Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering

To develop a single-unit osteochondral tissue with demineralized bone matrix gelatin (BMG), rabbit chondrocytes were cultured on demineralized bone matrix gelatin for 6 weeks. The engineered osteochondral tissue was characterized with histology, immunolocalization, TEM, SEM, biochemical assay, and g...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 27; no. 11; pp. 2426 - 2433
Main Authors Li, Xudong, Jin, Li, Balian, Gary, Laurencin, Cato T., Greg Anderson, D.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.04.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To develop a single-unit osteochondral tissue with demineralized bone matrix gelatin (BMG), rabbit chondrocytes were cultured on demineralized bone matrix gelatin for 6 weeks. The engineered osteochondral tissue was characterized with histology, immunolocalization, TEM, SEM, biochemical assay, and gene expression analysis. About 1.3 mm viable neo-cartilage was produced on demineralized BMG. RT-PCR, immunohistochemistry, TEM, biochemical assay, and histology revealed hyaline-like cartilage with zonal layers, intense type II collagen expression, and abundant proteoglycan content formed upon BMG compared with normal cartilage. But hydroxyproline content and type I collagen gene and protein expressions were significantly lower. We consider engineering cartilage tissue with chondrocytes cultured on allogenic demineralized BMG is a good approach for osteochondral tissue engineering.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2005.11.040