Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering
In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibin...
Saved in:
Published in | Journal of biomedical materials research. Part A Vol. 101; no. 12; pp. 3482 - 3492 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, NJ
Blackwell Publishing Ltd
01.12.2013
Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze‐drying, and subsequent cross‐linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physicochemical properties of scaffolds including tensile strength, swelling behavior, and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices, cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re‐epithelization—a prerequisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 3482–3492, 2013. |
---|---|
AbstractList | In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze‐drying, and subsequent cross‐linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physicochemical properties of scaffolds including tensile strength, swelling behavior, and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices, cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re‐epithelization—a prerequisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 3482–3492, 2013. In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze‐drying, and subsequent cross‐linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physicochemical properties of scaffolds including tensile strength, swelling behavior, and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices, cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re‐epithelization—a prerequisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 3482–3492, 2013. In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze-drying, and subsequent cross-linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physicochemical properties of scaffolds including tensile strength, swelling behavior, and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices, cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re-epithelization-a prerequisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering. |
Author | Sarkar, Soumi Dey Farrugia, Brooke L. Dhara, Santanu Dargaville, Tim R. |
Author_xml | – sequence: 1 givenname: Soumi Dey surname: Sarkar fullname: Sarkar, Soumi Dey organization: School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India – sequence: 2 givenname: Brooke L. surname: Farrugia fullname: Farrugia, Brooke L. organization: Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia – sequence: 3 givenname: Tim R. surname: Dargaville fullname: Dargaville, Tim R. organization: Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia – sequence: 4 givenname: Santanu surname: Dhara fullname: Dhara, Santanu email: sdhara@smst.iitkgp.ernet.in organization: School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27943226$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23606420$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkEtv1DAURi1URB-wYo-yQUKqMrUdP-JlGdFC1YeEipBgYTnO9dRtYhc7Uem_x-1Myw6x8l2c77u-ZxdthRgAobcELwjG9OC6Gxdm0TAh8Au0QzinNVOCbz3MTNUNVWIb7eZ8XWCBOX2FtmkjsGAU76Cfyys_xWxCbeMwmBWEKlvjXBz6XN356aoKJsSD0dsUne9SnHNlki0hsNOcoHIxVfnGh2ryOc9QQVj5AJB8WL1GL50ZMrzZvHvo29Gny-Xn-vTi-Mvy8LS2HEtcg-LKSkIJA0cc7oTpmeRtpwDaVlgmKfSWMeYc4cQ01si2t6RhVhCsbEebPfRh3Xub4q8Z8qRHny2UcwKU_2pS6jgjVOH_QJkkWMiWF3R_jZbLc07g9G3yo0n3mmD9IF4X8droR_GFfrcpnrsR-mf2yXQB3m8AUwQPLplgff7LScUaSkXh6Jq78wPc_2unPvl4dvi0vV6HfJ7g93PIpBstZCO5_n5-rNvl2eUP-bXVvPkDRmeswQ |
CitedBy_id | crossref_primary_10_1007_s00018_016_2252_8 crossref_primary_10_1016_j_foodhyd_2021_106633 crossref_primary_10_1007_s12015_022_10341_z crossref_primary_10_3390_ma8115413 crossref_primary_10_1007_s40846_023_00822_y crossref_primary_10_2139_ssrn_4153561 crossref_primary_10_1155_2017_8639898 crossref_primary_10_1016_j_ijpharm_2017_06_079 crossref_primary_10_1177_1534734619859214 crossref_primary_10_1016_j_msec_2016_12_069 crossref_primary_10_3390_app10144719 crossref_primary_10_1039_c3tb21123a crossref_primary_10_3109_1547691X_2016_1139642 crossref_primary_10_1002_mabi_202100352 crossref_primary_10_1007_s10856_014_5366_2 crossref_primary_10_1088_1758_5090_8_3_032001 crossref_primary_10_1016_j_ijbiomac_2017_08_140 crossref_primary_10_3390_molecules26092683 crossref_primary_10_1089_ten_teb_2013_0276 crossref_primary_10_1016_j_jobab_2021_01_002 crossref_primary_10_3390_md12115468 crossref_primary_10_1186_s40643_019_0243_y crossref_primary_10_1002_adhm_201801471 crossref_primary_10_1186_s11671_023_03880_y crossref_primary_10_3109_1547691X_2015_1045636 crossref_primary_10_1016_j_ijbiomac_2017_07_067 crossref_primary_10_1016_j_ejpb_2017_07_001 crossref_primary_10_1038_s41598_024_62926_y crossref_primary_10_1016_j_ijbiomac_2019_10_113 crossref_primary_10_3109_21691401_2015_1036999 crossref_primary_10_1016_j_eurpolymj_2020_110176 crossref_primary_10_1039_C7BM00174F crossref_primary_10_2174_1574888X13666180912142028 crossref_primary_10_1002_adhm_202202302 crossref_primary_10_1080_00914037_2020_1740993 crossref_primary_10_1002_term_1897 crossref_primary_10_1007_s13205_019_1624_9 crossref_primary_10_1021_acssuschemeng_2c05843 crossref_primary_10_1007_s10965_017_1286_4 crossref_primary_10_1016_j_ijbiomac_2016_04_032 crossref_primary_10_1039_D3BM00046J crossref_primary_10_1039_C8BM00492G crossref_primary_10_1039_C6TB00804F crossref_primary_10_1016_j_ijbiomac_2019_03_186 crossref_primary_10_1002_adhm_201700897 crossref_primary_10_3390_app7030306 crossref_primary_10_1016_j_bprint_2023_e00271 crossref_primary_10_1002_adhm_201500001 crossref_primary_10_3390_app11115096 crossref_primary_10_1016_j_msec_2019_110140 crossref_primary_10_1007_s10853_022_08102_x crossref_primary_10_1016_j_bioadv_2022_212980 crossref_primary_10_1371_journal_pone_0203371 crossref_primary_10_1016_j_ijbiomac_2022_123118 crossref_primary_10_1016_j_bioactmat_2020_01_012 crossref_primary_10_1016_j_actbio_2022_09_068 crossref_primary_10_1016_j_ijbiomac_2019_01_072 crossref_primary_10_1016_j_cis_2021_102451 crossref_primary_10_1016_j_jddst_2021_102623 |
Cites_doi | 10.1016/j.actbio.2010.05.016 10.1016/j.carbpol.2011.09.023 10.1016/0142-9612(96)86737-8 10.1089/ten.tec.2009.0725 10.3390/ma4030527 10.1016/j.actbio.2008.12.013 10.1002/jbm.a.33027 10.1016/j.biomaterials.2008.05.029 10.1097/01.tp.0000226060.51572.89 10.1016/j.actbio.2008.09.013 10.1016/j.actbio.2008.03.019 10.1039/B505793K 10.1089/ten.tea.2009.0779 10.1089/ten.teb.2009.0006 10.1016/j.actbio.2010.12.017 10.1016/S0142-9612(03)00374-0 10.1016/j.biortech.2009.12.133 10.1016/j.jsb.2004.07.001 10.1083/jcb.137.6.1445 10.1016/j.actbio.2009.10.051 10.1016/j.actbio.2008.01.001 10.1002/mabi.201000046 10.1163/092050611X599319 10.1021/bm060680j 10.1529/biophysj.106.089730 10.1631/jzus.B0900400 10.1002/jbm.a.30210 10.1002/jbm.a.33280 10.1002/app.26157 10.1089/ten.2006.12.221 10.1016/j.actbio.2010.07.034 10.1007/s10856-005-4713-8 10.1007/s11706-009-0067-3 10.1016/j.actbio.2009.03.002 10.1681/ASN.V210s83 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company 2015 INIST-CNRS Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company. |
Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company – notice: 2015 INIST-CNRS – notice: Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company. |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QO 8FD FR3 P64 |
DOI | 10.1002/jbm.a.34660 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | CrossRef MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4965 |
EndPage | 3492 |
ExternalDocumentID | 10_1002_jbm_a_34660 23606420 27943226 JBMA34660 ark_67375_WNG_8CMTZ7R8_5 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Department of Science and Technology, Gov. India for financial support to School of Medical Science and Technology, IIT Kharagpur |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BSCLL BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL RWI RYL SUPJJ SV3 UB1 V2E W8V W99 WIH WIK WJL WQJ WRC WXSBR XG1 XV2 ZZTAW ~IA ~WT 8W4 ABFLS ABHUG ACXME ADAWD ADDAD AFVGU AGJLS IPNFZ IQODW PQEST CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL CITATION 7X8 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c5070-e959c71214ef1f0b6ad4758b9ee886c472edc444ff151a3ca78dc134c6109cb23 |
IEDL.DBID | DR2 |
ISSN | 1549-3296 |
IngestDate | Wed Dec 04 07:59:57 EST 2024 Wed Dec 04 06:23:27 EST 2024 Fri Dec 06 03:09:50 EST 2024 Sat Sep 28 08:03:10 EDT 2024 Fri Nov 25 16:31:44 EST 2022 Sat Aug 24 01:13:57 EDT 2024 Wed Oct 30 09:50:03 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | skin tissue engineering nano/microarchitecture Tissue engineering Glycoprotein Polymer Scaffold Collagen Animal protein Oside polymer Biomaterial Skin Chitosan Microstructure Biomedical engineering collagen chitosan |
Language | English |
License | CC BY 4.0 Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company. http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5070-e959c71214ef1f0b6ad4758b9ee886c472edc444ff151a3ca78dc134c6109cb23 |
Notes | ark:/67375/WNG-8CMTZ7R8-5 istex:5A04E355FC6BD705B715B51718B4B77865678A56 Department of Science and Technology, Gov. India for financial support to School of Medical Science and Technology, IIT Kharagpur ArticleID:JBMA34660 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://eprints.qut.edu.au/61587/1/soumi_jbmr_a.pdf |
PMID | 23606420 |
PQID | 1447106785 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1475541290 proquest_miscellaneous_1447106785 crossref_primary_10_1002_jbm_a_34660 pubmed_primary_23606420 pascalfrancis_primary_27943226 wiley_primary_10_1002_jbm_a_34660_JBMA34660 istex_primary_ark_67375_WNG_8CMTZ7R8_5 |
PublicationCentury | 2000 |
PublicationDate | December 2013 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: December 2013 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, NJ |
PublicationPlace_xml | – name: Hoboken, NJ – name: United States |
PublicationTitle | Journal of biomedical materials research. Part A |
PublicationTitleAlternate | J. Biomed. Mater. Res |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
References | Teti A.Regulation of cellular functions by extracellular matrix.J Am Soc Nephrol1992;2( 10 suppl):S83-S87. Park SH, Kim TG, Kim HC, Yang DY, Park TG.Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration.Acta Biomater2008;4:1198-1207. Wan Y, Cao X, Zhang S, Wang S, Wu Q.Fibrous poly(chitosan-g-DL-lactic acid) scaffolds prepared via electro-wet-spinning.Acta Biomater2008;4:876-886. Pati F, Adhikari B, Dhara S.Collagen scaffolds derived from fresh water fish origin and their biocompatibility.J Biomed Mater Res A2012;100A:1068-1079. Olde Damink LH, Dijkstra PJ, van Luyn MJ, van Wachem PB, Nieuwenhuis P, Feijen J.In vivo degradation of dermal sheep collagen cross-linked using a watersoluble carbodiimide.Biomaterials1996;17:679-684. Xie Y, Rizzi SC, Dawson R, Lynam E, Richards S, Leavesley DI, Upton Z.Development of a three-dimensional human skin equivalent wound model for investigating novel wound healing therapies.Tissue Eng Part C Methods2010;16:1111-1123. Schneider A, Wang XY, Kaplan DL, Garlick JA, Egles C.Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing.Acta Biomater2009;5:2570-2578. Downing BR, Cornwell K, Toner M, Pins GD.The influence of microtextured basal lamina analog topography on keratinocyte function and epidermal organization.J Biomed Mater Res A2005;72:47-56. Ragetly G, Griffon DJ, Chung YS.The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis.Acta Biomater2010;6:3988-3997. Mota C, Puppi D, Dinucci D, Errico C, Bártolo P, Chiellini F.Dual-scale polymeric constructs as scaffolds for tissue engineering.Materials2011;4:527-542. Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C.Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering.Biomaterials2003;24:4833-4841. Shanjani Y, Hu Y, Pilliar RM, Toyserkani E.Mechanical characteristics of solid-freeform-fabricated porous calcium polyphosphate structures with oriented stacked layers.Acta Biomater2011;7:1788-1796. Han CM, Zhang LP, Sun JZ, Shi HF, Zhou J, Gao CY.Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering.J Zhejiang Univ Sci B2010;11:524-530. Jeong SI, Krebs MD, Bonino CA, Khan SA, Alsberg E.Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering.Macromol Biosci2010;10:934-943. Lee J, Kang BS, Hicks B, Chancellor TF Jr, Chu BH, Wang HT, Keselowsky BG, Ren F, Lele TP.The control of cell adhesion and viability by zinc oxide nanorods.Biomaterials2008;29:3743-3749. Rangaraj A, Harding K, Leaper D.Role of collagen in wound management.Wounds2011;7:54-63. Riley KN, Herman IM.Collagenase promotes the cellular responses to injury and wound healing in vivo.J Burns Wounds2005;4:e8. Tuzlakoglu K, Bolgen N, Salgado AJ, Gomes ME, Piskin E, Reis RL.Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering.J Mater Sci Mater Med2005;16:1099-1104. Pati F, Adhikari B, Dhara S.Isolation and characterization of fish scale collagen of higher thermal stability.Bioresour Technol2010;101:3737-3742. Cao Y, Croll T, Rizzi SC, Shooter GK, Edwards H, Finlayson K, Upton Z, Dargaville TR.Hydrogel tethered inhibitor of MMPs.J Biomed Mater Res A2011;96A:663-672. Dawson RA, Upton Z, Malda J, Harkin DG.Preparation of cultured skin for transplantation using insulin-like growth factor I in conjunction with insulin-like growth factor binding protein 5, epidermal growth factor, and vitronectin.Transplantation2006;81:1668-1676. Pati F, Adhikari B, Dhara S.Collagen intermingled chitosan-tripolyphosphate nano/micro fibrous scaffolds for tissue-engineering application.J Biomater Sci Polym Ed2012;23:1923-1938. Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP.Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands.Biophys J2007;92:2964-2974. Pham QP, Sharma U, Mikos AG.Electrospun poly(E-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration.Biomacromolecules2006;7:2796-2805. Schultz G, Mast B.Molecular analysis of the environment of healing and chronic wounds: Cytokines, proteases and growth factors.Wounds1998;10( 6 suppl):1F-9F. Datta P, Dhara S, Chatterjee J.Hydrogels and electrospun nanofibrous scaffolds of N-methylene phosphonic chitosan as bioinspired osteoconductive materials for bone grafting.Carbohydr Polym2012;87:1354-1362. Martins A, Pinho ED, Correlo VM, Faria S, Marques AP, Reis RL, Neves NM.Biodegradable nanofibers-reinforced microfibrous composite scaffolds for bone tissue engineering.Tissue Eng Part A2010;12:3599-609. Murtuza B, Nichol JW, Khademhosseini A.Micro- and nanoscale control of the cardiac stem cell niche for tissue fabrication.Tissue Eng Part B Rev2009;15:443-454. Jiang F, Hörber H, Howard J, Müller DJ.Assembly of collagen into microribbons: Effects of pH and electrolytes.J Struct Biol2004;148:268-278. Chen R, Morsi Y, Patel S, Ke Q-F, Mo X-M.A novel approach via combination of electrospinning and FDM for tri-leaflet heart valve scaffold fabrication.Front Mater Sci China2009;3:359-366. Soliman S, Pagliari S, Rinaldi A, Forte G, Fiaccavento R, Pagliari F, Franzese O, Minieri M, Di Nardo P, Licoccia S, Traversa E.Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning.Acta Biomater2010;6:1227-1237. Shachar M, Tsur-Gang O, Dvir T, Leor J, Cohen S.The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineeringActa Biomater2011;7:152-162. Tsai S-P, Hsieh C-Y, Hsieh C-Y, Wang D-M, Huang LL-H, Lai J-Y, Hsieh H-J.Preparation and cell compatibility evaluation of chitosan/collagen composite scaffolds using amino acids as crosslinking bridges.J Appl Polym Sci2007;105:1774-1785. Fitzgerald RH, Steinberg JH.Collagen in wound healing: Are we onto something new or just repeating the past?Foot Ankle Online J2009;2:3. Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC.The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix.J Cell Biol1997;137:1445-1457. Park CJ, Clark SG, Lichtensteiger CA, Jamison RD, Johnson AJ.Accelerated wound closure of pressure ulcers in aged mice by chitosan scaffolds with and without bFGF.Acta Biomater2009;5:1926-1936. Badylak SF, Freytes DO, Gilbert TW.Extracellular matrix as a biological scaffold material: Structure and function.Acta Biomater2009;5:1-13. Tobin DJ.Biochemistry of human skin-Our brain on the outside.Chem Soc Rev2006;35:52-67. Kim TG, Park TG.Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D, L-lactic-co-glycolic acid) nanofiber mesh.Tissue Eng2006;12:221-233. 2010; 12 2010; 11 1997; 137 2010; 10 2010; 16 1996; 17 2004; 148 2007; 105 2006; 12 2012 2006; 35 2010; 101 2006; 7 2012; 100A 2011; 96A 2007; 92 2008; 4 2011; 4 2011; 7 2006; 81 2008; 29 2003; 24 2005; 4 2009; 5 2005; 72 2009; 3 2005; 16 2009; 2 1998; 10 2012; 23 1992; 2 2012; 87 2009; 15 2010; 6 Fitzgerald RH (e_1_2_6_12_1) 2009; 2 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Riley KN (e_1_2_6_43_1) 2005; 4 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 Schultz G (e_1_2_6_24_1) 1998; 10 e_1_2_6_20_1 e_1_2_6_40_1 Pati F (e_1_2_6_41_1) 2012; 23 Teti A (e_1_2_6_4_1) 1992; 2 e_1_2_6_9_1 e_1_2_6_8_1 Rangaraj A (e_1_2_6_23_1) 2011; 7 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_3_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 5 start-page: 2570 year: 2009 end-page: 2578 article-title: Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing publication-title: Acta Biomater – volume: 96A start-page: 663 year: 2011 end-page: 672 article-title: Hydrogel tethered inhibitor of MMPs publication-title: J Biomed Mater Res A – volume: 23 start-page: 1923 year: 2012 end-page: 1938 article-title: Collagen intermingled chitosan–tripolyphosphate nano/micro fibrous scaffolds for tissue‐engineering application publication-title: J Biomater Sci Polym Ed – volume: 10 start-page: 934 year: 2010 end-page: 943 article-title: Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering publication-title: Macromol Biosci – volume: 10 start-page: 1F issue: 6 suppl year: 1998 end-page: 9F article-title: Molecular analysis of the environment of healing and chronic wounds: Cytokines, proteases and growth factors publication-title: Wounds – volume: 4 start-page: 1198 year: 2008 end-page: 1207 article-title: Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration publication-title: Acta Biomater – volume: 92 start-page: 2964 year: 2007 end-page: 2974 article-title: Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands publication-title: Biophys J – volume: 4 start-page: 527 year: 2011 end-page: 542 article-title: Dual‐scale polymeric constructs as scaffolds for tissue engineering publication-title: Materials – volume: 4 start-page: 876 year: 2008 end-page: 886 article-title: Fibrous poly(chitosan‐g‐ ‐lactic acid) scaffolds prepared via electro‐wet‐spinning publication-title: Acta Biomater – volume: 16 start-page: 1111 year: 2010 end-page: 1123 article-title: Development of a three‐dimensional human skin equivalent wound model for investigating novel wound healing therapies publication-title: Tissue Eng Part C Methods – volume: 24 start-page: 4833 year: 2003 end-page: 4841 article-title: Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering publication-title: Biomaterials – volume: 5 start-page: 1 year: 2009 end-page: 13 article-title: Extracellular matrix as a biological scaffold material: Structure and function publication-title: Acta Biomater – volume: 29 start-page: 3743 year: 2008 end-page: 3749 article-title: The control of cell adhesion and viability by zinc oxide nanorods publication-title: Biomaterials – volume: 6 start-page: 1227 year: 2010 end-page: 1237 article-title: Multiscale three‐dimensional scaffolds for soft tissue engineering via multimodal electrospinning publication-title: Acta Biomater – year: 2012 – volume: 81 start-page: 1668 year: 2006 end-page: 1676 article-title: Preparation of cultured skin for transplantation using insulin‐like growth factor I in conjunction with insulin‐like growth factor binding protein 5, epidermal growth factor, and vitronectin publication-title: Transplantation – volume: 16 start-page: 1099 year: 2005 end-page: 1104 article-title: Nano‐ and micro‐fiber combined scaffolds: A new architecture for bone tissue engineering publication-title: J Mater Sci Mater Med – volume: 101 start-page: 3737 year: 2010 end-page: 3742 article-title: Isolation and characterization of fish scale collagen of higher thermal stability publication-title: Bioresour Technol – volume: 12 start-page: 3599 year: 2010 end-page: 609 article-title: Biodegradable nanofibers‐reinforced microfibrous composite scaffolds for bone tissue engineering publication-title: Tissue Eng Part A – volume: 3 start-page: 359 year: 2009 end-page: 366 article-title: A novel approach via combination of electrospinning and FDM for tri‐leaflet heart valve scaffold fabrication publication-title: Front Mater Sci China – volume: 12 start-page: 221 year: 2006 end-page: 233 article-title: Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly( , ‐lactic‐co‐glycolic acid) nanofiber mesh publication-title: Tissue Eng – volume: 11 start-page: 524 year: 2010 end-page: 530 article-title: Application of collagen–chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering publication-title: J Zhejiang Univ Sci B – volume: 17 start-page: 679 year: 1996 end-page: 684 article-title: In vivo degradation of dermal sheep collagen cross‐linked using a watersoluble carbodiimide publication-title: Biomaterials – volume: 5 start-page: 1926 year: 2009 end-page: 1936 article-title: Accelerated wound closure of pressure ulcers in aged mice by chitosan scaffolds with and without bFGF publication-title: Acta Biomater – volume: 100A start-page: 1068 year: 2012 end-page: 1079 article-title: Collagen scaffolds derived from fresh water fish origin and their biocompatibility publication-title: J Biomed Mater Res A – volume: 15 start-page: 443 year: 2009 end-page: 454 article-title: Micro‐ and nanoscale control of the cardiac stem cell niche for tissue fabrication publication-title: Tissue Eng Part B Rev – volume: 105 start-page: 1774 year: 2007 end-page: 1785 article-title: Preparation and cell compatibility evaluation of chitosan/collagen composite scaffolds using amino acids as crosslinking bridges publication-title: J Appl Polym Sci – volume: 7 start-page: 1788 year: 2011 end-page: 1796 article-title: Mechanical characteristics of solid‐freeform‐fabricated porous calcium polyphosphate structures with oriented stacked layers publication-title: Acta Biomater – volume: 7 start-page: 54 year: 2011 end-page: 63 article-title: Role of collagen in wound management publication-title: Wounds – volume: 7 start-page: 152 year: 2011 end-page: 162 article-title: The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering publication-title: Acta Biomater – volume: 6 start-page: 3988 year: 2010 end-page: 3997 article-title: The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis publication-title: Acta Biomater – volume: 148 start-page: 268 year: 2004 end-page: 278 article-title: Assembly of collagen into microribbons: Effects of pH and electrolytes publication-title: J Struct Biol – volume: 4 start-page: e8 year: 2005 article-title: Collagenase promotes the cellular responses to injury and wound healing in vivo publication-title: J Burns Wounds – volume: 137 start-page: 1445 year: 1997 end-page: 1457 article-title: The activity of collagenase‐1 is required for keratinocyte migration on a type I collagen matrix publication-title: J Cell Biol – volume: 87 start-page: 1354 year: 2012 end-page: 1362 article-title: Hydrogels and electrospun nanofibrous scaffolds of N‐methylene phosphonic chitosan as bioinspired osteoconductive materials for bone grafting publication-title: Carbohydr Polym – volume: 7 start-page: 2796 year: 2006 end-page: 2805 article-title: Electrospun poly(E‐caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration publication-title: Biomacromolecules – volume: 2 start-page: S83 issue: 10 suppl year: 1992 end-page: S87 article-title: Regulation of cellular functions by extracellular matrix publication-title: J Am Soc Nephrol – volume: 35 start-page: 52 year: 2006 end-page: 67 article-title: Biochemistry of human skin—Our brain on the outside publication-title: Chem Soc Rev – volume: 72 start-page: 47 year: 2005 end-page: 56 article-title: The influence of microtextured basal lamina analog topography on keratinocyte function and epidermal organization publication-title: J Biomed Mater Res A – volume: 2 start-page: 3 year: 2009 article-title: Collagen in wound healing: Are we onto something new or just repeating the past? publication-title: Foot Ankle Online J – ident: e_1_2_6_19_1 doi: 10.1016/j.actbio.2010.05.016 – volume: 10 start-page: 1F issue: 6 year: 1998 ident: e_1_2_6_24_1 article-title: Molecular analysis of the environment of healing and chronic wounds: Cytokines, proteases and growth factors publication-title: Wounds contributor: fullname: Schultz G – ident: e_1_2_6_36_1 doi: 10.1016/j.carbpol.2011.09.023 – ident: e_1_2_6_35_1 doi: 10.1016/0142-9612(96)86737-8 – ident: e_1_2_6_37_1 doi: 10.1089/ten.tec.2009.0725 – ident: e_1_2_6_6_1 doi: 10.3390/ma4030527 – ident: e_1_2_6_20_1 doi: 10.1016/j.actbio.2008.12.013 – ident: e_1_2_6_22_1 – ident: e_1_2_6_21_1 doi: 10.1002/jbm.a.33027 – ident: e_1_2_6_42_1 doi: 10.1016/j.biomaterials.2008.05.029 – ident: e_1_2_6_38_1 doi: 10.1097/01.tp.0000226060.51572.89 – ident: e_1_2_6_3_1 doi: 10.1016/j.actbio.2008.09.013 – ident: e_1_2_6_7_1 doi: 10.1016/j.actbio.2008.03.019 – ident: e_1_2_6_11_1 doi: 10.1039/B505793K – ident: e_1_2_6_2_1 doi: 10.1089/ten.tea.2009.0779 – ident: e_1_2_6_5_1 doi: 10.1089/ten.teb.2009.0006 – ident: e_1_2_6_15_1 doi: 10.1016/j.actbio.2010.12.017 – ident: e_1_2_6_30_1 doi: 10.1016/S0142-9612(03)00374-0 – ident: e_1_2_6_27_1 – ident: e_1_2_6_33_1 doi: 10.1016/j.biortech.2009.12.133 – volume: 2 start-page: 3 year: 2009 ident: e_1_2_6_12_1 article-title: Collagen in wound healing: Are we onto something new or just repeating the past? publication-title: Foot Ankle Online J contributor: fullname: Fitzgerald RH – ident: e_1_2_6_39_1 doi: 10.1016/j.jsb.2004.07.001 – ident: e_1_2_6_25_1 doi: 10.1083/jcb.137.6.1445 – ident: e_1_2_6_8_1 doi: 10.1016/j.actbio.2009.10.051 – ident: e_1_2_6_16_1 doi: 10.1016/j.actbio.2008.01.001 – ident: e_1_2_6_32_1 doi: 10.1002/mabi.201000046 – volume: 23 start-page: 1923 year: 2012 ident: e_1_2_6_41_1 article-title: Collagen intermingled chitosan–tripolyphosphate nano/micro fibrous scaffolds for tissue‐engineering application publication-title: J Biomater Sci Polym Ed doi: 10.1163/092050611X599319 contributor: fullname: Pati F – ident: e_1_2_6_10_1 doi: 10.1021/bm060680j – ident: e_1_2_6_40_1 doi: 10.1529/biophysj.106.089730 – volume: 7 start-page: 54 year: 2011 ident: e_1_2_6_23_1 article-title: Role of collagen in wound management publication-title: Wounds contributor: fullname: Rangaraj A – ident: e_1_2_6_31_1 doi: 10.1631/jzus.B0900400 – ident: e_1_2_6_14_1 doi: 10.1002/jbm.a.30210 – ident: e_1_2_6_34_1 doi: 10.1002/jbm.a.33280 – ident: e_1_2_6_28_1 doi: 10.1002/app.26157 – ident: e_1_2_6_17_1 doi: 10.1089/ten.2006.12.221 – ident: e_1_2_6_18_1 doi: 10.1016/j.actbio.2010.07.034 – volume: 4 start-page: e8 year: 2005 ident: e_1_2_6_43_1 article-title: Collagenase promotes the cellular responses to injury and wound healing in vivo publication-title: J Burns Wounds contributor: fullname: Riley KN – ident: e_1_2_6_9_1 doi: 10.1007/s10856-005-4713-8 – ident: e_1_2_6_13_1 doi: 10.1007/s11706-009-0067-3 – ident: e_1_2_6_29_1 doi: 10.1016/j.actbio.2009.03.002 – ident: e_1_2_6_26_1 doi: 10.1016/S0142-9612(03)00374-0 – volume: 2 start-page: S83 issue: 10 year: 1992 ident: e_1_2_6_4_1 article-title: Regulation of cellular functions by extracellular matrix publication-title: J Am Soc Nephrol doi: 10.1681/ASN.V210s83 contributor: fullname: Teti A |
SSID | ssj0026052 |
Score | 2.446679 |
Snippet | In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular... |
SourceID | proquest crossref pubmed pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3482 |
SubjectTerms | 3T3 Cells Animals Biocompatible Materials Biological and medical sciences Biotechnology Cell Proliferation - drug effects chitosan Chitosan - pharmacology collagen Collagen - pharmacology Fibroblasts - cytology Fibroblasts - drug effects Fibroblasts - ultrastructure Fundamental and applied biological sciences. Psychology Health. Pharmaceutical industry Humans Industrial applications and implications. Economical aspects Medical sciences Mice Microscopy, Fluorescence Miscellaneous nano/microarchitecture Nanofibers - chemistry Nanofibers - ultrastructure Skin - anatomy & histology Skin - drug effects skin tissue engineering Skin, Artificial Spectroscopy, Fourier Transform Infrared Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments Tensile Strength - drug effects Tissue Engineering - methods Tissue Scaffolds - chemistry Wound Healing - drug effects |
Title | Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering |
URI | https://api.istex.fr/ark:/67375/WNG-8CMTZ7R8-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.34660 https://www.ncbi.nlm.nih.gov/pubmed/23606420 https://search.proquest.com/docview/1447106785 https://search.proquest.com/docview/1475541290 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucAByjsUKiNVXFB2E9uxs8eyUKpK20PVigoJWX6qsDSLml0Jcep_6D_klzDjbPeBUCW4RbKdxOMZ-xt7_A0hOzxIZmtr8oKLIhfG8dwYFnJpnONe8bLbhxwdyv0TcXBanc5jc_AuTMcPsdhwQ8tI8zUauLFtf0ka-tWe90yPCynRYy-5woC-d0cL8igE6umsEzygnLOBnN_Og5L-Stu19eg2ivYHxkeaFkQUu9wWfwOf61g2LUZ797uMq23iMMQYlHFvNrU99_MPhsf_7ucmuTeHqXS306sH5FZoHpK7K-SFj8jn4RnMBq1pfl1eJW0CVaTQnxgn33xLcYOXNqaZ9M8x5i_CP0xmLV09uKAAmGk7_tLQaRp-Gpbvf0xO9t4fD_fzebKG3AGkLPIwqAZOlawUIZaxsNJ4Ab6IHYRQ19IJxYJ3QogYAWMY7oyqvSu5cMj37izjT8hGM2nCM0JZ9Jx5W3jvChFggoi2qCofahWCjcZnZOd6yPT3jpNDd-zLTIO0tNFJWhl5nYZzUcdcjDGMTVX64-EHXQ9Hx5_UUa2rjGyvjfeiAUP2PMCnGXl1rQAarA-PVEwTQGjgOMHijgt-dVMdBZgN9_sy8rTTnuUXuEQPEEreJB24qT_64O1oNz09_6faW-QOwxweKQbnBdmYXszCS0BSU7udDOY3ILMbjg |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6h9gAcWt7dAsVIFRe0ya7tfeRYAiWUJocqFRUSsvwUbegGdRMJceI_8A_5JYy9eSJUCW4r2d5dj2fsb8bjzwD7zOZUlUrGCeNJzKVmsZTUxrnUmpmCpU0csj_Ie6f86Cw7mwXc_FmYhh9iEXDzlhHma2_gPiDdXrKGXqjLlmwxnufosm-iwac-pev1yYI-ykP1sNuJPlDMaCefnc_DkvZK47UVadML95vPkJQ1Csk1t1v8DX6uo9mwHB1ug5h3pMlCGbWmE9XS3__gePz_nt6BrRlSJQeNat2FG7a6B7dX-Avvw6fuZ5wQaln9-vEzKBRqI8EOOTf-YmriY7ykktW4fenT_hz-xHhak9W9C4KYmdSj84pMggYQu3z_Azg9fDPs9uLZfQ2xRlSZxLaTdXSR0pRbl7pE5dJwdEdUx9qyzDUvqDWac-4cwgzJtCxKo1PGtad814qyh7BRjSu7A4Q6w6hRiTE64RbnCKeSLDO2LKxVTpoI9udjJr42tByiIWCmAqUlpAjSiuBFGM9FHXk18plsRSY-DN6KstsffixOSpFFsLc24IsG1BPoIUSN4PlcAwQaoN9VkZVFoaHvhOu7X_Oz6-oUCNt8yC-CR436LL_Acu8EYsnLoATX9UccveofhKfdf6r9DG72hv1jcfxu8P4x3KL-So-QkvMENiZXU_sUgdVE7QXr-Q3KWh-v |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA7SguiD98t6qRGKLzK7M0kmM_NYt661uouUFosgIVfUtbOlswvik__Bf-gv8ZzMdi8iBX0bSDIzOTkn-U5y8h1CtrmXzJRGJykXaSK05YnWzCdSW8tdwbN2H3I4kntHYv84P57H5uBdmJYfYrHhhpYR52s08FMXekvS0C_mpKu7XEgJHvumkKxC6vzdgwV7FCL1eNgJLlDCWSXn1_OgpLfSeG1B2kTZfsMASd2AjEKb3OJv6HMdzMbVaHC9TbnaRBJDDEIZd2dT07Xf_6B4_O-O3iDX5jiV7rSKdZNc8vUtcnWFvfA2-dj_BNNBo-tfP35GdQJdpNCfECZfXUNxh5fWup70TjDoL8A_TGYNXT25oICYaTP-XNNpHH_ql--_Q44GLw_7e8k8W0NiAVOmia_yyhYZy4QPWUiN1E6AM2Iq78tSWlEw76wQIgQAGZpbXZTOZlxYJHy3hvG7ZKOe1P4-oSw4zpxJnbOp8DBDBJPmufNl4b0J2nXI9vmQqdOWlEO19MtMgbSUVlFaHfIsDueijj4bYxxbkav3o1eq7A8PPxQHpco7ZGttvBcNGNLnAUDtkKfnCqDA_PBMRdcehAaeE6zuuOLnF9UpALThhl-H3Gu1Z_kFLtEFhJLnUQcu6o_afzHciU8P_qn2E3L53e5AvX09evOQXGGYzyPG4zwiG9OzmX8MqGpqtqLt_AZf5h5e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chitosan-collagen+scaffolds+with+nano%2Fmicrofibrous+architecture+for+skin+tissue+engineering&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Sarkar%2C+Soumi+Dey&rft.au=Farrugia%2C+Brooke+L&rft.au=Dargaville%2C+Tim+R&rft.au=Dhara%2C+Santanu&rft.date=2013-12-01&rft.eissn=1552-4965&rft.volume=101&rft.issue=12&rft.spage=3482&rft.epage=3492&rft_id=info:doi/10.1002%2Fjbm.a.34660&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |