multi-model analysis, Biogeosciences, 7(3), 979-1005, doi:10.5194/bg-7-979-2010.
Henson, S. A., I. Robinson, J. T. Allen, and J. J. Waniek (2006), Effect of meteorological conditions on interannual variability in timing and magnitude of the spring bloom in the Irminger Basin, North Atlantic, Deep Sea Res., Part I, 53(10), 1601-1615, doi:10.1016/j.dsr.2006.07.009.
Platt, T., C. Fuentes-Yaco, and K. T. Frank (2003), Marine ecology: Spring algal bloom and larval fish survival, Nature, 423(6938), 398-399, doi:10.1038/423398b.
Lutz, M. J., K. Caldeira, R. B. Dunbar, and M. J. Behrenfeld (2007), Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean, J. Geophys. Res., 112, C10011, doi:10.1029/2006JC003706.
Thomalla, S. J., N. Fauchereau, S. Swart, and P. M. S. Monteiro (2011), Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean, Biogeosciences, 8(10), 2849-2866, doi:10.5194/bg-8-2849-2011.
Platt, T., and S. Sathyendranath (2008), Ecological indicators for the pelagic zone of the ocean from remote sensing, Remote Sens. Environ., 112(8), 3426-3436, doi:10.1016/j.rse.2007.10.016.
Kahru, M., V. Brotas, M. Manzano-Sarabia, and B. G. Mitchell (2011), Are phytoplankton blooms occurring earlier in the Arctic?, Global Change Biol., 17, 1733-1739, doi:10.1111/j.1365-2486.2010.02312.x.
Fuentes-Yaco, C., P. A. Koeller, S. Sathyendranath, and T. Platt (2007), Shrimp (Pandalus borealis) growth and timing of the spring phytoplankton bloom on the Newfoundland-Labrador Shelf, Fish. Oceanogr., 16(2), 116-129, doi:10.1111/j.1365-2419.2006.00402.x.
Sasaoka, K., S. Chiba, and T. Saino (2011), Climatic forcing and phytoplankton phenology over the subarctic North Pacific from 1998 to 2006, as observed from ocean color data, Geophys. Res. Lett., 38, L15609, doi:10.1029/2011GL048299.
Dandonneau, Y., P. Y. Deschamps, J. M. Nicolas, H. Loisel, J. Blanchot, Y. Montel, F. Thieuleux, and G. Bécu (2004), Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific, Deep Sea Res., Part II, 51(1-3), 303-318, doi:10.1016/j.dsr2.2003.07.018.
Deuser, W. G. (1986), Seasonal and interannual variations in deep-water particle fluxes in the Sargasso Sea and their relation to surface hydrography, Deep Sea Res., Part A, 33(2), 225-246, doi:10.1016/0198-0149(86)90120-2.
Platt, T., S. Sathyendranath, G. N. White III, C. Fuentes-Yaco, L. Zhai, E. Devred, and C. Tang (2010), Diagnostic properties of phytoplankton time series from remote sensing, Estuaries Coasts, 33, 428-439, doi:10.1007/s12237-009-9161-0.
Henson, S. A., and A. C. Thomas (2007), Interannual variability in timing of bloom initiation in the California Current System, J. Geophys. Res., 112, C08007, doi:10.1029/2006JC003960.
Sarmiento, J. L., et al. (2004), Response of ocean ecosystems to climate warming, Global Biogeochem. Cycles, 18(3), GB3003, doi:10.1029/2003GB002134.
Bopp, L., P. Monfray, O. Aumont, J. L. Dufresne, H. Le Treut, G. Madec, L. Terray, and J. C. Orr (2001), Potential impact of climate change on marine export production, Global Biogeochem. Cycles, 15(1), 81-99, doi:10.1029/1999GB001256.
Cushing, D. H. (1990), Plankton production and year-class strength in fish populations: An update of the match mismatch hypothesis, Adv. Mar. Biol., 26, 249-293, doi:10.1016/S0065-2881(08)60202-3.
Doney, S. C., D. M. Glover, S. J. McCue, and M. Fuentes (2003), Mesoscale variability of Sea-viewing Wide Field-of-view Sensor(SeaWiFS) satellite ocean color: Global patterns and spatial scales, J. Geophys. Res., 108(C2), 3024, doi:10.1029/2001JC000843.
Nerger, L., and W. W. Gregg (2008), Improving assimilation of SeaWiFS data by the application of bias correction with a local SEIK filter, J. Mar. Syst., 73(1-2), 87-102, doi:10.1016/j.jmarsys.2007.09.007.
Behrenfeld, M. J., R. T. O'Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss (2006), Climate-driven trends in contemporary ocean productivity, Nature, 444(7120), 752-755, doi:10.1038/nature05317.
Winder, M., and J. E. Cloern (2010), The annual cycles of phytoplankton biomass, Philos. Trans. R. Soc. B, 365(1555), 3215-3226, doi:10.1098/rstb.2010.0125.
Burrows, M. T., et al. (2011), The pace of shifting climate in marine and terrestrial ecosystems, Science, 334(6056), 652-655, doi:10.1126/science.1210288.
Martinez, E., D. Antoine, F. D'Ortenzio, and C. deBoyer Montégut (2011), Phytoplankton spring and fall blooms in the North Atlantic in the 1980s and 2000s, J. Geophys. Res., 116, C11029, doi:10.1029/2010JC006836.
Siegel, D. A., S. C. Doney, and J. A. Yoder (2002), The North Atlantic spring phytoplankton bloom and Sverdrup's critical depth hypothesis, Science, 296(5568), 730-733, doi:10.1126/science.1069174.
Chiba, S., M. N. Aita, K. Tadokoro, T. Saino, H. Sugisaki, and K. Nakata (2008), From climate regime shifts to lower-trophic level phenology: Synthesis of recent progress in retrospective studies of the western North Pacific, Prog. Oceanogr., 77(2-3), 112-126, doi:10.1016/j.pocean.2008.03.004.
Koeller, P., et al. (2009), Basin-scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean, Science, 324(5928), 791-793, doi:10.1126/science.1170987.
Racault, M.-F., C. Le Quéré, E. Buitenhuis, S. Sathyendranath, and T. Platt (2012), Phytoplankton phenology in the global ocean, Ecol. Indic., 14(1), 152-163, doi:10.1016/j.ecolind.2011.07.010.
Edwards, M., and A. J. Richardson (2004), Impact of climate change on marine pelagic phenology and trophic mismatch, Nature, 430(7002), 881-884, doi:10.1038/nature02808.
2011; 116
2010; 33
2011; 334
2006; 53
2002; 296
1986; 33
2006; 33
2010; 365
2008; 77
2011; 17
2012; 14
2008; 73
2011; 38
2009; 114
2011; 8
2007; 16
2004; 430
2007; 112
2003; 108
2004; 51
1990; 26
2004; 18
2009; 220
2001; 15
2008; 112
2003; 423
2010; 7
2009; 324
2006; 444
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Bopp, L., P. Monfray, O. Aumont, J. L. Dufresne, H. Le Treut, G. Madec, L. Terray, and J. C. Orr (2001), Potential impact of climate change on marine export production, Global Biogeochem. Cycles, 15(1), 81-99, doi:10.1029/1999GB001256.
– reference: Koeller, P., et al. (2009), Basin-scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean, Science, 324(5928), 791-793, doi:10.1126/science.1170987.
– reference: Henson, S. A., I. Robinson, J. T. Allen, and J. J. Waniek (2006), Effect of meteorological conditions on interannual variability in timing and magnitude of the spring bloom in the Irminger Basin, North Atlantic, Deep Sea Res., Part I, 53(10), 1601-1615, doi:10.1016/j.dsr.2006.07.009.
– reference: Racault, M.-F., C. Le Quéré, E. Buitenhuis, S. Sathyendranath, and T. Platt (2012), Phytoplankton phenology in the global ocean, Ecol. Indic., 14(1), 152-163, doi:10.1016/j.ecolind.2011.07.010.
– reference: Henson, S. A., and A. C. Thomas (2007), Interannual variability in timing of bloom initiation in the California Current System, J. Geophys. Res., 112, C08007, doi:10.1029/2006JC003960.
– reference: Dandonneau, Y., P. Y. Deschamps, J. M. Nicolas, H. Loisel, J. Blanchot, Y. Montel, F. Thieuleux, and G. Bécu (2004), Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific, Deep Sea Res., Part II, 51(1-3), 303-318, doi:10.1016/j.dsr2.2003.07.018.
– reference: Cushing, D. H. (1990), Plankton production and year-class strength in fish populations: An update of the match mismatch hypothesis, Adv. Mar. Biol., 26, 249-293, doi:10.1016/S0065-2881(08)60202-3.
– reference: Lutz, M. J., K. Caldeira, R. B. Dunbar, and M. J. Behrenfeld (2007), Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean, J. Geophys. Res., 112, C10011, doi:10.1029/2006JC003706.
– reference: Platt, T., G. N. White, L. Zhai, S. Sathyendranath, and S. Roy (2009), The phenology of phytoplankton blooms: Ecosystem indicators from remote sensing, Ecol. Modell., 220(21), 3057-3069, doi:10.1016/j.ecolmodel.2008.11.022.
– reference: Deuser, W. G. (1986), Seasonal and interannual variations in deep-water particle fluxes in the Sargasso Sea and their relation to surface hydrography, Deep Sea Res., Part A, 33(2), 225-246, doi:10.1016/0198-0149(86)90120-2.
– reference: Doney, S. C., D. M. Glover, S. J. McCue, and M. Fuentes (2003), Mesoscale variability of Sea-viewing Wide Field-of-view Sensor(SeaWiFS) satellite ocean color: Global patterns and spatial scales, J. Geophys. Res., 108(C2), 3024, doi:10.1029/2001JC000843.
– reference: Henson, S. A., J. P. Dunne, and J. L. Sarmiento (2009), Decadal variability in North Atlantic phytoplankton blooms, J. Geophys. Res., 114, C04013, doi:10.1029/2008JC005139.
– reference: Nerger, L., and W. W. Gregg (2008), Improving assimilation of SeaWiFS data by the application of bias correction with a local SEIK filter, J. Mar. Syst., 73(1-2), 87-102, doi:10.1016/j.jmarsys.2007.09.007.
– reference: Fuentes-Yaco, C., P. A. Koeller, S. Sathyendranath, and T. Platt (2007), Shrimp (Pandalus borealis) growth and timing of the spring phytoplankton bloom on the Newfoundland-Labrador Shelf, Fish. Oceanogr., 16(2), 116-129, doi:10.1111/j.1365-2419.2006.00402.x.
– reference: Platt, T., and S. Sathyendranath (2008), Ecological indicators for the pelagic zone of the ocean from remote sensing, Remote Sens. Environ., 112(8), 3426-3436, doi:10.1016/j.rse.2007.10.016.
– reference: Platt, T., C. Fuentes-Yaco, and K. T. Frank (2003), Marine ecology: Spring algal bloom and larval fish survival, Nature, 423(6938), 398-399, doi:10.1038/423398b.
– reference: Thomalla, S. J., N. Fauchereau, S. Swart, and P. M. S. Monteiro (2011), Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean, Biogeosciences, 8(10), 2849-2866, doi:10.5194/bg-8-2849-2011.
– reference: Chiba, S., M. N. Aita, K. Tadokoro, T. Saino, H. Sugisaki, and K. Nakata (2008), From climate regime shifts to lower-trophic level phenology: Synthesis of recent progress in retrospective studies of the western North Pacific, Prog. Oceanogr., 77(2-3), 112-126, doi:10.1016/j.pocean.2008.03.004.
– reference: Sarmiento, J. L., et al. (2004), Response of ocean ecosystems to climate warming, Global Biogeochem. Cycles, 18(3), GB3003, doi:10.1029/2003GB002134.
– reference: Kahru, M., V. Brotas, M. Manzano-Sarabia, and B. G. Mitchell (2011), Are phytoplankton blooms occurring earlier in the Arctic?, Global Change Biol., 17, 1733-1739, doi:10.1111/j.1365-2486.2010.02312.x.
– reference: Yamada, K., and J. Ishizaka (2006), Estimation of interdecadal change of spring bloom timing, in the case of the Japan Sea, Geophys. Res. Lett., 33, L02608, doi:10.1029/2005GL024792.
– reference: Behrenfeld, M. J., R. T. O'Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss (2006), Climate-driven trends in contemporary ocean productivity, Nature, 444(7120), 752-755, doi:10.1038/nature05317.
– reference: Edwards, M., and A. J. Richardson (2004), Impact of climate change on marine pelagic phenology and trophic mismatch, Nature, 430(7002), 881-884, doi:10.1038/nature02808.
– reference: Martinez, E., D. Antoine, F. D'Ortenzio, and C. deBoyer Montégut (2011), Phytoplankton spring and fall blooms in the North Atlantic in the 1980s and 2000s, J. Geophys. Res., 116, C11029, doi:10.1029/2010JC006836.
– reference: Steinacher, M., et al. (2010), Projected 21st century decrease in marine productivity: A multi-model analysis, Biogeosciences, 7(3), 979-1005, doi:10.5194/bg-7-979-2010.
– reference: Burrows, M. T., et al. (2011), The pace of shifting climate in marine and terrestrial ecosystems, Science, 334(6056), 652-655, doi:10.1126/science.1210288.
– reference: Sasaoka, K., S. Chiba, and T. Saino (2011), Climatic forcing and phytoplankton phenology over the subarctic North Pacific from 1998 to 2006, as observed from ocean color data, Geophys. Res. Lett., 38, L15609, doi:10.1029/2011GL048299.
– reference: Winder, M., and J. E. Cloern (2010), The annual cycles of phytoplankton biomass, Philos. Trans. R. Soc. B, 365(1555), 3215-3226, doi:10.1098/rstb.2010.0125.
– reference: Platt, T., S. Sathyendranath, G. N. White III, C. Fuentes-Yaco, L. Zhai, E. Devred, and C. Tang (2010), Diagnostic properties of phytoplankton time series from remote sensing, Estuaries Coasts, 33, 428-439, doi:10.1007/s12237-009-9161-0.
– reference: Siegel, D. A., S. C. Doney, and J. A. Yoder (2002), The North Atlantic spring phytoplankton bloom and Sverdrup's critical depth hypothesis, Science, 296(5568), 730-733, doi:10.1126/science.1069174.
– volume: 114
  year: 2009
  article-title: Decadal variability in North Atlantic phytoplankton blooms
  publication-title: J. Geophys. Res.
– volume: 296
  start-page: 730
  issue: 5568
  year: 2002
  end-page: 733
  article-title: The North Atlantic spring phytoplankton bloom and Sverdrup's critical depth hypothesis
  publication-title: Science
– volume: 15
  start-page: 81
  issue: 1
  year: 2001
  end-page: 99
  article-title: Potential impact of climate change on marine export production
  publication-title: Global Biogeochem. Cycles
– volume: 365
  start-page: 3215
  issue: 1555
  year: 2010
  end-page: 3226
  article-title: The annual cycles of phytoplankton biomass
  publication-title: Philos. Trans. R. Soc. B
– volume: 116
  year: 2011
  article-title: Phytoplankton spring and fall blooms in the North Atlantic in the 1980s and 2000s
  publication-title: J. Geophys. Res.
– volume: 108
  issue: C2
  year: 2003
  article-title: Mesoscale variability of Sea‐viewing Wide Field‐of‐view Sensor(SeaWiFS) satellite ocean color: Global patterns and spatial scales
  publication-title: J. Geophys. Res.
– volume: 77
  start-page: 112
  issue: 2–3
  year: 2008
  end-page: 126
  article-title: From climate regime shifts to lower‐trophic level phenology: Synthesis of recent progress in retrospective studies of the western North Pacific
  publication-title: Prog. Oceanogr.
– volume: 112
  year: 2007
  article-title: Interannual variability in timing of bloom initiation in the California Current System
  publication-title: J. Geophys. Res.
– volume: 33
  start-page: 225
  issue: 2
  year: 1986
  end-page: 246
  article-title: Seasonal and interannual variations in deep‐water particle fluxes in the Sargasso Sea and their relation to surface hydrography
  publication-title: Deep Sea Res., Part A
– volume: 8
  start-page: 2849
  issue: 10
  year: 2011
  end-page: 2866
  article-title: Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean
  publication-title: Biogeosciences
– volume: 423
  start-page: 398
  issue: 6938
  year: 2003
  end-page: 399
  article-title: Marine ecology: Spring algal bloom and larval fish survival
  publication-title: Nature
– volume: 33
  year: 2006
  article-title: Estimation of interdecadal change of spring bloom timing, in the case of the Japan Sea
  publication-title: Geophys. Res. Lett.
– volume: 33
  start-page: 428
  year: 2010
  end-page: 439
  article-title: Diagnostic properties of phytoplankton time series from remote sensing
  publication-title: Estuaries Coasts
– volume: 38
  year: 2011
  article-title: Climatic forcing and phytoplankton phenology over the subarctic North Pacific from 1998 to 2006, as observed from ocean color data
  publication-title: Geophys. Res. Lett.
– volume: 16
  start-page: 116
  issue: 2
  year: 2007
  end-page: 129
  article-title: Shrimp (Pandalus borealis) growth and timing of the spring phytoplankton bloom on the Newfoundland‐Labrador Shelf
  publication-title: Fish. Oceanogr.
– volume: 14
  start-page: 152
  issue: 1
  year: 2012
  end-page: 163
  article-title: Phytoplankton phenology in the global ocean
  publication-title: Ecol. Indic.
– volume: 51
  start-page: 303
  issue: 1–3
  year: 2004
  end-page: 318
  article-title: Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific
  publication-title: Deep Sea Res., Part II
– volume: 26
  start-page: 249
  year: 1990
  end-page: 293
  article-title: Plankton production and year‐class strength in fish populations: An update of the match mismatch hypothesis
  publication-title: Adv. Mar. Biol.
– volume: 7
  start-page: 979
  issue: 3
  year: 2010
  end-page: 1005
  article-title: Projected 21st century decrease in marine productivity: A multi‐model analysis
  publication-title: Biogeosciences
– volume: 18
  issue: 3
  year: 2004
  article-title: Response of ocean ecosystems to climate warming
  publication-title: Global Biogeochem. Cycles
– volume: 17
  start-page: 1733
  year: 2011
  end-page: 1739
  article-title: Are phytoplankton blooms occurring earlier in the Arctic?
  publication-title: Global Change Biol.
– volume: 430
  start-page: 881
  issue: 7002
  year: 2004
  end-page: 884
  article-title: Impact of climate change on marine pelagic phenology and trophic mismatch
  publication-title: Nature
– volume: 334
  start-page: 652
  issue: 6056
  year: 2011
  end-page: 655
  article-title: The pace of shifting climate in marine and terrestrial ecosystems
  publication-title: Science
– volume: 324
  start-page: 791
  issue: 5928
  year: 2009
  end-page: 793
  article-title: Basin‐scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean
  publication-title: Science
– volume: 73
  start-page: 87
  issue: 1–2
  year: 2008
  end-page: 102
  article-title: Improving assimilation of SeaWiFS data by the application of bias correction with a local SEIK filter
  publication-title: J. Mar. Syst.
– volume: 112
  year: 2007
  article-title: Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean
  publication-title: J. Geophys. Res.
– volume: 112
  start-page: 3426
  issue: 8
  year: 2008
  end-page: 3436
  article-title: Ecological indicators for the pelagic zone of the ocean from remote sensing
  publication-title: Remote Sens. Environ.
– volume: 444
  start-page: 752
  issue: 7120
  year: 2006
  end-page: 755
  article-title: Climate‐driven trends in contemporary ocean productivity
  publication-title: Nature
– volume: 220
  start-page: 3057
  issue: 21
  year: 2009
  end-page: 3069
  article-title: The phenology of phytoplankton blooms: Ecosystem indicators from remote sensing
  publication-title: Ecol. Modell.
– volume: 53
  start-page: 1601
  issue: 10
  year: 2006
  end-page: 1615
  article-title: Effect of meteorological conditions on interannual variability in timing and magnitude of the spring bloom in the Irminger Basin, North Atlantic
  publication-title: Deep Sea Res., Part I
– ident: e_1_2_6_16_1
  doi: 10.1126/science.1170987
– ident: e_1_2_6_26_1
  doi: 10.1029/2011GL048299
– ident: e_1_2_6_31_1
  doi: 10.1029/2005GL024792
– ident: e_1_2_6_7_1
  doi: 10.1016/j.dsr2.2003.07.018
– ident: e_1_2_6_19_1
  doi: 10.1016/j.jmarsys.2007.09.007
– ident: e_1_2_6_24_1
  doi: 10.1016/j.ecolind.2011.07.010
– ident: e_1_2_6_30_1
  doi: 10.1098/rstb.2010.0125
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1365‐2419.2006.00402.x
– ident: e_1_2_6_18_1
  doi: 10.1029/2010JC006836
– ident: e_1_2_6_27_1
  doi: 10.1126/science.1069174
– ident: e_1_2_6_28_1
  doi: 10.5194/bg‐7‐979‐2010
– ident: e_1_2_6_9_1
  doi: 10.1029/2001JC000843
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1365‐2486.2010.02312.x
– ident: e_1_2_6_22_1
  doi: 10.1016/j.ecolmodel.2008.11.022
– ident: e_1_2_6_14_1
  doi: 10.1029/2008JC005139
– ident: e_1_2_6_29_1
  doi: 10.5194/bg‐8‐2849‐2011
– ident: e_1_2_6_4_1
  doi: 10.1126/science.1210288
– ident: e_1_2_6_5_1
  doi: 10.1016/j.pocean.2008.03.004
– ident: e_1_2_6_21_1
  doi: 10.1038/423398b
– ident: e_1_2_6_17_1
  doi: 10.1029/2006JC003706
– ident: e_1_2_6_13_1
  doi: 10.1016/j.dsr.2006.07.009
– ident: e_1_2_6_10_1
  doi: 10.1038/nature02808
– ident: e_1_2_6_6_1
  doi: 10.1016/S0065‐2881(08)60202‐3
– ident: e_1_2_6_20_1
  doi: 10.1016/j.rse.2007.10.016
– ident: e_1_2_6_25_1
  doi: 10.1029/2003GB002134
– ident: e_1_2_6_3_1
  doi: 10.1029/1999GB001256
– ident: e_1_2_6_12_1
  doi: 10.1029/2006JC003960
– ident: e_1_2_6_8_1
  doi: 10.1016/0198‐0149(86)90120‐2
– ident: e_1_2_6_2_1
  doi: 10.1038/nature05317
– ident: e_1_2_6_23_1
  doi: 10.1007/s12237‐009‐9161‐0
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000818449
Score 2.3748982
Snippet Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Anthropogenic factors
biogeochemical model
Biological oceanography
Chemical oceanography
Data processing
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geobiology
Geophysics
Marine
Marine ecosystems
NOBM
ocean color remote sensing
Oceanography
Phenology
Phytoplankton
phytoplankton phenology
Pneumoviridae
Remote sensing
Seasonal variations
seasonality metrics
spring bloom
Trophic levels
Zooplankton
Title Mind the gap: The impact of missing data on the calculation of phytoplankton phenology metrics
URI https://api.istex.fr/ark:/67375/WNG-WK3PX13C-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JC008249
https://www.proquest.com/docview/1220612990
https://www.proquest.com/docview/1069201169
https://www.proquest.com/docview/1919962752
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgfUFIaHyJsDEZCXiBiNpx7JmXaVT7UNHKVDGtT1i2Y_OwkXRrJ_Hnc5e4oXugzzlHzt3l7nfn8x0h75T2QShf5S5itkpHkYOXC7lW2G-NBWsVXhQ-m8jTCzGelbOUcFukssqVTWwNddV4zJF_ZpyjNwbjeTC_yXFqFJ6uphEaD8kATPA-BF-Dr0eT82mfZcGGbaLFwJxJnWuuylT9PuQaAn_GxyP0gthKc80vDZDFf7BO0i6AVbGbcXEPhK5D2dYXHW-TJwlE0sNO6k_Jg1A_I4-_-2Dr1IH6Ofl5BtE2BXhHf9n5FwrqQLsbkbSJFISLOQKK9aG0qVsy2IFPs7yQBF6ybObXtr4CdEixEqxNwNPfOILLL16Qi-OjH6PTPA1TyD1APpnrQgaulI5VJYMQwlsRYuEqpR0P0XEVo9PcslJFgA0Vcy4MA8R-SiomvIvFS7JVN3V4RaizUgNQkNaXBYRn0UYIspz0otJCV1pm5OOKlcanTuM48OLatCfeXJt1xmfkfU897zps_IfuQyuVnsjeXmFVmirN5eTEXH4rzmesGJlpRvbuia1fwGWB7caGGdldydGkP3Zh_ulXRt72j0EceIBi69DcAc1QagRMUm-g0VjXDXrGM_Kp1ZGNX2XGJ9MRw6jv9eZd7ZBHuK6rPdwlW8vbu_AG8NDS7SWl_ws_TAUH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N9gGEhPgpAmMYifEC0RrHsWUkhKBs69q1TNWm9YngODYPG0lZOwH_FH8jd0laugf6tudcrMR39n13_nwH8FJp64SyeZh5ylZpL0L0ci7UiuqtRc4YRReFhyPZOxH9STLZgD-LuzBEq1zsidVGnZeWcuQ7EefkjXHzfD_9EVLXKDpdXbTQqM1i4H7_xJBt9u7gE-p3m_O93eNuL2y6CoQWsY8MdSwdV0r7PJdOCGGNcD7OcqUz7nzGlfeZ5iZKlEf_mUdZ5joOgyAlVSRs5mMc9wa0RYyhTAvaH3dHR-NlVocKxIkKc_NI6lBzlTRs-w7XO-hseb9LXpdKd674wTap9BfxMs0MVePrnhpXQO8qdK58395duNOAVvahtrJ7sOGK-3D7s3WmaCpeP4AvQ4zuGcJJ9s1M3zI0P1bfwGSlZ2hMlJNgxEdlZVGJ4RfYpncYieAg83J6boozRKOMmGdVwp99p5ZfdvYQTq5lmh9BqygL9xhYZqRGYCKNTWIMB73xGNRl0opcC51rGcDrxVSmtqlsTg02ztPqhJ3rdHXiA9heSk_rih7_kXtVaWUpZC7OiAWnkvR0tJ-eDuKjSRR303EAW1fUtnyBy5jKm3UC2FzoMW12iFn6z54DeLF8jOqgAxtTuPISZTpSE0CTeo2MJh452hkP4E1lI2v_Ku3vj7sRRZlP1n_Vc7jZOx4epocHo8FTuEVj1LzHTWjNLy7dM8Ri82yrWQAMvl73mvsL079Cyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NVkIICfFTZIxhJMYLRG0c15aREIJu3dayUlVM69OC49g8bEvK2gn41_jruEvS0j3Qtz3nYiW-s--78-c7gFdKWyeUzcLUU7ZKexGil3OhVlRvLXLGKLoofDSUB8eiP-lMNuDP4i4M0SoXe2K5UWeFpRx5K-KcvDFuni1f0yJGu70P0x8hdZCik9ZFO43KRAbu908M32bvD3dR1zuc9_a-dg_CusNAaBEHyVDH0nGltM8y6YQQ1gjn4zRTOuXOp1x5n2puoo7y6EuzKE1d22FApKSKhE19jOPegqbCqKjdgOanveFovMzwULE4UeJvHkkdaq46NfO-zXULHS_vd8kDUxnPFZ_YJPX-Io6mmaGafNVf4xoAXoXRpR_s3Yd7NYBlHyuLewAbLn8Id79YZ_K6-vUjOD3CSJ8htGTfzfQdQ1Nk1W1MVniGhkX5CUbcVFbkpRh-ga37iJEIDjIvpucmP0NkyoiFVib_2QW1_7Kzx3B8I9P8BBp5kbunwFIjNYIUaWwnxtDQG48BXiqtyLTQmZYBvFlMZWLrKufUbOM8KU_buU5WJz6AnaX0tKru8R-516VWlkLm8owYcaqTnAz3k5NBPJpEcTcZB7B9TW3LF7iMqdRZO4CthR6TereYJf9sO4CXy8eoDjq8MbkrrlCmLTWBNanXyGjilKOd8QDeljay9q-S_v64G1HEubn-q17AbVxryefD4eAZ3KEhKgrkFjTml1fuOcKyebpd2z-Dbze95P4CBqxG_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mind+the+gap%3A+The+impact+of+missing+data+on+the+calculation+of+phytoplankton+phenology+metrics&rft.jtitle=Journal+of+Geophysical+Research%3A+Oceans&rft.au=Cole%2C+Harriet&rft.au=Henson%2C+Stephanie&rft.au=Martin%2C+Adrian&rft.au=Yool%2C+Andrew&rft.date=2012-08-01&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=117&rft.issue=C8&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2012JC008249&rft.externalDBID=10.1029%252F2012JC008249&rft.externalDocID=JGRC12576
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon