Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering

In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibin...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part A Vol. 101; no. 12; pp. 3482 - 3492
Main Authors Sarkar, Soumi Dey, Farrugia, Brooke L., Dargaville, Tim R., Dhara, Santanu
Format Journal Article
LanguageEnglish
Published Hoboken, NJ Blackwell Publishing Ltd 01.12.2013
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze‐drying, and subsequent cross‐linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physicochemical properties of scaffolds including tensile strength, swelling behavior, and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices, cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re‐epithelization—a prerequisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 3482–3492, 2013.
AbstractList In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze‐drying, and subsequent cross‐linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physicochemical properties of scaffolds including tensile strength, swelling behavior, and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices, cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re‐epithelization—a prerequisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 3482–3492, 2013.
In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze‐drying, and subsequent cross‐linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physicochemical properties of scaffolds including tensile strength, swelling behavior, and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices, cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re‐epithelization—a prerequisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A: 3482–3492, 2013.
In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze-drying, and subsequent cross-linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physicochemical properties of scaffolds including tensile strength, swelling behavior, and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices, cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re-epithelization-a prerequisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering.
Author Sarkar, Soumi Dey
Farrugia, Brooke L.
Dhara, Santanu
Dargaville, Tim R.
Author_xml – sequence: 1
  givenname: Soumi Dey
  surname: Sarkar
  fullname: Sarkar, Soumi Dey
  organization: School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
– sequence: 2
  givenname: Brooke L.
  surname: Farrugia
  fullname: Farrugia, Brooke L.
  organization: Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia
– sequence: 3
  givenname: Tim R.
  surname: Dargaville
  fullname: Dargaville, Tim R.
  organization: Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia
– sequence: 4
  givenname: Santanu
  surname: Dhara
  fullname: Dhara, Santanu
  email: sdhara@smst.iitkgp.ernet.in
  organization: School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27943226$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23606420$$D View this record in MEDLINE/PubMed
BookMark eNqNkEtv1DAURi1URB-wYo-yQUKqMrUdP-JlGdFC1YeEipBgYTnO9dRtYhc7Uem_x-1Myw6x8l2c77u-ZxdthRgAobcELwjG9OC6Gxdm0TAh8Au0QzinNVOCbz3MTNUNVWIb7eZ8XWCBOX2FtmkjsGAU76Cfyys_xWxCbeMwmBWEKlvjXBz6XN356aoKJsSD0dsUne9SnHNlki0hsNOcoHIxVfnGh2ryOc9QQVj5AJB8WL1GL50ZMrzZvHvo29Gny-Xn-vTi-Mvy8LS2HEtcg-LKSkIJA0cc7oTpmeRtpwDaVlgmKfSWMeYc4cQ01si2t6RhVhCsbEebPfRh3Xub4q8Z8qRHny2UcwKU_2pS6jgjVOH_QJkkWMiWF3R_jZbLc07g9G3yo0n3mmD9IF4X8droR_GFfrcpnrsR-mf2yXQB3m8AUwQPLplgff7LScUaSkXh6Jq78wPc_2unPvl4dvi0vV6HfJ7g93PIpBstZCO5_n5-rNvl2eUP-bXVvPkDRmeswQ
CitedBy_id crossref_primary_10_1007_s00018_016_2252_8
crossref_primary_10_1016_j_foodhyd_2021_106633
crossref_primary_10_1007_s12015_022_10341_z
crossref_primary_10_3390_ma8115413
crossref_primary_10_1007_s40846_023_00822_y
crossref_primary_10_2139_ssrn_4153561
crossref_primary_10_1155_2017_8639898
crossref_primary_10_1016_j_ijpharm_2017_06_079
crossref_primary_10_1177_1534734619859214
crossref_primary_10_1016_j_msec_2016_12_069
crossref_primary_10_3390_app10144719
crossref_primary_10_1039_c3tb21123a
crossref_primary_10_3109_1547691X_2016_1139642
crossref_primary_10_1002_mabi_202100352
crossref_primary_10_1007_s10856_014_5366_2
crossref_primary_10_1088_1758_5090_8_3_032001
crossref_primary_10_1016_j_ijbiomac_2017_08_140
crossref_primary_10_3390_molecules26092683
crossref_primary_10_1089_ten_teb_2013_0276
crossref_primary_10_1016_j_jobab_2021_01_002
crossref_primary_10_3390_md12115468
crossref_primary_10_1186_s40643_019_0243_y
crossref_primary_10_1002_adhm_201801471
crossref_primary_10_1186_s11671_023_03880_y
crossref_primary_10_3109_1547691X_2015_1045636
crossref_primary_10_1016_j_ijbiomac_2017_07_067
crossref_primary_10_1016_j_ejpb_2017_07_001
crossref_primary_10_1038_s41598_024_62926_y
crossref_primary_10_1016_j_ijbiomac_2019_10_113
crossref_primary_10_3109_21691401_2015_1036999
crossref_primary_10_1016_j_eurpolymj_2020_110176
crossref_primary_10_1039_C7BM00174F
crossref_primary_10_2174_1574888X13666180912142028
crossref_primary_10_1002_adhm_202202302
crossref_primary_10_1080_00914037_2020_1740993
crossref_primary_10_1002_term_1897
crossref_primary_10_1007_s13205_019_1624_9
crossref_primary_10_1021_acssuschemeng_2c05843
crossref_primary_10_1007_s10965_017_1286_4
crossref_primary_10_1016_j_ijbiomac_2016_04_032
crossref_primary_10_1039_D3BM00046J
crossref_primary_10_1039_C8BM00492G
crossref_primary_10_1039_C6TB00804F
crossref_primary_10_1016_j_ijbiomac_2019_03_186
crossref_primary_10_1002_adhm_201700897
crossref_primary_10_3390_app7030306
crossref_primary_10_1016_j_bprint_2023_e00271
crossref_primary_10_1002_adhm_201500001
crossref_primary_10_3390_app11115096
crossref_primary_10_1016_j_msec_2019_110140
crossref_primary_10_1007_s10853_022_08102_x
crossref_primary_10_1016_j_bioadv_2022_212980
crossref_primary_10_1371_journal_pone_0203371
crossref_primary_10_1016_j_ijbiomac_2022_123118
crossref_primary_10_1016_j_bioactmat_2020_01_012
crossref_primary_10_1016_j_actbio_2022_09_068
crossref_primary_10_1016_j_ijbiomac_2019_01_072
crossref_primary_10_1016_j_cis_2021_102451
crossref_primary_10_1016_j_jddst_2021_102623
Cites_doi 10.1016/j.actbio.2010.05.016
10.1016/j.carbpol.2011.09.023
10.1016/0142-9612(96)86737-8
10.1089/ten.tec.2009.0725
10.3390/ma4030527
10.1016/j.actbio.2008.12.013
10.1002/jbm.a.33027
10.1016/j.biomaterials.2008.05.029
10.1097/01.tp.0000226060.51572.89
10.1016/j.actbio.2008.09.013
10.1016/j.actbio.2008.03.019
10.1039/B505793K
10.1089/ten.tea.2009.0779
10.1089/ten.teb.2009.0006
10.1016/j.actbio.2010.12.017
10.1016/S0142-9612(03)00374-0
10.1016/j.biortech.2009.12.133
10.1016/j.jsb.2004.07.001
10.1083/jcb.137.6.1445
10.1016/j.actbio.2009.10.051
10.1016/j.actbio.2008.01.001
10.1002/mabi.201000046
10.1163/092050611X599319
10.1021/bm060680j
10.1529/biophysj.106.089730
10.1631/jzus.B0900400
10.1002/jbm.a.30210
10.1002/jbm.a.33280
10.1002/app.26157
10.1089/ten.2006.12.221
10.1016/j.actbio.2010.07.034
10.1007/s10856-005-4713-8
10.1007/s11706-009-0067-3
10.1016/j.actbio.2009.03.002
10.1681/ASN.V210s83
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company
2015 INIST-CNRS
Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company
– notice: 2015 INIST-CNRS
– notice: Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
DOI 10.1002/jbm.a.34660
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
CrossRef
MEDLINE - Academic
Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4965
EndPage 3492
ExternalDocumentID 10_1002_jbm_a_34660
23606420
27943226
JBMA34660
ark_67375_WNG_8CMTZ7R8_5
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Department of Science and Technology, Gov. India for financial support to School of Medical Science and Technology, IIT Kharagpur
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WIH
WIK
WJL
WQJ
WRC
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
8W4
ABFLS
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IPNFZ
IQODW
PQEST
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
CITATION
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c5070-e959c71214ef1f0b6ad4758b9ee886c472edc444ff151a3ca78dc134c6109cb23
IEDL.DBID DR2
ISSN 1549-3296
IngestDate Wed Dec 04 07:59:57 EST 2024
Wed Dec 04 06:23:27 EST 2024
Fri Dec 06 03:09:50 EST 2024
Sat Sep 28 08:03:10 EDT 2024
Fri Nov 25 16:31:44 EST 2022
Sat Aug 24 01:13:57 EDT 2024
Wed Oct 30 09:50:03 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords skin tissue engineering
nano/microarchitecture
Tissue engineering
Glycoprotein
Polymer
Scaffold
Collagen
Animal protein
Oside polymer
Biomaterial
Skin
Chitosan
Microstructure
Biomedical engineering
collagen
chitosan
Language English
License CC BY 4.0
Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5070-e959c71214ef1f0b6ad4758b9ee886c472edc444ff151a3ca78dc134c6109cb23
Notes ark:/67375/WNG-8CMTZ7R8-5
istex:5A04E355FC6BD705B715B51718B4B77865678A56
Department of Science and Technology, Gov. India for financial support to School of Medical Science and Technology, IIT Kharagpur
ArticleID:JBMA34660
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://eprints.qut.edu.au/61587/1/soumi_jbmr_a.pdf
PMID 23606420
PQID 1447106785
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1475541290
proquest_miscellaneous_1447106785
crossref_primary_10_1002_jbm_a_34660
pubmed_primary_23606420
pascalfrancis_primary_27943226
wiley_primary_10_1002_jbm_a_34660_JBMA34660
istex_primary_ark_67375_WNG_8CMTZ7R8_5
PublicationCentury 2000
PublicationDate December 2013
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: December 2013
PublicationDecade 2010
PublicationPlace Hoboken, NJ
PublicationPlace_xml – name: Hoboken, NJ
– name: United States
PublicationTitle Journal of biomedical materials research. Part A
PublicationTitleAlternate J. Biomed. Mater. Res
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Teti A.Regulation of cellular functions by extracellular matrix.J Am Soc Nephrol1992;2( 10 suppl):S83-S87.
Park SH, Kim TG, Kim HC, Yang DY, Park TG.Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration.Acta Biomater2008;4:1198-1207.
Wan Y, Cao X, Zhang S, Wang S, Wu Q.Fibrous poly(chitosan-g-DL-lactic acid) scaffolds prepared via electro-wet-spinning.Acta Biomater2008;4:876-886.
Pati F, Adhikari B, Dhara S.Collagen scaffolds derived from fresh water fish origin and their biocompatibility.J Biomed Mater Res A2012;100A:1068-1079.
Olde Damink LH, Dijkstra PJ, van Luyn MJ, van Wachem PB, Nieuwenhuis P, Feijen J.In vivo degradation of dermal sheep collagen cross-linked using a watersoluble carbodiimide.Biomaterials1996;17:679-684.
Xie Y, Rizzi SC, Dawson R, Lynam E, Richards S, Leavesley DI, Upton Z.Development of a three-dimensional human skin equivalent wound model for investigating novel wound healing therapies.Tissue Eng Part C Methods2010;16:1111-1123.
Schneider A, Wang XY, Kaplan DL, Garlick JA, Egles C.Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing.Acta Biomater2009;5:2570-2578.
Downing BR, Cornwell K, Toner M, Pins GD.The influence of microtextured basal lamina analog topography on keratinocyte function and epidermal organization.J Biomed Mater Res A2005;72:47-56.
Ragetly G, Griffon DJ, Chung YS.The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis.Acta Biomater2010;6:3988-3997.
Mota C, Puppi D, Dinucci D, Errico C, Bártolo P, Chiellini F.Dual-scale polymeric constructs as scaffolds for tissue engineering.Materials2011;4:527-542.
Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C.Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering.Biomaterials2003;24:4833-4841.
Shanjani Y, Hu Y, Pilliar RM, Toyserkani E.Mechanical characteristics of solid-freeform-fabricated porous calcium polyphosphate structures with oriented stacked layers.Acta Biomater2011;7:1788-1796.
Han CM, Zhang LP, Sun JZ, Shi HF, Zhou J, Gao CY.Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering.J Zhejiang Univ Sci B2010;11:524-530.
Jeong SI, Krebs MD, Bonino CA, Khan SA, Alsberg E.Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering.Macromol Biosci2010;10:934-943.
Lee J, Kang BS, Hicks B, Chancellor TF Jr, Chu BH, Wang HT, Keselowsky BG, Ren F, Lele TP.The control of cell adhesion and viability by zinc oxide nanorods.Biomaterials2008;29:3743-3749.
Rangaraj A, Harding K, Leaper D.Role of collagen in wound management.Wounds2011;7:54-63.
Riley KN, Herman IM.Collagenase promotes the cellular responses to injury and wound healing in vivo.J Burns Wounds2005;4:e8.
Tuzlakoglu K, Bolgen N, Salgado AJ, Gomes ME, Piskin E, Reis RL.Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering.J Mater Sci Mater Med2005;16:1099-1104.
Pati F, Adhikari B, Dhara S.Isolation and characterization of fish scale collagen of higher thermal stability.Bioresour Technol2010;101:3737-3742.
Cao Y, Croll T, Rizzi SC, Shooter GK, Edwards H, Finlayson K, Upton Z, Dargaville TR.Hydrogel tethered inhibitor of MMPs.J Biomed Mater Res A2011;96A:663-672.
Dawson RA, Upton Z, Malda J, Harkin DG.Preparation of cultured skin for transplantation using insulin-like growth factor I in conjunction with insulin-like growth factor binding protein 5, epidermal growth factor, and vitronectin.Transplantation2006;81:1668-1676.
Pati F, Adhikari B, Dhara S.Collagen intermingled chitosan-tripolyphosphate nano/micro fibrous scaffolds for tissue-engineering application.J Biomater Sci Polym Ed2012;23:1923-1938.
Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP.Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands.Biophys J2007;92:2964-2974.
Pham QP, Sharma U, Mikos AG.Electrospun poly(E-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration.Biomacromolecules2006;7:2796-2805.
Schultz G, Mast B.Molecular analysis of the environment of healing and chronic wounds: Cytokines, proteases and growth factors.Wounds1998;10( 6 suppl):1F-9F.
Datta P, Dhara S, Chatterjee J.Hydrogels and electrospun nanofibrous scaffolds of N-methylene phosphonic chitosan as bioinspired osteoconductive materials for bone grafting.Carbohydr Polym2012;87:1354-1362.
Martins A, Pinho ED, Correlo VM, Faria S, Marques AP, Reis RL, Neves NM.Biodegradable nanofibers-reinforced microfibrous composite scaffolds for bone tissue engineering.Tissue Eng Part A2010;12:3599-609.
Murtuza B, Nichol JW, Khademhosseini A.Micro- and nanoscale control of the cardiac stem cell niche for tissue fabrication.Tissue Eng Part B Rev2009;15:443-454.
Jiang F, Hörber H, Howard J, Müller DJ.Assembly of collagen into microribbons: Effects of pH and electrolytes.J Struct Biol2004;148:268-278.
Chen R, Morsi Y, Patel S, Ke Q-F, Mo X-M.A novel approach via combination of electrospinning and FDM for tri-leaflet heart valve scaffold fabrication.Front Mater Sci China2009;3:359-366.
Soliman S, Pagliari S, Rinaldi A, Forte G, Fiaccavento R, Pagliari F, Franzese O, Minieri M, Di Nardo P, Licoccia S, Traversa E.Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning.Acta Biomater2010;6:1227-1237.
Shachar M, Tsur-Gang O, Dvir T, Leor J, Cohen S.The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineeringActa Biomater2011;7:152-162.
Tsai S-P, Hsieh C-Y, Hsieh C-Y, Wang D-M, Huang LL-H, Lai J-Y, Hsieh H-J.Preparation and cell compatibility evaluation of chitosan/collagen composite scaffolds using amino acids as crosslinking bridges.J Appl Polym Sci2007;105:1774-1785.
Fitzgerald RH, Steinberg JH.Collagen in wound healing: Are we onto something new or just repeating the past?Foot Ankle Online J2009;2:3.
Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC.The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix.J Cell Biol1997;137:1445-1457.
Park CJ, Clark SG, Lichtensteiger CA, Jamison RD, Johnson AJ.Accelerated wound closure of pressure ulcers in aged mice by chitosan scaffolds with and without bFGF.Acta Biomater2009;5:1926-1936.
Badylak SF, Freytes DO, Gilbert TW.Extracellular matrix as a biological scaffold material: Structure and function.Acta Biomater2009;5:1-13.
Tobin DJ.Biochemistry of human skin-Our brain on the outside.Chem Soc Rev2006;35:52-67.
Kim TG, Park TG.Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D, L-lactic-co-glycolic acid) nanofiber mesh.Tissue Eng2006;12:221-233.
2010; 12
2010; 11
1997; 137
2010; 10
2010; 16
1996; 17
2004; 148
2007; 105
2006; 12
2012
2006; 35
2010; 101
2006; 7
2012; 100A
2011; 96A
2007; 92
2008; 4
2011; 4
2011; 7
2006; 81
2008; 29
2003; 24
2005; 4
2009; 5
2005; 72
2009; 3
2005; 16
2009; 2
1998; 10
2012; 23
1992; 2
2012; 87
2009; 15
2010; 6
Fitzgerald RH (e_1_2_6_12_1) 2009; 2
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Riley KN (e_1_2_6_43_1) 2005; 4
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
Schultz G (e_1_2_6_24_1) 1998; 10
e_1_2_6_20_1
e_1_2_6_40_1
Pati F (e_1_2_6_41_1) 2012; 23
Teti A (e_1_2_6_4_1) 1992; 2
e_1_2_6_9_1
e_1_2_6_8_1
Rangaraj A (e_1_2_6_23_1) 2011; 7
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 5
  start-page: 2570
  year: 2009
  end-page: 2578
  article-title: Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing
  publication-title: Acta Biomater
– volume: 96A
  start-page: 663
  year: 2011
  end-page: 672
  article-title: Hydrogel tethered inhibitor of MMPs
  publication-title: J Biomed Mater Res A
– volume: 23
  start-page: 1923
  year: 2012
  end-page: 1938
  article-title: Collagen intermingled chitosan–tripolyphosphate nano/micro fibrous scaffolds for tissue‐engineering application
  publication-title: J Biomater Sci Polym Ed
– volume: 10
  start-page: 934
  year: 2010
  end-page: 943
  article-title: Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering
  publication-title: Macromol Biosci
– volume: 10
  start-page: 1F
  issue: 6 suppl
  year: 1998
  end-page: 9F
  article-title: Molecular analysis of the environment of healing and chronic wounds: Cytokines, proteases and growth factors
  publication-title: Wounds
– volume: 4
  start-page: 1198
  year: 2008
  end-page: 1207
  article-title: Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration
  publication-title: Acta Biomater
– volume: 92
  start-page: 2964
  year: 2007
  end-page: 2974
  article-title: Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands
  publication-title: Biophys J
– volume: 4
  start-page: 527
  year: 2011
  end-page: 542
  article-title: Dual‐scale polymeric constructs as scaffolds for tissue engineering
  publication-title: Materials
– volume: 4
  start-page: 876
  year: 2008
  end-page: 886
  article-title: Fibrous poly(chitosan‐g‐ ‐lactic acid) scaffolds prepared via electro‐wet‐spinning
  publication-title: Acta Biomater
– volume: 16
  start-page: 1111
  year: 2010
  end-page: 1123
  article-title: Development of a three‐dimensional human skin equivalent wound model for investigating novel wound healing therapies
  publication-title: Tissue Eng Part C Methods
– volume: 24
  start-page: 4833
  year: 2003
  end-page: 4841
  article-title: Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering
  publication-title: Biomaterials
– volume: 5
  start-page: 1
  year: 2009
  end-page: 13
  article-title: Extracellular matrix as a biological scaffold material: Structure and function
  publication-title: Acta Biomater
– volume: 29
  start-page: 3743
  year: 2008
  end-page: 3749
  article-title: The control of cell adhesion and viability by zinc oxide nanorods
  publication-title: Biomaterials
– volume: 6
  start-page: 1227
  year: 2010
  end-page: 1237
  article-title: Multiscale three‐dimensional scaffolds for soft tissue engineering via multimodal electrospinning
  publication-title: Acta Biomater
– year: 2012
– volume: 81
  start-page: 1668
  year: 2006
  end-page: 1676
  article-title: Preparation of cultured skin for transplantation using insulin‐like growth factor I in conjunction with insulin‐like growth factor binding protein 5, epidermal growth factor, and vitronectin
  publication-title: Transplantation
– volume: 16
  start-page: 1099
  year: 2005
  end-page: 1104
  article-title: Nano‐ and micro‐fiber combined scaffolds: A new architecture for bone tissue engineering
  publication-title: J Mater Sci Mater Med
– volume: 101
  start-page: 3737
  year: 2010
  end-page: 3742
  article-title: Isolation and characterization of fish scale collagen of higher thermal stability
  publication-title: Bioresour Technol
– volume: 12
  start-page: 3599
  year: 2010
  end-page: 609
  article-title: Biodegradable nanofibers‐reinforced microfibrous composite scaffolds for bone tissue engineering
  publication-title: Tissue Eng Part A
– volume: 3
  start-page: 359
  year: 2009
  end-page: 366
  article-title: A novel approach via combination of electrospinning and FDM for tri‐leaflet heart valve scaffold fabrication
  publication-title: Front Mater Sci China
– volume: 12
  start-page: 221
  year: 2006
  end-page: 233
  article-title: Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly( , ‐lactic‐co‐glycolic acid) nanofiber mesh
  publication-title: Tissue Eng
– volume: 11
  start-page: 524
  year: 2010
  end-page: 530
  article-title: Application of collagen–chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering
  publication-title: J Zhejiang Univ Sci B
– volume: 17
  start-page: 679
  year: 1996
  end-page: 684
  article-title: In vivo degradation of dermal sheep collagen cross‐linked using a watersoluble carbodiimide
  publication-title: Biomaterials
– volume: 5
  start-page: 1926
  year: 2009
  end-page: 1936
  article-title: Accelerated wound closure of pressure ulcers in aged mice by chitosan scaffolds with and without bFGF
  publication-title: Acta Biomater
– volume: 100A
  start-page: 1068
  year: 2012
  end-page: 1079
  article-title: Collagen scaffolds derived from fresh water fish origin and their biocompatibility
  publication-title: J Biomed Mater Res A
– volume: 15
  start-page: 443
  year: 2009
  end-page: 454
  article-title: Micro‐ and nanoscale control of the cardiac stem cell niche for tissue fabrication
  publication-title: Tissue Eng Part B Rev
– volume: 105
  start-page: 1774
  year: 2007
  end-page: 1785
  article-title: Preparation and cell compatibility evaluation of chitosan/collagen composite scaffolds using amino acids as crosslinking bridges
  publication-title: J Appl Polym Sci
– volume: 7
  start-page: 1788
  year: 2011
  end-page: 1796
  article-title: Mechanical characteristics of solid‐freeform‐fabricated porous calcium polyphosphate structures with oriented stacked layers
  publication-title: Acta Biomater
– volume: 7
  start-page: 54
  year: 2011
  end-page: 63
  article-title: Role of collagen in wound management
  publication-title: Wounds
– volume: 7
  start-page: 152
  year: 2011
  end-page: 162
  article-title: The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering
  publication-title: Acta Biomater
– volume: 6
  start-page: 3988
  year: 2010
  end-page: 3997
  article-title: The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis
  publication-title: Acta Biomater
– volume: 148
  start-page: 268
  year: 2004
  end-page: 278
  article-title: Assembly of collagen into microribbons: Effects of pH and electrolytes
  publication-title: J Struct Biol
– volume: 4
  start-page: e8
  year: 2005
  article-title: Collagenase promotes the cellular responses to injury and wound healing in vivo
  publication-title: J Burns Wounds
– volume: 137
  start-page: 1445
  year: 1997
  end-page: 1457
  article-title: The activity of collagenase‐1 is required for keratinocyte migration on a type I collagen matrix
  publication-title: J Cell Biol
– volume: 87
  start-page: 1354
  year: 2012
  end-page: 1362
  article-title: Hydrogels and electrospun nanofibrous scaffolds of N‐methylene phosphonic chitosan as bioinspired osteoconductive materials for bone grafting
  publication-title: Carbohydr Polym
– volume: 7
  start-page: 2796
  year: 2006
  end-page: 2805
  article-title: Electrospun poly(E‐caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration
  publication-title: Biomacromolecules
– volume: 2
  start-page: S83
  issue: 10 suppl
  year: 1992
  end-page: S87
  article-title: Regulation of cellular functions by extracellular matrix
  publication-title: J Am Soc Nephrol
– volume: 35
  start-page: 52
  year: 2006
  end-page: 67
  article-title: Biochemistry of human skin—Our brain on the outside
  publication-title: Chem Soc Rev
– volume: 72
  start-page: 47
  year: 2005
  end-page: 56
  article-title: The influence of microtextured basal lamina analog topography on keratinocyte function and epidermal organization
  publication-title: J Biomed Mater Res A
– volume: 2
  start-page: 3
  year: 2009
  article-title: Collagen in wound healing: Are we onto something new or just repeating the past?
  publication-title: Foot Ankle Online J
– ident: e_1_2_6_19_1
  doi: 10.1016/j.actbio.2010.05.016
– volume: 10
  start-page: 1F
  issue: 6
  year: 1998
  ident: e_1_2_6_24_1
  article-title: Molecular analysis of the environment of healing and chronic wounds: Cytokines, proteases and growth factors
  publication-title: Wounds
  contributor:
    fullname: Schultz G
– ident: e_1_2_6_36_1
  doi: 10.1016/j.carbpol.2011.09.023
– ident: e_1_2_6_35_1
  doi: 10.1016/0142-9612(96)86737-8
– ident: e_1_2_6_37_1
  doi: 10.1089/ten.tec.2009.0725
– ident: e_1_2_6_6_1
  doi: 10.3390/ma4030527
– ident: e_1_2_6_20_1
  doi: 10.1016/j.actbio.2008.12.013
– ident: e_1_2_6_22_1
– ident: e_1_2_6_21_1
  doi: 10.1002/jbm.a.33027
– ident: e_1_2_6_42_1
  doi: 10.1016/j.biomaterials.2008.05.029
– ident: e_1_2_6_38_1
  doi: 10.1097/01.tp.0000226060.51572.89
– ident: e_1_2_6_3_1
  doi: 10.1016/j.actbio.2008.09.013
– ident: e_1_2_6_7_1
  doi: 10.1016/j.actbio.2008.03.019
– ident: e_1_2_6_11_1
  doi: 10.1039/B505793K
– ident: e_1_2_6_2_1
  doi: 10.1089/ten.tea.2009.0779
– ident: e_1_2_6_5_1
  doi: 10.1089/ten.teb.2009.0006
– ident: e_1_2_6_15_1
  doi: 10.1016/j.actbio.2010.12.017
– ident: e_1_2_6_30_1
  doi: 10.1016/S0142-9612(03)00374-0
– ident: e_1_2_6_27_1
– ident: e_1_2_6_33_1
  doi: 10.1016/j.biortech.2009.12.133
– volume: 2
  start-page: 3
  year: 2009
  ident: e_1_2_6_12_1
  article-title: Collagen in wound healing: Are we onto something new or just repeating the past?
  publication-title: Foot Ankle Online J
  contributor:
    fullname: Fitzgerald RH
– ident: e_1_2_6_39_1
  doi: 10.1016/j.jsb.2004.07.001
– ident: e_1_2_6_25_1
  doi: 10.1083/jcb.137.6.1445
– ident: e_1_2_6_8_1
  doi: 10.1016/j.actbio.2009.10.051
– ident: e_1_2_6_16_1
  doi: 10.1016/j.actbio.2008.01.001
– ident: e_1_2_6_32_1
  doi: 10.1002/mabi.201000046
– volume: 23
  start-page: 1923
  year: 2012
  ident: e_1_2_6_41_1
  article-title: Collagen intermingled chitosan–tripolyphosphate nano/micro fibrous scaffolds for tissue‐engineering application
  publication-title: J Biomater Sci Polym Ed
  doi: 10.1163/092050611X599319
  contributor:
    fullname: Pati F
– ident: e_1_2_6_10_1
  doi: 10.1021/bm060680j
– ident: e_1_2_6_40_1
  doi: 10.1529/biophysj.106.089730
– volume: 7
  start-page: 54
  year: 2011
  ident: e_1_2_6_23_1
  article-title: Role of collagen in wound management
  publication-title: Wounds
  contributor:
    fullname: Rangaraj A
– ident: e_1_2_6_31_1
  doi: 10.1631/jzus.B0900400
– ident: e_1_2_6_14_1
  doi: 10.1002/jbm.a.30210
– ident: e_1_2_6_34_1
  doi: 10.1002/jbm.a.33280
– ident: e_1_2_6_28_1
  doi: 10.1002/app.26157
– ident: e_1_2_6_17_1
  doi: 10.1089/ten.2006.12.221
– ident: e_1_2_6_18_1
  doi: 10.1016/j.actbio.2010.07.034
– volume: 4
  start-page: e8
  year: 2005
  ident: e_1_2_6_43_1
  article-title: Collagenase promotes the cellular responses to injury and wound healing in vivo
  publication-title: J Burns Wounds
  contributor:
    fullname: Riley KN
– ident: e_1_2_6_9_1
  doi: 10.1007/s10856-005-4713-8
– ident: e_1_2_6_13_1
  doi: 10.1007/s11706-009-0067-3
– ident: e_1_2_6_29_1
  doi: 10.1016/j.actbio.2009.03.002
– ident: e_1_2_6_26_1
  doi: 10.1016/S0142-9612(03)00374-0
– volume: 2
  start-page: S83
  issue: 10
  year: 1992
  ident: e_1_2_6_4_1
  article-title: Regulation of cellular functions by extracellular matrix
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.V210s83
  contributor:
    fullname: Teti A
SSID ssj0026052
Score 2.446679
Snippet In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 3482
SubjectTerms 3T3 Cells
Animals
Biocompatible Materials
Biological and medical sciences
Biotechnology
Cell Proliferation - drug effects
chitosan
Chitosan - pharmacology
collagen
Collagen - pharmacology
Fibroblasts - cytology
Fibroblasts - drug effects
Fibroblasts - ultrastructure
Fundamental and applied biological sciences. Psychology
Health. Pharmaceutical industry
Humans
Industrial applications and implications. Economical aspects
Medical sciences
Mice
Microscopy, Fluorescence
Miscellaneous
nano/microarchitecture
Nanofibers - chemistry
Nanofibers - ultrastructure
Skin - anatomy & histology
Skin - drug effects
skin tissue engineering
Skin, Artificial
Spectroscopy, Fourier Transform Infrared
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Tensile Strength - drug effects
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Wound Healing - drug effects
Title Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering
URI https://api.istex.fr/ark:/67375/WNG-8CMTZ7R8-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.34660
https://www.ncbi.nlm.nih.gov/pubmed/23606420
https://search.proquest.com/docview/1447106785
https://search.proquest.com/docview/1475541290
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucAByjsUKiNVXFB2E9uxs8eyUKpK20PVigoJWX6qsDSLml0Jcep_6D_klzDjbPeBUCW4RbKdxOMZ-xt7_A0hOzxIZmtr8oKLIhfG8dwYFnJpnONe8bLbhxwdyv0TcXBanc5jc_AuTMcPsdhwQ8tI8zUauLFtf0ka-tWe90yPCynRYy-5woC-d0cL8igE6umsEzygnLOBnN_Og5L-Stu19eg2ivYHxkeaFkQUu9wWfwOf61g2LUZ797uMq23iMMQYlHFvNrU99_MPhsf_7ucmuTeHqXS306sH5FZoHpK7K-SFj8jn4RnMBq1pfl1eJW0CVaTQnxgn33xLcYOXNqaZ9M8x5i_CP0xmLV09uKAAmGk7_tLQaRp-Gpbvf0xO9t4fD_fzebKG3AGkLPIwqAZOlawUIZaxsNJ4Ab6IHYRQ19IJxYJ3QogYAWMY7oyqvSu5cMj37izjT8hGM2nCM0JZ9Jx5W3jvChFggoi2qCofahWCjcZnZOd6yPT3jpNDd-zLTIO0tNFJWhl5nYZzUcdcjDGMTVX64-EHXQ9Hx5_UUa2rjGyvjfeiAUP2PMCnGXl1rQAarA-PVEwTQGjgOMHijgt-dVMdBZgN9_sy8rTTnuUXuEQPEEreJB24qT_64O1oNz09_6faW-QOwxweKQbnBdmYXszCS0BSU7udDOY3ILMbjg
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6h9gAcWt7dAsVIFRe0ya7tfeRYAiWUJocqFRUSsvwUbegGdRMJceI_8A_5JYy9eSJUCW4r2d5dj2fsb8bjzwD7zOZUlUrGCeNJzKVmsZTUxrnUmpmCpU0csj_Ie6f86Cw7mwXc_FmYhh9iEXDzlhHma2_gPiDdXrKGXqjLlmwxnufosm-iwac-pev1yYI-ykP1sNuJPlDMaCefnc_DkvZK47UVadML95vPkJQ1Csk1t1v8DX6uo9mwHB1ug5h3pMlCGbWmE9XS3__gePz_nt6BrRlSJQeNat2FG7a6B7dX-Avvw6fuZ5wQaln9-vEzKBRqI8EOOTf-YmriY7ykktW4fenT_hz-xHhak9W9C4KYmdSj84pMggYQu3z_Azg9fDPs9uLZfQ2xRlSZxLaTdXSR0pRbl7pE5dJwdEdUx9qyzDUvqDWac-4cwgzJtCxKo1PGtad814qyh7BRjSu7A4Q6w6hRiTE64RbnCKeSLDO2LKxVTpoI9udjJr42tByiIWCmAqUlpAjSiuBFGM9FHXk18plsRSY-DN6KstsffixOSpFFsLc24IsG1BPoIUSN4PlcAwQaoN9VkZVFoaHvhOu7X_Oz6-oUCNt8yC-CR436LL_Acu8EYsnLoATX9UccveofhKfdf6r9DG72hv1jcfxu8P4x3KL-So-QkvMENiZXU_sUgdVE7QXr-Q3KWh-v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA7SguiD98t6qRGKLzK7M0kmM_NYt661uouUFosgIVfUtbOlswvik__Bf-gv8ZzMdi8iBX0bSDIzOTkn-U5y8h1CtrmXzJRGJykXaSK05YnWzCdSW8tdwbN2H3I4kntHYv84P57H5uBdmJYfYrHhhpYR52s08FMXekvS0C_mpKu7XEgJHvumkKxC6vzdgwV7FCL1eNgJLlDCWSXn1_OgpLfSeG1B2kTZfsMASd2AjEKb3OJv6HMdzMbVaHC9TbnaRBJDDEIZd2dT07Xf_6B4_O-O3iDX5jiV7rSKdZNc8vUtcnWFvfA2-dj_BNNBo-tfP35GdQJdpNCfECZfXUNxh5fWup70TjDoL8A_TGYNXT25oICYaTP-XNNpHH_ql--_Q44GLw_7e8k8W0NiAVOmia_yyhYZy4QPWUiN1E6AM2Iq78tSWlEw76wQIgQAGZpbXZTOZlxYJHy3hvG7ZKOe1P4-oSw4zpxJnbOp8DBDBJPmufNl4b0J2nXI9vmQqdOWlEO19MtMgbSUVlFaHfIsDueijj4bYxxbkav3o1eq7A8PPxQHpco7ZGttvBcNGNLnAUDtkKfnCqDA_PBMRdcehAaeE6zuuOLnF9UpALThhl-H3Gu1Z_kFLtEFhJLnUQcu6o_afzHciU8P_qn2E3L53e5AvX09evOQXGGYzyPG4zwiG9OzmX8MqGpqtqLt_AZf5h5e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chitosan-collagen+scaffolds+with+nano%2Fmicrofibrous+architecture+for+skin+tissue+engineering&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Sarkar%2C+Soumi+Dey&rft.au=Farrugia%2C+Brooke+L&rft.au=Dargaville%2C+Tim+R&rft.au=Dhara%2C+Santanu&rft.date=2013-12-01&rft.eissn=1552-4965&rft.volume=101&rft.issue=12&rft.spage=3482&rft.epage=3492&rft_id=info:doi/10.1002%2Fjbm.a.34660&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon