Uniqueness theorems for weighted harmonic functions in the upper half-plane
We consider a class of weighted harmonic functions in the open upper half-plane known as α -harmonic functions. Of particular interest is the uniqueness problem for such functions subject to a vanishing Dirichlet boundary value on the real line and an appropriate vanishing condition at infinity. We...
Saved in:
Published in | Journal d'analyse mathématique (Jerusalem) Vol. 152; no. 1; pp. 317 - 359 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Jerusalem
The Hebrew University Magnes Press
01.04.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider a class of weighted harmonic functions in the open upper half-plane known as
α
-harmonic functions. Of particular interest is the uniqueness problem for such functions subject to a vanishing Dirichlet boundary value on the real line and an appropriate vanishing condition at infinity. We find that the non-classical case (
α
≠ 0) allows for a considerably more relaxed vanishing condition at infinity compared to the classical case (
α
= 0) of usual harmonic functions in the upper half-plane. The reason behind this dichotomy is different geometry of zero sets of certain polynomials naturally derived from the classical binomial series. These findings shed new light on the theory of harmonic functions, for which we provide sharp uniqueness results under vanishing conditions at infinity along geodesics or along rays emanating from the origin. |
---|---|
AbstractList | We consider a class of weighted harmonic functions in the open upper half-plane known as α-harmonic functions. Of particular interest is the uniqueness problem for such functions subject to a vanishing Dirichlet boundary value on the real line and an appropriate vanishing condition at infinity. We find that the non-classical case (α ≠ 0) allows for a considerably more relaxed vanishing condition at infinity compared to the classical case (α = 0) of usual harmonic functions in the upper half-plane. The reason behind this dichotomy is different geometry of zero sets of certain polynomials naturally derived from the classical binomial series. These findings shed new light on the theory of harmonic functions, for which we provide sharp uniqueness results under vanishing conditions at infinity along geodesics or along rays emanating from the origin. We consider a class of weighted harmonic functions in the open upper half-plane known as α -harmonic functions. Of particular interest is the uniqueness problem for such functions subject to a vanishing Dirichlet boundary value on the real line and an appropriate vanishing condition at infinity. We find that the non-classical case ( α ≠ 0) allows for a considerably more relaxed vanishing condition at infinity compared to the classical case ( α = 0) of usual harmonic functions in the upper half-plane. The reason behind this dichotomy is different geometry of zero sets of certain polynomials naturally derived from the classical binomial series. These findings shed new light on the theory of harmonic functions, for which we provide sharp uniqueness results under vanishing conditions at infinity along geodesics or along rays emanating from the origin. |
Author | Wittsten, Jens Olofsson, Anders |
Author_xml | – sequence: 1 givenname: Anders surname: Olofsson fullname: Olofsson, Anders organization: Centre for Mathematical Sciences, Lund University – sequence: 2 givenname: Jens surname: Wittsten fullname: Wittsten, Jens email: jens.wittsten@math.lu.se organization: Centre for Mathematical Sciences, Lund University, Department of Engineering, University of Borås |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-31339$$DView record from Swedish Publication Index https://lup.lub.lu.se/record/8bd864b0-1d5e-4dd7-afb8-fdb84d26455b$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/8bd864b0-1d5e-4dd7-afb8-fdb84d26455b$$DView record from Swedish Publication Index |
BookMark | eNqNkk9v1DAQxS1UJLaFD8AtEkcU8P84x6pQQKzEhXId2fF4N1XWDnaiim-Pl13BaSUOIx_85jdv7HdNrmKKSMhrRt8xSrv3hTGjZEu5qNWb1jwjG6a0ao0S5opsKOWs7XRHX5DrUh4pVaoXfEO-PsTx54oRS2mWPaaMh9KElJsnHHf7BX2zt_mQ4jg0YY3DMqZYmjEetc06z5jr_RTaebIRX5LnwU4FX53PG_Jw__H73ed2--3Tl7vbbTsoqpc2eCEUaqMY4z0XXLjgOEcrusC0p9py653X0ipqeaeYsygV72VvbH8scUPsiVuecF4dzHk82PwLkh1hTnmxE2QsaPOwh2mFglBV0zjYP-7BOG-0dBSYVwjS-w5scAaCd0Z6rqVSrs7YXpwxrXMtd2b_J-7tRdyH8cctpLyDvQPBhDgu-OaknnOqn1MWeExrjvVNQVCtpaSdkFXFTqohp1Iyhr9UVs3UUMApFFBDAcdQgKk9_OyjauMO8z_y5abf7oa94w |
Cites_doi | 10.1007/978-81-322-2113-5_8 10.1007/s11854-014-0019-4 10.1112/plms/pdm025 10.1016/j.jmaa.2015.12.026 10.2307/1969638 10.1007/b97238 10.2140/pjm.1951.1.485 10.7146/math.scand.a-12218 10.4171/rmi/668 10.2140/pjm.1996.175.571 10.1512/iumj.1996.45.1961 10.7146/math.scand.a-11697 10.1112/plms/s3-13.1.639 10.1016/j.aim.2014.07.020 10.1007/BF02392249 10.2969/jmsj/06520447 10.1080/17476933.2019.1669572 10.1016/j.bulsci.2015.04.004 10.1017/CBO9781107325937 10.1090/S0002-9904-1953-09651-3 10.1215/S0012-7094-80-04722-5 10.2140/pjm.1992.153.1 10.1016/j.bulsci.2019.102809 10.1007/s13324-021-00561-w |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Partial differential equations Centre for Mathematical Sciences Matematik (naturvetenskapliga fakulteten) Research groups at the Centre for Mathematical Sciences Forskargrupper vid Matematikcentrum Lunds universitet Naturvetenskapliga fakulteten Matematikcentrum Partiella differentialekvationer Faculty of Science Lund University Mathematics (Faculty of Sciences) |
CorporateAuthor_xml | – name: Mathematics (Faculty of Sciences) – name: Naturvetenskapliga fakulteten – name: Lund University – name: Matematik (naturvetenskapliga fakulteten) – name: Centre for Mathematical Sciences – name: Partiella differentialekvationer – name: Research groups at the Centre for Mathematical Sciences – name: Forskargrupper vid Matematikcentrum – name: Partial differential equations – name: Faculty of Science – name: Lunds universitet – name: Matematikcentrum |
DBID | C6C AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D ADTPV AOWAS ARHCE D8T DF9 ZZAVC AGCHP D95 |
DOI | 10.1007/s11854-023-0298-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SwePub SwePub Articles SWEPUB Högskolan i Borås full text SWEPUB Freely available online SWEPUB Högskolan i Borås SwePub Articles full text SWEPUB Lunds universitet full text SWEPUB Lunds universitet |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1565-8538 |
EndPage | 359 |
ExternalDocumentID | oai_portal_research_lu_se_publications_8bd864b0_1d5e_4dd7_afb8_fdb84d26455b oai_lup_lub_lu_se_8bd864b0_1d5e_4dd7_afb8_fdb84d26455b oai_DiVA_org_hb_31339 10_1007_s11854_023_0298_8 |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 2J2 2JN 2JY 2KG 2KM 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFKRA AFLOW AFQWF AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ C6C CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HG5 HG6 HRMNR HVGLF HZ~ H~9 IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K6V K7- KOV L6V LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF- PKN PQQKQ PROAC PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 VXZ W48 WK8 YLTOR YQT Z45 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AETEA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TB 8FD ABRTQ FR3 JQ2 KR7 L7M L~C L~D ADTPV AOWAS ARHCE D8T DF9 PQGLB ZZAVC AGCHP D95 PUEGO |
ID | FETCH-LOGICAL-c506t-fd335e68511292323bfb22ea37f16d06a2adbd64a50a2751bae4529498a998a93 |
IEDL.DBID | C6C |
ISSN | 0021-7670 1565-8538 |
IngestDate | Mon Aug 25 03:25:38 EDT 2025 Thu Jul 03 05:14:00 EDT 2025 Thu Aug 21 06:18:32 EDT 2025 Fri Jul 25 11:11:54 EDT 2025 Tue Jul 01 02:03:42 EDT 2025 Fri Feb 21 02:42:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c506t-fd335e68511292323bfb22ea37f16d06a2adbd64a50a2751bae4529498a998a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/s11854-023-0298-8 |
PQID | 3066440734 |
PQPubID | 2034532 |
PageCount | 43 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_8bd864b0_1d5e_4dd7_afb8_fdb84d26455b swepub_primary_oai_lup_lub_lu_se_8bd864b0_1d5e_4dd7_afb8_fdb84d26455b swepub_primary_oai_DiVA_org_hb_31339 proquest_journals_3066440734 crossref_primary_10_1007_s11854_023_0298_8 springer_journals_10_1007_s11854_023_0298_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Jerusalem |
PublicationPlace_xml | – name: Jerusalem |
PublicationTitle | Journal d'analyse mathématique (Jerusalem) |
PublicationTitleAbbrev | JAMA |
PublicationYear | 2024 |
Publisher | The Hebrew University Magnes Press Springer Nature B.V |
Publisher_xml | – name: The Hebrew University Magnes Press – name: Springer Nature B.V |
References | Wolf (CR26) 1941; 74 Rudin (CR21) 1987 Andrews, Askey, Roy (CR3) 1999 Berman, Cohn (CR5) 1988; 62 Olofsson (CR19) 2020; 65 Wittsten (CR25) 2015; 139 Hörmander (CR14) 1990 CR18 CR16 Axler, Bourdon, Ramey (CR4) 1992 Olofsson, Wittsten (CR20) 2013; 65 Shapiro (CR22) 1963; 13 Borichev, Hedenmalm (CR7) 2014; 264 Huber (CR15) 1954; 60 Borichev, Chill, Tomilov (CR6) 2007; 95 Geller (CR13) 1980; 47 Garabedian (CR11) 1951; 1 Gardner, Govil (CR12) 2014 Ahern, Cascante (CR2) 1992; 153 Borichev, Tomilov (CR8) 2012; 28 Dahlberg (CR10) 1977; 40 Weinstein (CR24) 1953; 59 Siegel, Talvila (CR23) 1996; 175 Ahern, Bruna, Cascante (CR1) 1996; 45 Olofsson (CR17) 2014; 123 Carlsson, Wittsten (CR9) 2016; 436 A Borichev (298_CR8) 2012; 28 M Carlsson (298_CR9) 2016; 436 G E Andrews (298_CR3) 1999 S Axler (298_CR4) 1992 A Weinstein (298_CR24) 1953; 59 D Geller (298_CR13) 1980; 47 P Ahern (298_CR2) 1992; 153 P R Garabedian (298_CR11) 1951; 1 A Huber (298_CR15) 1954; 60 A Olofsson (298_CR17) 2014; 123 F Wolf (298_CR26) 1941; 74 P Ahern (298_CR1) 1996; 45 R D Berman (298_CR5) 1988; 62 A Olofsson (298_CR19) 2020; 65 B Dahlberg (298_CR10) 1977; 40 L Hörmander (298_CR14) 1990 298_CR18 298_CR16 V L Shapiro (298_CR22) 1963; 13 A Borichev (298_CR7) 2014; 264 R B Gardner (298_CR12) 2014 D Siegel (298_CR23) 1996; 175 A Borichev (298_CR6) 2007; 95 A Olofsson (298_CR20) 2013; 65 W Rudin (298_CR21) 1987 J Wittsten (298_CR25) 2015; 139 |
References_xml | – start-page: 171 year: 2014 end-page: 199 ident: CR12 article-title: Eneström—Kakeya theorem and some of its generalizations publication-title: Current Topics in Pure and Computational Complex Analysis doi: 10.1007/978-81-322-2113-5_8 – ident: CR18 – volume: 123 start-page: 227 year: 2014 end-page: 249 ident: CR17 article-title: Differential operators for a scale of Poisson type kernels in the unit disc publication-title: J. Anal. Math. doi: 10.1007/s11854-014-0019-4 – volume: 95 start-page: 687 year: 2007 end-page: 708 ident: CR6 article-title: Uniqueness theorems for (sub-)harmonic functions with applications to operator theory publication-title: Proc. Lond. Math. Soc. (3) doi: 10.1112/plms/pdm025 – ident: CR16 – volume: 436 start-page: 868 year: 2016 end-page: 889 ident: CR9 article-title: The Dirichlet problem for standard weighted Laplacians in the upper half plane publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.12.026 – volume: 60 start-page: 351 year: 1954 end-page: 358 ident: CR15 article-title: On the uniqueness of generalized axially symmetric potentials publication-title: Ann. of Math. doi: 10.2307/1969638 – year: 1992 ident: CR4 publication-title: Harmonic function theory doi: 10.1007/b97238 – volume: 1 start-page: 485 year: 1951 end-page: 524 ident: CR11 article-title: A partial differential equation arising in conformal mapping publication-title: Pacific J. Math. doi: 10.2140/pjm.1951.1.485 – volume: 62 start-page: 269 year: 1988 end-page: 293 ident: CR5 article-title: Phragmén—Lindelöf theorems for subharmonic functions on the unit disk publication-title: Math. Scand. doi: 10.7146/math.scand.a-12218 – volume: 28 start-page: 93 year: 2012 end-page: 112 ident: CR8 article-title: Boundary uniqueness of harmonic functions and spectral subspaces of operator groups publication-title: Rev. Mat. Iberoam. doi: 10.4171/rmi/668 – volume: 175 start-page: 571 year: 1996 end-page: 587 ident: CR23 article-title: Uniqueness for the n-dimensional half space Dirichlet problem publication-title: Pacific J. Math. doi: 10.2140/pjm.1996.175.571 – volume: 45 start-page: 103 year: 1996 end-page: 135 ident: CR1 article-title: - publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.1996.45.1961 – volume: 40 start-page: 301 year: 1977 end-page: 317 ident: CR10 article-title: On the radial boundary values of subharmonic functions publication-title: Math. Scand. doi: 10.7146/math.scand.a-11697 – volume: 13 start-page: 639 year: 1963 end-page: 652 ident: CR22 article-title: The uniqueness of functions harmonic in the interior of the unit disk publication-title: Proc. London Math. Soc. (3) doi: 10.1112/plms/s3-13.1.639 – volume: 264 start-page: 464 year: 2014 end-page: 505 ident: CR7 article-title: Weighted integrability of polyharmonic functions publication-title: Adv. Math. doi: 10.1016/j.aim.2014.07.020 – volume: 74 start-page: 65 year: 1941 end-page: 100 ident: CR26 article-title: The Poisson integral. A study in the uniqueness of harmonic functions publication-title: Acta Math. doi: 10.1007/BF02392249 – year: 1987 ident: CR21 publication-title: Real and Complex Analysis – volume: 65 start-page: 447 year: 2013 end-page: 486 ident: CR20 article-title: Poisson integrals for standard weighted Laplacians in the unit disc publication-title: J. Math. Soc. Japan doi: 10.2969/jmsj/06520447 – volume: 65 start-page: 1630 year: 2020 end-page: 1660 ident: CR19 article-title: Lipschitz continuity for weighted harmonic functions in the unit disc publication-title: Complex Var. Elliptic Equ. doi: 10.1080/17476933.2019.1669572 – volume: 139 start-page: 892 year: 2015 end-page: 922 ident: CR25 article-title: Generalized axially symmetric potentials with distributional boundary values publication-title: Bull. Sci. Math. doi: 10.1016/j.bulsci.2015.04.004 – year: 1990 ident: CR14 publication-title: The Analysis of Linear Partial Differential Operators I. Distribution theory and Fourier analysis – year: 1999 ident: CR3 publication-title: Special Functions doi: 10.1017/CBO9781107325937 – volume: 59 start-page: 20 year: 1953 end-page: 38 ident: CR24 article-title: Generalized axially symmetric potential theory publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0002-9904-1953-09651-3 – volume: 47 start-page: 365 year: 1980 end-page: 390 ident: CR13 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-80-04722-5 – volume: 153 start-page: 1 year: 1992 end-page: 13 ident: CR2 article-title: ℂ , ≤ 1 publication-title: Pacific J. Math. doi: 10.2140/pjm.1992.153.1 – volume-title: The Analysis of Linear Partial Differential Operators I. Distribution theory and Fourier analysis year: 1990 ident: 298_CR14 – start-page: 171 volume-title: Current Topics in Pure and Computational Complex Analysis year: 2014 ident: 298_CR12 doi: 10.1007/978-81-322-2113-5_8 – volume-title: Special Functions year: 1999 ident: 298_CR3 doi: 10.1017/CBO9781107325937 – volume: 45 start-page: 103 year: 1996 ident: 298_CR1 publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.1996.45.1961 – volume: 153 start-page: 1 year: 1992 ident: 298_CR2 publication-title: Pacific J. Math. doi: 10.2140/pjm.1992.153.1 – volume: 47 start-page: 365 year: 1980 ident: 298_CR13 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-80-04722-5 – ident: 298_CR18 doi: 10.1016/j.bulsci.2019.102809 – volume: 95 start-page: 687 year: 2007 ident: 298_CR6 publication-title: Proc. Lond. Math. Soc. (3) doi: 10.1112/plms/pdm025 – volume: 65 start-page: 1630 year: 2020 ident: 298_CR19 publication-title: Complex Var. Elliptic Equ. doi: 10.1080/17476933.2019.1669572 – volume: 13 start-page: 639 year: 1963 ident: 298_CR22 publication-title: Proc. London Math. Soc. (3) doi: 10.1112/plms/s3-13.1.639 – ident: 298_CR16 doi: 10.1007/s13324-021-00561-w – volume: 139 start-page: 892 year: 2015 ident: 298_CR25 publication-title: Bull. Sci. Math. doi: 10.1016/j.bulsci.2015.04.004 – volume: 60 start-page: 351 year: 1954 ident: 298_CR15 publication-title: Ann. of Math. doi: 10.2307/1969638 – volume-title: Real and Complex Analysis year: 1987 ident: 298_CR21 – volume: 62 start-page: 269 year: 1988 ident: 298_CR5 publication-title: Math. Scand. doi: 10.7146/math.scand.a-12218 – volume: 28 start-page: 93 year: 2012 ident: 298_CR8 publication-title: Rev. Mat. Iberoam. doi: 10.4171/rmi/668 – volume: 65 start-page: 447 year: 2013 ident: 298_CR20 publication-title: J. Math. Soc. Japan doi: 10.2969/jmsj/06520447 – volume-title: Harmonic function theory year: 1992 ident: 298_CR4 doi: 10.1007/b97238 – volume: 264 start-page: 464 year: 2014 ident: 298_CR7 publication-title: Adv. Math. doi: 10.1016/j.aim.2014.07.020 – volume: 59 start-page: 20 year: 1953 ident: 298_CR24 publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0002-9904-1953-09651-3 – volume: 40 start-page: 301 year: 1977 ident: 298_CR10 publication-title: Math. Scand. doi: 10.7146/math.scand.a-11697 – volume: 175 start-page: 571 year: 1996 ident: 298_CR23 publication-title: Pacific J. Math. doi: 10.2140/pjm.1996.175.571 – volume: 74 start-page: 65 year: 1941 ident: 298_CR26 publication-title: Acta Math. doi: 10.1007/BF02392249 – volume: 1 start-page: 485 year: 1951 ident: 298_CR11 publication-title: Pacific J. Math. doi: 10.2140/pjm.1951.1.485 – volume: 436 start-page: 868 year: 2016 ident: 298_CR9 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.12.026 – volume: 123 start-page: 227 year: 2014 ident: 298_CR17 publication-title: J. Anal. Math. doi: 10.1007/s11854-014-0019-4 |
SSID | ssj0055932 |
Score | 2.3490627 |
Snippet | We consider a class of weighted harmonic functions in the open upper half-plane known as
α
-harmonic functions. Of particular interest is the uniqueness... We consider a class of weighted harmonic functions in the open upper half-plane known as α-harmonic functions. Of particular interest is the uniqueness problem... |
SourceID | swepub proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 317 |
SubjectTerms | Abstract Harmonic Analysis Analysis Dirichlet problem Dynamical Systems and Ergodic Theory Functional Analysis Geodesy Half planes Harmonic functions Infinity Matematik Matematisk analys Mathematical Analysis Mathematical Sciences Mathematics Mathematics and Statistics Natural Sciences Naturvetenskap Partial Differential Equations Polynomials Uniqueness theorems |
Title | Uniqueness theorems for weighted harmonic functions in the upper half-plane |
URI | https://link.springer.com/article/10.1007/s11854-023-0298-8 https://www.proquest.com/docview/3066440734 https://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-31339 https://lup.lub.lu.se/record/8bd864b0-1d5e-4dd7-afb8-fdb84d26455b oai:portal.research.lu.se:publications/8bd864b0-1d5e-4dd7-afb8-fdb84d26455b |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH_i4zIOjLEhwqDygRPIWj5sJzlWXTs0BCc6wS6WHduiEpSItOLf5zlx2w1VEzs4FzsvyrOf3-_52T8DnGqVoInlCa1KhQGKcIaWsU4oegdblVgRtyRJV9fiYsx-3vLbQBbtz8K8yd9_axAAc0bRs1BPFk6LTdjmSZb7WxoGYrCYdBEXZ4EYPKG5yJcJzHUi_nZBK1y5TIW-oQ1tXc1oD3YDRiT9rlM_wYad7sPHgBdJsMZmH3aulpyrzWe4HLdcrH7qIt3xxMeGICQlL-3qJ77pWao9Ey7xzqwdb2Qy9W3JvK7tM9Y_OFr73a9fYDwa3gwuaLgqgVY8FjPqTJZxKzr4hCAp006nqVVZ7hJhYqFSZbQRTPFYpTlPtLI-48rKQpW-ZAewNX2a2kMgpjIaY0KTcpezSqMkz_JnbeE8tCqTCM4W2pN1x4ghV9zHXtUSVS29qmURwfFCvzIYRyMxSkEUhnMLi-B8ofNV9T-EnXbdsvyu58b-PvnVlzhk5L2WGUbcZQTDNc0e5jUWjUU2VhbaFIJp_JLhVjJjcqmcLqQzumAGQSLnOoLfa-R0UZEMVEz3QV79xxrru4Qf_deff4UPKYKpbsfQMWzNnuf2BMHQTPdgu__j7nLYa80Bn-O0_wqpmQVv |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2V9gAcoBQQgdL60BPIUj5sxzmuoNXSdnvqooqLZcd2W6lso82u-PuME2cXqhUqB5-cjJWxZ-aNx34BODI6QxMrM1pXGhMU4S2tUpNRjA6urrAj7UiSJhdiPGWnV_wq3uNuh9PuQ0my89Try24YWhjFGEMDbTiVT2AHsYAMS3majwb3iwi5iBThGS1FuSplbhLxdzBaI8xVUfQBgWgXdE524UVEi2TUT-8r2HKzPXgZkSOJdtnuwfPJin21fQ1n046VNTgx0l9U_NkSBKfkV7cPim8GvurAiUtCWOtWHrmdhWfJsmncHPvvPG3COdg3MD05vvwypvGnCbTmqVhQb4uCO9EDKYRLhfEmz50uSp8Jmwqda2usYJqnOi95ZrQLtVdWSV2FVryF7dn9zL0DYmtrMDu0Ofclqw1KCnx_zkkfQFaVJfBp0J5qem4MtWZBDqpWqGoVVK1kAvuDflU0k1ZhvoJ4DL0MS-DzoPN19z-EHfXTsho3sGR_vf0-Uvfza3VjVIG5d5XA8YbH7pYNNoNNtU5JY6VgBkey3Clmbam0N1J5aySzCBc5Nwn82CCnz49UJGW6ifKaP3ZbHyX8_X99-SE8HV9OztX5t4uzD_AsR4jVnyPah-3FfOk-IkRamIPOJH4DzpYKCQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAc2lJADX350BPIah62kxyrbVelpRUHFlVcLDu2aaU2jTa74u8zTpxdWq0QHHyyPVbGGc83HvszwKFWCZpYntCqVBigCGdoGeuEonewVYkVcUeSdHklzibs_Jpfh3dO2-G0-5CS7O80eJamenbUGHe0vPiGboZR9DfUU4jT4jm8wEAl8dHXSIyGpRjRchbowhOai3yR1lwl4rFjWqLNRYL0CZlo54DGm7AekCM57qf6DTyz9RZsBBRJgo22W_D6csHE2r6Fi0nH0OoXNNJfWrxvCQJV8qvbE8Wenrva8-MS7-K6v5Dc1r4tmTeNnWL9naONPxP7Dibj02-jMxoeUKAVj8WMOpNl3IoeVCF0yrTTaWpVlrtEmFioVBltBFM8VmnOE62sz8OyslClL9l7WKsfarsNxFRGY6RoUu5yVmmU5Ln_rC2cB1xlEsHHQXuy6Xky5JIR2ataoqqlV7UsItgd9CuDybQSYxfEZrjisAg-DTpfVv9F2GE_LYtxPWP2ye33Y_kw_SlvtMwwDi8jOF3R7G7eYNFYZGtloU0hmMaRDLeSGZNL5XQhndEFMwgdOdcR_Fghp4-VZCBougnymj92Xv9J-If_-vIDePn1ZCy_fL662IFXKaKt_kjRLqzNpnO7h2hppvc7i_gNlj0OLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniqueness+theorems+for+weighted+harmonic+functions+in+the+upper+half-plane&rft.jtitle=Journal+d%27analyse+math%C3%A9matique+%28Jerusalem%29&rft.au=Olofsson%2C+Anders&rft.au=Wittsten%2C+Jens&rft.date=2024-04-01&rft.issn=0021-7670&rft_id=info:doi/10.1007%2Fs11854-023-0298-8&rft.externalDocID=oai_DiVA_org_hb_31339 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-7670&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-7670&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-7670&client=summon |