Uniqueness theorems for weighted harmonic functions in the upper half-plane

We consider a class of weighted harmonic functions in the open upper half-plane known as α -harmonic functions. Of particular interest is the uniqueness problem for such functions subject to a vanishing Dirichlet boundary value on the real line and an appropriate vanishing condition at infinity. We...

Full description

Saved in:
Bibliographic Details
Published inJournal d'analyse mathématique (Jerusalem) Vol. 152; no. 1; pp. 317 - 359
Main Authors Olofsson, Anders, Wittsten, Jens
Format Journal Article
LanguageEnglish
Published Jerusalem The Hebrew University Magnes Press 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider a class of weighted harmonic functions in the open upper half-plane known as α -harmonic functions. Of particular interest is the uniqueness problem for such functions subject to a vanishing Dirichlet boundary value on the real line and an appropriate vanishing condition at infinity. We find that the non-classical case ( α ≠ 0) allows for a considerably more relaxed vanishing condition at infinity compared to the classical case ( α = 0) of usual harmonic functions in the upper half-plane. The reason behind this dichotomy is different geometry of zero sets of certain polynomials naturally derived from the classical binomial series. These findings shed new light on the theory of harmonic functions, for which we provide sharp uniqueness results under vanishing conditions at infinity along geodesics or along rays emanating from the origin.
AbstractList We consider a class of weighted harmonic functions in the open upper half-plane known as α-harmonic functions. Of particular interest is the uniqueness problem for such functions subject to a vanishing Dirichlet boundary value on the real line and an appropriate vanishing condition at infinity. We find that the non-classical case (α ≠ 0) allows for a considerably more relaxed vanishing condition at infinity compared to the classical case (α = 0) of usual harmonic functions in the upper half-plane. The reason behind this dichotomy is different geometry of zero sets of certain polynomials naturally derived from the classical binomial series. These findings shed new light on the theory of harmonic functions, for which we provide sharp uniqueness results under vanishing conditions at infinity along geodesics or along rays emanating from the origin.
We consider a class of weighted harmonic functions in the open upper half-plane known as α -harmonic functions. Of particular interest is the uniqueness problem for such functions subject to a vanishing Dirichlet boundary value on the real line and an appropriate vanishing condition at infinity. We find that the non-classical case ( α ≠ 0) allows for a considerably more relaxed vanishing condition at infinity compared to the classical case ( α = 0) of usual harmonic functions in the upper half-plane. The reason behind this dichotomy is different geometry of zero sets of certain polynomials naturally derived from the classical binomial series. These findings shed new light on the theory of harmonic functions, for which we provide sharp uniqueness results under vanishing conditions at infinity along geodesics or along rays emanating from the origin.
Author Wittsten, Jens
Olofsson, Anders
Author_xml – sequence: 1
  givenname: Anders
  surname: Olofsson
  fullname: Olofsson, Anders
  organization: Centre for Mathematical Sciences, Lund University
– sequence: 2
  givenname: Jens
  surname: Wittsten
  fullname: Wittsten, Jens
  email: jens.wittsten@math.lu.se
  organization: Centre for Mathematical Sciences, Lund University, Department of Engineering, University of Borås
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-31339$$DView record from Swedish Publication Index
https://lup.lub.lu.se/record/8bd864b0-1d5e-4dd7-afb8-fdb84d26455b$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/8bd864b0-1d5e-4dd7-afb8-fdb84d26455b$$DView record from Swedish Publication Index
BookMark eNqNkk9v1DAQxS1UJLaFD8AtEkcU8P84x6pQQKzEhXId2fF4N1XWDnaiim-Pl13BaSUOIx_85jdv7HdNrmKKSMhrRt8xSrv3hTGjZEu5qNWb1jwjG6a0ao0S5opsKOWs7XRHX5DrUh4pVaoXfEO-PsTx54oRS2mWPaaMh9KElJsnHHf7BX2zt_mQ4jg0YY3DMqZYmjEetc06z5jr_RTaebIRX5LnwU4FX53PG_Jw__H73ed2--3Tl7vbbTsoqpc2eCEUaqMY4z0XXLjgOEcrusC0p9py653X0ipqeaeYsygV72VvbH8scUPsiVuecF4dzHk82PwLkh1hTnmxE2QsaPOwh2mFglBV0zjYP-7BOG-0dBSYVwjS-w5scAaCd0Z6rqVSrs7YXpwxrXMtd2b_J-7tRdyH8cctpLyDvQPBhDgu-OaknnOqn1MWeExrjvVNQVCtpaSdkFXFTqohp1Iyhr9UVs3UUMApFFBDAcdQgKk9_OyjauMO8z_y5abf7oa94w
Cites_doi 10.1007/978-81-322-2113-5_8
10.1007/s11854-014-0019-4
10.1112/plms/pdm025
10.1016/j.jmaa.2015.12.026
10.2307/1969638
10.1007/b97238
10.2140/pjm.1951.1.485
10.7146/math.scand.a-12218
10.4171/rmi/668
10.2140/pjm.1996.175.571
10.1512/iumj.1996.45.1961
10.7146/math.scand.a-11697
10.1112/plms/s3-13.1.639
10.1016/j.aim.2014.07.020
10.1007/BF02392249
10.2969/jmsj/06520447
10.1080/17476933.2019.1669572
10.1016/j.bulsci.2015.04.004
10.1017/CBO9781107325937
10.1090/S0002-9904-1953-09651-3
10.1215/S0012-7094-80-04722-5
10.2140/pjm.1992.153.1
10.1016/j.bulsci.2019.102809
10.1007/s13324-021-00561-w
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Partial differential equations
Centre for Mathematical Sciences
Matematik (naturvetenskapliga fakulteten)
Research groups at the Centre for Mathematical Sciences
Forskargrupper vid Matematikcentrum
Lunds universitet
Naturvetenskapliga fakulteten
Matematikcentrum
Partiella differentialekvationer
Faculty of Science
Lund University
Mathematics (Faculty of Sciences)
CorporateAuthor_xml – name: Mathematics (Faculty of Sciences)
– name: Naturvetenskapliga fakulteten
– name: Lund University
– name: Matematik (naturvetenskapliga fakulteten)
– name: Centre for Mathematical Sciences
– name: Partiella differentialekvationer
– name: Research groups at the Centre for Mathematical Sciences
– name: Forskargrupper vid Matematikcentrum
– name: Partial differential equations
– name: Faculty of Science
– name: Lunds universitet
– name: Matematikcentrum
DBID C6C
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTPV
AOWAS
ARHCE
D8T
DF9
ZZAVC
AGCHP
D95
DOI 10.1007/s11854-023-0298-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Högskolan i Borås full text
SWEPUB Freely available online
SWEPUB Högskolan i Borås
SwePub Articles full text
SWEPUB Lunds universitet full text
SWEPUB Lunds universitet
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts



CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1565-8538
EndPage 359
ExternalDocumentID oai_portal_research_lu_se_publications_8bd864b0_1d5e_4dd7_afb8_fdb84d26455b
oai_lup_lub_lu_se_8bd864b0_1d5e_4dd7_afb8_fdb84d26455b
oai_DiVA_org_hb_31339
10_1007_s11854_023_0298_8
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
2J2
2JN
2JY
2KG
2KM
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HG5
HG6
HRMNR
HVGLF
HZ~
H~9
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K6V
K7-
KOV
L6V
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF-
PKN
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W48
WK8
YLTOR
YQT
Z45
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AETEA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
8FD
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
ADTPV
AOWAS
ARHCE
D8T
DF9
PQGLB
ZZAVC
AGCHP
D95
PUEGO
ID FETCH-LOGICAL-c506t-fd335e68511292323bfb22ea37f16d06a2adbd64a50a2751bae4529498a998a93
IEDL.DBID C6C
ISSN 0021-7670
1565-8538
IngestDate Mon Aug 25 03:25:38 EDT 2025
Thu Jul 03 05:14:00 EDT 2025
Thu Aug 21 06:18:32 EDT 2025
Fri Jul 25 11:11:54 EDT 2025
Tue Jul 01 02:03:42 EDT 2025
Fri Feb 21 02:42:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c506t-fd335e68511292323bfb22ea37f16d06a2adbd64a50a2751bae4529498a998a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s11854-023-0298-8
PQID 3066440734
PQPubID 2034532
PageCount 43
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_8bd864b0_1d5e_4dd7_afb8_fdb84d26455b
swepub_primary_oai_lup_lub_lu_se_8bd864b0_1d5e_4dd7_afb8_fdb84d26455b
swepub_primary_oai_DiVA_org_hb_31339
proquest_journals_3066440734
crossref_primary_10_1007_s11854_023_0298_8
springer_journals_10_1007_s11854_023_0298_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Jerusalem
PublicationPlace_xml – name: Jerusalem
PublicationTitle Journal d'analyse mathématique (Jerusalem)
PublicationTitleAbbrev JAMA
PublicationYear 2024
Publisher The Hebrew University Magnes Press
Springer Nature B.V
Publisher_xml – name: The Hebrew University Magnes Press
– name: Springer Nature B.V
References Wolf (CR26) 1941; 74
Rudin (CR21) 1987
Andrews, Askey, Roy (CR3) 1999
Berman, Cohn (CR5) 1988; 62
Olofsson (CR19) 2020; 65
Wittsten (CR25) 2015; 139
Hörmander (CR14) 1990
CR18
CR16
Axler, Bourdon, Ramey (CR4) 1992
Olofsson, Wittsten (CR20) 2013; 65
Shapiro (CR22) 1963; 13
Borichev, Hedenmalm (CR7) 2014; 264
Huber (CR15) 1954; 60
Borichev, Chill, Tomilov (CR6) 2007; 95
Geller (CR13) 1980; 47
Garabedian (CR11) 1951; 1
Gardner, Govil (CR12) 2014
Ahern, Cascante (CR2) 1992; 153
Borichev, Tomilov (CR8) 2012; 28
Dahlberg (CR10) 1977; 40
Weinstein (CR24) 1953; 59
Siegel, Talvila (CR23) 1996; 175
Ahern, Bruna, Cascante (CR1) 1996; 45
Olofsson (CR17) 2014; 123
Carlsson, Wittsten (CR9) 2016; 436
A Borichev (298_CR8) 2012; 28
M Carlsson (298_CR9) 2016; 436
G E Andrews (298_CR3) 1999
S Axler (298_CR4) 1992
A Weinstein (298_CR24) 1953; 59
D Geller (298_CR13) 1980; 47
P Ahern (298_CR2) 1992; 153
P R Garabedian (298_CR11) 1951; 1
A Huber (298_CR15) 1954; 60
A Olofsson (298_CR17) 2014; 123
F Wolf (298_CR26) 1941; 74
P Ahern (298_CR1) 1996; 45
R D Berman (298_CR5) 1988; 62
A Olofsson (298_CR19) 2020; 65
B Dahlberg (298_CR10) 1977; 40
L Hörmander (298_CR14) 1990
298_CR18
298_CR16
V L Shapiro (298_CR22) 1963; 13
A Borichev (298_CR7) 2014; 264
R B Gardner (298_CR12) 2014
D Siegel (298_CR23) 1996; 175
A Borichev (298_CR6) 2007; 95
A Olofsson (298_CR20) 2013; 65
W Rudin (298_CR21) 1987
J Wittsten (298_CR25) 2015; 139
References_xml – start-page: 171
  year: 2014
  end-page: 199
  ident: CR12
  article-title: Eneström—Kakeya theorem and some of its generalizations
  publication-title: Current Topics in Pure and Computational Complex Analysis
  doi: 10.1007/978-81-322-2113-5_8
– ident: CR18
– volume: 123
  start-page: 227
  year: 2014
  end-page: 249
  ident: CR17
  article-title: Differential operators for a scale of Poisson type kernels in the unit disc
  publication-title: J. Anal. Math.
  doi: 10.1007/s11854-014-0019-4
– volume: 95
  start-page: 687
  year: 2007
  end-page: 708
  ident: CR6
  article-title: Uniqueness theorems for (sub-)harmonic functions with applications to operator theory
  publication-title: Proc. Lond. Math. Soc. (3)
  doi: 10.1112/plms/pdm025
– ident: CR16
– volume: 436
  start-page: 868
  year: 2016
  end-page: 889
  ident: CR9
  article-title: The Dirichlet problem for standard weighted Laplacians in the upper half plane
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.12.026
– volume: 60
  start-page: 351
  year: 1954
  end-page: 358
  ident: CR15
  article-title: On the uniqueness of generalized axially symmetric potentials
  publication-title: Ann. of Math.
  doi: 10.2307/1969638
– year: 1992
  ident: CR4
  publication-title: Harmonic function theory
  doi: 10.1007/b97238
– volume: 1
  start-page: 485
  year: 1951
  end-page: 524
  ident: CR11
  article-title: A partial differential equation arising in conformal mapping
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1951.1.485
– volume: 62
  start-page: 269
  year: 1988
  end-page: 293
  ident: CR5
  article-title: Phragmén—Lindelöf theorems for subharmonic functions on the unit disk
  publication-title: Math. Scand.
  doi: 10.7146/math.scand.a-12218
– volume: 28
  start-page: 93
  year: 2012
  end-page: 112
  ident: CR8
  article-title: Boundary uniqueness of harmonic functions and spectral subspaces of operator groups
  publication-title: Rev. Mat. Iberoam.
  doi: 10.4171/rmi/668
– volume: 175
  start-page: 571
  year: 1996
  end-page: 587
  ident: CR23
  article-title: Uniqueness for the n-dimensional half space Dirichlet problem
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1996.175.571
– volume: 45
  start-page: 103
  year: 1996
  end-page: 135
  ident: CR1
  article-title: -
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1996.45.1961
– volume: 40
  start-page: 301
  year: 1977
  end-page: 317
  ident: CR10
  article-title: On the radial boundary values of subharmonic functions
  publication-title: Math. Scand.
  doi: 10.7146/math.scand.a-11697
– volume: 13
  start-page: 639
  year: 1963
  end-page: 652
  ident: CR22
  article-title: The uniqueness of functions harmonic in the interior of the unit disk
  publication-title: Proc. London Math. Soc. (3)
  doi: 10.1112/plms/s3-13.1.639
– volume: 264
  start-page: 464
  year: 2014
  end-page: 505
  ident: CR7
  article-title: Weighted integrability of polyharmonic functions
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2014.07.020
– volume: 74
  start-page: 65
  year: 1941
  end-page: 100
  ident: CR26
  article-title: The Poisson integral. A study in the uniqueness of harmonic functions
  publication-title: Acta Math.
  doi: 10.1007/BF02392249
– year: 1987
  ident: CR21
  publication-title: Real and Complex Analysis
– volume: 65
  start-page: 447
  year: 2013
  end-page: 486
  ident: CR20
  article-title: Poisson integrals for standard weighted Laplacians in the unit disc
  publication-title: J. Math. Soc. Japan
  doi: 10.2969/jmsj/06520447
– volume: 65
  start-page: 1630
  year: 2020
  end-page: 1660
  ident: CR19
  article-title: Lipschitz continuity for weighted harmonic functions in the unit disc
  publication-title: Complex Var. Elliptic Equ.
  doi: 10.1080/17476933.2019.1669572
– volume: 139
  start-page: 892
  year: 2015
  end-page: 922
  ident: CR25
  article-title: Generalized axially symmetric potentials with distributional boundary values
  publication-title: Bull. Sci. Math.
  doi: 10.1016/j.bulsci.2015.04.004
– year: 1990
  ident: CR14
  publication-title: The Analysis of Linear Partial Differential Operators I. Distribution theory and Fourier analysis
– year: 1999
  ident: CR3
  publication-title: Special Functions
  doi: 10.1017/CBO9781107325937
– volume: 59
  start-page: 20
  year: 1953
  end-page: 38
  ident: CR24
  article-title: Generalized axially symmetric potential theory
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0002-9904-1953-09651-3
– volume: 47
  start-page: 365
  year: 1980
  end-page: 390
  ident: CR13
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-80-04722-5
– volume: 153
  start-page: 1
  year: 1992
  end-page: 13
  ident: CR2
  article-title: ℂ , ≤ 1
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1992.153.1
– volume-title: The Analysis of Linear Partial Differential Operators I. Distribution theory and Fourier analysis
  year: 1990
  ident: 298_CR14
– start-page: 171
  volume-title: Current Topics in Pure and Computational Complex Analysis
  year: 2014
  ident: 298_CR12
  doi: 10.1007/978-81-322-2113-5_8
– volume-title: Special Functions
  year: 1999
  ident: 298_CR3
  doi: 10.1017/CBO9781107325937
– volume: 45
  start-page: 103
  year: 1996
  ident: 298_CR1
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1996.45.1961
– volume: 153
  start-page: 1
  year: 1992
  ident: 298_CR2
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1992.153.1
– volume: 47
  start-page: 365
  year: 1980
  ident: 298_CR13
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-80-04722-5
– ident: 298_CR18
  doi: 10.1016/j.bulsci.2019.102809
– volume: 95
  start-page: 687
  year: 2007
  ident: 298_CR6
  publication-title: Proc. Lond. Math. Soc. (3)
  doi: 10.1112/plms/pdm025
– volume: 65
  start-page: 1630
  year: 2020
  ident: 298_CR19
  publication-title: Complex Var. Elliptic Equ.
  doi: 10.1080/17476933.2019.1669572
– volume: 13
  start-page: 639
  year: 1963
  ident: 298_CR22
  publication-title: Proc. London Math. Soc. (3)
  doi: 10.1112/plms/s3-13.1.639
– ident: 298_CR16
  doi: 10.1007/s13324-021-00561-w
– volume: 139
  start-page: 892
  year: 2015
  ident: 298_CR25
  publication-title: Bull. Sci. Math.
  doi: 10.1016/j.bulsci.2015.04.004
– volume: 60
  start-page: 351
  year: 1954
  ident: 298_CR15
  publication-title: Ann. of Math.
  doi: 10.2307/1969638
– volume-title: Real and Complex Analysis
  year: 1987
  ident: 298_CR21
– volume: 62
  start-page: 269
  year: 1988
  ident: 298_CR5
  publication-title: Math. Scand.
  doi: 10.7146/math.scand.a-12218
– volume: 28
  start-page: 93
  year: 2012
  ident: 298_CR8
  publication-title: Rev. Mat. Iberoam.
  doi: 10.4171/rmi/668
– volume: 65
  start-page: 447
  year: 2013
  ident: 298_CR20
  publication-title: J. Math. Soc. Japan
  doi: 10.2969/jmsj/06520447
– volume-title: Harmonic function theory
  year: 1992
  ident: 298_CR4
  doi: 10.1007/b97238
– volume: 264
  start-page: 464
  year: 2014
  ident: 298_CR7
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2014.07.020
– volume: 59
  start-page: 20
  year: 1953
  ident: 298_CR24
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0002-9904-1953-09651-3
– volume: 40
  start-page: 301
  year: 1977
  ident: 298_CR10
  publication-title: Math. Scand.
  doi: 10.7146/math.scand.a-11697
– volume: 175
  start-page: 571
  year: 1996
  ident: 298_CR23
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1996.175.571
– volume: 74
  start-page: 65
  year: 1941
  ident: 298_CR26
  publication-title: Acta Math.
  doi: 10.1007/BF02392249
– volume: 1
  start-page: 485
  year: 1951
  ident: 298_CR11
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1951.1.485
– volume: 436
  start-page: 868
  year: 2016
  ident: 298_CR9
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.12.026
– volume: 123
  start-page: 227
  year: 2014
  ident: 298_CR17
  publication-title: J. Anal. Math.
  doi: 10.1007/s11854-014-0019-4
SSID ssj0055932
Score 2.3490627
Snippet We consider a class of weighted harmonic functions in the open upper half-plane known as α -harmonic functions. Of particular interest is the uniqueness...
We consider a class of weighted harmonic functions in the open upper half-plane known as α-harmonic functions. Of particular interest is the uniqueness problem...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 317
SubjectTerms Abstract Harmonic Analysis
Analysis
Dirichlet problem
Dynamical Systems and Ergodic Theory
Functional Analysis
Geodesy
Half planes
Harmonic functions
Infinity
Matematik
Matematisk analys
Mathematical Analysis
Mathematical Sciences
Mathematics
Mathematics and Statistics
Natural Sciences
Naturvetenskap
Partial Differential Equations
Polynomials
Uniqueness theorems
Title Uniqueness theorems for weighted harmonic functions in the upper half-plane
URI https://link.springer.com/article/10.1007/s11854-023-0298-8
https://www.proquest.com/docview/3066440734
https://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-31339
https://lup.lub.lu.se/record/8bd864b0-1d5e-4dd7-afb8-fdb84d26455b
oai:portal.research.lu.se:publications/8bd864b0-1d5e-4dd7-afb8-fdb84d26455b
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH_i4zIOjLEhwqDygRPIWj5sJzlWXTs0BCc6wS6WHduiEpSItOLf5zlx2w1VEzs4FzsvyrOf3-_52T8DnGqVoInlCa1KhQGKcIaWsU4oegdblVgRtyRJV9fiYsx-3vLbQBbtz8K8yd9_axAAc0bRs1BPFk6LTdjmSZb7WxoGYrCYdBEXZ4EYPKG5yJcJzHUi_nZBK1y5TIW-oQ1tXc1oD3YDRiT9rlM_wYad7sPHgBdJsMZmH3aulpyrzWe4HLdcrH7qIt3xxMeGICQlL-3qJ77pWao9Ey7xzqwdb2Qy9W3JvK7tM9Y_OFr73a9fYDwa3gwuaLgqgVY8FjPqTJZxKzr4hCAp006nqVVZ7hJhYqFSZbQRTPFYpTlPtLI-48rKQpW-ZAewNX2a2kMgpjIaY0KTcpezSqMkz_JnbeE8tCqTCM4W2pN1x4ghV9zHXtUSVS29qmURwfFCvzIYRyMxSkEUhnMLi-B8ofNV9T-EnXbdsvyu58b-PvnVlzhk5L2WGUbcZQTDNc0e5jUWjUU2VhbaFIJp_JLhVjJjcqmcLqQzumAGQSLnOoLfa-R0UZEMVEz3QV79xxrru4Qf_deff4UPKYKpbsfQMWzNnuf2BMHQTPdgu__j7nLYa80Bn-O0_wqpmQVv
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V9gAcoBQQgdL60BPIUj5sxzmuoNXSdnvqooqLZcd2W6lso82u-PuME2cXqhUqB5-cjJWxZ-aNx34BODI6QxMrM1pXGhMU4S2tUpNRjA6urrAj7UiSJhdiPGWnV_wq3uNuh9PuQ0my89Try24YWhjFGEMDbTiVT2AHsYAMS3majwb3iwi5iBThGS1FuSplbhLxdzBaI8xVUfQBgWgXdE524UVEi2TUT-8r2HKzPXgZkSOJdtnuwfPJin21fQ1n046VNTgx0l9U_NkSBKfkV7cPim8GvurAiUtCWOtWHrmdhWfJsmncHPvvPG3COdg3MD05vvwypvGnCbTmqVhQb4uCO9EDKYRLhfEmz50uSp8Jmwqda2usYJqnOi95ZrQLtVdWSV2FVryF7dn9zL0DYmtrMDu0Ofclqw1KCnx_zkkfQFaVJfBp0J5qem4MtWZBDqpWqGoVVK1kAvuDflU0k1ZhvoJ4DL0MS-DzoPN19z-EHfXTsho3sGR_vf0-Uvfza3VjVIG5d5XA8YbH7pYNNoNNtU5JY6VgBkey3Clmbam0N1J5aySzCBc5Nwn82CCnz49UJGW6ifKaP3ZbHyX8_X99-SE8HV9OztX5t4uzD_AsR4jVnyPah-3FfOk-IkRamIPOJH4DzpYKCQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAc2lJADX350BPIah62kxyrbVelpRUHFlVcLDu2aaU2jTa74u8zTpxdWq0QHHyyPVbGGc83HvszwKFWCZpYntCqVBigCGdoGeuEonewVYkVcUeSdHklzibs_Jpfh3dO2-G0-5CS7O80eJamenbUGHe0vPiGboZR9DfUU4jT4jm8wEAl8dHXSIyGpRjRchbowhOai3yR1lwl4rFjWqLNRYL0CZlo54DGm7AekCM57qf6DTyz9RZsBBRJgo22W_D6csHE2r6Fi0nH0OoXNNJfWrxvCQJV8qvbE8Wenrva8-MS7-K6v5Dc1r4tmTeNnWL9naONPxP7Dibj02-jMxoeUKAVj8WMOpNl3IoeVCF0yrTTaWpVlrtEmFioVBltBFM8VmnOE62sz8OyslClL9l7WKsfarsNxFRGY6RoUu5yVmmU5Ln_rC2cB1xlEsHHQXuy6Xky5JIR2ataoqqlV7UsItgd9CuDybQSYxfEZrjisAg-DTpfVv9F2GE_LYtxPWP2ye33Y_kw_SlvtMwwDi8jOF3R7G7eYNFYZGtloU0hmMaRDLeSGZNL5XQhndEFMwgdOdcR_Fghp4-VZCBougnymj92Xv9J-If_-vIDePn1ZCy_fL662IFXKaKt_kjRLqzNpnO7h2hppvc7i_gNlj0OLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniqueness+theorems+for+weighted+harmonic+functions+in+the+upper+half-plane&rft.jtitle=Journal+d%27analyse+math%C3%A9matique+%28Jerusalem%29&rft.au=Olofsson%2C+Anders&rft.au=Wittsten%2C+Jens&rft.date=2024-04-01&rft.issn=0021-7670&rft_id=info:doi/10.1007%2Fs11854-023-0298-8&rft.externalDocID=oai_DiVA_org_hb_31339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-7670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-7670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-7670&client=summon